1
|
Corrêa Costa-Beber L, Kazmirczak Moraes R, Marques Obelar Ramos J, Meira Martins LA, Toquetto AL, Fursel Pacheco J, Resende Farias H, Gioda A, Antunes de Oliveira V, de Oliveira J, Costa Rodrigues Guma FT. Aqueous PM 2.5 promotes lipid accumulation, classical macrophage polarisation and heat shock response. CHEMOSPHERE 2024; 363:142987. [PMID: 39094706 DOI: 10.1016/j.chemosphere.2024.142987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Fine particulate matter (PM2.5) is an air pollutant that enhances susceptibility to cardiovascular diseases. Macrophages are the first immune cells to encounter the inhaled particles and orchestrate an inflammatory response. Given their role in atherosclerosis development, we investigated whether aqueous PM2.5 could elicit atherogenic effects by polarising macrophages to a pro-oxidative and pro-inflammatory phenotype and enhancing foam cell formation. The RAW264.7 macrophage cell line was exposed to PM2.5 for 48 h, with PBS as the control. Aqueous PM2.5 induced apoptosis and reduced cell proliferation. In surviving cells, we observed morphological, phagocytic, oxidative, and inflammatory features (i.e. enhanced iNOS, Integrin-1β, IL-6 expression), indicative of classical macrophage activation. We also detected an increase in total and surface HSP70 levels, suggesting macrophage activation. Further, exposure of high-cholesterol diet-fed mice to PM2.5 resulted in aortic wall enlargement, indicating vascular lesions. Macrophages exposed to PM2.5 and non-modified low-density lipoprotein (LDL) showed exacerbated lipid accumulation. Given the non-oxidised LDL used and the evidence linking inflammation to disrupted cholesterol negative feedback, we hypothesise that PM2.5-induced inflammation in macrophages enhances their susceptibility to transforming into foam cells. Finally, our results indicate that exposure to aqueous PM2.5 promotes classical macrophage activation, marked by increased HSP70 expression and that it potentially contributes to atherosclerosis.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rafael Kazmirczak Moraes
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jéssica Marques Obelar Ramos
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leo Anderson Meira Martins
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Laura Toquetto
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Research Group in Physiology, Postgraduate Program in Integral Health Care, Ijuí, Rio Grande do Sul State, Brazil
| | - Júlia Fursel Pacheco
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Research Group in Physiology, Postgraduate Program in Integral Health Care, Ijuí, Rio Grande do Sul State, Brazil
| | - Hémelin Resende Farias
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Rio de Janeiro, RJ, Brazil
| | - Vitor Antunes de Oliveira
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Research Group in Physiology, Postgraduate Program in Integral Health Care, Ijuí, Rio Grande do Sul State, Brazil
| | - Jade de Oliveira
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fátima Theresinha Costa Rodrigues Guma
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Petrovič D, Letonja J, Petrovič D. SMAD3 rs17228212 Polymorphism Is Associated with Advanced Carotid Atherosclerosis in a Slovenian Population. Biomedicines 2024; 12:1103. [PMID: 38791063 PMCID: PMC11117620 DOI: 10.3390/biomedicines12051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Smad proteins influence the TGFβ signaling pathway, which plays an important role in the progression of atherosclerosis. The aim of our study was to investigate the association between the rs17228212 polymorphism of the SMAD3 gene and advanced carotid atherosclerosis in Slovenian subjects and to investigate the effect of the rs17228212 SMAD3 polymorphism on the expression of SMAD3 in endarterectomy sequesters. In this cross-sectional case-control study, 881 unrelated Caucasians were divided into two groups. The first group included 308 patients with advanced carotid atherosclerosis of the common or internal carotid artery with stenosis greater than 75% that underwent a revascularization procedure (cases). The control group consisted of 573 subjects without hemodynamically significant carotid atherosclerosis. We analyzed the rs17228212 polymorphism of the SMAD3 gene using the StepOne real-time polymerase chain reaction system and TaqMan SNP genotyping assay. The results in the two genetic models showed a statistically significant association, codominant (OR 4.05; CI 1.10-17.75; p = 0.037) and dominant (OR 3.60; CI 1.15-15.45; p = 0.045). An immunohistochemical analysis of SMAD3 expression was conducted for 26 endarterectomy specimens. The T allele of the rs17228212 SMAD3 gene was shown to be associated with an increased numerical area density of SMAD3-positive cells in carotid plaques.
Collapse
Affiliation(s)
- David Petrovič
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia; (D.P.); (J.L.)
| | - Jernej Letonja
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia; (D.P.); (J.L.)
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Danijel Petrovič
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia; (D.P.); (J.L.)
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Zhang X, Chen S, Yin G, Liang P, Feng Y, Yu W, Meng D, Liu H, Zhang F. The Role of JAK/STAT Signaling Pathway and Its Downstream Influencing Factors in the Treatment of Atherosclerosis. J Cardiovasc Pharmacol Ther 2024; 29:10742484241248046. [PMID: 38656132 DOI: 10.1177/10742484241248046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Atherosclerosis is now widely considered to be a chronic inflammatory disease, with increasing evidence suggesting that lipid alone is not the main factor contributing to its development. Rather, atherosclerotic plaques contain a significant amount of inflammatory cells, characterized by the accumulation of monocytes and lymphocytes on the vessel wall. This suggests that inflammation may play a crucial role in the occurrence and progression of atherosclerosis. As research deepens, other pathological factors have also been found to influence the development of the disease. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is a recently discovered target of inflammation that has gained attention in recent years. Numerous studies have provided evidence for the causal role of this pathway in atherosclerosis, and its downstream signaling factors play a significant role in this process. This brief review aims to explore the crucial role of the JAK/STAT pathway and its representative downstream signaling factors in the development of atherosclerosis. It provides a new theoretical basis for clinically affecting the development of atherosclerosis by interfering with the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Suwen Chen
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Guoliang Yin
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Pengpeng Liang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Yanan Feng
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Wenfei Yu
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Decheng Meng
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Hongshuai Liu
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Fengxia Zhang
- Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| |
Collapse
|
4
|
Martín-González C, Martín-Ponce E, Fernández-Rodríguez C, Sánchez-Pérez MJ, Rodríguez-Gaspar M, de-la-Vega-Prieto MJ, Martínez-Riera A, González-Reimers E. Transforming Growth Factor Beta 1 and Vascular Risk in Alcoholics. Alcohol Alcohol 2019; 54:472-476. [PMID: 31188414 DOI: 10.1093/alcalc/agz048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Transforming growth factor beta-1 (TGF-β1) is a pleiotropic cytokine. Its relationship with atherosclerosis is debatable, protective or deleterious effects have been described. Alcoholics are at increased vascular risk. Although TGF-β1 is increased in alcoholics, its role on vascular risk factors has not been analyzed. This is the objective of this study. PATIENTS AND METHODS 79 heavy alcoholics and 34 controls were included. Calcium deposition in the aortic arch was assessed in the plain thorax X-ray film. Ankle-brachial index was recorded in 48 patients. All the patients underwent complete laboratory evaluation, including serum levels of TGF-β1, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, and interferon-γ (IFN-γ).We analyzed the relationships between TGF-β1 and vascular risk factors by both univariate (parametric or non parametric tests), or multivariate analysis to discern on which variables TGF-β1 levels depend. RESULTS Serum TGF-β1 levels were higher among patients (t = 2.73; P = 0.008), but no differences exist among cirrhotics (17246 ± 11,021 pg/mL) and non-cirrhotics (21,340 ± 12,442 pg/mL). TGF-β1 showed significant correlations with total cholesterol (r = 0.28; P = 0.017) and HDL- cholesterol (r = 0.25; P = 0.042), and inverse correlations with body mass index (BMI; ρ = -0.37; P = 0.004), IL-4 (ρ = -0.31; P = 0.009), INF-γ (ρ = -0.28; P = 0.001), and IL-6 (ρ = -0.38; P = 0.001). By multivariate analysis, only BMI, IL-6 and HDL-cholesterol showed independent relationships with TGF-β1. No relationships were observed with ankle-brachial index or calcium in the aortic arch, hypertension, diabetes, left ventricular hypertrophy or atrial fibrillation. CONCLUSION TGF-β1 levels are increased in alcoholics, but are unrelated to vessel wall calcification or arterial stiffness.
