1
|
Wei L, Deng C, Zhang B, Wang G, Meng Y, Qin H. SP4 Facilitates Esophageal Squamous Cell Carcinoma Progression by Activating PHF14 Transcription and Wnt/Β-Catenin Signaling. Mol Cancer Res 2024; 22:55-69. [PMID: 37768180 PMCID: PMC10758695 DOI: 10.1158/1541-7786.mcr-22-0835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/13/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Specificity protein 4 transcription factor (SP4), a member of the Sp/Krüppel-like family (KLF), could bind to GT and GC box promoters, and plays an essential role in transcriptional activating. Despite SP4 having been detected to be highly expressed in a variety of human tumors, its biological effect and underlying molecular mechanism in esophageal squamous cell carcinoma (ESCC) remains unclear. Our research discovered that high SP4 expression is detected in primary ESCC specimens and cell lines and is strongly associated with the ESCC tumor grade and poor prognosis. In vitro, knockdown of SP4 suppressed cell proliferation and cell-cycle progression and promoted apoptosis, whereas overexpression of SP4 did the opposite. In vivo, inhibiting SP4 expression in ESCC cells suppresses tumor growth. Subsequently, we demonstrated that SP4 acts as the transcriptional upstream of PHF14, which binds to PHF14 promoter region, thus promoting PHF14 transcription. PHF14 was also significantly expressed in patient tissues and various ESCC cell lines and its expression promoted cell proliferation and inhibited apoptosis. Moreover, knockdown of SP4 inhibited the Wnt/β-catenin signaling pathway, whereas overexpression of PHF14 eliminated the effects of SP4 knockdown in ESCC cells. These results demonstrate that SP4 activates the Wnt/β-catenin signaling pathway by driving PHF14 transcription, thereby promoting ESCC progression, which indicates that SP4 might act as a prospective prognostic indicator or therapeutic target for patients with ESCC. IMPLICATIONS This study identified SP4/PH14 axis as a new mechanism to promote the progression of ESCC, which may serve as a novel therapeutic target for patients with ESCC.
Collapse
Affiliation(s)
- Li Wei
- Department of Surgery and Anesthesia, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chaowei Deng
- Department of Cell Biology and Genetics/Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Bo Zhang
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yan Meng
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hao Qin
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Shaib WL, Manali R, Liu Y, El-Rayes B, Loehrer P, O'Neil B, Cohen S, Khair T, Robin E, Huyck T, Bekaii-Saab T. Phase II randomised, double-blind study of mFOLFIRINOX plus ramucirumab versus mFOLFIRINOX plus placebo in advanced pancreatic cancer patients (HCRN GI14-198). Eur J Cancer 2023; 189:112847. [PMID: 37268519 DOI: 10.1016/j.ejca.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Vascular endothelial growth factor receptor (VEGFR)-mediated signalling contributes to andgiogenesis and therapy resistance in pancreatic ductal adenocarcinoma (PDAC). Ramucirumab (RAM) is a VEGFR2 monoclonal antibody. We conducted a randomised phase II trial to compare progression-free survival (PFS) between mFOLFIRINOX with or without RAM in first line therapy of metastatic PDAC. METHODS This phase II randomised, multi-centre, placebo controlled, double-blinded, trial randomly assigned to recurrent/metastatic PDAC patients to either mFOLFIRINOX/RAM (Arm A) or mFOLFIRINOX/placebo (Arm B). The primary endpoint is PFS at 9 months, and the secondary endpoints include overall survival (OS), response rate and toxicity evaluation. RESULTS A total of 86 subjects enrolled, 82 eligible (42 in Arm A versus 40 in Arm B). The mean age was comparable (61.7 versus 63.0, respectively). Majority were White (N = 69) and males (N = 43). The median PFS was 5.6 compared to 6.7 months, for Arm A and B, respectively. At 9 months, the PFS rates were 25.1% and 35.0% for Arms A and B, respectively (p = 0.322). The median OS in Arm A was 10.3 compared to 9.7 months for Arm B (p = 0.094). The disease response rate for Arm A was 17.7% compared to Arm B of 22.6%. FOLFIRINOX/RAM combination was well tolerated. CONCLUSIONS The addition of RAM to FOLFIRINOX did not significantly impact PFS or OS. The combination was well tolerated (Funded by Eli Lilly; ClinicalTrials.gov number, NCT02581215).
Collapse
Affiliation(s)
- Walid L Shaib
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Rupji Manali
- Department of Biostatistics, Emory University, Atlanta, GA, USA
| | - Yuan Liu
- Department of Biostatistics, Emory University, Atlanta, GA, USA
| | - Bassel El-Rayes
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Patrick Loehrer
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Bert O'Neil
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Steven Cohen
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Tina Khair
- Gettysburg Cancer Center, Pennsylvania Cancer Specialists, PA, USA
| | - Erwin Robin
- NorthShore University Health System-Metro Chicago, Evanston, IL, USA
| | | | | |
Collapse
|
3
|
Mehdizadeh R, Ansari AM, Forouzesh F, Ghadirian R, Shahriari F, Shariatpanahi SP, Javidi MA. Cross-talk between non-ionizing electromagnetic fields and metastasis; EMT and hybrid E/M may explain the anticancer role of EMFs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00060-3. [PMID: 37302516 DOI: 10.1016/j.pbiomolbio.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Recent studies have shown that non-ionizing electromagnetic fields (NIEMFs) in a specific frequency, intensity, and exposure time can have anti-cancer effects on various cancer cells; however, the underlying precise mechanism of action is not transparent. Most cancer deaths are due to metastasis. This important phenomenon plays an inevitable role in different steps of cancer including progression and development. It has different stages including invasion, intravasation, migration, extravasation, and homing. Epithelial-mesenchymal transition (EMT), as well as hybrid E/M state, are biological processes, that involve both natural embryogenesis and tissue regeneration, and abnormal conditions including organ fibrosis or metastasis. In this context, some evidence reveals possible footprints of the important EMT-related pathways which may be affected in different EMFs treatments. In this article, critical EMT molecules and/or pathways which can be potentially affected by EMFs (e.g., VEGFR, ROS, P53, PI3K/AKT, MAPK, Cyclin B1, and NF-кB) are discussed to shed light on the mechanism of EMFs anti-cancer effect.
