1
|
Romero-ElKhayat L, Dakterzada F, Huerto R, Carnes-Vendrell A, Mínguez O, Pujol Sabaté M, Targa A, Barbé F, Milanesi E, Dobre M, Manda G, Cuadrado A, Piñol-Ripoll G. Inflammatory and Redox Blood Gene Expression Fingerprint of Severe Obstructive Sleep Apnoea in Patients With Mild Alzheimer's Disease. J Inflamm Res 2025; 18:1609-1621. [PMID: 39925924 PMCID: PMC11806709 DOI: 10.2147/jir.s475776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Obstructive sleep apnoea (OSA) is the sleep disorder most frequently found in patients with Alzheimer's disease (AD). The intermittent hypoxia (IH) caused by OSA may participate in AD pathogenesis through increase in oxidative damage and inflammation. We aimed to identify inflammatory and redox genes differentially expressed in the blood from AD patients with severe OSA compared with those with nonsevere OSA. Methods We included 40 AD patients diagnosed based on clinical manifestations and AD biomarker levels in cerebrospinal fluid (CSF). Severe or nonsevere OSA (apnoea-hypopnea index ≥ 30/h and < 30/h, respectively) was diagnosed through overnight polysomnography (PSG). The expression levels of 136 inflammation-related and 84 redox-related genes were evaluated by whole blood targeted transcriptomics. Results Three inflammatory and six redox genes were upregulated in the blood of AD patients with severe OSA. Three of them correlated with PSG parameters. A pathway enrichment analysis showed a strong enrichment of the serotonergic synapse pathway in severe OSA AD patients. Discussion Our results show an upregulation of nine genes involved in NF-κB-mediated inflammation and redox metabolism in the blood of patients with mild AD with severe OSA. Therefore, severe OSA may worsen the inflammation and oxidative damage that are already altered in patients with AD.
Collapse
Affiliation(s)
- Leila Romero-ElKhayat
- Unitat de Trastorns Cognitius, Cognition and Behavior Study Group, Universitat de Lleida, IRBLleida, Lleida, 25198, Spain
| | - Farida Dakterzada
- Unitat de Trastorns Cognitius, Cognition and Behavior Study Group, Universitat de Lleida, IRBLleida, Lleida, 25198, Spain
| | - Raquel Huerto
- Unitat de Trastorns Cognitius, Cognition and Behavior Study Group, Universitat de Lleida, IRBLleida, Lleida, 25198, Spain
| | - Anna Carnes-Vendrell
- Unitat de Trastorns Cognitius, Cognition and Behavior Study Group, Universitat de Lleida, IRBLleida, Lleida, 25198, Spain
| | - Olga Mínguez
- Unitat de Son, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
| | | | - Adriano Targa
- Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- Center for Biomedical Research in Respiratory Diseases Network (CIBERES), Madrid, Spain
| | - Ferran Barbé
- Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- Center for Biomedical Research in Respiratory Diseases Network (CIBERES), Madrid, Spain
| | - Elena Milanesi
- “Victor Babes” National Institute of Pathology, Bucharest, 050096, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, 050474, Romania
| | - Maria Dobre
- “Victor Babes” National Institute of Pathology, Bucharest, 050096, Romania
| | - Gina Manda
- “Victor Babes” National Institute of Pathology, Bucharest, 050096, Romania
| | - Antonio Cuadrado
- “Victor Babes” National Institute of Pathology, Bucharest, 050096, Romania
- Department of Endocrine Physiology and Nervous System, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Madrid, 28029, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, 28049, Spain
- Neuroscience Section, Instituto de Investigación Sanitaria La Paz (Idipaz), Madrid, 28046, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, 28031, Spain
| | - Gerard Piñol-Ripoll
- Unitat de Trastorns Cognitius, Cognition and Behavior Study Group, Universitat de Lleida, IRBLleida, Lleida, 25198, Spain
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona – Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
2
|
Sagir B, Okutucu M, Arpa M, Findik H, Uzun F, Gokhan Aslan M, Şahin Ü, Kaim M. Evaluation of Choroidal Thickness and Retinal Vessel Density with Serum HIF-1α and TNF-α Level in Patients with OSAS. Curr Eye Res 2025; 50:66-73. [PMID: 39118389 DOI: 10.1080/02713683.2024.2386355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/07/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE To reveal changes in choroidal thickness, retinal vessel density, and serum HIF-1α and TNF-α levels in obstructive sleep apnea syndrome (OSAS) and their correlation. METHODS This prospective case-control study included 118 patients divided into mild-to-moderate OSAS (n = 40), severe OSAS (n = 39), and a control group (n = 39). Choroidal thickness was evaluated with OCT, vessel density with OCTA, AHI index with polysomnography, and serum HIF-1α and TNF-α levels were analyzed using the enzyme-linked immunosorbent assay. RESULTS The serum HIF-1α values of the participants in the mild-moderate OSAS and severe OSAS groups were [893.25(406.7-2068) and 1027(453-2527), respectively], and were both significantly higher than the control group [(521.5(231.6-2741))] (p < 0.001). Serum TNF-α levels did not differ significantly between the groups (p = 0.051).). Subfoveal choroidal thickness (SFCT) values of the severe OSAS groups were significantly lower than the control group (p < 0.05). The superficial and deep capillary plexus vascular density (SVD and DVD) values of the severe OSAS group were lower than the control group (p < 0.05). Serum HIF-1α and TNF-α levels of all participants were negatively correlated with both their SVD values (p < 0.05, r: -0.220 and p < 0.05, r: -0.252, respectively) and their DVD values (p < 0.001, r: -0.324 and p = 0.001, r: -0.299, respectively). CONCLUSIONS Increased serum levels of inflammatory mediators (HIF-1α ve TNF-α) in OSAS cause a decrease in SFCT, SVD, and DVD, which is an indication of systemic vascular damage. Further research on developing treatment strategies to modulate TNF-α ve HIF-1α may help recede vascular morbidity in OSAS patients.
Collapse
Affiliation(s)
- Busra Sagir
- Department of Ophtalmology, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Murat Okutucu
- Department of Ophthalmology, Recep Tayyip Erdoğan University Tip Fakultesi, Rize, Turkey
| | - Medeni Arpa
- Department of Biochemistry, Recep Tayyip Erdoğan University Tip Fakultesi, Rize, Turkey
| | - Hüseyin Findik
- Department of Ophthalmology, Recep Tayyip Erdoğan University Tip Fakultesi, Rize, Turkey
| | - Feyzahan Uzun
- Department of Ophthalmology, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | | | - Ünal Şahin
- Department of Chest Diseases, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Muhammet Kaim
- Department of Ophthalmology, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| |
Collapse
|
3
|
Li J, Qian X, Ding G, Zhang Y. Association between sleep duration and lung function among U.S. adults. BMC Public Health 2024; 24:3530. [PMID: 39696278 DOI: 10.1186/s12889-024-21024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Sleep's impact on the human immune system and inflammatory responses makes it a potential risk factor for lung function impairment. However, the relationship between sleep duration and lung function impairment in middle-aged and young adults has been rarely investigated. METHODS A total of 9,284 aged 20-64 years were categorized into four groups according to sleep duration (≤ 6 h, 7 h, 8 h, and ≥ 9 h), with 7 h as the reference, by using the U.S. NHANES data, 2007-2012. Forced expiratory volume in the 1 s (FEV1), forced vital capacity (FVC), FEV1 to FVC (FEV1/FVC) ratio, peak expiratory flow (PEF), and forced expiratory flow at 25-75% (FEF25 - 75%) were measured by spirometry. Restrictive impairment was defined as baseline FVC < 80% predicted and obstructive impairment as FEV1/FVC < 0.70. Generalized linear regression and logistic regression were performed to estimate the associations between sleep duration and lung function. RESULTS Compared with 7 h of sleep duration, shorter and longer sleep duration were associated with decreases in FEV1 (≤ 6 h: β=-0.010, 95% CI=-0.014 to -0.006; 8 h: β=-0.005, 95% CI=-0.009 to -0.001), FVC (≤ 6 h: β=-0.018, 95% CI=-0.014 to -0.007; 8 h: β=-0.005, 95% CI=-0.009 to -0.002), and PEF (≤ 6 h: β=-0.006, 95% CI=-0.010 to -0.002; 8 h: β=-0.007, 95% CI=-0.011 to -0.002; ≥ 9 h: β=-0.012, 95% CI=-0.020 to -0.004). Similarly, shorter (≤ 6 h: OR = 1.346, 95% CI = 1.065 to 1.700) and longer (≥ 9 h: OR = 1.827, 95% CI = 1.236 to 2.700) sleep duration were associated with increased risks of restrictive impairment. Moreover, the aforementioned associations were more pronounced among male participants. CONCLUSIONS Compared with 7 h of sleep duration, shorter and longer sleep duration were associated with impaired lung function among adults aged 20-64 years, and these associations were stronger among males.
Collapse
Affiliation(s)
- Jingyang Li
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiaoqian Qian
- Renal Division, Department of Internal Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guodong Ding
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yongjun Zhang
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Liu Y, Wang L, Bao EH, Wang JH, Yang L, Wang L, Xia L, Wang B, Zhu PY. Link Between Obstructive Sleep Apnea and Kidney Stones: NHANES 2015-2018 and Mendelian Randomization. Nat Sci Sleep 2024; 16:1557-1568. [PMID: 39376546 PMCID: PMC11457767 DOI: 10.2147/nss.s483343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Purpose The prevalence of Obstructive Sleep Apnea (OSA) is high, and there are many complications. Few studies have reported the relationship between OSA and kidney stones. The purpose of this study is to explore whether people at risk of OSA will increase the risk of kidney stones. Methods This was a cross-sectional study, and information was collected through the National Health and Nutrition Examination Survey conducted from 2015 to 2018. Multiple logistic regression analyses were employed to calculate the odds ratios (ORs) and their 95% confidence intervals (CIs) for the link between obstructive sleep apnea and the presence of kidney stones. Additionally, to assess causality and reduce observational biases, five distinct two-sample Mendelian randomization techniques were applied. Results Following the adjustment for relevant confounders, findings indicated a statistically significant correlation between obstructive sleep apnea (OSA) and higher prevalence of kidney stones (OR = 1.29; 95% CI: 1.00-1.66). Additionally, using the inverse-variance weighted approach in Mendelian randomization, results suggested a genetic predisposition to OSA might be causally linked to an elevated risk of developing kidney stones (OR: 1.00221, 95% CI 1.00056-1.00387). Conclusion OSA promotes the formation of kidney stones, and the treatment and management of OSA can improve or mitigate the occurrence of kidney stones.
Collapse
Affiliation(s)
- Ying Liu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Li Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Er-Hao Bao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Jia-Hao Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Lin Yang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Lei Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Long Xia
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Ben Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Ping-Yu Zhu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| |
Collapse
|
5
|
Ioachimescu OC. State of the art: Alternative overlap syndrome-asthma and obstructive sleep apnea. J Investig Med 2024; 72:589-619. [PMID: 38715213 DOI: 10.1177/10815589241249993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
In the general population, Bronchial Asthma (BA) and Obstructive Sleep Apnea (OSA) are among the most prevalent chronic respiratory disorders. Significant epidemiologic connections and complex pathogenetic pathways link these disorders via complex interactions at genetic, epigenetic, and environmental levels. The coexistence of BA and OSA in an individual likely represents a distinct syndrome, that is, a collection of clinical manifestations attributable to several mechanisms and pathobiological signatures. To avoid terminological confusion, this association has been named alternative overlap syndrome (vs overlap syndrome represented by the chronic obstructive pulmonary disease-OSA association). This comprehensive review summarizes the complex, often bidirectional links between the constituents of the alternative overlap syndrome. Cross-sectional, population, or clinic-based studies are unlikely to elucidate causality or directionality in these relationships. Even longitudinal epidemiological evaluations in BA cohorts developing over time OSA, or OSA cohorts developing BA during follow-up cannot exclude time factors or causal influence of other known or unknown mediators. As such, a lot of pathophysiological interactions described here have suggestive evidence, biological plausibility, potential or actual directionality. By showcasing existing evidence and current knowledge gaps, the hope is that deliberate, focused, and collaborative efforts in the near-future will be geared toward opportunities to shine light on the unknowns and accelerate discovery in this field of health, clinical care, education, research, and scholarly endeavors.