Collapse
Affiliation(s)
- C Martín-González
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - E Martín-Ponce
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - C Fernández-Rodríguez
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - M J Sánchez-Pérez
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - M Rodríguez-Gaspar
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - M J de-la-Vega-Prieto
- Servicio de Laboratorio, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - A Martínez-Riera
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - E González-Reimers
- Servicio de Medicina Interna, Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| |
Collapse
|
5
|
Low EL, Baker AH, Bradshaw AC. TGFβ, smooth muscle cells and coronary artery disease: a review. Cell Signal 2019; 53:90-101. [PMID: 30227237 PMCID: PMC6293316 DOI: 10.1016/j.cellsig.2018.09.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Excessive vascular smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) synthesis are key events in the development of intimal hyperplasia, a pathophysiological response to acute or chronic sources of vascular damage that can lead to occlusive narrowing of the vessel lumen. Atherosclerosis, the primary cause of coronary artery disease, is characterised by chronic vascular inflammation and dyslipidemia, while revascularisation surgeries such as coronary stenting and bypass grafting represent acute forms of vascular injury. Gene knockouts of transforming growth factor-beta (TGFβ), its receptors and downstream signalling proteins have demonstrated the importance of this pleiotropic cytokine during vasculogenesis and in the maintenance of vascular homeostasis. Dysregulated TGFβ signalling is a hallmark of many vascular diseases, and has been associated with the induction of pathological vascular cell phenotypes, fibrosis and ECM remodelling. Here we present an overview of TGFβ signalling in SMCs, highlighting the ways in which this multifaceted cytokine regulates SMC behaviour and phenotype in cardiovascular diseases driven by intimal hyperplasia.
Collapse
Affiliation(s)
- Emma L Low
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew H Baker
- Queen's Medical Research Institute, University of Edinburgh, 47 Little Crescent, Edinburgh EH16 4TJ, UK
| | - Angela C Bradshaw
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
6
|
Transplantation of periaortic adipose tissue inhibits atherosclerosis in apoE -/- mice by evoking TGF-β1-mediated anti-inflammatory response in transplanted graft. Biochem Biophys Res Commun 2018; 501:145-151. [PMID: 29705699 DOI: 10.1016/j.bbrc.2018.04.196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
Abstract
Perivascular adipose tissue (PAT) is associated with vascular homeostasis; however, its causal effect on atherosclerosis currently remains undefined. Here, we investigated the effect of experimental PAT transplantation on atherosclerosis. The thoracic periaortic adipose tissue (tPAT) was dissected from 16-week-old wild-type mice and transplanted over the infrarenal aorta of 20-week-old apoE deficient (apoE-/-) mice fed high-cholesterol diet for 3 months. Oil-red O staining after 4 weeks showed a significant 20% decrease in the atherosclerotic lesion of suprarenal aorta compared with that of sham control mice, while that of infrarenal aorta showed no difference between the two groups. TGF-β1 mRNA expression was significantly higher in grafted tPAT than donor tPAT, accompanied by a significant increase in serum TGF-β1 concentration, which was inversely correlated with the suprarenal lesion area (r = -0.63, P = 0.012). Treatment with neutralizing TGF-β antibody abrogated the anti-atherogenic effect of tPAT transplantation. Immunofluorescent analysis of grafted tPAT showed that TGF-β-positive cells were co-localized with Mac-2-positive cells and this number was significantly increased compared with donor tPAT. There was also marked increase in mRNA expression of alternatively activated macrophages-related genes. Furthermore, the percentage of eosinophils in stromal vascular fraction of donor tPAT was much higher than that in epididymal white adipose tissue, concomitant with the significantly higher protein level of IL-4. IL-4 mRNA expression levels in grafted tPAT were increased in a time-dependent manner after tPAT transplantation. Our findings show that tPAT transplantation inhibits atherosclerosis development by exerting TGF-β1-mediated anti-inflammatory response, which may involve alternatively activated macrophages.
Collapse
|
7
|
Mailer RKW, Gisterå A, Polyzos KA, Ketelhuth DFJ, Hansson GK. Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver. Circ Res 2017; 120:1740-1753. [PMID: 28420668 DOI: 10.1161/circresaha.116.310054] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE The liver is the central organ that responds to dietary cholesterol intake and facilitates the release and clearance of lipoprotein particles. Persistent hypercholesterolemia leads to immune responses against lipoprotein particles that drive atherosclerosis. However, the effect of hypercholesterolemia on hepatic T-cell differentiation remains unknown. OBJECTIVE To investigate hepatic T-cell subsets upon hypercholesterolemia. METHODS AND RESULTS We observed that hypercholesterolemia elevated the intrahepatic regulatory T (Treg) cell population and increased the expression of transforming growth factor-β1 in the liver. Adoptive transfer experiments revealed that intrahepatically differentiated Treg cells relocated to the inflamed aorta in atherosclerosis-prone low-density lipoprotein receptor deficient (Ldlr-/-) mice. Moreover, hypercholesterolemia induced the differentiation of intrahepatic, but not intrasplenic, Th17 cells in wild-type mice, whereas the disrupted liver homeostasis in hypercholesterolemic Ldlr-/- mice led to intrahepatic Th1 cell differentiation and CD11b+CD11c+ leukocyte accumulation. CONCLUSIONS Our results elucidate a new mechanism that controls intrahepatic T-cell differentiation during atherosclerosis development and indicates that intrahepatically differentiated T cells contribute to the CD4+ T-cell pool in the atherosclerotic aorta.