Collapse
Affiliation(s)
- Romina Mehdizadeh
- Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Madjid Ansari
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhane Ghadirian
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Shahriari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Amin Javidi
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
VEGFR-Mediated Cytotoxic Activity of Pulicaria undulata Isolated Metabolites: A Biological Evaluation and In Silico Study. Life (Basel) 2021; 11:life11080759. [PMID: 34440504 PMCID: PMC8398779 DOI: 10.3390/life11080759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/25/2023] Open
Abstract
Natural products play a remarkable role not only in the synthesis, design, and discovery of new drugs but also as the most prominent source of drugs and bioactive substances. Adding to the search for new sources of safe innovative antitumor drugs, here we reported a phytochemical study on Pulicaria undulata which revealed promising antiangiogenic agents. Six compounds were isolated and identified as xanthoxyline (1), stigmasterol (2), oleanolic acid (3), salvigenin (4), rhamnetin (5) and dihydroquercetin-4′-methyl ether (6) using nuclear magnetic resonance (NMR) spectroscopic techniques. Compound 3 and 4 are first reported in Pulicaria genus. Both the extract and isolated compounds were evaluated for in vitro antiproliferative activity against breast cancer cell line (MCF-7). In vivo antiproliferative activity against Ehrlich’s ascites carcinoma (EAC) were also assessed. The P. undulata extract and isolates showed significant reduction in tumor weight, decreased both serum vascular endothelial growth factor B (VEGF-B) levels and vascular endothelial growth factor receptor 2 (VEGFR-2) expression significantly compared to the control EAC group, suggesting an antiangiogenic activity through the inhibition of VEGF signaling. Besides, they displayed reduction in CD34 expression, confirming their antiangiogenic effect. Moreover, the potential affinity of isolated compounds to human estrogen nuclear receptor-alpha (hER-α), the most recognized modulator of VEGFR-2 expression, was virtually estimated through molecular modeling studies. The most promising activity profiles were assigned to the investigated flavonoids, compounds 4–6, as well as the alkyl-phenylketone, compound 1. Additionally, these four top active compounds showed respective high to intermediate docking scores while possessing preferential binding with hER-α critical pocket residues. Based on the provided data, these isolated compounds illustrated promising inhibitors of VEGF-stimulated angiogenesis, which could be a possible mechanism for their anticancer activity.
Collapse
|
5
|
Mei B, Chen J, Yang N, Peng Y. The regulatory mechanism and biological significance of the Snail-miR590-VEGFR-NRP1 axis in the angiogenesis, growth and metastasis of gastric cancer. Cell Death Dis 2020; 11:241. [PMID: 32303680 PMCID: PMC7165172 DOI: 10.1038/s41419-020-2428-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022]
Abstract
Vascular endothelial growth factor receptor (VEGFR) and neuropilins (NRPs), a co-receptor of VEGF, play a key role in the formation and development of blood vessels and in tumour growth and metastasis. However, whether VEGFR1/2 and NRP1 are regulated by the same upstream mechanism is unclear, especially in gastric cancer. We used prediction tools to detect miRNAs that may simultaneously regulate VEGFR1/2 and NRP1, and we finally determined that miR-590 can simultaneously regulate VEGFR1/2 and NRP1 in gastric cancer. We discovered that miR-590 was downregulated in gastric cancer tissues and cell lines, and this was related to the dysregulation of the transcription factor SNAIL. In addition, the overexpression of miR-590 inhibits the migration, invasion, proliferation and D-MVA levels of gastric cancer cells in vivo and in vitro by targeting VEGFR1/2 and NRP1. We also demonstrated that miR-590 may be a useful marker for the prognosis of gastric cancer with Kaplan–Meier survival analysis. Since the epithelial-to-mesenchymal transition (EMT) is an important mechanism of tumour invasion and metastasis and VEGFR1/2 and NRP1 can promote the occurrence of EMT, we speculated that miR-590 can regulate the occurrence of EMT. Immunoblot and immunofluorescence analyses confirmed that the overexpression of miR-590 can inhibit the EMT in gastric cancer cells. Since SNAIL is also a mesenchymal marker, our results revealed a new, positive feedback loop. As a transcription factor, SNAIL inhibits the expression of miR-590, thereby upregulating the expression levels of NRP1 and VEGFR1/2; this leads to the development of EMT in gastric cancer and the upregulation of SNAIL.
Collapse
Affiliation(s)
- Bin Mei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Jiajie Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ni Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yang Peng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
6
|
Liu T, Li Y, Su H, Zhang H, Jones D, Zhou HJ, Ji W, Min W. Nuclear localization of the tyrosine kinase BMX mediates VEGFR2 expression. J Cell Mol Med 2020; 24:126-138. [PMID: 31642192 PMCID: PMC6933376 DOI: 10.1111/jcmm.14663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor receptors (VEGFRs) are major contributors to angiogenesis and lymphangiogenesis through the binding of VEGF ligands. We have previously shown that the bone marrow tyrosine kinase BMX is critical for inflammatory angiogenesis via its direct transactivation of VEGFR2. In the present study, we show that siRNA-mediated silencing of BMX led to a significant decrease in the total levels of VEGFR2 mRNA and protein, without affecting their stability, in human endothelial cells (ECs). Interestingly, BMX was detected in the nuclei of ECs, and the SH3 domain of BMX was necessary for its nuclear localization. Luciferase assays showed a significant decrease in the Vegfr2 (kdr) gene promoter activity in ECs after BMX silencing, indicating that BMX is necessary for Vegfr2 transcription. In addition, we found that wild-type BMX, but not a catalytic inactive mutant BMX-K445R, promoted Vegfr2 promoter activity and VEGF-induced EC migration and tube sprouting. Mechanistically, we show that the enhancement of Vegfr2 promoter activity by BMX was mediated by Sp1, a transcription factor critical for the Vegfr2 promoter. Loss of BMX significantly reduced Sp1 binding to the Vegfr2 promoter as assayed by chromatin immunoprecipitation assays. Wild-type BMX, but not a kinase-inactive form of BMX, associated with and potentially phosphorylated Sp1. Moreover, a nuclear-targeted BMX (NLS-BMX), but not cytoplasm-localized form (NES-BMX), bound to Sp1 and augmented VEGFR2 expression. In conclusion, we uncovered a novel function of nuclear-localized BMX in regulating VEGFR2 expression and angiogenesis, suggesting that BMX is a therapeutic target for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Tingting Liu
- The Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yonghao Li
- Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Hong Su
- The Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Haifeng Zhang
- Department of Pathology and the Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCTUSA
| | - Dennis Jones
- Department of Pathology and Laboratory MedicineBoston University School of MedicineBostonMAUSA
| | - Huanjiao Jenny Zhou
- Department of Pathology and the Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCTUSA
| | - Weidong Ji
- The Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wang Min
- Department of Pathology and the Vascular Biology and Therapeutics ProgramYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
7
|
Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, Li H, Zhang SR, Xu JZ, Qi ZH, Ni QX, Yu XJ, Liu L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis 2019; 22:15-36. [PMID: 30168025 DOI: 10.1007/s10456-018-9645-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. Although the standard of care in pancreatic cancer has improved, prognoses for patients remain poor with a 5-year survival rate of < 5%. Angiogenesis, namely, the formation of new blood vessels from pre-existing vessels, is an important event in tumor growth and hematogenous metastasis. It is a dynamic and complex process involving multiple mechanisms and is regulated by various molecules. Inhibition of angiogenesis has been an established therapeutic strategy for many solid tumors. However, clinical outcomes are far from satisfying for pancreatic cancer patients receiving anti-angiogenic therapies. In this review, we summarize the current status of angiogenesis in pancreatic cancer research and explore the reasons for the poor efficacy of anti-angiogenic therapies, aiming to identify some potential therapeutic targets that may enhance the effectiveness of anti-angiogenic treatments.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chun-Tao Wu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wen-Quan Wang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He-Li Gao
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hao Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shi-Rong Zhang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin-Zhi Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zi-Hao Qi
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quan-Xing Ni
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Liang Liu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Kumar P, Bhadauria AS, Singh AK, Saha S. Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sci 2018; 209:24-33. [PMID: 30076920 DOI: 10.1016/j.lfs.2018.07.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 01/11/2023]
Abstract
A natural product betulinic acid (BA) has gained a huge significance in the recent years for its strong cytotoxicity. Surprisingly, in spite of being an interesting cancer protecting agent on a variety of tumor cells, the normal cells and tissues are rarely affected by BA. Betulinic acid and analogues (BAs) generally exert through the mechanisms that provokes an event of direct cell death and bypass the resistance to normal chemotherapeutics. Although the major mechanism associated with its ability to induce direct cell death is mitochondrial apoptosis, there are several other mechanisms explored recently. Importantly, mathematical modeling of apoptosis has been an important tool to explore the precise mechanism involved in mitochondrial apoptosis. Thus, this review is an endeavor to sum up the molecular mechanisms underlying the action of BA and future directions to apply mathematical modeling technique to better understand the precise mechanism of BA-induced apoptosis. The last section of the review encompasses the plausible structural modifications and formulations to enhance the therapeutic efficacy of BA.
