1
|
Hikal AF, Hasan S, Gudeta D, Zhao S, Foley S, Khan AA. The acquired pco gene cluster in Salmonella enterica mediates resistance to copper. Front Microbiol 2024; 15:1454763. [PMID: 39290517 PMCID: PMC11406079 DOI: 10.3389/fmicb.2024.1454763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
The pervasive environmental metal contamination has led to selection of heavy-metal resistance genes in bacteria. The pco and sil clusters are located on a mobile genetic element and linked to heavy-metal resistance. These clusters have been found in Salmonella enterica serovars isolated from human clinical cases and foods of animal origin. This may be due to the use of heavy metals, such as copper, in animal feed for their antimicrobial and growth promotion properties. The sil cluster can be found alone or in combination with pco cluster, either in the chromosome or on a plasmid. Previous reports have indicated that sil, but not pco, cluster contributes to copper resistance in S. enterica Typhimurium. However, the role of the pco cluster on the physiology of non-typhoidal S. enterica remains poorly understood. To understand the function of the pco gene cluster, a deletion mutant of pcoABCD genes was constructed using allelic exchange mutagenesis. Deletion of pcoABCD genes inhibited growth of S. enterica in high-copper medium, but only under anaerobic environment. Complementation of the mutant reversed the growth phenotype. The survival of S. enterica in RAW264.7 macrophages was not affected by the loss of pcoABCD genes. This study indicates that the acquired pco cluster is crucial for copper detoxification in S. enterica, but it is not essential for intracellular replication within macrophages.
Collapse
Affiliation(s)
- Ahmed F Hikal
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Sameer Hasan
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Dereje Gudeta
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Shaohua Zhao
- Office of Applied Science, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Steven Foley
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Ashraf A Khan
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
2
|
López-R M, Maya-Hoyos M, León-Torres A, Cruz-Cacais A, Castillo E, Soto CY. The copper P-type ATPase CtpA is involved in the response of Mycobacterium tuberculosis to redox stress. Biochimie 2023; 221:S0300-9084(23)00288-2. [PMID: 39491178 DOI: 10.1016/j.biochi.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
The functional difference among the three copper-transporting P-type ATPases (CtpA, CtpB, and CtpV) annotated in genome of Mycobacterium tuberculosis (Mtb) remains unclear. Thus, CtpA and CtpB are believed to deliver copper to extracytoplasmic proteins as a cofactor required to overcome redox and copper stress in the Mtb periplasm. This study investigates an alternative role of CtpA-mediated copper transportation and its possible interaction with the activity of the multicopper oxidase, (MmcO), in response to redox stress. Results from RT-qPCR experiments indicate that the ctpA gene is upregulated in low Cu2+ concentrations, and under oxidative (H2O2) and nitrosative (sodium nitroprusside) conditions in vitro, but not in high doses of Cu2+. Furthermore, the ctpA mutant strain (MtbΔctpA) showed impaired growth in the presence of oxidative and nitrosative stress in vitro. However, it did not display such growth impairments in response to high doses of copper in comparison to the wild-type strain. Disruption of the ctpA gene in the Mtb genome did not induce an accumulation of copper in cells under toxic doses of the metal, suggesting that CtpA is not directly involved in copper detoxification. On the other hand, whole-cell lysates of the MtbΔctpA mutant that were previously stimulated with Cu2+, H2O2 and SNP (sodium nitroprusside), displayed reduced ability to oxidize organic substrates (para-phenylenediamine (pPD) and 2,2-azino-bis (3-ethylbenzothiazo-line-6-sulfonic acid) (ABTS). These finding strongly suggest that the efflux of copper transported by CtpA from the cytoplasm is relevant to the response to the redox stress and may be required for metalation and activity of MmcO in Mtb.