Collapse
|
6
|
Taimah M, Ahmad A, Al-Houqani M, Al Junaibi A, Idaghdour Y, Abdulle A, Ali R. Association between obstructive sleep apnea risk and type 2 diabetes among Emirati adults: results from the UAE healthy future study. Front Endocrinol (Lausanne) 2024; 15:1395886. [PMID: 39081790 PMCID: PMC11286458 DOI: 10.3389/fendo.2024.1395886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Obstructive sleep apnea (OSA) can have negative impacts on the health outcomes of individuals with type 2 diabetes. However, in the United Arab Emirates (UAE), there is a lack of understanding regarding the relationship between OSA and type 2 diabetes despite the significant implications it has on health. The primary objective of this study is to investigate the association between OSA risk and type 2 diabetes, associated risk factors, and gender differences in OSA symptoms among Emirati adults. Methods We conducted a cross-sectional analysis of the baseline data from the UAE Healthy Future Study (UAEHFS) collected between February 2016 and March 2023. Our sample consisted of 4578 participants aged 18-71 who completed the STOP-BANG survey, provided body measurements and blood samples. We stratified the patients according to their OSA risk and diabetes. We used univariate and multivariate logistic regression models to analyze the relationship between OSA risk and type 2 diabetes and to identify factors associated with risk for OSA and type 2 diabetes. We estimated odds ratios (ORs) with corresponding 95% confidence intervals (95% CI). Results The mean age was 27.5 years (± 8.35), and 55.81% (n=2555) were men. The overall prevalence of high risk for OSA was 16.58% and was higher in men compared to women (26.46% vs 4.10%). Women reported feeling tired more often than men (68.02% vs 48.96%). Both genders have similar rates of stop breathing and BMI ≥ 35. There was a significant association between the OSA risk and type 2 diabetes in the unadjusted model (OR=2.44; 95% CI: 1.78-3.35; p-value <0.0001) and (OR=6.44; 95% CI: 4.32-9.59; p-value < 0.0001) among those who reported intermediate and high OSA risk, respectively. After adjusting the model for education attainment, marital status, waist circumference, and smoking, the association remained significant between diabetes and OSA risk, with an OR of 1.65 (95%CI: 1.18-2.32; p-value =0.004) for intermediate OSA risk and 3.44 (95%CI: 2.23-5.33; p-value <0.0001) for high OSA risk. Conclusions This study conducted in the UAE found a significant correlation between OSA risk and type 2 diabetes. We suggest introducing routine screening of OSA for individuals with diabetes.
Collapse
Affiliation(s)
- Manal Taimah
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amar Ahmad
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohammad Al-Houqani
- Department of Medicine, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Abdulla Al Junaibi
- Department of Pediatrics, Zayed Military Hospital, Abu Dhabi, United Arab Emirates
| | - Youssef Idaghdour
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - AbdiShakur Abdulle
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raghib Ali
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Ioachimescu OC. Contribution of Obstructive Sleep Apnea to Asthmatic Airway Inflammation and Impact of Its Treatment on the Course of Asthma. Sleep Med Clin 2024; 19:261-274. [PMID: 38692751 DOI: 10.1016/j.jsmc.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Asthma and obstructive sleep apnea (OSA) are very common respiratory disorders in the general population. Beyond their high prevalence, shared risk factors, and genetic linkages, bidirectional relationships between asthma and OSA exist, each disorder affecting the other's presence and severity. The author reviews here some of the salient links between constituents of the alternative overlap syndrome, that is, OSA comorbid with asthma, with an emphasis on the effects of OSA or its treatment on inflammation in asthma. In the directional relationship from OSA toward asthma, beyond direct influences, multiple factors and comorbidities seem to contribute.
Collapse
Affiliation(s)
- Octavian C Ioachimescu
- Clinical and Translational Science Institute of Southeast Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
8
|
Xie L, Li S, Yu X, Wei Q, Yu F, Tong J. DAHOS Study: Efficacy of dapagliflozin in treating heart failure with reduced ejection fraction and obstructive sleep apnea syndrome - A 3-month, multicenter, randomized controlled clinical trial. Eur J Clin Pharmacol 2024; 80:771-780. [PMID: 38386021 DOI: 10.1007/s00228-024-03643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The recent discovery of new therapeutic approaches to heart failure with reduced ejection fraction (HFrEF), including sodium-glucose cotransporter-2 (SGLT-2) inhibitors, as well as improved treatment of co-morbidities has provided much needed help to HFrEF. In addition, dapagliflozin, one of the SGLT-2 inhibitors, serves as a promising candidate in treating obstructive sleep apnea (OSA) of HFrEF patients due to its likely mechanism of countering the pathophysiology of OSA of HFrEF. METHODS This 3-month multicenter, prospective, randomized controlled trial enrolled participants with left ventricular ejection fraction (LVEF) less than 40% and apnea-hypopnea index (AHI) greater than 15. Participants were randomized into two groups: the treatment group received optimized heart failure treatment and standard-dose dapagliflozin, while the control group only received optimized heart failure treatment. The primary endpoint was the difference in AHI before and after treatment between the two groups. Secondary endpoints included oxygen desaturation index (ODI), minimum oxygen saturation, longest apnea duration, inflammatory factors (CRP, IL-6), quality of life score, and LVEF. RESULTS A total of 107 patients were included in the final analysis. AHI, LVEF and other baseline data were similar for the dapagliflozin and control groups. After 12 weeks of dapagliflozin treatment, the dapagliflozin group showed significant improvements in sleep parameters including AHI, HI, longest pause time, ODI, time spent with SpO2 < 90%, and average SpO2. Meanwhile, the control group showed no significant changes in sleep parameters, but did demonstrate significant improvements in left ventricular end-diastolic diameter, LVEF, and NT-proBNP levels at 12 weeks. In the experimental group, BMI was significantly reduced, and there were improvements in ESS score, MLHFQ score, and EQ-5D-3L score, as well as significant reductions in CRP and IL-6 levels, while the CRP and IL-6 levels were not improved in the control group. The decrease in LVEF was more significant in the experimental group compared to the control group. There were no significant differences in the magnitude of the decreases between the two groups. CONCLUSIONS Dapagliflozin may be an effective treatment for heart failure complicated with OSA, and could be considered as a potential new treatment for OSA. (Trial registration www.chictr.org.cn , ChiCTR2100049834. Registered 10 August 2021).
Collapse
Affiliation(s)
- Liang Xie
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shengnan Li
- School of Medicine, Southeast University, Nanjing, China
| | - Xiaojin Yu
- School of Medicine, Southeast University, Nanjing, China
| | - Qin Wei
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Liu W, Zhu Q, Li X, Wang Y, Zhao C, Ma C. Effects of obstructive sleep apnea on myocardial injury and dysfunction: a review focused on the molecular mechanisms of intermittent hypoxia. Sleep Breath 2024; 28:41-51. [PMID: 37548920 DOI: 10.1007/s11325-023-02893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia (IH) and is strongly associated with adverse cardiovascular outcomes. Myocardial injury and dysfunction have been commonly observed in clinical practice, particularly in patients with severe OSA. However, the underlying mechanisms remain obscure. In this review, we summarized the molecular mechanisms by which IH impact on myocardial injury and dysfunction. In brief, IH-induced cardiomyocyte death proceeds through the regulation of multiple biological processes, including differentially expressed transcription factors, alternative epigenetic programs, and altered post-translational modification. Besides cell death, various cardiomyocyte injuries, such as endoplasmic reticulum stress, occurs with IH. In addition to the direct effects on cardiomyocytes, IH has been found to deteriorate myocardial blood and energy supply by affecting the microvascular structure and disrupting glucose and lipid metabolism. For better diagnosis and treatment of OSA, further studies on the molecular mechanisms of IH-induced myocardial injury and dysfunction are essential.
Collapse
Affiliation(s)
- Wen Liu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Qing Zhu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xinxin Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Yonghuai Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Cuiting Zhao
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China.
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
10
|
Arnaud C, Billoir E, de Melo Junior AF, Pereira SA, O'Halloran KD, Monteiro EC. Chronic intermittent hypoxia-induced cardiovascular and renal dysfunction: from adaptation to maladaptation. J Physiol 2023; 601:5553-5577. [PMID: 37882783 DOI: 10.1113/jp284166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is the dominant pathological feature of human obstructive sleep apnoea (OSA), which is highly prevalent and associated with cardiovascular and renal diseases. CIH causes hypertension, centred on sympathetic nervous overactivity, which persists following removal of the CIH stimulus. Molecular mechanisms contributing to CIH-induced hypertension have been carefully delineated. However, there is a dearth of knowledge on the efficacy of interventions to ameliorate high blood pressure in established disease. CIH causes endothelial dysfunction, aberrant structural remodelling of vessels and accelerates atherosclerotic processes. Pro-inflammatory and pro-oxidant pathways converge on disrupted nitric oxide signalling driving vascular dysfunction. In addition, CIH has adverse effects on the myocardium, manifesting atrial fibrillation, and cardiac remodelling progressing to contractile dysfunction. Sympatho-vagal imbalance, oxidative stress, inflammation, dysregulated HIF-1α transcriptional responses and resultant pro-apoptotic ER stress, calcium dysregulation, and mitochondrial dysfunction conspire to drive myocardial injury and failure. CIH elaborates direct and indirect effects in the kidney that initially contribute to the development of hypertension and later to chronic kidney disease. CIH-induced morphological damage of the kidney is dependent on TLR4/NF-κB/NLRP3/caspase-1 inflammasome activation and associated pyroptosis. Emerging potential therapies related to the gut-kidney axis and blockade of aryl hydrocarbon receptors (AhR) are promising. Cardiorenal outcomes in response to intermittent hypoxia present along a continuum from adaptation to maladaptation and are dependent on the intensity and duration of exposure to intermittent hypoxia. This heterogeneity of OSA is relevant to therapeutic treatment options and we argue the need for better stratification of OSA phenotypes.
Collapse
Affiliation(s)
- Claire Arnaud
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | - Emma Billoir
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | | | - Sofia A Pereira
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Emilia C Monteiro
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Wester M, Arzt M, Sinha F, Maier LS, Lebek S. Insights into the Interaction of Heart Failure with Preserved Ejection Fraction and Sleep-Disordered Breathing. Biomedicines 2023; 11:3038. [PMID: 38002038 PMCID: PMC10669157 DOI: 10.3390/biomedicines11113038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is emerging as a widespread disease with global socioeconomic impact. Patients with HFpEF show a dramatically increased morbidity and mortality, and, unfortunately, specific treatment options are limited. This is due to the various etiologies that promote HFpEF development. Indeed, cluster analyses with common HFpEF comorbidities revealed the existence of several HFpEF phenotypes. One especially frequent, yet underappreciated, comorbidity is sleep-disordered breathing (SDB), which is closely intertwined with the development and progression of the "obese HFpEF phenotype". The following review article aims to provide an overview of the common HFpEF etiologies and phenotypes, especially in the context of SDB. As general HFpEF therapies are often not successful, patient- and phenotype-individualized therapeutic strategies are warranted. Therefore, for the "obese HFpEF phenotype", a better understanding of the mechanistic parallels between both HFpEF and SDB is required, which may help to identify potential phenotype-individualized therapeutic strategies. Novel technologies like single-cell transcriptomics or CRISPR-Cas9 gene editing further broaden the groundwork for deeper insights into pathomechanisms and precision medicine.
Collapse
Affiliation(s)
- Michael Wester
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
| | - Frederick Sinha
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
| | - Lars Siegfried Maier
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
13
|
Xie L, Song S, Li S, Wei Q, Liu H, Zhao C, Yu F, Tong J. Efficacy of dapagliflozin in the treatment of HFrEF with obstructive sleep apnea syndrome (DAHOS study): study protocol for a multicentric, prospective, randomized controlled clinical trial. Trials 2023; 24:318. [PMID: 37158922 PMCID: PMC10169325 DOI: 10.1186/s13063-023-07332-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/28/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Heart failure with reduced ejection fraction (HFrEF) is associated with sleep dyspnea (SDB), which plays an adverse role in the pathophysiology of the condition. SDB management in HFrEF, however, remains controversial. HFrEF's medical management has recently made significant progress with the discovery of new therapeutic avenues, namely sodia-glucose cotransporter-2 (SGLT-2) inhibitors, and better treatment of co-morbidities. Dapagliflozin, one of the SGLT-2 inhibitors, is a good candidate for correcting SDB of HFrEF patients because their known mechanisms of action are likely to counteract the pathophysiology of SDB in HFrEF. METHODS/DESIGN The trial is a 3-month, multicentric, prospective, randomized controlled clinical study. Patients (i.e., adults with left ventricular ejection fraction ≤ 40%, Apnoea-Hypopnoea Index ≥ 15) will be randomized to receive optimized heart failure therapy plus a standard dose of dapagliflozin, while the control group will receive only optimized heart failure therapy. Patients will be evaluated before and after 3 months (nocturnal ventilatory polygraphy, echocardiography, laboratory testing, and quality-of-life and SDB questionnaires). The primary outcome is the change in the Apnoea-Hypopnoea Index, before and after 3 months of treatment. TRIAL REGISTRATION www.chictr.org.cn , ChiCTR2100049834. Registered 10 August 2021.