Collapse
Affiliation(s)
- Reiner K W Mailer
- From the Cardiovascular Medicine Unit, Department of Medicine, Karolinska Insititutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anton Gisterå
- From the Cardiovascular Medicine Unit, Department of Medicine, Karolinska Insititutet, Karolinska University Hospital, Stockholm, Sweden
| | - Konstantinos A Polyzos
- From the Cardiovascular Medicine Unit, Department of Medicine, Karolinska Insititutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel F J Ketelhuth
- From the Cardiovascular Medicine Unit, Department of Medicine, Karolinska Insititutet, Karolinska University Hospital, Stockholm, Sweden
| | - Göran K Hansson
- From the Cardiovascular Medicine Unit, Department of Medicine, Karolinska Insititutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Abstract
The prognosis of patients with coronary artery disease and stroke has improved substantially over the last decade as a result of advances in primary and secondary preventive care as well as novel interventional approaches, including the development of drug-eluting stents and balloons. Despite this progress, however, cardiovascular disease remains the leading cause of death in industrialized nations. Sustained efforts to elucidate the underlying mechanisms of atherogenesis, reperfusion-induced cardiac injury, and ischemic heart failure have led to the identification of several target genes as key players in the development and progression of atherosclerotic vascular disease. This knowledge has now enabled genetic therapeutic modulation not only for inherited diseases with a single gene defect, such as familial hypercholesterolemia, but also for multifactorial disorders. This review will focus on approaches in adeno-associated viral (AAV)-mediated gene therapy for atherosclerosis and its long-term sequelae.
Collapse
|
9
|
Abstract
Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis. While some cytokines such as TNF or IFNγ clearly had atherogenic effects, others such as IL-10 were found to be atheroprotective. However, studies investigating the different cytokines in experimental atherosclerosis revealed that the cytokine system is complex with both disease stage-dependent and site-specific effects. In this review, we strive to provide an overview of the main cytokines involved in atherosclerosis and to shed light on their individual role during atherogenesis.
Collapse
Affiliation(s)
- Pascal J H Kusters
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, L01-146.1, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Munich, Germany.
| |
Collapse
|
10
|
Zhu H, Cao M, Figueroa JA, Cobos E, Uretsky BF, Chiriva-Internati M, Hermonat PL. AAV2/8-hSMAD3 gene delivery attenuates aortic atherogenesis, enhances Th2 response without fibrosis, in LDLR-KO mice on high cholesterol diet. J Transl Med 2014; 12:252. [PMID: 25236373 PMCID: PMC4189750 DOI: 10.1186/s12967-014-0252-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 12/01/2022] Open
Abstract
Background Inflammation is a key etiologic component in atherogenesis and transforming growth factor beta 1 (TGFβ1) is a well known anti-inflammatory cytokine which potentially might be used to limit it. Yet TGFβ1 is pleiomorphic, causing fibrosis, cell taxis, and under certain circumstances, can even worsen inflammation. SMAD3 is an important member of TGFβ1′s signal transduction pathway, but is a fully intracellular protein. Objectives With the hope of attenuating TGFβ1′s adverse systemic effects (eg. fibrosis) and accentuating its anti-inflammatory activity, we proposed the use of human (h)SMAD3 as an intracellular substitute for TGFβ1. Study design To test this hypothesis adeno-associated virus type 2/8 (AAV)/hSMAD3 or AAV/Neo (control) was tail vein injected into the low density lipoprotein receptor knockout (LDLR-KO) mice, then placed on a high-cholesterol diet (HCD). Results The hSMAD3 delivery was associated with significantly lower atherogenesis as measured by larger aortic cross sectional area, thinner aortic wall thickness, and lower aortic systolic blood velocity compared with Neo gene-treated controls. HSMAD3 delivery also resulted in fewer aortic macrophages by immunohistochemistry for CD68 and ITGAM, and quantitative reverse transcriptase polymerase chain reaction analysis of EMR and ITGAM. Overall, aortic cytokine expression showed an enhancement of Th2 response (higher IL-4 and IL-10); while Th1 response (IL-12) was lower with hSMAD3 delivery. While TGFβ1 is often associated with increased fibrosis, AAV/hSMAD3 delivery exhibited no increase of collagen 1A2 or significantly lower 2A1 expression in the aorta compared with Neo-delivery. Connective tissue growth factor (CTGF), a mediator of TGFβ1/SMAD3-induced fibrosis, was unchanged in hSMAD3-delivered aortas. In the liver, all three of these genes were down-regulated by hSMAD3 gene delivery. Conclusion These data strongly suggest that AAV/hSMAD3 delivery gave anti-atherosclerosis therapeutic effect without the expected undesirable effect of TGFβ1-associated fibrosis.
Collapse
|
11
|
Tang T, Wilson PG, Thompson JC, Nelson C, Yoder MH, Tannock LR. Prevention of TGFβ induction attenuates angII-stimulated vascular biglycan and atherosclerosis in Ldlr-/- mice. J Lipid Res 2013; 54:2255-2264. [PMID: 23749984 PMCID: PMC3708375 DOI: 10.1194/jlr.p040139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II (angII) accelerates atherosclerosis, but the mechanisms are not fully understood. The aim of this study was to determine whether TGFβ is required for angII-induced atherosclerosis. Ldlr-null mice fed a normal chow diet were infused with angII or saline for 28 days. A single injection of TGFβ neutralizing antibody 1D11 (2 mg/kg) prevented angII-induction of TGFβ1 levels, and strikingly attenuated angII-induced accumulation of aortic biglycan content. To study atherosclerosis, mice were infused with angII or saline for 4 weeks, and then fed Western diet for a further 6 weeks. 1D11 had no effect on systolic blood pressure or plasma cholesterol; however, angII-infused mice that received 1D11 had reduced atherosclerotic lesion area by 30% (P < 0.05). Immunohistochemical analyses demonstrated that angII induced both lipid retention and accumulation of biglycan and perlecan which colocalized with apoB. 1D11 strikingly reduced the effect of angII on biglycan but not perlecan. 1D11 decreased total collagen content (P < 0.05) in the lesion area without changing plaque inflammation markers (CD68 and CD45). Thus, this study demonstrates that neutralization of TGFβ attenuated angII stimulation of biglycan accumulation and atherogenesis in mice, suggesting that TGFβ-mediated biglycan induction is one of the mechanisms underlying angII-promoted atherosclerosis.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Biglycan/biosynthesis
- Disease Models, Animal
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Receptors, LDL/deficiency
- Receptors, LDL/metabolism
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Tao Tang
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; and
| | - Patricia G Wilson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; and
| | - Joel C Thompson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; and
| | - Christina Nelson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Meghan H Yoder
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Lisa R Tannock
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; and; Department of Veterans Affairs, Lexington, KY.