Collapse
Affiliation(s)
- Marcela López-R
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Milena Maya-Hoyos
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Andrés León-Torres
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Alver Cruz-Cacais
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Eliana Castillo
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Carlos Y Soto
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia.
| |
Collapse
|
3
|
Büttner H, Hörl J, Krabbe J, Hertweck C. Discovery and Biosynthesis of Anthrochelin, a Growth-Promoting Metallophore of the Human Pathogen Luteibacter anthropi. Chembiochem 2023; 24:e202300322. [PMID: 37191164 DOI: 10.1002/cbic.202300322] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
Various human pathogens have emerged from environmental strains by adapting to higher growth temperatures and the ability to produce virulence factors. A remarkable example of a pathoadapted bacterium is found in the genus Luteibacter, which typically comprises harmless soil microbes, yet Luteibacter anthropi was isolated from the blood of a diseased child. Up until now, nothing has been known about the specialized metabolism of this pathogen. By comparative genome analyses we found that L. anthropi has a markedly higher biosynthetic potential than other bacteria of this genus and uniquely bears an NRPS gene locus tentatively coding for the biosynthesis of a metallophore. By metabolic profiling, stable isotope labeling, and NMR investigation of a gallium complex, we identified a new family of salicylate-derived nonribosomal peptides named anthrochelins A-D. Surprisingly, anthrochelins feature a C-terminal homocysteine tag, which might be introduced during peptide termination. Mutational analyses provided insight into the anthrochelin assembly and revealed the unexpected involvement of a cytochrome P450 monooxygenase in oxazole formation. Notably, this heterocycle plays a key role in the binding of metals, especially copper(II). Bioassays showed that anthrochelin significantly promotes the growth of L. anthropi in the presence of low and high copper concentrations, which occur during infections.
Collapse
Affiliation(s)
- Hannah Büttner
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Johannes Hörl
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Jana Krabbe
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
4
|
Rohaun SK, Imlay JA. The vulnerability of radical SAM enzymes to oxidants and soft metals. Redox Biol 2022; 57:102495. [PMID: 36240621 PMCID: PMC9576991 DOI: 10.1016/j.redox.2022.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Radical S-adenosylmethionine enzymes (RSEs) drive diverse biological processes by catalyzing chemically difficult reactions. Each of these enzymes uses a solvent-exposed [4Fe-4S] cluster to coordinate and cleave its SAM co-reactant. This cluster is destroyed during oxic handling, forcing investigators to work with these enzymes under anoxic conditions. Analogous substrate-binding [4Fe-4S] clusters in dehydratases are similarly sensitive to oxygen in vitro; they are also extremely vulnerable to reactive oxygen species (ROS) in vitro and in vivo. These observations suggested that ROS might similarly poison RSEs. This conjecture received apparent support by the observation that when E. coli experiences hydrogen peroxide stress, it induces a cluster-free isozyme of the RSE HemN. In the present study, surprisingly, the purified RSEs viperin and HemN proved quite resistant to peroxide and superoxide in vitro. Furthermore, pathways that require RSEs remained active inside E. coli cells that were acutely stressed by hydrogen peroxide and superoxide. Viperin, but not HemN, was gradually poisoned by molecular oxygen in vitro, forming an apparent [3Fe-4S]+ form that was readily reactivated. The modest rate of damage, and the known ability of cells to repair [3Fe-4S]+ clusters, suggest why these RSEs remain functional inside fully aerated organisms. In contrast, copper(I) damaged HemN and viperin in vitro as readily as it did fumarase, a known target of copper toxicity inside E. coli. Excess intracellular copper also impaired RSE-dependent biosynthetic processes. These data indicate that RSEs may be targets of copper stress but not of reactive oxygen species.
Collapse
Affiliation(s)
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Kaur I, Purves J, Harwood M, Ketley JM, Andrew PW, Waldron KJ, Morrissey JA. Role of horizontally transferred copper resistance genes in Staphylococcus aureus and Listeria monocytogenes. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001162. [PMID: 35404222 PMCID: PMC10233261 DOI: 10.1099/mic.0.001162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 12/01/2023]
Abstract
Bacteria have evolved mechanisms which enable them to control intracellular concentrations of metals. In the case of transition metals, such as copper, iron and zinc, bacteria must ensure enough is available as a cofactor for enzymes whilst at the same time preventing the accumulation of excess concentrations, which can be toxic. Interestingly, metal homeostasis and resistance systems have been found to play important roles in virulence. This review will discuss the copper homeostasis and resistance systems in Staphylococcus aureus and Listeria monocytogenes and the implications that acquisition of additional copper resistance genes may have in these pathogens.