Collapse
Affiliation(s)
- Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Archana S Bhadauria
- Department of Mathematics and Statistics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
| | - Ashok K Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India.
| |
Collapse
|
9
|
Taoka R, Jinesh GG, Xue W, Safe S, Kamat AM. CF 3DODA-Me induces apoptosis, degrades Sp1, and blocks the transformation phase of the blebbishield emergency program. Apoptosis 2017; 22:719-729. [PMID: 28283889 DOI: 10.1007/s10495-017-1359-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer stem cells are capable of undergoing cellular transformation after commencement of apoptosis through the blebbishield emergency program in a VEGF-VEGFR2-dependent manner. Development of therapeutics targeting the blebbishield emergency program would thus be important in cancer therapy. Specificity protein 1 (Sp1) orchestrates the transcription of both VEGF and VEGFR2; hence, Sp1 could act as a therapeutic target. Here, we demonstrate that CF3DODA-Me induced apoptosis, degraded Sp1, inhibited the expression of multiple drivers of the blebbishield emergency program such as VEGFR2, p70S6K, and N-Myc through activation of caspase-3, inhibited reactive oxygen species; and inhibited K-Ras activation to abolish transformation from blebbishields as well as transformation in soft agar. These findings confirm CF3DODA-Me as a potential therapeutic candidate that can induce apoptosis and block transformation from blebbishields.
Collapse
Affiliation(s)
- Rikiya Taoka
- Department of Urology, Unit 1373, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Goodwin G Jinesh
- Department of Urology, Unit 1373, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Wenrui Xue
- Department of Urology, Unit 1373, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Ashish M Kamat
- Department of Urology, Unit 1373, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Immunoglobulin-like domain 4-mediated ligand-independent dimerization triggers VEGFR-2 activation in HUVECs and VEGFR2-positive breast cancer cells. Breast Cancer Res Treat 2017; 163:423-434. [PMID: 28303365 DOI: 10.1007/s10549-017-4189-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE The extracellular region (EC) of the vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) contains seven immunoglobulin-like (Ig-like) domains that are required for specific ligand binding and receptor dimerization. Studies of domain 4-7 deletions and substitutions provided insights into the interaction between receptors in the absence of VEGF. In this study, we investigated the effect of domain 4 in ligand-independent VEGFR-2 dimerization and activation in human vascular endothelial cells and human breast cancer cells. METHODS To confirm the role of domain 4 in ligand-independent receptor dimerization and activation, two VEGFR-2 fragments with and without domain 4, KFP1 and KFP2, were generated by recombinant DNA technology. We measured the affinity of KFP1 and KFP2 with VEGFR-2, and the roles of KFP1 and FKP2 in dimerization and phosphorylation of VEGFR-2. We also evaluated the effect of KFP1 and FKP2 on cell proliferation and migration in HUVECs and in human breast cancer cells. RESULTS We showed that KFP1 did not affect the interaction of VEGFR-2 and VEGF but bound VEGFR-2 in the absence of VEGF. Furthermore, cross-linking and cross-linking immunoblotting demonstrated that KFP1 could form a complex with VEGFR-2, which resulted in VEGFR-2 dimerization in the absence of VEGF. Importantly, we found that the KDR fragment with domain 4 induced phosphorylation of VEGFR-2, as well as phosphorylation of downstream receptor kinases in HUVECs and VEGFR-2-positive breast cancer cells. Consistent with these results, this ligand-independent activation of VEGFR-2 also promoted downstream signaling and cell proliferation and migration. CONCLUSIONS The domain 4 of VEGFR-2 plays an important role in the interaction between VEGFR receptors in the absence of VEGF.
Collapse
|
11
|
Abstract
Pancreatic diseases, chronic pancreatitis, pancreatic cancer and diabetes mellitus, taken together, occur in >10% of the world population. Pancreatic diseases, as with other diseases, benefit from early intervention and appropriate diagnosis. Although imaging technologies have given clinicians an unprecedented toolbox to aid in clinical decision-making, advances in these technologies and development of molecular-based diagnostic tools could enable physicians to identify diseases at an even earlier stage and, thereby, improve patient outcomes. In this Review, we discuss and identify gaps in the use of imaging techniques for the early detection and appropriate treatment stratification of various pancreatic diseases, including diabetes mellitus, acute and chronic pancreatitis and pancreatic cancer. Imaging techniques discussed are MRI, CT, PET and ultrasonography. Additionally, the identification of new molecular targets for imaging and the development of contrast agents that are able to give molecular information in noninvasive radionuclear imaging and ultrasonography are emerging areas of innovation that could lead to increased diagnostic accuracy and improved patient outcomes.
Collapse
Affiliation(s)
- Julien Dimastromatteo
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Building MR5, Charlottesville, Virginia 22903, USA
| | - Teresa Brentnall
- Division of Gastroenterology, Digestive Diseases Center, 1959 Northeast Pacific Street, Seattle, Washington 98195, USA
| | - Kimberly A Kelly
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Building MR5, Charlottesville, Virginia 22903, USA
| |
Collapse
|
12
|
Bhattacharyya S, Purkait K, Mukherjee A. Ruthenium(ii) p-cymene complexes of a benzimidazole-based ligand capable of VEGFR2 inhibition: hydrolysis, reactivity and cytotoxicity studies. Dalton Trans 2017. [DOI: 10.1039/c7dt00938k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(ii)-p-Cymene complexes of a bispyrazole-benzimidazole ligand inhibit vascular endothelial growth factor 2, reduce the cellular glutathione pool and inhibit cell migration.
Collapse
Affiliation(s)
- Sudipta Bhattacharyya
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| | - Kallol Purkait
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| | - Arindam Mukherjee
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| |
Collapse
|
13
|
Rauf A, Ali S, Khan MT, Asad-ur-Rahman, Ahmad S. The Expanding Role of Sp1 in Pancreatic Cancer: Tumorigenic and Clinical Perspectives. ROLE OF TRANSCRIPTION FACTORS IN GASTROINTESTINAL MALIGNANCIES 2017:391-402. [DOI: 10.1007/978-981-10-6728-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Abstract
The development of novel molecular cancer imaging agents has considerably advanced in recent years. Numerous cancer imaging agents have demonstrated remarkable potential for aiding the diagnosis, staging, and treatment planning at the preclinical stage, which in turn has led to a number of agents being approved for human trials. Pancreatic ductal adenocarcinoma is currently the most deadly common carcinoma with an overall 5-year survival rate of about 6%. As detection technologies progress, the need for molecular imaging tools that will allow the diagnosis at an early stage will be crucial to improving patient outcomes. In this review, we will highlight agents that illuminate various cell populations that comprise the tumor: epithelial, endothelial, and stromal tumor cells.