| |
Collapse
|
12
|
Guo W, Wong S, Bhasin S. AAV-mediated administration of myostatin pro-peptide mutant in adult Ldlr null mice reduces diet-induced hepatosteatosis and arteriosclerosis. PLoS One 2013; 8:e71017. [PMID: 23936482 PMCID: PMC3731267 DOI: 10.1371/journal.pone.0071017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/01/2013] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. CONCLUSIONS AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes.
Collapse
Affiliation(s)
- Wen Guo
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
13
|
Reifenberg K, Cheng F, Orning C, Crain J, Küpper I, Wiese E, Protschka M, Blessing M, Lackner KJ, Torzewski M. Overexpression of TGF-ß1 in macrophages reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice. PLoS One 2012; 7:e40990. [PMID: 22829904 PMCID: PMC3400574 DOI: 10.1371/journal.pone.0040990] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/19/2012] [Indexed: 12/28/2022] Open
Abstract
Although macrophages represent the hallmark of both human and murine atherosclerotic lesions and have been shown to express TGF-ß1 (transforming growth factor β1) and its receptors, it has so far not been experimentally addressed whether the pleiotropic cytokine TGF-ß1 may influence atherogenesis by a macrophage specific mechanism. We developed transgenic mice with macrophage specific TGF-ß1 overexpression, crossed the transgenics to the atherosclerotic ApoE (apolipoprotein E) knock-out strain and quantitatively analyzed both atherosclerotic lesion development and composition of the resulting double mutants. Compared with control ApoE−/− mice, animals with macrophage specific TGF-ß1 overexpression developed significantly less atherosclerosis after 24 weeks on the WTD (Western type diet) as indicated by aortic plaque area en face (p<0.05). Reduced atherosclerotic lesion development was associated with significantly less macrophages (p<0.05 after both 8 and 24 weeks on the WTD), significantly more smooth muscle cells (SMCs; p<0.01 after 24 weeks on the WTD), significantly more collagen (p<0.01 and p<0.05 after 16 and 24 weeks on the WTD, respectively) without significant differences of inner aortic arch intima thickness or the number of total macrophages in the mice pointing to a plaque stabilizing effect of macrophage-specific TGF-ß1 overexpression. Our data shows that macrophage specific TGF-ß1 overexpression reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice.
Collapse
Affiliation(s)
- Kurt Reifenberg
- Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Fei Cheng
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Carolin Orning
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Jeanine Crain
- Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Ines Küpper
- Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Elena Wiese
- Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Martina Protschka
- Center for Biotechnology and Biomedicine, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Manfred Blessing
- Center for Biotechnology and Biomedicine, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Michael Torzewski
- Department of Laboratory Medicine, Robert-Bosch-Hospital, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
14
|
Abstract
BACKGROUND Inflammation plays a pivotal role in the pathogenesis of atherosclerosis and of cerebrovascular complications. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine with a central role in inflammation. To investigate whether polymorphisms of the TGF-β1 gene can modify the risk of ischemic stroke (IS) in Chinese population, we conduct this hospital-based, case-control study. METHODS Transforming growth factor-β1 genotype was determined in 450 Chinese patients (306 male and 144 female) with IS and 450 control subjects (326 male and 124 female). RESULTS Subjects carrying 869TT were susceptible to IS (odds ratio [OR] =1.58; P=0.003). Further analysis of IS data partitioned by gender revealed the female-specific association with 869T/C (OR=2.64; P=0.001). CONCLUSIONS Findings suggest that the TT genotype of 869T/C might be a risk factor of IS in Chinese, especially in females.
Collapse
|
15
|
Systemic human Netrin-1 gene delivery by adeno-associated virus type 8 alters leukocyte accumulation and atherogenesis in vivo. Gene Ther 2010; 18:437-44. [PMID: 21160531 DOI: 10.1038/gt.2010.155] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atherosclerosis is an inflammatory disorder of arteries. Atherosclerotic plaque, in its early to intermediate stages, is composed largely of lipid-engorged foam cells. These foam cells are derived from the trafficking of monocytes (Mo) into the arterial intima, attracted to the site by chemoattractants. Given that foam cells are derived from the trafficking of Mo, the use of Netrin-1, an Mo chemorepellent, may be useful in limiting Mo accumulation and subsequent plaque formation. To investigate the potential of Netrin-1 for limiting atherosclerosis, we systemically delivered its human (h) cDNA by adeno-associated virus type 8 (AAV8, single-stranded structure) delivery into low-density lipoprotein receptor knockout (LDLR-/-) mice and placed the animals on a high cholesterol diet (HCD). Compared with control neomycin resistance (Neo) gene delivery/HCD, hNetrin-1 delivery resulted in a significant reduction in plaque formation, as determined by larger aortic lumen size, thinner intima-media thickness and lower blood velocity than the Neo/HCD control (all statistically significant). Indices of monocyte/macrophage (Mo/MΦ) accumulation, CD68, integrin, alpha M (ITGAM) and egf-like module containing, mucin-like, hormone receptor-like 1 (EMR-1), were reduced in hNetrin-1/HCD-treated animal's aortas and spleens compared with Neo/HCD-treated animals. Unexpectedly, CD25 and foxp3 (regulatory T cells (Tregs)) in the aorta were strongly upregulated. This is the first time the Mo/MΦ chemorepellent approach, and specific Netrin-1 gene delivery, has been performed for the reduction of Mo/MΦ burden and atherosclerosis. In addition, Netrin-1 has never before been linked to altered Treg levels. These data strongly suggest that hNetrin-1 gene delivery can reduce Mo/MΦ accumulation, inflammation and subsequent plaque formation.