Collapse
Affiliation(s)
- Inderpreet Kaur
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Joanne Purves
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Matthew Harwood
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Julian M. Ketley
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Peter W. Andrew
- Department of Respiratory Sciences, University of Leicester, University, Leicester, LE1 7RH, UK
| | - Kevin J. Waldron
- Biosciences Institute, Newcastle University, Catherine Cookson Building Framlington Place Newcastle upon Tyne NE2 4HH, UK
| | - Julie A. Morrissey
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
6
|
von Rosen T, Keller LM, Weber-Ban E. Survival in Hostile Conditions: Pupylation and the Proteasome in Actinobacterial Stress Response Pathways. Front Mol Biosci 2021; 8:685757. [PMID: 34179091 PMCID: PMC8223512 DOI: 10.3389/fmolb.2021.685757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria employ a multitude of strategies to cope with the challenges they face in their natural surroundings, be it as pathogens, commensals or free-living species in rapidly changing environments like soil. Mycobacteria and other Actinobacteria acquired proteasomal genes and evolved a post-translational, ubiquitin-like modification pathway called pupylation to support their survival under rapidly changing conditions and under stress. The proteasomal 20S core particle (20S CP) interacts with ring-shaped activators like the hexameric ATPase Mpa that recruits pupylated substrates. The proteasomal subunits, Mpa and pupylation enzymes are encoded in the so-called Pup-proteasome system (PPS) gene locus. Genes in this locus become vital for bacteria to survive during periods of stress. In the successful human pathogen Mycobacterium tuberculosis, the 20S CP is essential for survival in host macrophages. Other members of the PPS and proteasomal interactors are crucial for cellular homeostasis, for example during the DNA damage response, iron and copper regulation, and heat shock. The multiple pathways that the proteasome is involved in during different stress responses suggest that the PPS plays a vital role in bacterial protein quality control and adaptation to diverse challenging environments.
Collapse
Affiliation(s)
- Tatjana von Rosen
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Lena Ml Keller
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Danelishvili L, Armstrong E, Miyasako E, Jeffrey B, Bermudez LE. Exposure of Mycobacterium avium subsp. homonissuis to Metal Concentrations of the Phagosome Environment Enhances the Selection of Persistent Subpopulation to Antibiotic Treatment. Antibiotics (Basel) 2020; 9:antibiotics9120927. [PMID: 33352715 PMCID: PMC7767021 DOI: 10.3390/antibiotics9120927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/20/2023] Open
Abstract
Mycobacterium avium subspecies hominissuis (MAH) is an opportunistic intracellular pathogen causing infections in individuals with chronic lung conditions and patients with immune-deficient disorders. The treatment of MAH infections is prolonged and outcomes many times are suboptimal. The reason for the extended treatment is complex and reflects the inability of current antimicrobials to clear diverse phenotypes of MAH quickly, particularly, the subpopulation of susceptible but drug-tolerant bacilli where the persistent fitness to anti-MAH drugs is stimulated and enhanced by the host environmental stresses. In order to enhance the pathogen killing, we need to understand the fundamentals of persistence mechanism and conditions that can initiate the drug-tolerance phenotype in mycobacteria. MAH can influence the intracellular environment through manipulation of the metal concentrations in the phagosome of infected macrophages. While metals play important role and are crucial for many cellular functions, little is known how vacuole elements influence persistence state of MAH during intracellular growth. In this study, we utilized the in vitro model mimicking the metal concentrations and pH of MAH phagosome at 1 h and 24 h post-infection to distinguish if metals encountered in phagosome could act as a trigger factor for persistence phenotype. Antibiotic treatment of metal mix exposed MAH demonstrates that metals of the phagosome environment can enhance the persistence state, and greater number of tolerant bacteria is recovered from the 24 h metal mix when compared to the viable pathogen number in the 1 h metal mix and 7H9 growth control. In addition, bacterial phenotype induced by the 24 h metal mix increases MAH tolerance to macrophage killing in TNF-α and IFN-γ activated cells, confirming presence of persistent MAH in the 24 h metal mix condition. This work shows that the phagosome environment can promote persistence population in MAH, and that the population differs dependent on a concentration of metals.
Collapse
Affiliation(s)
- Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (E.A.); (E.M.)
- Correspondence: (L.D.); (L.E.B.); Tel.: +1-(541)-737-6544 (L.D.); +1-(541)-737-6532 (L.E.B.); Fax: +1-(541)-737-2730 (L.D.); +1-(541)-737-2730 (L.E.B.)
| | - Elyssa Armstrong
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (E.A.); (E.M.)
| | - Emily Miyasako
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (E.A.); (E.M.)
| | - Brendan Jeffrey
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (E.A.); (E.M.)