Collapse
|
15
|
Huang Y, Shen P, Chen X, Chen Z, Zhao T, Chen N, Gong J, Nie L, Xu M, Li X, Zeng H, Zhou Q. Transcriptional regulation of BNIP3 by Sp3 in prostate cancer. Prostate 2015; 75:1556-67. [PMID: 26012884 DOI: 10.1002/pros.23029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/05/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND The transcription factors Sp3/Sp1 are expressed in a various types of cancers and BNIP3 is overexpressed in prostate cancer. Although it has been demonstrated that BNIP3 is transcriptionally regulated by HIF-1α and is post-transcriptionally regulated by miR145, our previous data indicated that there might be some other transcription factors regulating BNIP3 in prostate cancer. This study is conducted to investigate whether BNIP3 expression is directly regulated by Sp3/Sp1 or not. MATERIALS AND METHODS Bioinformatics analysis shows that BNIP3 promoter contains several potential Sp3/Sp1 binding sites. And then it is demonstrated that SP3 could regulate the BNIP3 transcriptionally by binding to the predicted sites by dual reporter gene assays, ChIP, and EMSA. The biological effects of SP3 regulating BNIP3 on prostate cancer cells proliferation are measured by MTT, TUNEL, and flow cytometry. RESULTS Our data show that Sp3 but not Sp1, is positively related to BNIP3 overexpression in prostate cancer. Sp3 can directly regulate BNIP3 transcription by mainly binding to the Sp3 binding sites (-624~-615 and -350~-343) of BNIP3 promoter. Knockdown of Sp3 by RNA interference could reduce cells growth and lead to cells apoptosis in PC-3 and DU145. Sp3-dependent BNIP3 overexpression might be an important mechanism to promote prostate cancer cells proliferation. CONCLUSION This is the first study to provide direct evidence of Sp3-dependent BNIP3 expression. Sp3 might be the major transcriptional regulator of BNIP3 in prostate cancer and it is worthy to further study. The regulation of BNIP3 by Sp3 may be a new cancer-specific therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Pengfei Shen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueqin Chen
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhibin Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhao
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Gong
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Xu
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinglan Li
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Zhou
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Yan JD, Liu Y, Zhang ZY, Liu GY, Xu JH, Liu LY, Hu YM. Expression and prognostic significance of VEGFR-2 in breast cancer. Pathol Res Pract 2015; 211:539-43. [PMID: 25976977 DOI: 10.1016/j.prp.2015.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/13/2015] [Accepted: 04/01/2015] [Indexed: 12/28/2022]
Abstract
Breast cancer is one of the most common cancers among women in the world. Vascular endothelial growth factor receptor 2 (VEGFR-2) was not only found to play a key role in the development of tumor angiogenesis, but has also been located in tumor cells of a variety of tumors. This study investigated the expression pattern of VEGFR-2 in breast cancer tissue specimens in order to evaluate the role of VEGFR-2 in the prognosis of breast cancer. Expression and localization of VEGFR-2 in tumor cells of breast cancer specimens from 98 invasive breast cancer patients were determined by immunohistochemistry. The relationships between VEGFR-2 expression and clinicopathological features were also analyzed. The results showed that VEGFR-2 expression correlated positively with lymph node (LN) metastasis of breast cancer. Patients with high expression of VEGFR-2 had a significantly worse OS. It was also observed that the expression of epithelial-mesenchymal transition (EMT) marker, including Twist1 and Vimentin, was higher in the tumors with higher VEGFR-2 expression, while the E-cadherin expression was lower in the same tumors, suggesting that VEGFR-2 may serve as a possible mediator of EMT in breast cancer.
Collapse
Affiliation(s)
- Ji-Dong Yan
- Department of Thoracic Surgery, Tangshan Gongren Hospital, Tangshan, China
| | - Yanrong Liu
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhi-Yong Zhang
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China.
| | - Guang-Yin Liu
- Department of Mammary Surgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jin-Heng Xu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| | - Li-Yun Liu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| | - Yue-Ming Hu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
17
|
Angiogenesis in the placenta: the role of reactive oxygen species signaling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:814543. [PMID: 25705690 PMCID: PMC4325211 DOI: 10.1155/2015/814543] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
Proper placental development and function are central to the health of both the mother and the fetus during pregnancy. A critical component of healthy placental function is the proper development of its vascular network. Poor vascularization of the placenta can lead to fetal growth restriction, preeclampsia, and in some cases fetal death. Therefore, understanding the mechanisms by which uterine stressors influence the development of the placental vasculature and contribute to placental dysfunction is of central importance to ensuring a healthy pregnancy. In this review we discuss how oxidative stress observed in maternal smoking, maternal obesity, and preeclampsia has been associated with aberrant angiogenesis and placental dysfunction resulting in adverse pregnancy outcomes. We also highlight that oxidative stress can influence the expression of a number of transcription factors important in mediating angiogenesis. Therefore, understanding how oxidative stress affects redox-sensitive transcription factors within the placenta may elucidate potential therapeutic targets for correcting abnormal placental angiogenesis and function.
Collapse
|
18
|
Hertel J, Hirche C, Wissmann C, Ebert MP, Höcker M. Transcription of the vascular endothelial growth factor receptor-3 (VEGFR3) gene is regulated by the zinc finger proteins Sp1 and Sp3 and is under epigenetic control: transcription of vascular endothelial growth factor receptor 3. Cell Oncol (Dordr) 2014; 37:131-45. [PMID: 24710631 DOI: 10.1007/s13402-014-0169-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In the past, the vascular endothelial growth factor receptor-3 (VEGFR-3) has been linked to the regulation of lymphangiogenesis and the lymphatic spread of solid malignancies. The molecular mechanisms controlling VEGFR3 gene expression have, however, remained poorly understood. Here, we aimed at assessing these mechanisms through VEGFR3 gene promoter analysis and the identification of transcription factors binding to it. In addition, we focussed on epigenetic modifications underlying VEGFR3 transcription regulation. METHODS 5' Deletion analyses for the identification of functional promoter elements, electrophoretic mobility shift assays, chromatin immunoprecipitations, methylation-specific PCRs, and Trichostatin A (TSA) and 5-Aza desoxycytidine (5-Aza dC) treatments were performed in this study. RESULTS Following the isolation of a 2 kb stretch of 5'-flanking DNA of VEGFR3, we identified a novel GC-rich element (GRE) spanning -101/-66 sufficient for VEGFR3 transcription and activated by Sp1 and Sp3, respectively. Histone de-acetylase inhibition by TSA led to the accumulation of acetylated histones H3/H4 at the VEGFR3 gene promoter, up-regulation of its mRNA levels, and transactivation of promoter reporter constructs in endothelial cell lines. Similarly, methylation inhibition by 5-Aza dC triggered up-regulation of VEGFR3 mRNA levels and increased promoter activity. TSA and 5-Aza-dC did not influence Sp1/Sp3 binding, but increased the transactivating capacity of both transcription factors, suggesting epigenetic modification as an underlying mechanism. CONCLUSIONS Here we describe the identification of regulatory elements controlling human VEGFR3 gene expression and show that histone acetylation and CpG methylation are important determinants of VEGFR3 transcription regulation. These findings may facilitate the development of intervention strategies aimed at targeting VEGFR3-based tumor lymphangiogenesis and/or lymphatic tumor spread.