Collapse
Affiliation(s)
- Liang Xie
- School of Medicine, Southeast University, Nanjing, China
- Department of Cardiology, Jinling Hospitial, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Songsong Song
- Department of Cardiology, Zhongda Hospital, Nanjing, China
| | - Shengnan Li
- School of Medicine, Southeast University, Nanjing, China
| | - Qin Wei
- Department of Cardiology, Zhongda Hospital, Nanjing, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital, Nanjing, China
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital, Nanjing, China.
| |
Collapse
|
14
|
Potential Use of SGLT-2 Inhibitors in Obstructive Sleep Apnea: A new treatment on the horizon. Sleep Breath 2023; 27:77-89. [PMID: 35378662 DOI: 10.1007/s11325-022-02606-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/20/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is characterized by hypoxic episodes due to collapse of the airway during sleep and is frequently associated with obesity, type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). There is currently no pharmacological agent approved for the treatment of OSA. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have the potential to both increase life expectancy and quality of life of these patients making them promising agents for this role. There are relatively few studies investigating this possible beneficial relationship between these drugs and OSA. METHOD We aimed to increase awareness on the potential benefits of SGLT2 inhibitors in OSA patients by describing the current evidence on the effectiveness of these inhibitors in both overall and cardiovascular morbidity and mortality. We performed a literature search for articles reporting on the use of SGLT2 inhibitors in patients with OSA and T2DM. RESULTS We identified 4 manuscripts studying the use of SGLT2 inhibitors in 475 OSA patients with T2DM. Among them, 332 patients were administered SGLT2 inhibitors, and 143 patients were in a control group. SGLT2 inhibitors have many potential positive impacts on OSA patients by targeting various mechanisms involved in OSA pathogenesis. CONCLUSION SGLT2 inhibitors are prime pharmacological candidates for the treatment of OSA, and additional studies are needed to better explore mechanisms and outcomes unique to this population. Additionally, patients with OSA often have multiple comorbidities that are clinical indications for SGLT2 inhibitor therapy. Physicians should recognize and encourage the use of these agents in such patients.
Collapse
|
15
|
Luo ZR, Yu LL, Chen LW. Surgical outcomes associated with sleep apnea syndrome in Stanford A aortic dissection patients. BMC Cardiovasc Disord 2022; 22:329. [PMID: 35871643 PMCID: PMC9310499 DOI: 10.1186/s12872-022-02775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Patients suffering from aortic dissection (AD) often experience sleep apnea syndrome (SAS), which aggravates their respiratory function and aortic false lumen expansion. Methods We analyzed the peri-operative data of Stanford A AD patients, with or without SAS, between January 2017 and June 2019. Subjects were separated into SAS positive (SAS+) and SAS negative (SAS−) cohorts, based on the Apnea-Hypopnea Index (AHI) and the Oxygen Desaturation Index (ODI). We next analyzed variables between the SAS+ and SAS− groups. Results 155, out of 198 AAD patients, were enlisted for this study. SAS+ patients exhibited higher rates of pneumonia (p < 0.001), heart failure (HF, p = 0.038), acute kidney injury (AKI, p = 0.001), ventilation time (p = 0.009), and hospitalization duration (p < 0.001). According to subsequent follow-ups, the unstented aorta false lumen dilatation (FLD) rate increased markedly, with increasing degree of SAS (p < 0.001, according to AHI and ODI). The SAS+ patients exhibited worse cumulative survival rate (p = 0.025). The significant risk factors (RF) for poor survival were: severe (p = 0.002) or moderate SAS (p = 0.008), prolonged ventilation time (p = 0.018), AKI (p = 0.015), HF New York Heart Association (NYHA) IV (p = 0.005) or III (p = 0.015), pneumonia (p = 0.005), Marfan syndrome (p = 0.010), systolic blood pressure (BP) upon arrival (p = 0.009), and BMI ≥ 30 (p = 0.004). Conclusions SAS+ Stanford A AD patients primarily exhibited higher rates of complications and low survival rates in the mid-time follow-up. Hence, the RFs associated with poor survival must be monitored carefully in SAS patients. Moreover, the FLD rate is related to the degree of SAS, thus treating SAS may mitigate FLD.
Collapse
|
16
|
Olszewska E, Pietrewicz TM, Świderska M, Jamiołkowski J, Chabowski A. A Case-Control Study on the Changes in High-Sensitivity C-Reactive Protein and Tumor Necrosis Factor-Alpha Levels with Surgical Treatment of OSAS. Int J Mol Sci 2022; 23:ijms232214116. [PMID: 36430593 PMCID: PMC9699588 DOI: 10.3390/ijms232214116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common but underdiagnosed condition with significant health and economic implications for society. Inflammatory mediators are proposed to be associated with the presence and severity of OSAS and contribute to morbidity and mortality. This paper details a prospective non-randomized case control study of a cohort of subjects, who underwent surgical treatment of OSAS and were enrolled to assess the sleep parameters and blood levels of selected inflammatory markers at pre-operative and post-operative time points, also comparing them to the levels in a control group. A total of 25 study subjects and 18 control subjects were enrolled. Median values and interquartile range (IQR) of the apnea-hypopnea index (AHI) in the study group pre-operatively and post-operatively were 34 (18.5-45.5) and 13.3 (7.5-27.3), while in the control group 1.4 (1.0-2.1) per hour. The mean (IQR) hs-CRP levels (mg/L) were 1.782 (0.941-5.594) and 1.980 (0.990-5.445) in the study group, pre-operatively and post-operatively, respectively, while 0.891 (0.767-1.436) in the control group. The mean (IQR) TNF-α levels (pg/mL) were 7.999 (6.137-9.216) and 6.614 (5.534-7.460) pre-and post-operatively, respectively, and were 6.000 (5.026-6.823) in the control group. Results demonstrated that both inflammatory markers, hs-CRP and TNF-α, are higher in subjects with OSAS compared to the controls, and their levels decrease, but are still higher than the controls, after successful surgical treatment. Further analysis including the body mass index and age demonstrated that these changes were significant for TNF-α, but not hs-CRP.
Collapse
Affiliation(s)
- Ewa Olszewska
- Department of Otolaryngology, Medical University of Bialystok, 15-089 Bialystok, Poland
- Correspondence:
| | | | - Magdalena Świderska
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jacek Jamiołkowski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
17
|
The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea. Int J Mol Sci 2022; 23:ijms23169080. [PMID: 36012341 PMCID: PMC9409023 DOI: 10.3390/ijms23169080] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a relatively common disease in the general population. Besides its interaction with many comorbidities, it can also interact with potentially painful conditions and modulate its course. The association between OSA and pain modulation has recently been a topic of concern for many scientists. The mechanism underlying OSA-related pain connection has been linked with different pathophysiological changes in OSA and various pain mechanisms. Furthermore, it may cause both chronic and acute pain aggravation as well as potentially influencing the antinociceptive mechanism. Characteristic changes in OSA such as nocturnal hypoxemia, sleep fragmentation, and systemic inflammation are considered to have a curtailing impact on pain perception. Hypoxemia in OSA has been proven to have a significant impact on increased expression of proinflammatory cytokines influencing the hyperalgesic priming of nociceptors. Moreover, hypoxia markers by themselves are hypothesized to modulate intracellular signal transduction in neurons and have an impact on nociceptive sensitization. Pain management in patients with OSA may create problems arousing from alterations in neuropeptide systems and overexpression of opioid receptors in hypoxia conditions, leading to intensification of side effects, e.g., respiratory depression and increased opioid sensitivity for analgesic effects. In this paper, we summarize the current knowledge regarding pain and pain treatment in OSA with a focus on molecular mechanisms leading to nociceptive modulation.
Collapse
|
18
|
Luo B, Li Y, Zhu M, Cui J, Liu Y, Liu Y. Intermittent Hypoxia and Atherosclerosis: From Molecular Mechanisms to the Therapeutic Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1438470. [PMID: 35965683 PMCID: PMC9365608 DOI: 10.1155/2022/1438470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022]
Abstract
Intermittent hypoxia (IH) has a dual nature. On the one hand, chronic IH (CIH) is an important pathologic feature of obstructive sleep apnea (OSA) syndrome (OSAS), and many studies have confirmed that OSA-related CIH (OSA-CIH) has atherogenic effects involving complex and interacting mechanisms. Limited preventive and treatment methods are currently available for this condition. On the other hand, non-OSA-related IH has beneficial or detrimental effects on the body, depending on the degree, duration, and cyclic cycle of hypoxia. It includes two main states: intermittent hypoxia in a simulated plateau environment and intermittent hypoxia in a normobaric environment. In this paper, we compare the two types of IH and summarizes the pathologic mechanisms and research advances in the treatment of OSA-CIH-induced atherosclerosis (AS), to provide evidence for the systematic prevention and treatment of OSAS-related AS.
Collapse
Affiliation(s)
- Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jing Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yanfei Liu
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
19
|
Bannow LI, Bonaterra GA, Bertoune M, Maus S, Schulz R, Weissmann N, Kraut S, Kinscherf R, Hildebrandt W. Effect of chronic intermittent hypoxia (CIH) on neuromuscular junctions and mitochondria in slow- and fast-twitch skeletal muscles of mice—the role of iNOS. Skelet Muscle 2022; 12:6. [PMID: 35151349 PMCID: PMC8841105 DOI: 10.1186/s13395-022-00288-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/10/2022] [Indexed: 01/17/2023] Open
Abstract
Background Obstructive sleep apnea (OSA) imposes vascular and metabolic risks through chronic intermittent hypoxia (CIH) and impairs skeletal muscle performance. As studies addressing limb muscles are rare, the reasons for the lower exercise capacity are unknown. We hypothesize that CIH-related morphological alterations in neuromuscular junctions (NMJ) and mitochondrial integrity might be the cause of functional disorders in skeletal muscles. Methods Mice were kept under 6 weeks of CIH (alternating 7% and 21% O2 fractions every 30 s, 8 h/day, 5 days/week) compared to normoxia (NOX). Analyses included neuromuscular junctions (NMJ) postsynaptic morphology and integrity, fiber cross-sectional area (CSA) and composition (ATPase), mitochondrial ultrastructure (transmission-electron-microscopy), and relevant transcripts (RT-qPCR). Besides wildtype (WT), we included inducible nitric oxide synthase knockout mice (iNOS−/−) to evaluate whether iNOS is protective or risk-mediating. Results In WT soleus muscle, CIH vs. NOX reduced NMJ size (− 37.0%, p < 0.001) and length (− 25.0%, p < 0.05) together with fiber CSA of type IIa fibers (− 14%, p < 0.05) and increased centronucleated fiber fraction (p < 0.001). Moreover, CIH vs. NOX increased the fraction of damaged mitochondria (1.8-fold, p < 0.001). Compared to WT, iNOS−/− similarly decreased NMJ area and length with NOX (− 55%, p < 0.001 and − 33%, p < 0.05, respectively) or with CIH (− 37%, p < 0.05 and − 29%, p < 0.05), however, prompted no fiber atrophy. Moreover, increased fractions of damaged (2.1-fold, p < 0.001) or swollen (> 6-fold, p < 0.001) mitochondria were observed with iNOS−/− vs. WT under NOX and similarly under CIH. Both, CIH- and iNOS−/− massively upregulated suppressor-of-cytokine-signaling-3 (SOCS3) > 10-fold without changes in IL6 mRNA expression. Furthermore, inflammatory markers like CD68 (macrophages) and IL1β were significantly lower in CIH vs. NOX. None of these morphological alterations with CIH- or iNOS−/− were detected in the gastrocnemius muscle. Notably, iNOS expression was undetectable in WT muscle, unlike the liver, where it was massively decreased with CIH. Conclusion CIH leads to NMJ and mitochondrial damage associated with fiber atrophy/centronucleation selectively in slow-twitch muscle of WT. This effect is largely mimicked by iNOS−/− at NOX (except for atrophy). Both conditions involve massive SOCS3 upregulation likely through denervation without Il6 upregulation but accompanied by a decrease of macrophage density especially next to denervated endplates. In the absence of muscular iNOS expression in WT, this damage may arise from extramuscular, e.g., motoneuronal iNOS deficiency (through CIH or knockout) awaiting functional evaluation. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00288-7.