Collapse
|
16
|
AAV/hSTAT3-gene delivery lowers aortic inflammatory cell infiltration in LDLR KO mice on high cholesterol. Atherosclerosis 2010; 213:59-66. [DOI: 10.1016/j.atherosclerosis.2010.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 11/23/2022]
|
17
|
Downregulation of T helper cell type 3 in patients with acute coronary syndrome. Arch Med Res 2009; 40:285-93. [PMID: 19608018 DOI: 10.1016/j.arcmed.2009.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/25/2009] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS There is an imbalance between Th1 and Th2 in the development and progression of atherosclerosis and in patients with acute coronary syndrome (ACS) including acute myocardial infarction (AMI) and unstable angina. T helper cell type 3 (Th3), which primarily secretes transforming growth factor beta-1 (TGF-beta1), has been shown to inhibit both Th1 and Th2 cells. The present study was designed to investigate whether Th3 cells are involved in plaque destabilization and the onset of ACS. METHODS Ninety one patients who underwent diagnostic catheterization were classified into four groups (AMI group, unstable angina group, stable angina group and chest pain syndrome group). The cell frequencies of Th1, Th2 and Th3 were detected using flow cytometry, and the concentrations of their related cytokines IFN-gamma, IL-4 and TGF-beta1 were studied by ELISA. RESULTS Apart from the imbalance between Th1 and Th2, results revealed a significant decrease in peripheral Th3 number and levels of TGF-beta1 in patients with ACS as compared with those in patients with stable angina and chest pain syndrome (p<0.01). CONCLUSIONS Downregulation of Th3 cells in patients with ACS may play a potential role in plaque destabilization and the onset of ACS.
Collapse
|
18
|
Ekuni D, Tomofuji T, Sanbe T, Irie K, Azuma T, Maruyama T, Tamaki N, Murakami J, Kokeguchi S, Yamamoto T. Periodontitis-induced lipid peroxidation in rat descending aorta is involved in the initiation of atherosclerosis. J Periodontal Res 2009; 44:434-42. [DOI: 10.1111/j.1600-0765.2008.01122.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Frutkin AD, Otsuka G, Stempien-Otero A, Sesti C, Du L, Jaffe M, Dichek HL, Pennington CJ, Edwards DR, Nieves-Cintrón M, Minter D, Preusch M, Hu JH, Marie JC, Dichek DA. TGF-[beta]1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 2009; 29:1251-7. [PMID: 19325140 DOI: 10.1161/atvbaha.109.186593] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Impairment of transforming growth factor (TGF)-beta1 signaling accelerates atherosclerosis in experimental mice. However, it is uncertain whether increased TGF-beta1 expression would retard atherosclerosis. The role of TGF-beta1 in aneurysm formation is also controversial. We tested whether overexpression of active TGF-beta1 in hyperlipidemic mice affects atherogenesis and aortic dilation. METHODS AND RESULTS We generated apolipoprotein E-null mice with transgenes that allow regulated overexpression of active TGF-beta1 in their hearts. Compared to littermate controls, these mice had elevated cardiac and plasma TGF-beta1, less aortic root atherosclerosis (P< or =0.002), fewer lesions in the thoracic and abdominal aortae (P< or =0.01), less aortic root dilation (P<0.001), and fewer pseudoaneurysms (P=0.02). Mechanistic studies revealed no effect of TGF-beta1 overexpression on plasma lipids or cytokines, or on peripheral lymphoid organ cells. However, aortae of TGF-beta1-overexpressing mice had fewer T-lymphocytes, more collagen, less lipid, lower expression of inflammatory cytokines and matrix metalloproteinase-13, and higher expression of tissue inhibitor of metalloproteinase-2. CONCLUSIONS When overexpressed in the heart and plasma, TGF-beta1 is an antiatherogenic, vasculoprotective cytokine that limits atherosclerosis and prevents aortic dilation. These actions are associated with significant changes in cellularity, collagen and lipid accumulation, and gene expression in the artery wall.
Collapse
Affiliation(s)
- Andrew D Frutkin
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195-7710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen CL, Huang SS, Huang JS. Cholesterol modulates cellular TGF-beta responsiveness by altering TGF-beta binding to TGF-beta receptors. J Cell Physiol 2008; 215:223-33. [PMID: 17972267 DOI: 10.1002/jcp.21303] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transforming growth factor-beta (TGF-beta) responsiveness in cultured cells can be modulated by TGF-beta partitioning between lipid raft/caveolae- and clathrin-mediated endocytosis pathways. The TbetaR-II/TbetaR-I binding ratio of TGF-beta on the cell surface has recently been found to be a signal that controls TGF-beta partitioning between these pathways. Since cholesterol is a structural component in lipid rafts/caveolae, we have studied the effects of cholesterol on TGF-beta binding to TGF-beta receptors and TGF-beta responsiveness in cultured cells and in animals. Here we demonstrate that treatment with cholesterol, alone or complexed in lipoproteins, decreases the TbetaR-II/TbetaR-I binding ratio of TGF-beta while treatment with cholesterol-lowering or cholesterol-depleting agents increases the TbetaR-II/TbetaR-I binding ratio of TGF-beta in all cell types studied. Among cholesterol derivatives and analogs examined, cholesterol is the most potent agent for decreasing the TbetaR-II/TbetaR-I binding ratio of TGF-beta. Cholesterol treatment increases accumulation of the TGF-beta receptors in lipid rafts/caveolae as determined by sucrose density gradient ultracentrifugation analysis of cell lysates. Cholesterol/LDL suppresses TGF-beta responsiveness and statins/beta-CD enhances it, as measured by the levels of P-Smad2 and PAI-1 expression in cells stimulated with TGF-beta. Furthermore, the cholesterol effects observed in cultured cells are also found in the aortic endothelium of atherosclerotic ApoE-null mice fed a high cholesterol diet. These results indicate that high plasma cholesterol levels may contribute to the pathogenesis of certain diseases (e.g., atherosclerosis) by suppressing TGF-beta responsiveness.
Collapse
Affiliation(s)
- Chun-Lin Chen
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
21
|
Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta Mol Basis Dis 2008; 1782:197-228. [PMID: 18313409 DOI: 10.1016/j.bbadis.2008.01.006] [Citation(s) in RCA: 504] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 12/14/2022]
Abstract
Transforming growth factor beta (TGF-beta) superfamily signaling pathways are ubiquitous and essential regulators of cellular processes including proliferation, differentiation, migration, and survival, as well as physiological processes, including embryonic development, angiogenesis, and wound healing. Alterations in these pathways, including either germ-line or somatic mutations or alterations in the expression of members of these signaling pathways often result in human disease. Appropriate regulation of these pathways is required at all levels, particularly at the ligand level, with either a deficiency or an excess of specific TGF-beta superfamily ligands resulting in human disease. TGF-beta superfamily ligands and members of these TGF-beta superfamily signaling pathways also have emerging roles as diagnostic, prognostic or predictive markers for human disease. Ongoing studies will enable targeting of TGF-beta superfamily signaling pathways for the chemoprevention and treatment of human disease.