Collapse
Affiliation(s)
- Johannes Hertel
- Laboratory for Angiogenesis and Tumor Metastasis, Campus Mitte, Charité University Hospital Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Abstract
Several agents used for treatment of colon and other cancers induce reactive oxygen species (ROS) and this plays an important role in their anticancer activities. In addition to the well-known proapoptotic effects of ROS inducers, these compounds also decrease expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and several pro-oncogenic Spregulated genes important for cancer cell proliferation, survival and metastasis. The mechanism of these responses involve ROS-dependent downregulation of microRNA-27a (miR-27a) or miR-20a (and paralogs) and induction of two Sp-repressors, ZBTB10 and ZBTB4 respectively. This pathway significantly contributes to the anticancer activity of ROS inducers and should be considered in development of drug combinations for cancer chemotherapy.
Collapse
Affiliation(s)
- Sandeep Sreevalsan
- VMR 1197, Room 413, Texas A&M University, College Station, TX, 77843 979-845-9182
| | - Stephen Safe
- VMR 1197, Room 410, Texas A&M University, College Station, TX, 77843 979-845-5988
| |
Collapse
|
20
|
Sreevalsan S, Safe S. The cannabinoid WIN 55,212-2 decreases specificity protein transcription factors and the oncogenic cap protein eIF4E in colon cancer cells. Mol Cancer Ther 2013; 12:2483-2493. [PMID: 24030632 PMCID: PMC4288937 DOI: 10.1158/1535-7163.mct-13-0486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
2,3-Dihydro-5-methyl-3-([morpholinyl]methyl)pyrollo(1,2,3-de)-1,4-benzoxazinyl]-[1-naphthaleny]methanone [WIN 55,212-2, (WIN)] is a synthetic cannabinoid that inhibits RKO, HT-29, and SW480 cell growth, induced apoptosis, and downregulated expression of survivin, cyclin D1, EGF receptor (EGFR), VEGF, and its receptor (VEGFR1). WIN also decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4, and this is consistent with the observed downregulation of the aforementioned Sp-regulated genes. In addition, we also observed by RNA interference (RNAi) that the oncogenic cap protein eIF4E was an Sp-regulated gene also downregulated by WIN in colon cancer cells. WIN-mediated repression of Sp proteins was not affected by cannabinoid receptor antagonists or by knockdown of the receptor but was attenuated by the phosphatase inhibitor sodium orthovanadate or by knockdown of protein phosphatase 2A (PP2A). WIN-mediated repression of Sp1, Sp3, and Sp4 was due to PP2A-dependent downregulation of microRNA-27a (miR-27a) and induction of miR-27a-regulated ZBTB10, which has previously been characterized as an "Sp repressor." The results show that the anticancer activity of WIN is due, in part, to PP2A-dependent disruption of miR-27a:ZBTB10 and ZBTB10-mediated repression of Sp transcription factors and Sp-regulated genes, including eIF4E.
Collapse
Affiliation(s)
- Sandeep Sreevalsan
- Corresponding Author: Stephen Safe, Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466.
| | | |
Collapse
|
21
|
Mertens-Talcott SU, Noratto GD, Li X, Angel-Morales G, Bertoldi MC, Safe S. Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo: role of Sp transcription factors and microRNA-27a:ZBTB10. Mol Carcinog 2013; 52:591-602. [PMID: 22407812 PMCID: PMC3418350 DOI: 10.1002/mc.21893] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 11/10/2022]
Abstract
Betulinic acid (BA), a pentacyclic triterpenoid isolated from tree bark is cytotoxic to cancer cells. There is evidence that specificity proteins (Sps), such as Sp1, Sp3, and Sp4, are overexpressed in tumors and contribute to the proliferative and angiogenic phenotype associated with cancer cells. The objective of this study was to determine the efficacy of BA in decreasing the Sps expression and underlying mechanisms. Results show that BA decreased proliferation and induced apoptosis of estrogen-receptor-negative breast cancer MDA-MB-231 cells. The BA-induced Sp1, Sp3, and Sp4 downregulation was accompanied by increased zinc finger ZBTB10 expression, a putative Sp-repressor and decreased microRNA-27a levels, a microRNA involved in the regulation of ZBTB10. Similar results were observed in MDA-MB-231 cells transfected with ZBTB10 expression plasmid. BA induced cell cycle arrest in the G2/M phase and increased Myt-1 mRNA (a microRNA-27a target gene), which causes inhibition in G2/M by phosphorylation of cdc2. The effects of BA were reversed by transient transfection with a mimic of microRNA-27a. In nude mice with xenografted MDA-MB-231 cells, tumor size and weight were significantly decreased by BA treatment. In tumor tissue, ZBTB10 mRNA was increased while mRNA and protein of Sp1, Sp3 and Sp4, as well as mRNA of vascular endothelial growth factor receptor (VEGFR), survivin and microRNA-27a were decreased by BA. In lungs of xenografted mice, human β2-microglobulin mRNA was decreased in BA-treated animals. These results show that the anticancer effects of BA are at least in part based on interactions with the microRNA-27a-ZBTB10-Sp-axis causing increased cell death.
Collapse
Affiliation(s)
- Susanne U. Mertens-Talcott
- Department of Nutrition & Food Science
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine
- Institute for Obesity Research and Program Evaluation, Texas A&M University College Station, TX 77843
| | - Giuliana D. Noratto
- Department of Nutrition & Food Science
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine
- Institute for Obesity Research and Program Evaluation, Texas A&M University College Station, TX 77843
| | | | | | | | - Stephen Safe
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine
- Center for Environmental and Genetic Medicine Texas A&M Health Science Center Institute of Biosciences and Technology Houston, TX
| |
Collapse
|
22
|
Vaiman D, Calicchio R, Miralles F. Landscape of transcriptional deregulations in the preeclamptic placenta. PLoS One 2013; 8:e65498. [PMID: 23785430 PMCID: PMC3681798 DOI: 10.1371/journal.pone.0065498] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/26/2013] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is a pregnancy disease affecting 5 to 8% of pregnant women and a leading cause of both maternal and fetal mortality and morbidity. Because of a default in the process of implantation, the placenta of preeclamptic women undergoes insufficient vascularization. This results in placental ischemia, inflammation and subsequent release of placental debris and vasoactive factors in the maternal circulation causing a systemic endothelial activation. Several microarray studies have analyzed the transcriptome of the preeclamptic placentas to identify genes which could be involved in placental dysfunction. In this study, we compared the data from publicly available microarray analyses to obtain a consensus list of modified genes. This allowed to identify consistently modified genes in the preeclamptic placenta. Of these, 67 were up-regulated and 31 down-regulated. Assuming that changes in the transcription level of co-expressed genes may result from the coordinated action of a limited number of transcription factors, we looked for over-represented putative transcription factor binding sites in the promoters of these genes. Indeed, we found that the promoters of up-regulated genes are enriched in putative binding sites for NFkB, CREB, ANRT, REEB1, SP1, and AP-2. In the promoters of down-regulated genes, the most prevalent putative binding sites are those of MZF-1, NFYA, E2F1 and MEF2A. These transcriptions factors are known to regulate specific biological pathways such as cell responses to inflammation, hypoxia, DNA damage and proliferation. We discuss here the molecular mechanisms of action of these transcription factors and how they can be related to the placental dysfunction in the context of preeclampsia.