Collapse
|
20
|
Leentjens M, Alterki A, Abu-Farha M, Bosschieter PFN, de Raaff CAL, de Vries CEE, Al Shawaf E, Thanaraj TA, Al-Khairi I, Cherian P, Channanath A, Kavalakatt S, van Wagensveld BA, de Vries N, Abubaker J. Increased plasma ANGPTL7 levels with increased obstructive sleep apnea severity. Front Endocrinol (Lausanne) 2022; 13:922425. [PMID: 36017324 PMCID: PMC9396619 DOI: 10.3389/fendo.2022.922425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Weight-loss surgery is one of the recommended methods for treating obstructive sleep apnea (OSA) in obese patients. While weight reduction is critical to relieve symptoms of OSA, the biochemical factors involved in post-surgery improvement are still unknown. We aimed to explore the link between ANGPTL7 and OSA in patients with different OSA severity. Furthermore, we examined the effect of treating OSA with bariatric surgery on ANGPTL7 level. METHODS We quantified levels of circulating ANGPTL7 in fasting plasma and adipose tissue samples of 88 participants before and after bariatric surgery. Confocal microscopy analyses were also performed to assess the ANGPTL7 expression in subcutaneous white adipose tissue biopsies obtained from people with moderate-to-severe OSA compared to those with none or mild OSA. The study involved 57 individuals with none or mild OSA and 31 patients with moderate-to-severe OSA. RESULTS Levels of circulating ANGPTL7 were significantly higher in people with moderate-to-severe OSA (1440 ± 1310 pg/ml) compared to the none or mild OSA group (734 ± 904 pg/ml, p = 0.01). The increase in ANGPTL7 correlated significantly and positively with the apnea-hypopnea index (AHI, r = .226, p = .037), and AHI-supine (r = .266, p = .019) in participants with moderate-to-severe OSA. Multivariate logistic regression analysis demonstrated an association between ANGPTL7 and OSA severity (log2 ANGPTL7; OR =1.24, p = 0.024). ANGPTL7 levels exhibited significant positive correlations with the levels of TG and oxLDL (p-value = 0.002 and 0.01 respectively). Bariatric surgery reduced the levels of both ANGPTL7 and AHI significantly. CONCLUSION Here we report significantly increased levels of ANGPTL7 both in the circulation and in adipose tissue of patients with OSA, which concurred with increased inflammation and OSA severity. Levels of ANGPTL7 decreased significantly as OSA showed a significant improvement post-surgery supporting a potential role for ANGPTL7 in either OSA progression or a role in an OSA-related mechanism.
Collapse
Affiliation(s)
- M. Leentjens
- Department of Otorhinolaryngology - Head and Neck Surgery, Onze Lieve Vrouwe Gasthuis (OLVG) Hospital, Amsterdam, Netherlands
- *Correspondence: M. Leentjens, ; Jehad Abubaker,
| | - Abdulmohsen Alterki
- Department of Otolaryngology - Head and Neck Surgery, Zain and Al Sabah Hospitals and Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - P. F. N. Bosschieter
- Department of Otorhinolaryngology - Head and Neck Surgery, Onze Lieve Vrouwe Gasthuis (OLVG) Hospital, Amsterdam, Netherlands
| | - CAL. de Raaff
- Department of Surgery, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - CEE. de Vries
- Department of Surgery, Reinier de Graaf Gasthuis, Delft, Netherlands
| | - Eman Al Shawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Department of Otolaryngology - Head and Neck Surgery, Zain and Al Sabah Hospitals and Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sina Kavalakatt
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - B. A. van Wagensveld
- Obesity Department, New Medical Centre (NMC) Royal Hospital Khalifa City, Abu Dhabi, United Arab Emirates
| | - N. de Vries
- Department of Otorhinolaryngology - Head and Neck Surgery, Onze Lieve Vrouwe Gasthuis (OLVG) Hospital, Amsterdam, Netherlands
- Department of Oral Kinesiology, Academic Centre for Dentistry in Amsterdam (ACTA), Move Research Institute Amsterdam, University of Amsterdam and Vrije University (VU) University Amsterdam, Amsterdam, Netherlands
- Department of Otorhinolaryngology - Head and Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, Antwerp, Belgium
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: M. Leentjens, ; Jehad Abubaker,
| |
Collapse
|
21
|
Effects of Continuous Positive Airway Pressure on Cell Adhesion Molecules in Patients with Obstructive Sleep Apnea: A Meta-Analysis. Lung 2021; 199:639-651. [PMID: 34800156 DOI: 10.1007/s00408-021-00487-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Previous studies have confirmed that patients with obstructive sleep apnea (OSA) have higher systemic inflammatory markers, including intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), and E-selectin compared to control subjects. However, the effects of continuous positive airway pressure (CPAP) therapy on circulating levels of ICAM-1, VCAM-1, and E-selectin in OSA patients remain inconsistent. Therefore, the primary purpose of the present meta-analysis is to estimate the effect of CPAP therapy on these cell adhesion molecules (CAMs) in patients with OSA. METHODS The PubMed, Scopus, Embase, and Cochrane Library databases were searched. The overall effects were measured by the standardized mean difference (SMD) with a 95% confidence interval (CI). A random effects model or a fixed-effects model was used, depending on the heterogeneity of the studies. RESULTS A total of 11 studies were included, comprising 650 OSA patients. The pooled results showed that CPAP therapy significantly decreased ICAM-1 (SMD = - 0.283, 95% CI - 0.464 to - 0.101, p = 0.002) and E-selectin levels (SMD = - 0.349, 95% CI - 0.566 to - 0.133, p = 0.002). In contrast, there was no significant improvement of VCAM-1 levels after CPAP treatment (SMD = - 0.160, 95% CI - 0.641 to 0.320, p = 0.513). CONCLUSIONS Our meta-analysis demonstrated that CPAP treatment significantly decreased the circulating levels of ICAM-1 and E-selectin in OSA patients. Thus, ICAM-1 and E-selectin may be effective markers to evaluate CPAP therapy for reducing OSA cardiovascular risk in clinical practice.
Collapse
|
22
|
de Souza JNR, de Castro FDOF, de Souza CL, El Cheikh MR, Ramos HVL, da Fonseca SG, Costa CC. Is There a Difference between the Preoperative and Postoperative Serum Levels of Interleukin-6 and Tumor Necrosis Factor-α in Children Submitted to Adenotonsillectomy? Int Arch Otorhinolaryngol 2021; 26:e208-e212. [PMID: 35602273 PMCID: PMC9122772 DOI: 10.1055/s-0041-1730301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/20/2020] [Indexed: 11/04/2022] Open
Abstract
Introduction
Palatine and pharyngeal tonsils are the first line of defense against pathogens. Clinically, two alterations may require surgical removal of the tonsils: hypertrophy and recurrent tonsillitis. The two conditions probably result from a dysfunction of the immune system.
Objective
To evaluate possible differences in the plasma levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) in patients submitted to adenotonsillectomy.
Methods
Prospective, longitudinal study with 25 children undergoing adenotonsillectomy separated into 3 different groups: recurrent tonsillitis (RT), composed of 7 patients; recurrent hypertrophy tonsillitis (RTTH), with 8 patients; and the tonsillar hypertrophy (TH) group, with 10 patients. Ten healthy control children (SD) were also included in the study. Peripheral blood was collected, and plasma was separated to measure the levels of TNF-α, IL-6, and IL-10. The Mann-Whitney test was used for statistical analysis.
Results
The plasma level of IL-6 was higher in the RT (
p
= 0.0394) and TH (
p
= 0.0009) groups, compared with the control group. The TH group also had higher levels of IL-6 than the RT group (
p
= 0.039). The IL-6/IL-10 ratio was higher in the RT (
p
= 0.029) and TH (
p
= 0.0005) groups compared with the control group. Between the RT and RTTH groups, the IL-6/IL-10 ratio was higher in the RT group, with a statistically significant difference (
p
= 0.0091).
Conclusion
Patients with a history of chronic tonsillitis had higher levels of IL-6, compared with the control group.
Collapse
Affiliation(s)
| | | | - Camila Lemes de Souza
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Hugo Valter Lisboa Ramos
- Otorhinolaryngology, Centro de Reabilitação e Readaptação Dr. Henrique Santilo (CRER), Goiânia, GO, Brazil
| | | | - Claudiney Candido Costa
- Otorhinolaryngology, Centro de Reabilitação e Readaptação Dr. Henrique Santilo (CRER), Goiânia, GO, Brazil
| |
Collapse
|
23
|
Imani MM, Sadeghi M, Farokhzadeh F, Khazaie H, Brand S, Dürsteler KM, Brühl A, Sadeghi-Bahmani D. Evaluation of Blood Levels of C-Reactive Protein Marker in Obstructive Sleep Apnea: A Systematic Review, Meta-Analysis and Meta-Regression. Life (Basel) 2021; 11:life11040362. [PMID: 33921787 PMCID: PMC8073992 DOI: 10.3390/life11040362] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/08/2023] Open
Abstract
(1) Introduction: High sensitivity C-reactive protein (hs-CRP) and CRP are inflammatory biomarkers associated with several inflammatory diseases. In both pediatric and adult individuals with Obstructive Sleep Apnea (OSA) higher hs-CRP and CRP were observed, compared to controls. With the present systematic review, meta-analysis and meta-regression we expand upon previous meta-analyses in four ways: (1) We included 109 studies (96 in adults and 13 in children); (2) we reported subgroup and meta-regression analyses in adults with OSA compared to controls on the serum and plasma levels of hs-CRP; (3) we reported subgroup and meta-regression analyses in adults with OSA compared to controls on the serum and plasma levels of CRP; (4) we reported serum and plasma levels of both hs-CRP and CRP in children with OSA, always compared to controls. (2) Materials and Methods: The PubMed/Medline, Scopus, Cochrane Library, and Web of Science databases were searched to retrieve articles published until 31 May 2020, with no restrictions. The data included basic information involving the first author, publication year, country of study, ethnicity of participants in each study, age, BMI, and AHI of both groups, and mean and standard deviation (SD) of plasma and serum levels of CRP and hs-CRP. (3) Results: A total of 1046 records were retrieved from the databases, and 109 studies were selected for the analysis (96 studies reporting the blood levels of hs-CRP/CRP in adults and 13 studies in children). For adults, 11 studies reported plasma hs-CRP, 44 serum hs-CRP, 9 plasma CRP, and 32 serum CRP levels. For children, 6 studies reported plasma hs-CRP, 4 serum hs-CRP, 1 plasma CRP, and 2 serum CRP levels. Compared to controls, the pooled MD of plasma hs-CRP levels in adults with OSA was 0.11 mg/dL (p < 0.00001). Compared to controls, the pooled MD of serum hs-CRP levels in adults with OSA was 0.09 mg/dL (p < 0.00001). Compared to controls, the pooled MD of plasma CRP levels in adults with OSA was 0.06 mg/dL (p = 0.72). Compared to controls, the pooled MD of serum CRP levels in adults with OSA was 0.36 mg/dL (p < 0.00001). Compared to controls, the pooled MD of plasma hs-CRP, serum hs-CRP, plasma hs-CRP, and serum hs-CRP in children with OSA was 1.17 mg/dL (p = 0.005), 0.18 mg/dL (p = 0.05), 0.08 mg/dL (p = 0.10), and 0.04 mg/dL (p = 0.33), respectively. The meta-regression showed that with a greater apnea-hypapnea index (AHI), serum hs-CRP levels were significantly higher. (4) Conclusions: The results of the present systematic review, meta-analysis and meta-regression showed that compared to healthy controls plasma and serum levels of hs-CRP and serum CRP level were higher in adults with OSA; for children, and compared to controls, just plasma hs-CRP levels in children with OSA were higher.
Collapse
Affiliation(s)
- Mohammad Moslem Imani
- Department of Orthodontics, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Masoud Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Farid Farokhzadeh
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; (H.K.); (D.S.-B.)
| | - Serge Brand
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; (H.K.); (D.S.-B.)
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, 4002 Basel, Switzerland;
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Department of Sport, Exercise and Health, Division of Sport Science and Psychosocial Health, University of Basel, 4052 Basel, Switzerland
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran 25529, Iran
- Correspondence:
| | - Kenneth M. Dürsteler
- Psychiatric Clinics, Division of Substance Use Disorders, University of Basel, 4002 Basel, Switzerland;
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8001 Zurich, Switzerland
| | - Annette Brühl
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, 4002 Basel, Switzerland;
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
| | - Dena Sadeghi-Bahmani
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; (H.K.); (D.S.-B.)