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
- Correspondence: (L.D.); (L.E.B.); Tel.: +1-(541)-737-6544 (L.D.); +1-(541)-737-6532 (L.E.B.); Fax: +1-(541)-737-2730 (L.D.); +1-(541)-737-2730 (L.E.B.)
| |
Collapse
|
8
|
Tuning the Anti(myco)bacterial Activity of 3-Hydroxy-4-pyridinone Chelators through Fluorophores. Pharmaceuticals (Basel) 2018; 11:ph11040110. [PMID: 30347802 PMCID: PMC6316862 DOI: 10.3390/ph11040110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/08/2023] Open
Abstract
Controlling the sources of Fe available to pathogens is one of the possible strategies that can be successfully used by novel antibacterial drugs. We focused our interest on the design of chelators to address Mycobacterium avium infections. Taking into account the molecular structure of mycobacterial siderophores and considering that new chelators must be able to compete for Fe(III), we selected ligands of the 3-hydroxy-4-pyridinone class to achieve our purpose. After choosing the type of chelating unit it was also our objective to design chelators that could be monitored inside the cell and for that reason we designed chelators that could be functionalized with fluorophores. We didn’t realize at the time that the incorporation a fluorophore, to allow spectroscopic detection, would be so relevant for the antimycobacterial effect or to determine the affinity of the chelators towards biological membranes. From a biophysical perspective, this is a fascinating illustration of the fact that functionalization of a molecule with a particular label may lead to a change in its membrane permeation properties and result in a dramatic change in biological activity. For that reason we believe it is interesting to give a critical account of our entire work in this area and justify the statement “to label means to change”. New perspectives regarding combined therapeutic approaches and the use of rhodamine B conjugates to target closely related problems such as bacterial resistance and biofilm production are also discussed.
Collapse
|
9
|
|
10
|
Abstract
Fungal cells colonize and proliferate in distinct niches, from soil and plants to diverse tissues in human hosts. Consequently, fungi are challenged with the goal of obtaining nutrients while simultaneously elaborating robust regulatory mechanisms to cope with a range of availability of nutrients, from scarcity to excess. Copper is essential for life but also potentially toxic. In this review we describe the sophisticated homeostatic mechanisms by which fungi acquire, utilize, and control this biochemically versatile trace element. Fungal pathogens, which can occupy distinct host tissues that have their own intrinsic requirements for copper homeostasis, have evolved mechanisms to acquire copper to successfully colonize the host, disseminate to other tissues, and combat host copper bombardment mechanisms that would otherwise mitigate virulence.
Collapse
Affiliation(s)
| | | | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology.,Department of Molecular Genetics and Microbiology, and.,Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
11
|
Jarosz Ł, Marek A, Grądzki Z, Kwiecień M, Kalinowski M. The effect of feed supplementation with zinc chelate and zinc sulphate on selected humoral and cell-mediated immune parameters and cytokine concentration in broiler chickens. Res Vet Sci 2016; 112:59-65. [PMID: 28126602 DOI: 10.1016/j.rvsc.2016.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
The ability of poultry to withstand infectious disease caused by bacteria, viruses or protozoa depends upon the integrity of the immune system. Zinc is important for proper functioning of heterophils, mononuclear phagocytes and T lymphocytes. Numerous data indicate that the demand for zinc in poultry is not met in Poland due to its low content in feeds of vegetable origin. The aim of the study was to determine the effect of supplementation of inorganic (ZnSO4 and ZnSO4+ phytase enzyme), and organic forms of zinc (Zn with glycine and Zn with glycine and phytase enzyme) on selected parameters of the cellular and humoral immune response in broiler chickens by evaluating the percentage of CD3+CD4+, CD3+CD8+, CD25+, MHC Class II, and BU-1+ lymphocytes, the phagocytic activity of monocytes and heterophils, and the concentration of IL-2, IL-10 and TNF-α in the peripheral blood. Flow cytometry was used to determine selected cell-mediated immune response parameters. Phagocytic activity in whole blood was performed using the commercial Phagotest kit (ORPEGEN-Pharma, Immuniq, Poland). The results showed that supplementation with zinc chelates causes activation of the cellular and humoral immune response in poultry, helping to maintain the balance between the Th1 and Th2 response and enhancing resistance to infections. In contrast with chelates, the use of zinc in the form of sulphates has no immunomodulatory effect and may contribute to the development of local inflammatory processes in the digestive tract, increasing susceptibility to infection.