Collapse
Affiliation(s)
- Daniel Vaiman
- INSERM U1016-CNRS UMR8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Rosamaria Calicchio
- INSERM U1016-CNRS UMR8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Francisco Miralles
- INSERM U1016-CNRS UMR8104, Université Paris Descartes, Institut Cochin, Paris, France
- * E-mail:
| |
Collapse
|
23
|
Gandhy SU, Kim K, Larsen L, Rosengren RJ, Safe S. Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer 2012; 12:564. [PMID: 23194063 PMCID: PMC3522018 DOI: 10.1186/1471-2407-12-564] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 11/23/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Curcumin inhibits growth of several cancer cell lines, and studies in this laboratory in bladder and pancreatic cancer cells show that curcumin downregulates specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and pro-oncogenic Sp-regulated genes. In this study, we investigated the anticancer activity of curcumin and several synthetic cyclohexanone and piperidine analogs in colon cancer cells. METHODS The effects of curcumin and synthetic analogs on colon cancer cell proliferation and apoptosis were determined using standardized assays. The changes in Sp proteins and Sp-regulated gene products were analysed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a), miR-20a, miR-17-5p and ZBTB10 and ZBTB4 mRNA expression. RESULTS The IC50 (half-maximal) values for growth inhibition (24 hr) of colon cancer cells by curcumin and synthetic cyclohexanone and piperidine analogs of curcumin varied from 10 μM for curcumin to 0.7 μM for the most active synthetic piperidine analog RL197, which was used along with curcumin as model agents in this study. Curcumin and RL197 inhibited RKO and SW480 colon cancer cell growth and induced apoptosis, and this was accompanied by downregulation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and Sp-regulated genes including the epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (c-MET), survivin, bcl-2, cyclin D1 and NFκB (p65 and p50). Curcumin and RL197 also induced reactive oxygen species (ROS), and cotreatment with the antioxidant glutathione significantly attenuated curcumin- and RL197-induced growth inhibition and downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes. The mechanism of curcumin-/RL197-induced repression of Sp transcription factors was ROS-dependent and due to induction of the Sp repressors ZBTB10 and ZBTB4 and downregulation of microRNAs (miR)-27a, miR-20a and miR-17-5p that regulate these repressors. CONCLUSIONS These results identify a new and highly potent curcumin derivative and demonstrate that in cells where curcumin and RL197 induce ROS, an important underlying mechanism of action involves perturbation of miR-ZBTB10/ZBTB4, resulting in the induction of these repressors which downregulate Sp transcription factors and Sp-regulated genes.
Collapse
Affiliation(s)
- Shruti U Gandhy
- College of Medicine, Texas A&M Health Sciences Center, Houston, TX, 77030, USA
| | - KyoungHyun Kim
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX, 77030, USA
| | - Lesley Larsen
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand
| | - Stephen Safe
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX, 77030, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| |
Collapse
|
24
|
Chen S, Liu X, Gong W, Yang H, Luo D, Zuo X, Li W, Wu P, Liu L, Xu Q, Ji A. Combination therapy with VEGFR2 and EGFR siRNA enhances the antitumor effect of cisplatin in non-small cell lung cancer xenografts. Oncol Rep 2012; 29:260-8. [PMID: 23117577 DOI: 10.3892/or.2012.2097] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/26/2012] [Indexed: 11/05/2022] Open
Abstract
RNA targeting the murine vascular endothelial growth factor receptor 2 (VEGFR2) gene was designed and validated for efficient and robust silencing in vitro and was delivered by polyethylenimines (PEI) in vivo to investigate the antitumor effect on non-small cell lung cancer (NSCLC) xenografts. The following dosage regimens were tested for their tumor inhibitory effect in vivo: VEGFR2 siRNA, epidermal growth factor receptor (EGFR) siRNA, VEGFR2 siRNA+EGFR siRNA, cisplatin alone and VEGFR2 siRNA+ EGFR siRNA+cisplatin. Targeted silencing of both VEGFR2 and EGFR expression by siRNA, combined with low-dose cisplatin, was found to effectively inhibit tumor growth and extend the survival time of mice bearing the NSCLC xenografts. These results suggest that combination therapy using siRNAs and chemotherapy agents might offer a novel strategy for cancer treatment in the future.
Collapse
Affiliation(s)
- Shan Chen
- Department of Pharmaceutical Science, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim K, Chadalapaka G, Pathi SS, Jin UH, Lee JS, Park YY, Cho SG, Chintharlapalli S, Safe S. Induction of the transcriptional repressor ZBTB4 in prostate cancer cells by drug-induced targeting of microRNA-17-92/106b-25 clusters. Mol Cancer Ther 2012; 11:1852-1862. [PMID: 22752225 PMCID: PMC3632183 DOI: 10.1158/1535-7163.mct-12-0181] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Androgen-insensitive DU145 and PC3 human prostate cancer cells express high levels of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4, and treatment of cells with methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) inhibited cell growth and downregulated Sp1, Sp3, and Sp4 expression. CDODA-Me (15 mg/kg/d) was a potent inhibitor of tumor growth in a mouse xenograft model (PC3 cells) and also decreased expression of Sp transcription factors in tumors. CDODA-Me-mediated downregulation of Sp1, Sp3, and Sp4 was due to induction of the transcriptional repressor ZBTB4, which competitively binds and displaces Sp transcription factors from GC-rich sites in Sp1-, Sp3-, Sp4-, and Sp-regulated gene promoters. ZBTB4 levels are relatively low in DU145 and PC3 cells due to suppression by miR paralogs that are members of the miR-17-92 (miR-20a/17-5p) and miR-106b-25 (miR-106b/93) clusters. Examination of publically available prostate cancer patient array data showed an inverse relationship between ZBTB4 and miRs-20a/17-5p/106b/93 expression, and increased ZBTB4 in patients with prostate cancer was a prognostic factor for increased survival. CDODA-Me induces ZBTB4 in prostate cancer cells through disruption of miR-ZBTB4 interactions, and this results in downregulation of pro-oncogenic Sp transcription factors and Sp-regulated genes.