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, 4002 Basel, Switzerland;
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran
- Departments of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35209, USA
| |
Collapse
|
24
|
Zhang XB, Chen XY, Sun P, Su XM, Zeng HQ, Zeng YM, Wang M, Luo X. Sodium Tanshinone IIA Sulfonate Attenuates Tumor Oxidative Stress and Promotes Apoptosis in an Intermittent Hypoxia Mouse Model. Technol Cancer Res Treat 2021; 19:1533033820928073. [PMID: 32431212 PMCID: PMC7249596 DOI: 10.1177/1533033820928073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: Intermittent hypoxia, a significant feature of obstructive sleep apnea, has pro-tumorigenic effects. Here, we investigated the effect of sodium tanshinone IIA sulfonate on oxidative stress and apoptosis in a mouse model of Lewis lung carcinoma with intermittent hypoxia. Methods: Mice were randomly assigned to normoxia (control), normoxia plus sodium tanshinone IIA sulfonate (control + sodium tanshinone IIA sulfonate), intermittent hypoxia, and intermittent hypoxia + sodium tanshinone IIA sulfonate groups. Intermittent hypoxia administration lasted 5 weeks in the intermittent hypoxia groups. Lewis lung carcinoma cells were injected into the right flank of each mouse after 1 week of intermittent hypoxia exposure. Sodium tanshinone IIA sulfonate was injected intraperitoneally in the control + sodium tanshinone IIA sulfonate and intermittent hypoxia + sodium tanshinone IIA sulfonate groups. Tumor oxidative stress was evaluated by detection of malondialdehyde and superoxide dismutase. The apoptosis of tumor cells was evaluated by the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay as well as by Western blot analysis of B-cell lymphoma 2-associated X protein and cleaved caspase-3 expression. Additionally, the expression of hypoxia-induced factor-1α, nuclear factor erythroid 2-related factor 2, and nuclear factor kappa B was also evaluated by Western blot. Results: Compared with the control group, the intermittent hypoxia treatment significantly increased Lewis lung carcinoma tumor growth and oxidative stress (serum malondialdehyde) but decreased serum levels of SOD and pro-apoptotic markers (terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, B-cell lymphoma 2-associated X protein, and cleaved caspase-3). These changes were significantly attenuated by intraperitoneal injection of sodium tanshinone IIA sulfonate. Lower nuclear factor erythroid 2-related factor 2 and higher nuclear factor kappa B levels in the intermittent hypoxia group were clearly reversed by sodium tanshinone IIA sulfonate treatment. In addition, sodium tanshinone IIA sulfonate administration decreased the high expression of hypoxia-induced factor-1α induced by intermittent hypoxia. Conclusion: Intermittent hypoxia treatment resulted in high oxidative stress and low apoptosis in Lewis lung carcinoma–implanted mice, which could be attenuated by sodium tanshinone IIA sulfonate administration possibly through a mechanism mediated by the nuclear factor erythroid 2-related factor 2/nuclear factor kappa B signaling pathway.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Siming District, Xiamen, Fujian Province, People's Republic of China
| | - Xiao-Yang Chen
- Department of Pulmonary and Critical Care Medicine, Second Clinical Medical College of Fujian Medical University, the Second Affiliated Hospital of Fujian Medical University, Center of Respiratory Medicine of Fujian Province, People's Republic of China
| | - Peng Sun
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Siming District, Xiamen, Fujian Province, People's Republic of China
| | - Xiao-Man Su
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Siming District, Xiamen, Fujian Province, People's Republic of China
| | - Hui-Qing Zeng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Siming District, Xiamen, Fujian Province, People's Republic of China
| | - Yi-Ming Zeng
- Department of Pulmonary and Critical Care Medicine, Second Clinical Medical College of Fujian Medical University, the Second Affiliated Hospital of Fujian Medical University, Center of Respiratory Medicine of Fujian Province, People's Republic of China
| | - Miao Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Siming District, Xiamen, Fujian Province, People's Republic of China
| | - Xiongbiao Luo
- Department of Computer Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
25
|
Goldbart AD, Gannot M, Haddad H, Gopas J. Nuclear factor kappa B activation in cardiomyocytes by serum of children with obstructive sleep apnea syndrome. Sci Rep 2020; 10:22115. [PMID: 33335174 PMCID: PMC7747711 DOI: 10.1038/s41598-020-79187-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSA) is associated with cardiovascular morbidity in adults and children. NFκB activity is enhanced in circulating monocytes of adults with OSA, that decreases following positive pressure therapy. OSA children’s serum activates NFκB in a cell line. We hypothesized that OSA children’s serum can activate NFκB in cardiomyocytes (CM) and effect their viability. In order to explore the role played by NFκB in OSA cardiovascular pathophysiology, rat, mouse and human immortalized CM were exposed to human serum drawn from OSA children and matched controls. Increased expression of NFκB classical subunits p65/p50 as well as major morphological changes occurred in cardiomyocytes following OSA’s serum exposure. OSA children’s serum induced NFκB activity as measured by p65 nuclear translocation in immortalized human CM and rat cardiomyocytes as well as dense immunostaining of the nucleus. Trypan blue and XTT assays showed that OSA sera induced CM apoptosis. We conclude that NFκB is systemically activated in cardiomyocytes, who also demonstrate decreased viability and contractility following exposure to OSA serum. It supports the hypothesis NFκB plays a role in the evolution of cardiovascular morbidity in OSA. It may support the search for new therapeutic interventions controlling NFκB activation in OSA.
Collapse
Affiliation(s)
- Aviv D Goldbart
- Department of Pediatrics, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, P.O.B. 151, 84101, Beer Sheva, Israel. .,Pediatric Pulmonary and Sleep Research Laboratory, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Meital Gannot
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hen Haddad
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jacob Gopas
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
26
|
Wang W, Xu Z, Zhang J, Wang S, Ge W, Li X, Mou W, Wang X, Chai W, Zhao J, Wang G, Xi Y, Qiu Y, Ji T, Gui J, Tai J, Ni X. Tim-3 is a potential regulator that inhibits monocyte inflammation in response to intermittent hypoxia in children with obstructive sleep apnea syndrome. Clin Immunol 2020; 222:108641. [PMID: 33271370 DOI: 10.1016/j.clim.2020.108641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
The mechanism of the characteristic intermittent hypoxia (IH) of obstructive sleep apnea syndrome (OSAS) on monocyte remain unclear. Our study found that OSAS children had a significantly upregulated expression in circulating proinflammatory cytokines IL-6 and IL-12, and endothelial injury markers VEGF and ICAM1. Association analysis revealed that the plasma TNFα, IL-1β, IL-6, IL-10 and IL-12 concentration were negatively associated with the minimal SpO2, a negative index for disease severity. OSAS monocytes presented an inflammatory phenotype with higher mRNA levels of inflammatory cytokines. Importantly, we noted a significant decrease in T-cell immunoglobulin and mucin domain (Tim)-3 expression in OSAS monocytes with the increase of the plasma proinflammatory cytokines. In vitro assay demonstrated that IH induced THP-1 cell overactivation via NF-κB dependent pathway was inhibited by the Tim-3 signal. Our results indicated that activation of monocyte inflammatory responses is closely related to OSAS-induced IH, and negatively mediated by a Tim-3 signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhifei Xu
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wentong Ge
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaodan Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenjun Mou
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaolin Wang
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenjia Chai
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jing Zhao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Guixiang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yue Xi
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yue Qiu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tingting Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jingang Gui
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
27
|
Bi H, He J, He X, Du J, Chen M, Huang Z, Yang C, Yang L, Li H, Zhou K, Wang Q, He L, Jin Z. Bone marrow stem cells therapy alleviates vascular injury in a chronic obstructive pulmonary disease‑obstructive sleep apnea overlap syndrome rat model. Mol Med Rep 2020; 23:69. [PMID: 33236768 PMCID: PMC7716420 DOI: 10.3892/mmr.2020.11707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/27/2020] [Indexed: 11/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea (OSA) are highly prevalent potential risk factors for systemic disease. Previous studies have reported that COPD and OSA are major independent risk factors for cardio- or cerebrovascular diseases. The present study aimed to investigate the role of bone marrow mesenchymal stem cells (BMSCs) on vascular injury in a COPD-OSA overlap syndrome (OS) rat model. Rats were randomly divided into three groups: Sham, OS model and BMSC. BMSC localization in major organs was detected via confocal laser fluorescence microscopy, and the aortic tissue pathological changes and related genes were measured using hematoxylin & eosin and Masson staining. Genes associated with vascular endothelial cell injury, including endothelin 1, vascular cell adhesion molecule 1 and endothelial nitric oxide synthase, were detected via reverse transcription-quantitative PCR and western blotting. Apoptosis of vascular endothelial cells was detected using TUNEL and immunofluorescence assays. The endothelial cell marker CD31 in injured vessels was analyzed via immunohistochemistry. BMSCs migrated into the heart, liver, spleen, lung, kidney, brain and aorta in the OS model. The green fluorescence expression of BMSCs demonstrated the highest level in the lung, followed by the aorta. Aortic tissue had a more severe vascular injury and increased apoptosis in the model group compared with the BMSC group. Vascular endothelial cell apoptosis was decreased in the BMSC group compared with the model group. The findings suggested that BMSCs could repair vascular injury by inhibiting endothelial cell damage and apoptosis. These data provide a theoretical basis for the treatment of cardiovascular diseases caused by OS with BMSCs.
Collapse
Affiliation(s)
- Hong Bi
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Jian He
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Xu He
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Junyi Du
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Min Chen
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Zhaoming Huang
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Chao Yang
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Lijuan Yang
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Hang Li
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Kaihua Zhou
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Qing Wang
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Lewei He
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Zhixian Jin
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| |
Collapse
|
28
|
Nikitidou O, Daskalopoulou E, Papagianni A, Vlachogiannis E, Dombros N, Liakopoulos V. The impact of OSA and CPAP treatment on cell adhesion molecules' night-morning variation. Sleep Breath 2020; 25:1301-1307. [PMID: 33104982 DOI: 10.1007/s11325-020-02232-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/14/2020] [Accepted: 10/16/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Obstructive sleep apnea (OSA) has been related to vascular inflammation and production of endothelial cell adhesion molecules (CAMs). We aimed to determine night-morning variation of CAMs in patients with OSA compared to controls and the effect of one-night continuous positive airway pressure (CPAP) treatment on them. METHODS Nonsmoking men went through a full-attended polysomnography (PSG) study. Participants with moderate to severe OSA went through another PSG study while being treated with CPAP. Participants who did not have OSA composed the control group. Serum levels of intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and E-selectin were measured before and after sleep on both nights. RESULTS Of 30 men, 20 had moderate to severe OSA while 10 did not. Night and morning ICAM-1 levels of patients with OSA were significantly higher than controls (p = 0.002 and p < 0.0001 respectively), while both night and morning VCAM-1 and E-selectin levels were not. Morning ICAM-1 levels of controls were significantly lower than night levels (p = 0.031), while morning ICAM-1, VCAM-1, and E-selectin levels of patients with OSA and morning VCAM-1 and E-selectin levels of controls were not. After CPAP treatment, the morning ICAM-1 levels, but not VCAM-1 levels, of patients with OSA were significantly lower than night levels (p = 0.006) and E-selectin levels showed a tendency for reduction (p = 0.06). CONCLUSIONS OSA is associated with elevated night and morning ICAM-1 levels in adult men with OSA. Even one night of CPAP treatment restores the normal night-morning variation of ICAM-1 levels and may have an effect on E-selectin levels, as well.
Collapse
Affiliation(s)
- Olga Nikitidou
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nicholas Dombros
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
29
|
Zou F, Su X, Pan P. Toll-Like Receptor-4-Mediated Inflammation is Involved in Intermittent Hypoxia-Induced Lung Injury. Lung 2020; 198:855-862. [PMID: 32785858 DOI: 10.1007/s00408-020-00384-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/31/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE Intermittent hypoxia (IH) is a recognized risk factor for multiple organs damage, resulting in lung injury. Its pathophysiology is still poorly understood. Toll-like receptor 4 (TLR4) signaling plays a critical role in host immune response to invading pathogen and non-infectious tissue injury. The role of TLR4-mediated inflammation in IH-induced lung injury was investigated in this study. METHODS Lean adult male TLR4-deficient (TLR4-/-) mice and their controls (C57BL/6 mice) were exposed to either IH (FiO2 6-8% for 25 s, 150 s/cycle, 8 h/day) or air (normoxic mice) for 6 weeks. Animals were sacrificed after 6-week exposure, and the lung tissues were harvested for morphological and inflammatory analyses. The expression of TLR4 and nuclear factor kappa-B (NF-κB) P65 were examined by real-time quantitative polymerase chain reaction and immunohistochemical method. Serum cytokine levels of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were analyzed by enzyme-linked immunosorbent assay. RESULTS IH induced morphological and inflammation changes in the lung. IH for 6 weeks induced higher expression of TLR4 (C57BL/6-N vs C57BL/6-IH, P < 0.05) and resulted in higher release of TNF-α, IL-6 (P < 0.05), and NF-κB P65 (P < 0.05). These alterations were remitted by TLR4 deletion. CONCLUSIONS TLR4-mediated inflammation plays an important role in the development of IH-induced lung injury in mice, possibly through mechanisms involving nuclear factor-κB. Targeting TLR4/NF-κB pathway could represent a further therapeutic option for sleep apnea patients.
Collapse
Affiliation(s)
- Fangfang Zou
- Department of Internal Medicine, Hunan Chest Hospital, Changsha, 410013, Hunan, People's Republic of China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Key Cite of National Clinical Research Center for Respiratory Disease, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Pinhua Pan
- Department of Respiratory Medicine, Xiangya Hospital, Key Cite of National Clinical Research Center for Respiratory Disease, Central South University, Changsha, 410008, Hunan, People's Republic of China
| |
Collapse
|
30
|
Tretter V, Zach ML, Böhme S, Ullrich R, Markstaller K, Klein KU. Investigating Disturbances of Oxygen Homeostasis: From Cellular Mechanisms to the Clinical Practice. Front Physiol 2020; 11:947. [PMID: 32848874 PMCID: PMC7417655 DOI: 10.3389/fphys.2020.00947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Soon after its discovery in the 18th century, oxygen was applied as a therapeutic agent to treat severely ill patients. Lack of oxygen, commonly termed as hypoxia, is frequently encountered in different disease states and is detrimental to human life. However, at the end of the 19th century, Paul Bert and James Lorrain Smith identified what is known as oxygen toxicity. The molecular basis of this phenomenon is oxygen's readiness to accept electrons and to form different variants of aggressive radicals that interfere with normal cell functions. The human body has evolved to maintain oxygen homeostasis by different molecular systems that are either activated in the case of oxygen under-supply, or to scavenge and to transform oxygen radicals when excess amounts are encountered. Research has provided insights into cellular mechanisms of oxygen homeostasis and is still called upon in order to better understand related diseases. Oxygen therapy is one of the prime clinical interventions, as it is life saving, readily available, easy to apply and economically affordable. However, the current state of research also implicates a reconsidering of the liberal application of oxygen causing hyperoxia. Increasing evidence from preclinical and clinical studies suggest detrimental outcomes as a consequence of liberal oxygen therapy. In this review, we summarize concepts of cellular mechanisms regarding different forms of disturbed cellular oxygen homeostasis that may help to better define safe clinical application of oxygen therapy.