Collapse
Affiliation(s)
- Łukasz Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland.
| | - Agnieszka Marek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland; Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Małgorzata Kwiecień
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland; Faculty of Biology and Animal Breeding, Institute of Animal Nutrition and Bromatology, Department of Animal Nutrition, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Marcin Kalinowski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| |
Collapse
|
12
|
Elliott SR, Tischler AD. Phosphate starvation: a novel signal that triggers ESX-5 secretion in Mycobacterium tuberculosis. Mol Microbiol 2016; 100:510-26. [PMID: 26800324 DOI: 10.1111/mmi.13332] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis uses the Type VII ESX secretion systems to transport proteins across its complex cell wall. ESX-5 has been implicated in M. tuberculosis virulence, but the regulatory mechanisms controlling ESX-5 secretion were unknown. Here we uncover a link between ESX-5 and the Pst/SenX3-RegX3 system that controls gene expression in response to phosphate availability. The DNA-binding response regulator RegX3 is normally activated by phosphate limitation. Deletion of pstA1, which encodes a Pst phosphate uptake system component, causes constitutive activation of RegX3. A ΔpstA1 mutant exhibited RegX3-dependent overexpression of esx-5 genes and hyper-secretion of the ESX-5 substrates EsxN and PPE41 when the bacteria were grown in phosphate-rich medium. In wild-type M. tuberculosis, phosphate limitation activated esx-5 transcription and secretion of both EsxN and PPE41, and this response required RegX3. Electrophoretic mobility shift assays revealed that RegX3 binds directly to a promoter within the esx-5 locus. Remarkably, phosphate limitation also induced secretion of EsxB, an effector of the virulence-associated ESX-1 secretion system, though this induction was RegX3 independent. Our work demonstrates that the Pst/SenX3-RegX3 system directly regulates ESX-5 secretion at the transcriptional level in response to phosphate availability and defines phosphate limitation as an environmental signal that activates ESX-5 secretion.
Collapse
Affiliation(s)
- Sarah R Elliott
- Department of Microbiology and Immunology, Minneapolis, MN, 55455, USA
| | - Anna D Tischler
- Department of Microbiology and Immunology, Minneapolis, MN, 55455, USA.,Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
13
|
KefB inhibits phagosomal acidification but its role is unrelated to M. tuberculosis survival in host. Sci Rep 2013; 3:3527. [PMID: 24346161 PMCID: PMC3866608 DOI: 10.1038/srep03527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/28/2013] [Indexed: 01/09/2023] Open
Abstract
kefB is annotated as a potassium/proton antiporter in M. tuberculosis. There have been divergent reports on the involvement of KefB in phagosomal maturation in M. bovis BCG and no investigation has been carried out on its role in M. tuberculosis, the pathogenic species responsible for causing tuberculosis. This study was taken up to ascertain the involvement of KefB in the growth of M. tuberculosis and its role in phagosomal maturation and survival of the pathogen in guinea pigs. Our findings show that kefB mutant of M. tuberculosis (MtbΔkefB) was impaired i) for growth in high concentrations of potassium and ii) in arresting phagosomal acidification. However, the disruption of kefB had no adverse effect on the survival of M. tuberculosis in macrophages as well as in guinea pigs suggesting that the role of KefB in phagosomal acidification is unrelated to the survival of the pathogen in the host.