Collapse
Affiliation(s)
- Kelly J Gordon
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
22
|
Suenaga F, Hatsushika K, Takano S, Ando T, Ohnuma Y, Ogawa H, Nakao A. A possible link between resveratrol and TGF-β: Resveratrol induction of TGF-β expression and signaling. FEBS Lett 2008; 582:586-90. [DOI: 10.1016/j.febslet.2008.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/08/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
23
|
Hu C, Dandapat A, Sun L, Khan JA, Liu Y, Hermonat PL, Mehta JL. Regulation of TGFbeta1-mediated collagen formation by LOX-1: studies based on forced overexpression of TGFbeta1 in wild-type and lox-1 knock-out mouse cardiac fibroblasts. J Biol Chem 2008; 283:10226-31. [PMID: 18182394 DOI: 10.1074/jbc.m708820200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor beta(1) (TGFbeta(1)) activation leads to tissue fibrosis. Here, we report on the role of LOX-1, a lectin-like 52-kDa receptor for oxidized low density lipoprotein, in TGFbeta(1)-mediated collagen expression and underlying signaling in mouse cardiac fibroblasts. TGFbeta(1) was overexpressed in wild-type (WT) and LOX-1 knock-out mouse cardiac fibroblasts by transfection with adeno-associated virus type 2 vector carrying the active TGFbeta(1) moiety (AAV/TGFbeta (ACT)(1)). Transfection of WT mouse cardiac fibroblasts with AAV/TGFbeta (ACT)(1) markedly enhanced the expression of NADPH oxidases (p22(phox), p47(phox), and gp91(phox) subunits) and LOX-1, formation of reactive oxygen species, and collagen synthesis, concomitant with an increase in the activation of p38 and p44/42 mitogen-activated protein kinases (MAPK). The TGFbeta(1)-mediated increase in collagen synthesis was markedly attenuated in the LOX-1 knock-out mouse cardiac fibroblasts as well as in WT mouse cardiac fibroblasts treated with a specific anti-LOX-1 antibody. Treatment with anti-LOX-1 antibody also reduced NADPH oxidase expression and MAPK activation. The NADPH oxidase inhibitors and gp91phox small interfering RNA reduced LOX-1 expression, MAPK activation, and collagen formation. The p38 MAPK inhibitors as well as the p44/42 MAPK inhibitors reduced collagen formation without affecting LOX-1 expression in cardiac fibroblasts. These observations suggest that collagen synthesis in cardiac fibroblasts involves a facilitative interaction between TGFbeta(1)-NADPH oxidase and LOX-1. Further, the activation of MAPK pathway appears to be downstream of TGFbeta(1)-reactive oxygen species-LOX-1 cascade.
Collapse
Affiliation(s)
- Changping Hu
- Cardiovascular Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205-7199, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Hu C, Dandapat A, Chen J, Liu Y, Hermonat PL, Carey RM, Mehta JL. Over-expression of angiotensin II type 2 receptor (agtr2) reduces atherogenesis and modulates LOX-1, endothelial nitric oxide synthase and heme-oxygenase-1 expression. Atherosclerosis 2007; 199:288-94. [PMID: 18096165 DOI: 10.1016/j.atherosclerosis.2007.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 09/09/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022]
Abstract
Atherogenesis is associated with inflammation and oxidative stress. Activation of renin-angiotensin system with generation of angiotensin II and type 1 receptor (AT1R) stimulation has been amply reported in atherosclerosis. Since angiotensin II type 2 receptor (AT2R) activity is purported to oppose the effects of AT1R, we hypothesized that AT2R (agtr2) over-expression would inhibit atherogenesis. We prepared recombinant adeno-associated virus type-2 (AAV) carrying AT2R cDNA (AAV/AT2R), and homozygous LDLR-deficient (KO) mice were given AAV/AT2R, AAV/Neo or saline. All mice were placed on a high cholesterol diet. After 18 weeks, AT2R was found to be over-expressed systemically in AAV/AT2R-treated mice. Atherogenesis in aorta was reduced in the AAV/AT2R group by approximately 50% compared to other LDLR KO mice groups. Expression of NADPH oxidase, nitrotyrosine and NF-kappaB was increased in aortic tissues of the LDLR KO mice given saline or AAV/Neo, but not in mice with AT2R upregulation. Expression of endothelial nitric oxide synthase (eNOS) and heme-oxygenase-1 (HO-1) was decreased and that of the lectin-like oxidized-LDL receptor (LOX-1) increased in the LDLR KO mice, but not in the mice with AT2R over-expression. Further, Akt-1 phosphorylation was reduced in the LDLR KO mice, but not in the mice with AT2R over-expression. Thus, AT2R upregulation can reduce atherogenesis, possibly by modulating oxidative stress and the pro-inflammatory cascade, mediated via Akt-1. Over-expression of AT2R may be an important therapeutic approach in atherosclerosis.
Collapse
Affiliation(s)
- Changping Hu
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences and VA Medical Center, Little Rock, AR 72205, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Dandapat A, Hu CP, Chen J, Liu Y, Khan JA, Remeo F, Carey RM, Hermonat PL, Mehta JL. Over-expression of angiotensin II type 2 receptor (agtr2) decreases collagen accumulation in atherosclerotic plaque. Biochem Biophys Res Commun 2007; 366:871-7. [PMID: 18037370 DOI: 10.1016/j.bbrc.2007.11.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 11/11/2007] [Indexed: 12/12/2022]
Abstract
Angiotensin (Ang) II, via type 1 receptor activation, exerts a significant role in atherogenesis and collagen synthesis. To test the hypothesis that Ang II type 2 receptor (AT2R) upregulation delivered with adeno-associated virus type 2 (AAV/AT2R) would inhibit collagen synthesis in atherosclerotic arteries, LDLR knockout mice were injected with AAV/AT2R and fed 4% cholesterol diet for 18 weeks. LDLR knockout mice treated with saline or AAV/Neo exhibited extensive vessel wall collagen accumulation, which was reduced by about 50% with AT2R over-expression. AT2R upregulation completely blocked the alterations in the expression of procollagen-I, osteopontin, fibronectin, CD68, and matrix metalloproteinases (MMP-2 and MMP-9), as well as phosphorylation of p38 and p44/42 MAPKs. Activity of superoxide dismutase was reduced in the LDLR KO mice and it increased with AT2R upregulation. This study demonstrates that AT2R over-expression reduces enhanced collagen accumulation, MMP expression and activity in atherosclerotic regions via inhibition of pro-oxidant signals.