Collapse
Affiliation(s)
- Verena Tretter
- Department of Anaesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
31
|
Melatonin Relations with Energy Metabolism as Possibly Involved in Fatal Mountain Road Traffic Accidents. Int J Mol Sci 2020; 21:ijms21062184. [PMID: 32235717 PMCID: PMC7139848 DOI: 10.3390/ijms21062184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022] Open
Abstract
Previous results evidenced acute exposure to high altitude (HA) weakening the relation between daily melatonin cycle and the respiratory quotient. This review deals with the threat extreme environments pose on body time order, particularly concerning energy metabolism. Working at HA, at poles, or in space challenge our ancestral inborn body timing system. This conflict may also mark many aspects of our current lifestyle, involving shift work, rapid time zone crossing, and even prolonged office work in closed buildings. Misalignments between external and internal rhythms, in the short term, traduce into risk of mental and physical performance shortfalls, mood changes, quarrels, drug and alcohol abuse, failure to accomplish with the mission and, finally, high rates of fatal accidents. Relations of melatonin with energy metabolism being altered under a condition of hypoxia focused our attention on interactions of the indoleamine with redox state, as well as, with autonomic regulations. Individual tolerance/susceptibility to such interactions may hint at adequately dealing with body timing disorders under extreme conditions.
Collapse
|
32
|
Wu BG, Sulaiman I, Wang J, Shen N, Clemente JC, Li Y, Laumbach RJ, Lu SE, Udasin I, Le-Hoang O, Perez A, Alimokhtari S, Black K, Plietz M, Twumasi A, Sanders H, Malecha P, Kapoor B, Scaglione BD, Wang A, Blazoski C, Weiden MD, Rapoport DM, Harrison D, Chitkara N, Vicente E, Marin JM, Sunderram J, Ayappa I, Segal LN. Severe Obstructive Sleep Apnea Is Associated with Alterations in the Nasal Microbiome and an Increase in Inflammation. Am J Respir Crit Care Med 2019; 199:99-109. [PMID: 29969291 DOI: 10.1164/rccm.201801-0119oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Obstructive sleep apnea (OSA) is associated with recurrent obstruction, subepithelial edema, and airway inflammation. The resultant inflammation may influence or be influenced by the nasal microbiome. OBJECTIVES To evaluate whether the composition of the nasal microbiota is associated with obstructive sleep apnea and inflammatory biomarkers. METHODS Two large cohorts were used: 1) a discovery cohort of 472 subjects from the WTCSNORE (Seated, Supine and Post-Decongestion Nasal Resistance in World Trade Center Rescue and Recovery Workers) cohort, and 2) a validation cohort of 93 subjects rom the Zaragoza Sleep cohort. Sleep apnea was diagnosed using home sleep tests. Nasal lavages were obtained from cohort subjects to measure: 1) microbiome composition (based on 16S rRNA gene sequencing), and 2) biomarkers for inflammation (inflammatory cells, IL-8, and IL-6). Longitudinal 3-month samples were obtained in the validation cohort, including after continuous positive airway pressure treatment when indicated. MEASUREMENTS AND MAIN RESULTS In both cohorts, we identified that: 1) severity of OSA correlated with differences in microbiome diversity and composition; 2) the nasal microbiome of subjects with severe OSA were enriched with Streptococcus, Prevotella, and Veillonella; and 3) the nasal microbiome differences were associated with inflammatory biomarkers. Network analysis identified clusters of cooccurring microbes that defined communities. Several common oral commensals (e.g., Streptococcus, Rothia, Veillonella, and Fusobacterium) correlated with apnea-hypopnea index. Three months of treatment with continuous positive airway pressure did not change the composition of the nasal microbiota. CONCLUSIONS We demonstrate that the presence of an altered microbiome in severe OSA is associated with inflammatory markers. Further experimental approaches to explore causal links are needed.
Collapse
Affiliation(s)
- Benjamin G Wu
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
| | - Imran Sulaiman
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
| | - Jing Wang
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York.,2 Beijing Division of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, The Capital University of Medicine, Beijing, China
| | - Nan Shen
- 3 Department of Genetics and Genomic Sciences.,4 Precision Immunology Institute, and
| | - Jose C Clemente
- 3 Department of Genetics and Genomic Sciences.,4 Precision Immunology Institute, and
| | - Yonghua Li
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
| | - Robert J Laumbach
- 5 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey.,6 Environment and Occupational Health Sciences Institute, Rutgers Biomedical Health Sciences, Piscataway, New Jersey
| | - Shou-En Lu
- 7 Rutgers School of Public Health, Piscataway, New Jersey
| | - Iris Udasin
- 7 Rutgers School of Public Health, Piscataway, New Jersey
| | - Oanh Le-Hoang
- 5 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Alan Perez
- 6 Environment and Occupational Health Sciences Institute, Rutgers Biomedical Health Sciences, Piscataway, New Jersey
| | - Shahnaz Alimokhtari
- 6 Environment and Occupational Health Sciences Institute, Rutgers Biomedical Health Sciences, Piscataway, New Jersey
| | - Kathleen Black
- 6 Environment and Occupational Health Sciences Institute, Rutgers Biomedical Health Sciences, Piscataway, New Jersey
| | - Michael Plietz
- 5 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Akosua Twumasi
- 8 Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Haley Sanders
- 8 Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patrick Malecha
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
| | - Bianca Kapoor
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
| | - Benjamin D Scaglione
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
| | - Anbang Wang
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
| | - Cameron Blazoski
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
| | - Michael D Weiden
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
| | - David M Rapoport
- 8 Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Denise Harrison
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
| | - Nishay Chitkara
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
| | - Eugenio Vicente
- 9 Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain; and.,10 Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid, Spain
| | - José M Marin
- 9 Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain; and.,10 Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid, Spain
| | - Jag Sunderram
- 5 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Indu Ayappa
- 8 Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Leopoldo N Segal
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
33
|
Kis A, Meszaros M, Tarnoki DL, Tarnoki AD, Lazar Z, Horvath P, Kunos L, Bikov A. Exhaled carbon monoxide levels in obstructive sleep apnoea. J Breath Res 2019; 13:036012. [DOI: 10.1088/1752-7163/ab231d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Kyotani Y, Takasawa S, Yoshizumi M. Proliferative Pathways of Vascular Smooth Muscle Cells in Response to Intermittent Hypoxia. Int J Mol Sci 2019; 20:ijms20112706. [PMID: 31159449 PMCID: PMC6600262 DOI: 10.3390/ijms20112706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia (IH) and is a risk factor for cardiovascular diseases (e.g., atherosclerosis) and chronic inflammatory diseases (CID). The excessive proliferation of vascular smooth muscle cells (VSMCs) plays a pivotal role in the progression of atherosclerosis. Hypoxia-inducible factor-1 and nuclear factor-κB are thought to be the main factors involved in responses to IH and in regulating adaptations or inflammation pathways, however, further evidence is needed to demonstrate the underlying mechanisms of this process in VSMCs. Furthermore, few studies of IH have examined smooth muscle cell responses. Our previous studies demonstrated that increased interleukin (IL)-6, epidermal growth factor family ligands, and erbB2 receptor, some of which amplify inflammation and, consequently, induce CID, were induced by IH and were involved in the proliferation of VSMCs. Since IH increased IL-6 and epiregulin expression in VSMCs, the same phenomenon may also occur in other smooth muscle cells, and, consequently, may be related to the incidence or progression of several diseases. In the present review, we describe how IH can induce the excessive proliferation of VSMCs and we develop the suggestion that other CID may be related to the effects of IH on other smooth muscle cells.
Collapse
Affiliation(s)
- Yoji Kyotani
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| |
Collapse
|
35
|
Franczak A, Bil-Lula I, Sawicki G, Fenton M, Ayas N, Skomro R. Matrix metalloproteinases as possible biomarkers of obstructive sleep apnea severity - A systematic review. Sleep Med Rev 2019; 46:9-16. [PMID: 31060030 DOI: 10.1016/j.smrv.2019.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
Abstract
Obstructive sleep apnea is an underdiagnosed sleep-related breathing disorder affecting millions of people. Recurrent episodes of apnea/hypopnea result in intermittent hypoxia leading to oxidative stress. Obstructive sleep apnea is considered an independent risk factor for cardiovascular disease but the exact pathophysiology of adverse cardiovascular outcomes of obstructive sleep apnea has not been fully elucidated. Matrix metalloproteinases (MMPs) have been associated with both oxidative stress and cardiovascular diseases. Hypoxic conditions were shown to influence MMP expression, secretion and activity. Moreover, matrix metalloproteinases contribute to ischemia/reperfusion injury. Therefore, action of matrix metalloproteinases can provide a possible molecular mechanism linking obstructive sleep apnea with oxidative stress and cardiovascular disease. The aim of this paper was to review the current evidence of association between matrix metalloproteinases and obstructive sleep apnea with focus on hypoxemia and severity of obstructive sleep apnea.
Collapse
Affiliation(s)
- Aleksandra Franczak
- Division of Respiratory, Critical Care and Sleep Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Sawicki
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Mark Fenton
- Division of Respiratory, Critical Care and Sleep Medicine, University of Saskatchewan, Saskatoon, Canada; Canadian Sleep and Circadian Network
| | - Najib Ayas
- University of British Columbia, Vancouver, B.C. Canada; Canadian Sleep and Circadian Network
| | - Robert Skomro
- Division of Respiratory, Critical Care and Sleep Medicine, University of Saskatchewan, Saskatoon, Canada; Canadian Sleep and Circadian Network; Division of Angiology, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
36
|
Hunyor I, Cook KM. Models of intermittent hypoxia and obstructive sleep apnea: molecular pathways and their contribution to cancer. Am J Physiol Regul Integr Comp Physiol 2018; 315:R669-R687. [PMID: 29995459 DOI: 10.1152/ajpregu.00036.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obstructive sleep apnea (OSA) is common and linked to a variety of poor health outcomes. A key modulator of this disease is nocturnal intermittent hypoxia. There is striking epidemiological evidence that patients with OSA have higher rates of cancer and cancer mortality. Small-animal models demonstrate an important role for systemic intermittent hypoxia in tumor growth and metastasis, yet the underlying mechanisms are poorly understood. Emerging data indicate that intermittent hypoxia activates the hypoxic response and inflammatory pathways in a manner distinct from chronic hypoxia. However, there is significant heterogeneity in published methods for modeling hypoxic conditions, which are often lacking in physiological relevance. This is particularly important for studying key transcriptional mediators of the hypoxic and inflammatory responses such as hypoxia-inducible factor (HIF) and NF-κB. The relationship between HIF, the molecular clock, and circadian rhythm may also contribute to cancer risk in OSA. Building accurate in vitro models of intermittent hypoxia reflective of OSA is challenging but necessary to better elucidate underlying molecular pathways.
Collapse
Affiliation(s)
- Imre Hunyor
- Department of Cardiology, Royal Prince Alfred Hospital , Sydney, New South Wales , Australia.,Faculty of Medicine and Health, University of Sydney School of Medicine , Sydney, New South Wales , Australia
| | - Kristina M Cook
- Faculty of Medicine and Health, University of Sydney School of Medicine , Sydney, New South Wales , Australia.,Charles Perkins Centre, University of Sydney , Sydney, New South Wales , Australia
| |
Collapse
|
37
|
Liu J, Guo L, Zhang K, Song Q, Wei Q, Bian Q, Liang T, Niu J, Luo B. The probable roles of valsartan in alleviating chronic obstructive pulmonary disease following co-exposure to cold stress and fine particulate matter. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:230-236. [PMID: 29775776 DOI: 10.1016/j.etap.2018.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Angiotensin II (ANG II) might play an important role in the co-effects of cold stress and fine particulate matter (PM2.5) on chronic obstructive pulmonary disease (COPD). The purpose of this study is to evaluate the roles of valsartan in alleviating COPD following co-exposure to cold stress and PM2.5. Both the two intervention factors are carried out upon COPD rats with the intervention of valsartan. Blockade of angiotensin receptor by valsartan decreases the levels of malondialdehyde in the normal temperature and tumor necrosis factor-α under cold stress significantly. When treated with valsartan and PM2.5 simultaneously, the expression of 8-hydroxy-2-deoxyguanosine, nuclear factor kappa B and heme oxygenase-1 decrease significantly in the group of cold stress. In conclusion, these results indicate that valsartan might relieve the co-effects of cold stress and PM2.5 on COPD rat lung to some degree.