Collapse
Affiliation(s)
- KyoungHyun Kim
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, TX, 77030
| | - Gayathri Chadalapaka
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843
| | - Satya S. Pathi
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843
| | - Un-Ho Jin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, TX, 77030
| | - Ju-Seog Lee
- Department of Systems Biology, M.D. Anderson Cancer Center, The University of Texas, 1515 Holcombe Blvd., Unit 950, Houston, TX 77030
| | - Yun-Yong Park
- Department of Systems Biology, M.D. Anderson Cancer Center, The University of Texas, 1515 Holcombe Blvd., Unit 950, Houston, TX 77030
| | - Sung-Gook Cho
- Department of Systems Biology, M.D. Anderson Cancer Center, The University of Texas, 1515 Holcombe Blvd., Unit 950, Houston, TX 77030
| | - Sudhakar Chintharlapalli
- Eli Lilly and Company, Lilly Research Labs - Oncology Division, DC0546 Room H48A-4105, Indianapolis, IN 46285
| | - Stephen Safe
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, TX, 77030
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843
| |
Collapse
|
26
|
Liu X, Jutooru I, Lei P, Kim K, Lee SO, Brents LK, Prather PL, Safe S. Betulinic acid targets YY1 and ErbB2 through cannabinoid receptor-dependent disruption of microRNA-27a:ZBTB10 in breast cancer. Mol Cancer Ther 2012; 11:1421-1431. [PMID: 22553354 PMCID: PMC4924623 DOI: 10.1158/1535-7163.mct-12-0026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Treatment of ErbB2-overexpressing BT474 and MDA-MB-453 breast cancer cells with 1 to 10 μmol/L betulinic acid inhibited cell growth, induced apoptosis, downregulated specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4, and decreased expression of ErbB2. Individual or combined knockdown of Sp1, Sp3, Sp4 by RNA interference also decreased expression of ErbB2 and this response was because of repression of YY1, an Sp-regulated gene. Betulinic acid-dependent repression of Sp1, Sp3, Sp4, and Sp-regulated genes was due, in part, to induction of the Sp repressor ZBTB10 and downregulation of microRNA-27a (miR-27a), which constitutively inhibits ZBTB10 expression, and we show for the first time that the effects of betulinic acid on the miR-27a:ZBTB10-Sp transcription factor axis were cannabinoid 1 (CB1) and CB2 receptor-dependent, thus identifying a new cellular target for this anticancer agent.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station
| | - Indira Jutooru
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station
| | - Ping Lei
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - KyoungHyun Kim
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Syng-ook Lee
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Lisa K. Brents
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Paul L. Prather
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stephen Safe
- Department of Biochemistry and Biophysics, Texas A&M University, College Station
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| |
Collapse
|
27
|
Maliakal P, Abdelrahim M, Sankpal UT, Maliakal C, Baker CH, Safe S, Herrera LJ, Abudayyeh A, Kaja S, Basha R. Chemopreventive effects of tolfenamic acid against esophageal tumorigenesis in rats. Invest New Drugs 2012; 30:853-861. [PMID: 21197621 DOI: 10.1007/s10637-010-9622-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/12/2010] [Indexed: 12/25/2022]
Abstract
The primary objective of this study is to identify small molecules that target critical transcription factors for potential application in the chemoprevention of esophageal cancer. Specificity proteins (Sp) play a critical role in the growth and metastasis of several malignancies including esophageal cancer. Researchers at the M. D. Anderson Cancer Center Orlando Cancer Research Institute have reported previously that tolfenamic acid (TA) inhibits cancer cell proliferation and tumor growth through the degradation of Sp1, Sp3, and Sp4. We evaluated the chemopreventive properties of TA against esophageal tumorigenesis in N-nitrosomethylbenzylamine (NMBA)-induced murine tumor model. Fischer-344 rats were treated with NMBA (0.5 mg/kg s.c. 3 times a week) for 5 weeks to initiate the tumor formation, and then treated with 50 mg/kg TA from week 6 through week 25. Tumor incidence, tumor multiplicity (number of papilloma per rat), and tumor volume were evaluated after 25 weeks. All rats in the control group that received only NMBA developed lesions (100% incidence), while the TA-treated group showed significantly lower (33%) tumor incidence and tumor multiplicity. Furthermore, the tumor volume was significantly diminished in the TA-treated group when compared with the control group. Using small molecules such as TA to target key transcription factors associated with tumorigenesis for the prevention of esophageal malignancies is a new and promising strategy. Results of the current study provide evidence that TA, when given orally after tumor initiation, can significantly suppress tumorigenesis induced by carcinogenic nitrosamines in rats. These appealing results demonstrate that TA may potentially serve as an effective chemopreventive agent in patient populations vulnerable to esophageal cancer.
Collapse
Affiliation(s)
- Pius Maliakal
- M. D. Anderson Cancer Center Orlando, Cancer Research Institute, Orlando, FL 32827, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Crosstalk of Sp1 and Stat3 signaling in pancreatic cancer pathogenesis. Cytokine Growth Factor Rev 2012; 23:25-35. [PMID: 22342309 DOI: 10.1016/j.cytogfr.2012.01.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer progression is attributed to genetic and epigenetic alterations and a chaotic tumor microenvironment. Those diverse "upstream signal" factors appear to converge on specific sets of central nuclear regulators, namely, transcription factors. Specificity Protein 1 (Sp1) and signal transducer and activator of transcription 3 (Stat3) are central transcription factors that regulate a number of pathways important to tumorigenesis, including tumor cell-cycle progression, apoptosis, angiogenesis, metastasis, and evasion of the immune system. Recently, researchers demonstrated many types of crosstalk of Sp1 and Stat3 in tumor signal transduction and that these factors function cooperatively to activate targeted genes and promote tumorigenesis in pancreatic cancer. Therefore, targeting both Sp1 and Stat3 is a potential preventive and therapeutic strategy for pancreatic cancer.
Collapse
|
29
|
Wang YT, Yang WB, Chang WC, Hung JJ. Interplay of Posttranslational Modifications in Sp1 Mediates Sp1 Stability during Cell Cycle Progression. J Mol Biol 2011; 414:1-14. [DOI: 10.1016/j.jmb.2011.09.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 07/08/2011] [Accepted: 09/14/2011] [Indexed: 12/11/2022]
|
30
|
Domingues I, Rino J, Demmers JAA, de Lanerolle P, Santos SCR. VEGFR2 translocates to the nucleus to regulate its own transcription. PLoS One 2011; 6:e25668. [PMID: 21980525 PMCID: PMC3182252 DOI: 10.1371/journal.pone.0025668] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 09/09/2011] [Indexed: 01/01/2023] Open
Abstract
Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) is the major mediator of the angiogenic effects of VEGF. In addition to its well known role as a membrane receptor that activates multiple signaling pathways, VEGFR2 also has a nuclear localization. However, what VEGFR2 does in the nucleus is still unknown. In the present report we show that, in endothelial cells, nuclear VEGFR2 interacts with several nuclear proteins, including the Sp1, a transcription factor that has been implicated in the regulation of genes needed for angiogenesis. By in vivo chromatin immunoprecipitation (ChIP) assays, we found that VEGFR2 binds to the Sp1-responsive region of the VEGFR2 proximal promoter. These results were confirmed by EMSA assays, using the same region of the VEGFR2 promoter. Importantly, we show that the VEGFR2 DNA binding is directly linked to the transcriptional activation of the VEGFR2 promoter. By reporter assays, we found that the region between -300/-116 relative to the transcription start site is essential to confer VEGFR2-dependent transcriptional activity. It was previously described that nuclear translocation of the VEGFR2 is dependent on its activation by VEGF. In agreement, we observed that the binding of VEGFR2 to DNA requires VEGF activation, being blocked by Bevacizumab and Sunitinib, two anti-angiogenic agents that inhibit VEGFR2 activation. Our findings demonstrate a new mechanism by which VEGFR2 activates its own promoter that could be involved in amplifying the angiogenic response.