Collapse
Affiliation(s)
- Abhijit Dandapat
- Division of Cardiovascular Medicine, Gene Therapy Program, University of Arkansas for Medical Sciences, 4301 West Markham Street Slot 532, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dandapat A, Hu CP, Li D, Liu Y, Chen H, Hermonat PL, Mehta JL. Overexpression of TGFbeta1 by adeno-associated virus type-2 vector protects myocardium from ischemia-reperfusion injury. Gene Ther 2007; 15:415-23. [PMID: 18004403 DOI: 10.1038/sj.gt.3303071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transforming growth factor beta(1) (TGFbeta(1)) has been purported to protect tissues from ischemia-reperfusion (I-R) injury. This study was designed to examine if overexpression of TGFbeta(1) using adeno-associated virus type 2 (AAV) protects cardiomyocytes from reoxygenation injury. TGFbeta(1) was overexpressed in cultured HL-1 mouse cardiomyocytes by transfection with AAV/TGFbeta(1)(Latent) or with AAV/TGFbeta(1)(ACT) (active TGFbeta(1)). TGFbeta(1) upregulation reduced cardiomyocyte apoptosis and necrosis induced by 24 h of hypoxia followed by 3 h of reoxygenation concomitant with reduction in reactive oxygen species release, activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NF-kappaB expression. Transfection with AAV/TGFbeta(1)(ACT) was superior to that with AAV/TGFbeta(1)(Latent). To determine if AAV/TGFbeta(1)(ACT) upregulation in vivo would induce cardioprotection from I-R injury, rat hearts were injected with AAV/TGFbeta(1)(ACT) or phosphate-buffered saline (PBS). Six weeks later, TGFbeta(1)(ACT) was upregulated throughout the myocardium. Following I-R, AAV/TGFbeta(1)(ACT)-overexpressing rats had much smaller infarct size (P<0.01 vs PBS group), which was also related to reduced activation of NADPH oxidase and NF-kappaB, and lower levels of malondialdehyde in I-R tissues. These data demonstrate that overexpression of TGFbeta(1) by AAV can protect cardiac tissues from reperfusion injury, possibly via antioxidant mechanism. These findings suggest potential of TGFbeta(1)(ACT) gene therapy for cardioprotection from I-R injury.
Collapse
Affiliation(s)
- A Dandapat
- Division of Cardiovascular Medicine, Department of Cardiology, Gene Therapy Program, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Chen CL, Liu IH, Fliesler SJ, Han X, Huang SS, Huang JS. Cholesterol suppresses cellular TGF-beta responsiveness: implications in atherogenesis. J Cell Sci 2007; 120:3509-21. [PMID: 17878231 PMCID: PMC2045688 DOI: 10.1242/jcs.006916] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hypercholesterolemia is a major causative factor for atherosclerotic cardiovascular disease. The molecular mechanisms by which cholesterol initiates and facilitates the process of atherosclerosis are not well understood. Here, we demonstrate that cholesterol treatment suppresses or attenuates TGF-beta responsiveness in all cell types studied as determined by measuring TGF-beta-induced Smad2 phosphorylation and nuclear translocation, TGF-beta-induced PAI-1 expression, TGF-beta-induced luciferase reporter gene expression and TGF-beta-induced growth inhibition. Cholesterol, alone or complexed in lipoproteins (LDL, VLDL), suppresses TGF-beta responsiveness by increasing lipid raft and/or caveolae accumulation of TGF-beta receptors and facilitating rapid degradation of TGF-beta and thus suppressing TGF-beta-induced signaling. Conversely, cholesterol-lowering agents (fluvastatin and lovastatin) and cholesterol-depleting agents (beta-cyclodextrin and nystatin) enhance TGF-beta responsiveness by increasing non-lipid raft microdomain accumulation of TGF-beta receptors and facilitating TGF-beta-induced signaling. Furthermore, the effects of cholesterol on the cultured cells are also found in the aortic endothelium of ApoE-null mice fed a high-cholesterol diet. These results suggest that high cholesterol contributes to atherogenesis, at least in part, by suppressing TGF-beta responsiveness in vascular cells.
Collapse
Affiliation(s)
- Chun-Lin Chen
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St Louis, MO 63104, USA
| | - I-Hua Liu
- Auxagen Inc., 7 Pricewoods, St Louis, MO 63132, USA
| | - Steven J. Fliesler
- Departments of Ophthalmology and Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St Louis, MO 63104, USA
| | - Xianlin Han
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
28
|
Hu CP, Dandapat A, Liu Y, Hermonat PL, Mehta JL. Blockade of hypoxia-reoxygenation-mediated collagen type I expression and MMP activity by overexpression of TGF-β1delivered by AAV in mouse cardiomyocytes. Am J Physiol Heart Circ Physiol 2007; 293:H1833-8. [PMID: 17586616 DOI: 10.1152/ajpheart.00488.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor (TGF)-β1is one of the most pleiotropic and multifunctional peptides known. While the cardioprotective effect of TGF-β1during ischemia is well known, the specific role of TGF-β1in altering the cardiac remodeling process remains unclear. This study was designed to examine the regulation of hypoxia-reoxygenation-mediated collagen type I expression and activity of matrix metalloproteinases (MMPs) by overexpression of TGF-β1in cultured HL-1 mouse cardiomyocytes. TGF-β1was overexpressed in cardiomyocytes by transfection with adeno-associated virus (AAV)/TGF-β1Latentor with AAV/TGF-β1ACT(active TGF-β1). Twenty-four hours of hypoxia followed by 3 h of reoxygenation (H-R) markedly enhanced (pro)collagen type I expression and activity of MMPs concomitant with an increase in reactive oxygen species (ROS) release and LOX-1 expression. Overexpression of TGF-β1reduced these alterations induced by H-R. TGF-β1overexpression also blocked H-R-mediated p38 and p44/42 MAPK activation. Transfection with AAV/TGF-β1ACTwas superior to that with AAV/TGF-β1Latent. These data for the first time demonstrate that H-R induces signals for cardiac remodeling in cardiomyocytes and TGF-β1can modulate, possibly via antioxidant mechanism, these signals. These findings contribute to further understanding of the role of TGF-β1in the cardiac remodeling process.