Collapse
Affiliation(s)
- Jiangtao Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Lei Guo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Kai Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Quanquan Song
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Qiaozhen Wei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Qin Bian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Tingting Liang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
38
|
Li X, Cai W, Zhang P, Fang K, Zhu J, Shu C. Comparison of Stanford B Aortic Dissection Patients Who Received Thoracic Endovascular Aortic Repair Combined with or without Sleep Apnea Syndrome. Ann Vasc Surg 2018; 52:79-84. [PMID: 29783029 DOI: 10.1016/j.avsg.2018.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/01/2018] [Accepted: 03/12/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND Patients with Stanford B aortic dissection (AD) are usually found to have sleep apnea syndrome (SAS). This condition always complicates the patients' respiration. In this study, we collected and analyzed data of patients' perioperative managements during thoracic endovascular aortic repair (TEVAR) for treating patients with Stanford B AD and SAS. Comparison has been made between the patients with SAS and those without SAS. METHODS Between June 2013 and June 2014, the clinical data and outcomes of the Stanford B AD patients in the Department of Vascular Surgery in the Second Xiangya Hospital were retrospectively reviewed and studied. According to the result of polysomnography obtained by using a portable polysomnography monitor (Nox T3, Nox Medical Co. Iceland) in TEVAR candidates, patients have been stratified into SAS-positive and SAS-negative group. Comparison of various variables has been made between these 2 groups. RESULTS One hundred thirty-four patients, with Stanford B AD and treated by TEVAR in our center, were enrolled in this study. Patients' mean age was 52.46 ± 10.84 years. Gender ratio is 114:20, including male 85.07% (114/134) and female 14.93% (20/134). TEVAR was performed in 71.64% (96/134) patients under general anesthesia and 38 patients under local anesthesia. The mean body mass index (BMI) was 23.5 ± 4.2, and the longest follow-up time was 46 months. The patients were stratified into SAS-positive group (n = 23) and SAS-negative group (n = 111). Compared with the patients in the SAS-negative group, those in the SAS-positive group were younger (54.36 ± 0.97 vs. 43.3 ± 1.84 P < 0.0001) but had higher BMI (25.48 ± 0.71 vs. 22.24 ± 0.23, P < 0.0001), with longer hospitalization time (25.52 ± 0.59 vs. 15.68 ± 0.27; P < 0.0001) and without significant differences in the intensive care unit (ICU) stay time (54.87 ± 12.57 vs. 40.27 ± 8.10; P = 0.3369). Furthermore, the complication rate of pulmonary infection (65.22% vs. 13.51%; P < 0.0001), respiratory failure (26.09% vs. 1.80%; P = 0.003), heart failure (26.09% vs. 3.60%; P = 0.0018), and renal failure (30.43% vs. 5.40%; P = 0.0016) are significantly different between SAS-positive and SAS-negative groups. According to the 46-month follow-up, the survival rate of the 2 groups had no significant differences (P = 0.0846). The SAS-negative group result showed that the survival time had no significant correlation with all the factors we explored, whereas the SAS-positive group result showed that the survival time is significantly correlated only with pulmonary infection/failure (r = 0.2798, 95% confidence interval 0.08741 to 0.452, P = 0.0038). CONCLUSIONS Stanford B AD patients who had SAS are likely to have higher BMI. After treating with TEVAR, they usually have longer hospitalization and ICU stay time, as well as higher complication rate. However, there are no significant differences of the survival rate in midtime follow-up. The respiratory system evaluation should be considered carefully in those patients who have diagnosed as having SAS before and after TEVAR because those patients' survival situation may have correlation with their respiratory condition.
Collapse
Affiliation(s)
- Xin Li
- Vascular Surgery Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenwu Cai
- Vascular Surgery Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Zhang
- Respiratory Department, The Third Hospital of Changsha City, Changsha, Hunan, China
| | - Kun Fang
- Vascular Surgery Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jieting Zhu
- Vascular Surgery Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chang Shu
- Vascular Surgery Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Vascular Surgery Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
39
|
Inhibition of Rho-kinase Attenuates Left Ventricular Remodeling Caused by Chronic Intermittent Hypoxia in Rats via Suppressing Myocardial Inflammation and Apoptosis. J Cardiovasc Pharmacol 2018; 70:102-109. [PMID: 28437280 DOI: 10.1097/fjc.0000000000000496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic intermittent hypoxia (CIH), the hallmark of obstructive sleep apnea syndrome (OSAS), has been reported to play a key role in the development of OSAS-associated cardiovascular diseases including cardiac remodeling. RhoA/Rho-kinase (ROCK) pathway has also been implicated in myocardial remodeling, but the exact mechanisms are not fully elucidated. This study's purpose is to investigate the influence of fasudil, a selective ROCK inhibitor, on CIH-induced left ventricular remodeling in rats and its possible mechanisms. Adult male Sprague-Dawley rats suffered from CIH or normoxia stimulus and were intervened with vehicle or fasudil (10 mg·kg·d, intraperitoneal injection) for 6 weeks. In this study, treatment with fasudil significantly reversed intermittent hypoxia-induced histopathological transformations and ultrastructural changes in rat myocardium. Moreover, fasudil downregulated the protein levels of RhoA and phosphorylation of myosin phosphatase targeting subunit-1 (MYPT1), thus effectively inhibited the activation of RhoA/ROCK signaling pathway. Simultaneously, activity of nuclear factor (NF)-kB was suppressed by fasudil, which was accompanied by reduced NF-kB downstream inflammatory genes including interleukin-6, tumor necrosis factor-a and monocyte chemotactic protein-1, and apoptosis. These results suggest that fasudil attenuates myocardial remodeling in CIH rats, at least partly by suppressing activation of NF-kB. Inhibition of the RhoA/ROCK pathway could become an important therapeutic target in the prevention of OSAS-related cardiomyopathy.
Collapse
|
40
|
Arnaud C, Bouyon S, Recoquillon S, Brasseur S, Lemarié E, Briançon-Marjollet A, Gonthier B, Toral M, Faury G, Martinez MC, Andriantsitohaina R, Pepin JL. Nonmuscle Myosin Light Chain Kinase: A Key Player in Intermittent Hypoxia-Induced Vascular Alterations. J Am Heart Assoc 2018; 7:JAHA.117.007893. [PMID: 29371201 PMCID: PMC5850262 DOI: 10.1161/jaha.117.007893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Obstructive sleep apnea is characterized by repetitive pharyngeal collapses during sleep, leading to intermittent hypoxia (IH), the main contributor of obstructive sleep apnea–related cardiovascular morbidity. In patients and rodents with obstructive sleep apnea exposed to IH, vascular inflammation and remodeling, endothelial dysfunction, and circulating inflammatory markers are linked with IH severity. The nonmuscle myosin light chain kinase (nmMLCK) isoform contributes to vascular inflammation and oxidative stress in different cardiovascular and inflammatory diseases. Thus, in the present study, we hypothesized that nmMLCK plays a key role in the IH‐induced vascular dysfunctions and inflammatory remodeling. Methods and Results Twelve‐week‐old nmMLCK+/+ or nmMLCK−/− mice were exposed to 14‐day IH or normoxia. IH was associated with functional alterations characterized by an elevation of arterial blood pressure and stiffness and perturbations of NO signaling. IH caused endothelial barrier dysfunction (ie, reduced transendothelial resistance in vitro) and induced vascular oxidative stress associated with an inflammatory remodeling, characterized by an increased intima‐media thickness and an increased expression and activity of inflammatory markers, such as interferon‐γ and nuclear factor‐κB, in the vascular wall. Interestingly, nmMLCK deletion prevented all IH‐induced functional and structural alterations, including the restoration of NO signaling, correction of endothelial barrier integrity, and reduction of both oxidative stress and associated inflammatory response. Conclusions nmMLCK is a key mechanism in IH‐induced vascular oxidative stress and inflammation and both functional and structural remodeling.
Collapse
Affiliation(s)
- Claire Arnaud
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France .,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - Sophie Bouyon
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - Sylvain Recoquillon
- Université d'Angers Université Bretagne Loire, Angers, France.,INSERM UMR1063, Angers, France
| | - Sandrine Brasseur
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - Emeline Lemarié
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - Anne Briançon-Marjollet
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - Brigitte Gonthier
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - Marta Toral
- Université d'Angers Université Bretagne Loire, Angers, France.,INSERM UMR1063, Angers, France
| | - Gilles Faury
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - M Carmen Martinez
- Université d'Angers Université Bretagne Loire, Angers, France.,INSERM UMR1063, Angers, France
| | | | - Jean-Louis Pepin
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France.,Laboratoire d'Exploration Fonctionnelle Cardiovasculaire et Respiratoire, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| |
Collapse
|
41
|
Gautier-Veyret E, Pépin JL, Stanke-Labesque F. Which place of pharmacological approaches beyond continuous positive airway pressure to treat vascular disease related to obstructive sleep apnea? Pharmacol Ther 2017; 186:45-59. [PMID: 29277633 DOI: 10.1016/j.pharmthera.2017.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent episodes of partial or complete upper airway obstruction, occurring during sleep, leading to chronic intermittent hypoxia (IH), which harms the cardiovascular system. OSA is associated with both functional and structural vascular alterations that contribute to an increased prevalence of fatal and non-fatal cardiovascular events. OSA is a heterogeneous disease with respect to the severity of hypoxia, the presence of daytime symptoms, obesity, and cardiovascular comorbidities. Various clusters of OSA phenotypes have been described leading to more highly personalized treatment. The aim of this review is to describe the various therapeutic strategies including continuous positive airway pressure (CPAP), oral appliances, surgery, weight loss, and especially pharmacological interventions that have been evaluated to reduce vascular alterations in both OSA patients and preclinical animal models. Conventional therapies, predominantly CPAP, have a limited impact on vascular alterations in the presence of co-morbidities. A better knowledge of pharmacological therapies targeting IH-induced vascular alterations will facilitate the use of combined therapies and is crucial for designing clinical trials in well-defined OSA phenotypes.
Collapse
Affiliation(s)
- Elodie Gautier-Veyret
- Univ. Grenoble Alpes, HP2, F-38041 Grenoble, France; INSERM U1042, 38041 Grenoble, France; Centre hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France.
| | - Jean-Louis Pépin
- Univ. Grenoble Alpes, HP2, F-38041 Grenoble, France; INSERM U1042, 38041 Grenoble, France; Centre hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France
| | - Françoise Stanke-Labesque
- Univ. Grenoble Alpes, HP2, F-38041 Grenoble, France; INSERM U1042, 38041 Grenoble, France; Centre hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France
| |
Collapse
|
42
|
Decrease of perforin positive CD3 +γδ-T cells in patients with obstructive sleep disordered breathing. Sleep Breath 2017; 22:211-221. [PMID: 29247296 PMCID: PMC5835055 DOI: 10.1007/s11325-017-1602-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 10/02/2017] [Accepted: 12/03/2017] [Indexed: 12/04/2022]
Abstract
Introduction Sleep related breathing disorders (SRBD) cause sleep fragmentation, intermittent hypoxia or a combination of both leading to homeostasis perturbations, including in the immune system. We investigated whether SRBD patients with or without intermittent hypoxia show substantial differences in perforin and granzyme-B positive peripheral blood lymphocytes. Methods A total of 87 subjects were included and distributed as follows: 24 controls (C), 19 patients with respiratory effort related arousals due to increased upper airway resistance (UAR) without hypoxic events, 24 obese patients with obstructive sleep apnea (OSA) (oOSA), and 20 without obesity (noOSA). After polysomnographic recording, we analyzed in fasting blood samples routine hematologic and biochemical parameters and the percentage of lymphocytes containing the proteins perforin and granzyme-B (GrB). Kruskal-Wallis tests and a posteriori multiple comparisons were applied for statistical analysis of results. Results Perforin-positive γδ-cells revealed significant differences between groups (p = 0.017), especially between the Control group and the oOSA (p-value = 0.04); the remaining SRBD groups also showed differences from the control (C vs UAR: p = 0.08; C vs noOSA = 0.09), but they did not raise to statistical significance. There were no differences among the SRBD groups. Granzyme-B cells were decreased in SRBD patients, but the differences were not statistically significant. No additional statistical significant result was found in the other investigated lymphocyte subsets. Conclusions Obstructive sleep-disordered breathing is associated with a decrease in perforin-positive CD3+γδ-T cells. Although this finding was detected in lean patients without intermittent hypoxia, the reduction was only statistically significant in obese patients with severe OSA. Because CD3+γδ-T cells play an important role in the control of tumor cells, our findings are directly relevant for the study of the association of OSA and cancer. Electronic supplementary material The online version of this article (10.1007/s11325-017-1602-6) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Ozkok A, Ozkok S, Takır M, Yakar Hİ, Kanbay A. Serum heparanase levels are associated with endothelial dysfunction in patients with obstructive sleep apnea. CLINICAL RESPIRATORY JOURNAL 2017; 12:1693-1699. [PMID: 29087043 DOI: 10.1111/crj.12731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/18/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIM Obstructive sleep apnea syndrome (OSAS) is well-known to be associated with high risk for cardiovascular (CV) diseases. Heparanase has been recently shown to be related to increased inflammation and vulnerability of the atherosclerotic plaques. Herein we aimed to investigate the relationships between OSAS, heparanase and endothelial dysfunction. MATERIALS AND METHODS A total of 120 patients with varying severity of OSAS and 31 controls without OSAS were enrolled. Flow-mediated dilatation (FMD) was measured as an indicator of endothelial dysfunction. Serum heparanase levels were measured with ELISA. RESULTS Serum heparanase levels increased in a stepwise fashion from controls to patients with more severe OSAS. When FMD was compared with controls and various degrees of severity of OSAS, a stepwise decrease in FMD was observed. Serum heparanase levels were found to be significantly associated with apnea hypopnea index (AHI) (r = .57, P < .001) and FMD (r= -.37, P < .001) in patients with OSAS. Serum heparanase levels were significantly associated with hemoglobin-A1c and body mass index in patients with OSAS. Serum heparanase and uric acid levels were independent predictors of FMD in linear regression analysis (R2 = .506, P < .001; P < .001 and P = .001 respectively). CONCLUSIONS Serum heparanase levels were significantly increased in patients with OSAS and associated with the severity of OSAS (AHI) and endothelial dysfunction (FMD). Increased heparanase activity in OSAS may be related to increased cardiovascular risk in patients with OSAS.