Collapse
|
14
|
Raimunda D, Long JE, Padilla-Benavides T, Sassetti CM, Argüello JM. Differential roles for the Co(2+) /Ni(2+) transporting ATPases, CtpD and CtpJ, in Mycobacterium tuberculosis virulence. Mol Microbiol 2013; 91:185-97. [PMID: 24255990 DOI: 10.1111/mmi.12454] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 11/29/2022]
Abstract
The genome of Mycobacterium tuberculosis encodes two paralogous P1 B 4 -ATPases, CtpD (Rv1469) and CtpJ (Rv3743). Both proteins showed ATPase activation by Co(2+) and Ni(2+) , and both appear to be required for metal efflux from the cell. However, using a combination of biochemical and genetic studies we found that these proteins play non-redundant roles in virulence and metal efflux. CtpJ expression is induced by Co(2+) and this protein possesses a relatively high turnover rate. A ctpJ deletion mutant accumulated Co(2+) , indicating that this ATPase controls cytoplasmic metal levels. In contrast, CtpD expression is induced by redox stressors and this protein displays a relatively low turnover rate. A ctpD mutant failed to accumulate metal, suggesting an alternative cellular function. ctpD is cotranscribed with two thioredoxin genes trxA (Rv1470), trxB (Rv1471), and an enoyl-coA hydratase (Rv1472), indicating a possible role for CtpD in the metallation of these redox-active proteins. Supporting this, in vitro metal binding assays showed that TrxA binds Co(2+) and Ni(2+) . Mutation of ctpD, but not ctpJ, reduced bacterial fitness in the mouse lung, suggesting that redox maintenance, but not Co(2+) accumulation, is important for growth in vivo.
Collapse
Affiliation(s)
- Daniel Raimunda
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | | | | | | | | |
Collapse
|
15
|
Djoko KY, McEwan AG. Antimicrobial action of copper is amplified via inhibition of heme biosynthesis. ACS Chem Biol 2013; 8:2217-23. [PMID: 23895035 DOI: 10.1021/cb4002443] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Copper (Cu) is a potent antimicrobial agent. Its use as a disinfectant goes back to antiquity, but this metal ion has recently emerged to have a physiological role in the host innate immune response. Recent studies have identified iron-sulfur containing proteins as key targets for inhibition by Cu. However, the way in these effects at the molecular level translate into a global effect on cell physiology is not fully understood. Here, we provide a new insight into the way in which Cu poisons bacteria. Using a copA mutant of the obligate human pathogen Neisseria gonorrhoeae that lacks a Cu efflux pump, we showed that Cu overloading led to an increased sensitivity to hydrogen peroxide. However, instead of promoting disproportionation of H2O2 via Fenton chemistry, Cu treatment led to an increased lifetime of H2O2 in cultures as a result of a marked decrease in catalase activity. We showed that this observation correlated with a loss of intracellular heme. We further established that Cu inhibited the pathway for heme biosynthesis. We proposed that this impaired ability to produce heme during Cu stress would lead to the failure to activate hemoproteins that participate in key processes, such as the detoxification of various reactive oxygen and nitrogen species, and aerobic respiration. The impact would be a global disruption of cellular biochemistry and an amplified Cu toxicity.
Collapse
Affiliation(s)
- Karrera Y. Djoko
- School of Chemistry and Molecular
Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular
Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
16
|
Bozzaro S, Buracco S, Peracino B. Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum. Front Cell Infect Microbiol 2013; 3:50. [PMID: 24066281 PMCID: PMC3777012 DOI: 10.3389/fcimb.2013.00050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022] Open
Abstract
Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy.
| | | | | |
Collapse
|
17
|
Affiliation(s)
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
The hydroxamate siderophore rhequichelin is required for virulence of the pathogenic actinomycete Rhodococcus equi. Infect Immun 2012; 80:4106-14. [PMID: 22966042 DOI: 10.1128/iai.00678-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously showed that the facultative intracellular pathogen Rhodococcus equi produces a nondiffusible and catecholate-containing siderophore (rhequibactin) involved in iron acquisition during saprophytic growth. Here, we provide evidence that the rhbABCDE cluster directs the biosynthesis of a hydroxamate siderophore, rhequichelin, that plays a key role in virulence. The rhbC gene encodes a nonribosomal peptide synthetase that is predicted to produce a tetrapeptide consisting of N(5)-formyl-N(5)-hydroxyornithine, serine, N(5)-hydroxyornithine, and N(5)-acyl-N(5)-hydroxyornithine. The other rhb genes encode putative tailoring enzymes mediating modification of ornithine residues incorporated into the hydroxamate product of RhbC. Transcription of rhbC was upregulated during growth in iron-depleted medium, suggesting that it plays a role in iron acquisition. This was confirmed by deletion of rhbCD, rendering the resulting strain R. equi SID2 unable to grow in the presence of the iron chelator 2,2-dipyridyl. Supernatant of the wild-type strain rescued the phenotype of R. equi SID2. The importance of rhequichelin in virulence was highlighted by the rapid increase in transcription levels of rhbC following infection and the inability of R. equi SID2 to grow within macrophages. Unlike the wild-type strain, R. equi SID2 was unable to replicate in vivo and was rapidly cleared from the lungs of infected mice. Rhequichelin is thus a key virulence-associated factor, although nonpathogenic Rhodococcus species also appear to produce rhequichelin or a structurally closely related compound. Rhequichelin biosynthesis may therefore be considered an example of cooption of a core actinobacterial trait in the evolution of R. equi virulence.