Collapse
Affiliation(s)
- Chang-Ping Hu
- Division of Cardiovascular Medicine, Gene Therapy Program, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
29
|
Sipo I, Fechner H, Pinkert S, Suckau L, Wang X, Weger S, Poller W. Differential internalization and nuclear uncoating of self-complementary adeno-associated virus pseudotype vectors as determinants of cardiac cell transduction. Gene Ther 2007; 14:1319-29. [PMID: 17611587 DOI: 10.1038/sj.gt.3302987] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently it was shown that several new pseudotyped adeno-associated virus (AAV) vectors support cardioselective expression of transgenes. The molecular mechanisms underlying this propensity for cardiac cell transduction are not well understood. We comparatively analyzed AAV vector attachment, internalization, intracellular trafficking, and nuclear uncoating of recombinant self-complementary (sc) AAV2.2 versus pseudotyped scAAV2.6 vectors expressing green fluorescence protein (GFP) in cells of cardiac origin. In cardiac-derived HL-1 cells and primary neonatal rat cardiomyocytes (PNCMs), expression of GFP increased rapidly after incubation with scAAV2.6-GFP, but remained low after scAAV2.2-GFP. Internalization of scAAV2.6-GFP was more efficient than that of scAAV2.2-GFP. Nuclear translocation was similarly efficient for both, but differential nuclear uncoating rates emerged as a key additional determinant of transduction: 30% of all scAAV2.6-GFP genomes translocated to the nucleus became uncoated within 48 h, but only 16% of scAAV2.2-GFP genomes. In contrast to this situation in cells of cardiac origin, scAAV2.2-GFP displayed more efficient internalization and similar (tumor cell line HeLa) or higher (human microvascular endothelial cell (HMEC)) uncoating rates than scAAV.2.6-GFP in non-cardiac cell types. In summary, both internalization and nuclear uncoating are key determinants of cardiac transduction by scAAV2.6 vectors. Any in vitro screening for the AAV pseudotype most suitable for cardiac gene therapy - which is desirable since it may allow significant reductions in vector load in upcoming clinical trials--needs to quantitate both key steps in transduction.
Collapse
Affiliation(s)
- I Sipo
- Department of Cardiology & Pneumology, Institute of Infectious Diseases, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Mehta JL, Sanada N, Hu CP, Chen J, Dandapat A, Sugawara F, Satoh H, Inoue K, Kawase Y, Jishage KI, Suzuki H, Takeya M, Schnackenberg L, Beger R, Hermonat PL, Thomas M, Sawamura T. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res 2007; 100:1634-42. [PMID: 17478727 DOI: 10.1161/circresaha.107.149724] [Citation(s) in RCA: 357] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Atherosclerosis is associated with oxidative stress and inflammation, and upregulation of LOX-1, an endothelial receptor for oxidized LDL (oxLDL). Here, we describe generation of LOX-1 knockout (KO) mice in which binding of oxLDL to aortic endothelium was reduced and endothelium-dependent vasorelaxation preserved after treatment with oxLDL (P<0.01 versus wild-type mice). To address whether endothelial functional preservation might lead to reduction in atherogenesis, we crossed LOX-1 KO mice with LDLR KO mice and fed these mice 4% cholesterol/10% cocoa butter diet for 18 weeks. Atherosclerosis was found to cover 61+/-2% of aorta in the LDLR KO mice, but only 36+/-3% of aorta in the double KO mice. Luminal obstruction and intima thickness were significantly reduced in the double KO mice (versus LDLR KO mice). Expression of redox-sensitive NF-kappaB and the inflammatory marker CD68 in LDLR KO mice was increased (P<0.01 versus wild-type mice), but not in the double KO mice. On the other hand, antiinflammatory cytokine IL-10 expression and superoxide dismutase activity were low in the LDLR KO mice (P<0.01 versus wild-type mice), but not in the double KO mice. Endothelial nitric oxide synthase expression was also preserved in the double KO mice. The proinflammatory signal MAPK P38 was activated in the LDLR KO mice, and LOX-1 deletion reduced this signal. In conclusion, LOX-1 deletion sustains endothelial function leading to a reduction in atherogenesis in association with reduction in proinflammatory and prooxidant signals.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cells, Cultured
- Cholesterol, Dietary
- Crosses, Genetic
- Disease Models, Animal
- Disease Progression
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Inflammation/genetics
- Inflammation/pathology
- Interleukin-10/metabolism
- Lipids/blood
- Lipoproteins, LDL/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Oxidative Stress/genetics
- Receptors, LDL/genetics
- Scavenger Receptors, Class E/biosynthesis
- Scavenger Receptors, Class E/genetics
- Superoxide Dismutase/metabolism
- Vasodilation/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Jawahar L Mehta
- Cardiovascular Medicine, Gene Therapy Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Oxidative stress and inflammation are accepted as major factors in the pathogenesis of atherosclerosis, but how they interact to produce a plaque has not been delineated clearly. Recent data suggest that oxidized lipids may act in part by regulating production of chemokines and chemokine receptors, which in turn, may direct monocytes and other blood leukocytes to the vessel wall, where they may interact with endothelial cells and smooth muscle cells. The receptors may act at the level of recruitment, retention, and egress, not only through classic, chemotactic mechanisms but also through direct, intercellular adhesion. The results suggest a coordinated mechanism for inflammatory cell accumulation in plaque and identify novel targets, such as CCR2 and CX3CR1, for potential drug development in coronary artery disease.
Collapse
Affiliation(s)
- Jana Barlic
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
32
|
Abstract
The idea that atherosclerosis is an inflammatory disease is no longer controversial. Instead, much of the current research is now focused on understanding what drives this inflammation and how it is regulated. Adaptive immunity, in particular T cells, is highly involved in atherogenesis. It is well known that different subsets of T cells can drive or dampen inflammatory processes, but we still have much to learn about the regulation of this balance in the context of atherosclerosis. This review summarizes our knowledge of T cells in atherogenesis, their potential antigens, their contact-dependent activities, and their secretion of inflammatory and antiinflammatory mediators, aiming to illustrate how T cells can aggravate or attenuate this disease through cross-talk with other cells within or outside the atherosclerotic plaque.
Collapse
Affiliation(s)
- Anna-Karin L Robertson
- Section of Immunobiology and Howard Hughes Medical Institute, Yale School of Medicine, Immunobiology TAC S-560, PO Box 208011, New Haven, CT 06520, USA.
| | | |
Collapse
|