Collapse
Affiliation(s)
- Abdullah Ozkok
- Section of Nephorology, Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Sercin Ozkok
- Department of Radiology, Istanbul Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Mumtaz Takır
- Section of Endocrinology, Department of Internal Medicine, Istanbul Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Halil İbrahim Yakar
- Faculty of Medicine, Department of Pulmonary Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Asiye Kanbay
- Faculty of Medicine, Department of Pulmonary Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
44
|
Bikov A, Losonczy G, Kunos L. Role of lung volume and airway inflammation in obstructive sleep apnea. Respir Investig 2017; 55:326-333. [PMID: 29153412 DOI: 10.1016/j.resinv.2017.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 08/06/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
Obstructive sleep apnea (OSA) is a prevalent disorder that affects not only the upper airways but also the intrathoracic airways. In this review, we summarize the results of studies on lung function and airway inflammation. We provide evidence that the alterations in intrathoracic airways observed in OSA are not purely consequences of mechanical trauma and oxidative stress during apneic events but have a causal role in the structural changes associated with OSA and increasing severity of this disorder.
Collapse
Affiliation(s)
- Andras Bikov
- Department of Pulmonology, Semmelweis University, Budapest, Hungary.
| | - Gyorgy Losonczy
- Department of Pulmonology, Semmelweis University, Budapest, Hungary.
| | - Laszlo Kunos
- Department of Pulmonology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
45
|
Ghigna MR, Mooi WJ, Grünberg K. Pulmonary hypertensive vasculopathy in parenchymal lung diseases and/or hypoxia: Number 1 in the Series "Pathology for the clinician" Edited by Peter Dorfmüller and Alberto Cavazza. Eur Respir Rev 2017; 26:26/144/170003. [PMID: 28659502 DOI: 10.1183/16000617.0003-2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
Pulmonary hypertension (PH) with complicating chronic lung diseases and/or hypoxia falls into group 3 of the updated classification of PH. Patients with chronic obstructive lung disease (COPD), diffuse lung disease (such as idiopathic pulmonary fibrosis (IPF)) and with sleep disordered breathing are particularly exposed to the risk of developing PH. Although PH in such a context is usually mild, a minority of patients exhibit severe haemodynamic impairment, defined by a mean pulmonary arterial pressure (mPAP) of ≥35 mmHg or mPAP values ranging between 25 mmHg and 35 mmHg with a low cardiac index (<2 L·min-1·m-2). The overlap between lung parenchymal disease and PH heavily affects life expectancy in such a patient population and complicates their therapeutic management. In this review we illustrate the pathological features and the underlying pathophysiological mechanisms of pulmonary circulation in chronic lung diseases, with an emphasis on COPD, IPF and obstructive sleep apnoea syndrome.
Collapse
Affiliation(s)
- Maria Rosa Ghigna
- Service d'Anatomie et de Cytologie Pathologiques, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Wolter J Mooi
- Dept of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
46
|
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a common disease, distinguished by recurrent episodes of upper airway obstruction during sleep, with an inflammatory component. C-reactive protein (CRP) and high-sensitivity C-reactive protein (hs-CRP) are markers of systemic inflammation and may serve as biomarkers of OSA. METHODS Scientific studies published from January 1, 2006, to January 1, 2016 were obtained via searches of PubMed, Embase, SCI, and China National Knowledge Internet (CNKI) using relevant terms. Studies concerning serum CRP level/ hs-CRP in OSA patients were reviewed by 2 independent reviewers. Studies were included if they conform with our specific criteria of inclusion. Eligible studies were subjected to quality review, data extraction, and meta-analysis by using RevMan (version 5.2) and STATA (version 12.0). RESULTS There were 15 studies that met inclusion criteria that included a total of 1297 subjects. Meta-analysis revealed that serum CRP levels in the OSA group were 1.98 mmol/L higher than those in control group (95% confidence interval: 1.39-2.58, P < .01). Similarly, serum hs-CRP levels in the OSA group were 1.57 mmol/L higher than that in the control group (95% confidence interval: 0.96-2.18, P < .01). Subgroup analysis showed greater differences between OSA patients and controls in the setting of obesity (body mass index)> = 30. The total weighted mean difference (WMD) between OSA and controls within the subgroup of subjects who had a CRP was 2.10; for hs-CRP, the WMD was 2.49. Comparing OSA patients of mean apnea hypopnea index> = 15 and controls, the total WMD for the CRP subgroup was 2.19; for the hs-CRP subgroup, the WMD was 1.70. CONCLUSION In our meta-analysis, serum CRP/hs-CRP levels were discovered to be higher in OSA patients compared with control subjects. Those with higher body mass index and apnea hyponea index demonstrated larger differences in CRP/hs-CRP levels. These data are consistent with an inflammatory component of OSA pathophysiology and support the role of CRP/hs-CRP as a biomarker in this disease.
Collapse
|
47
|
Lu D, Li N, Yao X, Zhou L. Potential inflammatory markers in obstructive sleep apnea-hypopnea syndrome. Bosn J Basic Med Sci 2017; 17:47-53. [PMID: 27754829 DOI: 10.17305/bjbms.2016.1579] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a complex chronic inflammatory respiratory disease with multiple pathogenic factors and high morbidity and mortality. Serum levels of nuclear factor-κB (NF-κB), hypoxia-inducible factor-1 alpha (HIF-1α), and surfactant protein D (SPD) were investigated in OSAHS patients, to determine their clinical significance and correlation with the pathogenesis. Patients were classified into a mild and moderate OSAHS group (n = 25) and severe OSAHS group (n = 33). Twenty healthy patients served as a control group. Peripheral blood levels of NF-κB, HIF-1α, and SPD were determined by Western blot, and a correlation analysis was performed. Severe OSAHS patients received nasal continuous positive airway pressure (nCPAP) therapy and were followed up after 2 months. NF-κB p65, HIF-1α, and SPD expression levels were determined after valid nCPAP therapy. NF-κB p65 and HIF-1α expression was significantly higher in severe OSAHS group than in the other two groups (p < 0.01), and was positively correlated with the apnea-hypopnea index (AHI) (r = 0.696, p < 0.001; r = 0.634, p < 0.001). SPD expression was significantly lower in severe OSAHS group than in the control group (p < 0.01) and mild and moderate OSAHS group (p < 0.01), and was negatively correlated with AHI (r = -0.569, p < 0.001). OSAHS pathogenesis was associated with changes in NF-κB, HIF-1α, and SPD protein expression levels. nCPAP therapy could improve the clinical characteristics of the patients, lower serum NF-κB and HIF-1α levels, and increase serum SPD levels. We conclude that OSAHS is related to the expression of NF-κB, HIF-1, and SPD.
Collapse
Affiliation(s)
- Dongmei Lu
- Postgraduate College of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China; Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| | | | | | | |
Collapse
|
48
|
Ryan S. Adipose tissue inflammation by intermittent hypoxia: mechanistic link between obstructive sleep apnoea and metabolic dysfunction. J Physiol 2017; 595:2423-2430. [PMID: 27901270 DOI: 10.1113/jp273312] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnoea (OSA) is a highly prevalent condition and recognized as a major public health burden conveying a significant risk of cardiometabolic diseases and mortality. Type 2 diabetes (T2D), insulin resistance (IR) and glucose tolerance are common in subjects with OSA and this association is at least in part independent of the effects of obesity. Continuous positive airway pressure (CPAP) is the treatment of choice for the majority of patients with OSA but the benefit of CPAP on glycaemic health is uncertain. Thus, a greater understanding of the mechanisms by which OSA leads to metabolic dysfunction might identify novel therapeutic approaches. Intermittent hypoxia (IH), a hallmark feature of OSA, likely plays a key role in the pathogenesis and experimental studies using animal and in vitro models suggest that IH leads to pancreatic β-cell dysfunction and to insulin resistance in the insulin target organs liver, skeletal muscle and adipose tissue. In particular, IH induces a pro-inflammatory phenotype of the visceral adipose tissue with polarization of adipose tissue macrophages towards a M1-pro-inflammatory subtype, upregulation and secretion of numerous pro-inflammatory adipokines and subsequent impairment of the insulin-signalling pathway, changes which bear a striking similarity to adipose tissue dysfunction seen in obesity. In this review, the available evidence linking IH with metabolic dysfunction is explored with a special emphasis on the adipose tissue in this process.
Collapse
Affiliation(s)
- Silke Ryan
- Pulmonary and Sleep Disorders Unit, St Vincent's University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Ireland
| |
Collapse
|
49
|
Kiernan EA, Smith SMC, Mitchell GS, Watters JJ. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia. J Physiol 2017; 594:1563-77. [PMID: 26890698 DOI: 10.1113/jp271502] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/16/2016] [Indexed: 12/12/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is a hallmark of sleep apnoea, a condition associated with diverse clinical disorders. CIH and sleep apnoea are characterized by increased reactive oxygen species formation, peripheral and CNS inflammation, neuronal death and neurocognitive deficits. Few studies have examined the role of microglia, the resident CNS immune cells, in models of CIH. Thus, little is known concerning their direct contributions to neuropathology or the cellular mechanisms regulating their activities during or following pathological CIH. In this review, we identify gaps in knowledge regarding CIH-induced microglial activation, and propose mechanisms based on data from related models of hypoxia and/or hypoxia-reoxygenation. CIH may directly affect microglia, or may have indirect effects via the periphery or other CNS cells. Peripheral inflammation may indirectly activate microglia via entry of pro-inflammatory molecules into the CNS, and/or activation of vagal afferents that trigger CNS inflammation. CIH-induced release of damage-associated molecular patterns from injured CNS cells may also activate microglia via interactions with pattern recognition receptors expressed on microglia. For example, Toll-like receptors activate mitogen-activated protein kinase/transcription factor pathways required for microglial inflammatory gene expression. Although epigenetic effects from CIH have not yet been studied in microglia, potential epigenetic mechanisms in microglial regulation are discussed, including microRNAs, histone modifications and DNA methylation. Epigenetic effects can occur during CIH, or long after it has ended. A better understanding of CIH effects on microglial activities may be important to reverse CIH-induced neuropathology in patients with sleep disordered breathing.
Collapse
Affiliation(s)
- Elizabeth A Kiernan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stephanie M C Smith
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gordon S Mitchell
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
50
|
Garcia-Horton A, Al-Ani F, Lazo-Langner A. Retinal vein thrombosis: The Internist's role in the etiologic and therapeutic management. Thromb Res 2016; 148:118-124. [PMID: 27838473 DOI: 10.1016/j.thromres.2016.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/29/2016] [Accepted: 11/03/2016] [Indexed: 02/04/2023]
Abstract
Retinal vein occlusion is a common and important cause of vision loss. In general, knowledge about this condition is scant within an internist's practice but the condition is relevant because of its association with other chronic ailments. A diagnosis of RVO should prompt the investigation of conditions needing chronic management in these patients. In this review we summarize the clinical presentation of RVO, its classification, associated risk factors, and treatment focused in the internist's scope of practice.
Collapse
Affiliation(s)
- Alejandro Garcia-Horton
- Department of Medicine, Division of Hematology, University of Western Ontario, London, ON, Canada
| | - Fatimah Al-Ani
- Department of Medicine, Division of Hematology, University of Western Ontario, London, ON, Canada
| | - Alejandro Lazo-Langner
- Department of Medicine, Division of Hematology, University of Western Ontario, London, ON, Canada; Department of Epidemiology and Biostatistics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|