Collapse
|
19
|
Radtke AL, Anderson KL, Davis MJ, DiMagno MJ, Swanson JA, O'Riordan MX. Listeria monocytogenes exploits cystic fibrosis transmembrane conductance regulator (CFTR) to escape the phagosome. Proc Natl Acad Sci U S A 2011; 108:1633-8. [PMID: 21220348 PMCID: PMC3029685 DOI: 10.1073/pnas.1013262108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virulence of the intracellular pathogen Listeria monocytogenes (Listeria) requires escape from the phagosome into the host cytosol, where the bacteria replicate. Phagosomal escape is a multistep process characterized by perforation, which is dependent on the pore-forming toxin listeriolysin O (LLO), followed by rupture. The contribution of host factors to Listeria phagosomal escape is incompletely defined. Here we show that the cystic fibrosis transmembrane conductance regulator (CFTR) facilitates Listeria cytosolic entry. CFTR inhibition or mutation suppressed Listeria vacuolar escape in culture, and inhibition of CFTR in wild-type mice before oral inoculation of Listeria markedly decreased systemic infection. We provide evidence that high chloride concentrations may facilitate Listeria vacuolar escape by enhancing LLO oligomerization and lytic activity. We propose that CFTR transiently increases phagosomal chloride concentration after infection, potentiating LLO pore formation and vacuole lysis. Our studies suggest that Listeria exploits mechanisms of cellular ion homeostasis to escape the phagosome and emphasize host ion-channel function as a key parameter of bacterial virulence.
Collapse
Affiliation(s)
| | | | | | - Matthew J. DiMagno
- Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | | | | |
Collapse
|
20
|
Jha SS, Danelishvili L, Wagner D, Maser J, Li YJ, Moric I, Vogt S, Yamazaki Y, Lai B, Bermudez LE. Virulence-related Mycobacterium avium subsp hominissuis MAV_2928 gene is associated with vacuole remodeling in macrophages. BMC Microbiol 2010; 10:100. [PMID: 20359357 PMCID: PMC2882924 DOI: 10.1186/1471-2180-10-100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 04/01/2010] [Indexed: 01/01/2023] Open
Abstract
Background Mycobacterium avium subsp hominissuis (previously Mycobacterium avium subsp avium) is an environmental organism associated with opportunistic infections in humans. Mycobacterium hominissuis infects and replicates within mononuclear phagocytes. Previous study characterized an attenuated mutant in which the PPE gene (MAV_2928) homologous to Rv1787 was inactivated. This mutant, in contrast to the wild-type bacterium, was shown both to have impaired the ability to replicate within macrophages and to have prevented phagosome/lysosome fusion. Results MAV_2928 gene is primarily upregulated upon phagocytosis. The transcriptional profile of macrophages infected with the wild-type bacterium and the mutant were examined using DNA microarray, which showed that the two bacteria interact uniquely with mononuclear phagocytes. Based on the results, it was hypothesized that the phagosome environment and vacuole membrane of the wild-type bacterium might differ from the mutant. Wild-type bacterium phagosomes expressed a number of proteins different from those infected with the mutant. Proteins on the phagosomes were confirmed by fluorescence microscopy and Western blot. The environment in the phagosome of macrophages infected with the mutant differed from the environment of vacuoles with M. hominissuis wild-type in the concentration of zinc, manganese, calcium and potassium. Conclusion The results suggest that the MAV_2928 gene/operon might participate in the establishment of bacterial intracellular environment in macrophages.
Collapse
Affiliation(s)
- Samradhni S Jha
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Butler RE, Cihlarova V, Stewart GR. Effective generation of reactive oxygen species in the mycobacterial phagosome requires K+ efflux from the bacterium. Cell Microbiol 2010; 12:1186-93. [DOI: 10.1111/j.1462-5822.2010.01463.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Paunesku T, Vogt S, Irving TC, Lai B, Barrea RA, Maser J, Woloschak GE. Biological applications of X-ray microprobes. Int J Radiat Biol 2009; 85:710-3. [PMID: 19637082 DOI: 10.1080/09553000903009514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To present an overview of the workshop on X-ray fluorescence microscopy (XFM). RESULTS Talks presented at the workshop and the associated works are highlighted. CONCLUSIONS Use of XFM in biomedical sciences is growing and may be advanced even further by adding (i) high resolution microprobes, and (ii) high throughput approaches to the XFM toolbox.
Collapse
Affiliation(s)
- Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Janagama HK, Senthilkumar TMA, Bannantine JP, Rodriguez GM, Smith I, Paustian ML, McGarvey JA, Sreevatsan S. Identification and functional characterization of the iron-dependent regulator (IdeR) of Mycobacterium avium subsp. paratuberculosis. MICROBIOLOGY-SGM 2009; 155:3683-3690. [PMID: 19684064 DOI: 10.1099/mic.0.031948-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease in cattle and sheep, has unique iron requirements in that it is mycobactin-dependent for cultivation in vitro. The iron-dependent regulator (IdeR) is a well-characterized global regulator responsible for maintaining iron homeostasis in Mycobacterium tuberculosis (MTB). We identified an orthologous segment in the MAP genome, MAP2827, with >93 % amino acid identity to MTB IdeR. Electrophoretic mobility shift assays and DNase protection assays confirmed that MAP2827 binds the 19 bp consensus motif (iron box) on the MAP genome. Sequencing of MAP2827 from multiple isolates revealed a non-synonymous change (R91G) exclusive to sheep strains. Reporter gene assays and quantitative real-time RT-PCR assays in two diverse MAP strains and in an ideR deletion mutant of M. smegmatis (mc(2)155) suggested that both sheep MAP IdeR (sIdeR) and cattle MAP IdeR (cIdeR) repress mbtB transcription at high iron concentrations and relieve repression at low iron concentrations. On the other hand, bfrA (an iron storage gene) was upregulated by cIdeR when presented with MTB or the cattle MAP bfrA promoter, and was downregulated by sIdeR in the presence of MTB, or sheep or cattle MAP bfrA promoters, at high iron concentrations. The differential iron regulatory mechanisms between IdeR-regulated genes across strains may contribute to the differential growth or pathogenic characteristics of sheep and cattle MAP strains. Taken together, our study provides a possible reason for mycobactin dependency and suggests strong implications in the differential iron acquisition and storage mechanisms in MAP.
Collapse
Affiliation(s)
- Harish K Janagama
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, USA
| | - T M A Senthilkumar
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, USA
| | - John P Bannantine
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | | | - Issar Smith
- PHRI, UMNDJ-New Jersey Medical School, Newark, NJ, USA
| | - Michael L Paustian
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Jeffery A McGarvey
- Foodborne Contaminants Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, USA
| | - Srinand Sreevatsan
- Department of Veterinary Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA.,Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
24
|
Paunesku T, Vogt S, Maser J, Lai B, Woloschak G. X-ray fluorescence microprobe imaging in biology and medicine. J Cell Biochem 2007; 99:1489-502. [PMID: 17006954 DOI: 10.1002/jcb.21047] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Characteristic X-ray fluorescence is a technique that can be used to establish elemental concentrations for a large number of different chemical elements simultaneously in different locations in cell and tissue samples. Exposing the samples to an X-ray beam is the basis of X-ray fluorescence microscopy (XFM). This technique provides the excellent trace element sensitivity; and, due to the large penetration depth of hard X-rays, an opportunity to image whole cells and quantify elements on a per cell basis. Moreover, because specimens prepared for XFM do not require sectioning, they can be investigated close to their natural, hydrated state with cryogenic approaches. Until several years ago, XFM was not widely available to bio-medical communities, and rarely offered resolution better then several microns. This has changed drastically with the development of third-generation synchrotrons. Recent examples of elemental imaging of cells and tissues show the maturation of XFM imaging technique into an elegant and informative way to gain insight into cellular processes. Future developments of XFM-building of new XFM facilities with higher resolution, higher sensitivity or higher throughput will further advance studies of native elemental makeup of cells and provide the biological community including the budding area of bionanotechnology with a tool perfectly suited to monitor the distribution of metals including nanovectors and measure the results of interactions between the nanovectors and living cells and tissues.
Collapse
Affiliation(s)
- Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|