Collapse
Affiliation(s)
- Inês Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Jeroen A. A. Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | | |
Collapse
|
31
|
Pathi SS, Lei P, Sreevalsan S, Chadalapaka G, Jutooru I, Safe S. Pharmacologic doses of ascorbic acid repress specificity protein (Sp) transcription factors and Sp-regulated genes in colon cancer cells. Nutr Cancer 2011; 63:1133-1142. [PMID: 21919647 PMCID: PMC3359146 DOI: 10.1080/01635581.2011.605984] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ascorbic acid (vitamin C) inhibits cancer cell growth, and there is a controversy regarding the cancer chemoprotective effects of pharmacologic doses of this compound that exhibits prooxidant activity. We hypothesized that the anticancer activity of pharmacologic doses of ascorbic acid (<5 mM) is due, in part, to reactive oxygen species-dependent downregulation of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4 and Sp-regulated genes. In this study, ascorbic acid (1-3 mM) decreased RKO and SW480 colon cancer cell proliferation and induced apoptosis and necrosis, and this was accompanied by downregulation of Sp1, Sp3, and Sp4 proteins. In addition, ascorbic acid decreased expression of several Sp-regulated genes that are involved in cancer cell proliferation [hepatocyte growth factor receptor (c-Met), epidermal growth factor receptor and cyclin D1], survival (survivin and bcl-2), and angiogenesis [vascular endothelial growth factor (VEGF) and its receptors (VEGFR1 and VEGFR2)]. Other prooxidants such as hydrogen peroxide exhibited similar activities in colon cancer cells, and cotreatment with glutathione inhibited these responses. This study demonstrates for the first time that the anticancer activities of ascorbic acid are due, in part, to ROS-dependent repression of Sp transcription factors.
Collapse
Affiliation(s)
- Satya S. Pathi
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Ping Lei
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030
| | - Sandeep Sreevalsan
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Gayathri Chadalapaka
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Indira Jutooru
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843-4466
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030
| |
Collapse
|
32
|
Chintharlapalli S, Papineni S, Lee SO, Lei P, Jin UH, Sherman SI, Santarpia L, Safe S. Inhibition of pituitary tumor-transforming gene-1 in thyroid cancer cells by drugs that decrease specificity proteins. Mol Carcinog 2011; 50:655-667. [PMID: 21268135 PMCID: PMC3128656 DOI: 10.1002/mc.20738] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/22/2010] [Accepted: 12/14/2010] [Indexed: 02/06/2023]
Abstract
Methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) and the corresponding 2-trifluoromethyl analog (CF(3)DODA-Me) are derived synthetically from the triterpenoid glycyrrhetinic acid, a major component of licorice. CDODA-Me and CF(3)DODA-Me inhibited growth of highly invasive ARO, DRO, K-18, and HTh-74 thyroid cancer cells and this was due, in part, to decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4 that are overexpressed in these cells. CDODA-Me and CF(3)DODA-Me also decreased expression of Sp-dependent genes, such as survivin and vascular endothelial growth factor (VEGF), and induced apoptosis. In addition, pituitary tumor-transforming gene-1 (PTTG-1) protein and mRNA levels were also decreased in thyroid cancer cells treated with CDODA-Me or CF(3)DODA-Me and this was accompanied by decreased expression of PTTG-1-dependent c-Myc and fibroblast growth factor-2 (FGF-2) genes. RNA interference studies against Sp1, Sp3, and Sp4 proteins showed that in thyroid cancer cells, PTTG-1 was an Sp-dependent gene. This study demonstrates for the first time that drugs, such as CDODA-Me and CF(3)DODA-Me, that decrease Sp protein expression also downregulate PTTG-1 in thyroid cancer cells and therefore have potential for clinical treatment of thyroid cancer and other endocrine neoplasias where PTTG-1 is a major pro-oncogenic factor.
Collapse
Affiliation(s)
- Sudhakar Chintharlapalli
- Institute of Biosciences and Technology Texas A&M Health Science Center 2121 W. Holcombe Blvd. Houston, TX 77030
| | - Sabitha Papineni
- Institute of Biosciences and Technology Texas A&M Health Science Center 2121 W. Holcombe Blvd. Houston, TX 77030
- Department of Veterinary Physiology and Pharmacology Texas A&M University 4466 TAMU, Vet. Res. Bldg. 410 College Station, TX 77843
| | - Syng-Ook Lee
- Institute of Biosciences and Technology Texas A&M Health Science Center 2121 W. Holcombe Blvd. Houston, TX 77030
| | - Ping Lei
- Institute of Biosciences and Technology Texas A&M Health Science Center 2121 W. Holcombe Blvd. Houston, TX 77030
| | - Un Ho Jin
- Institute of Biosciences and Technology Texas A&M Health Science Center 2121 W. Holcombe Blvd. Houston, TX 77030
| | - Steven I. Sherman
- Department of Endocrine Neoplasia and Hormonal Disorders M.D. Anderson Cancer Center Houston, TX 77030
| | - Libero Santarpia
- Department of Endocrine Neoplasia and Hormonal Disorders M.D. Anderson Cancer Center Houston, TX 77030
| | - Stephen Safe
- Institute of Biosciences and Technology Texas A&M Health Science Center 2121 W. Holcombe Blvd. Houston, TX 77030
- Department of Veterinary Physiology and Pharmacology Texas A&M University 4466 TAMU, Vet. Res. Bldg. 410 College Station, TX 77843
| |
Collapse
|
33
|
Chintharlapalli S, Papineni S, Lei P, Pathi S, Safe S. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors. BMC Cancer 2011; 11:371. [PMID: 21864401 PMCID: PMC3170653 DOI: 10.1186/1471-2407-11-371] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/24/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. METHODS The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression. RESULTS BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. CONCLUSIONS These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.
Collapse
Affiliation(s)
- Sudhakar Chintharlapalli
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030 USA
- Eli Lilly Co., Oncology Division, Indianapolis, IN, USA
| | - Sabitha Papineni
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030 USA
- Dow Agrosciences, Indianapolis, IN, USA
| | - Ping Lei
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030 USA
| | - Satya Pathi
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843 USA
| | - Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
34
|
Cai J, Wu L, Qi X, Shaw L, Li Calzi S, Caballero S, Jiang WG, Vinores SA, Antonetti D, Ahmed A, Grant MB, Boulton ME. Placenta growth factor-1 exerts time-dependent stabilization of adherens junctions following VEGF-induced vascular permeability. PLoS One 2011; 6:e18076. [PMID: 21464949 PMCID: PMC3064593 DOI: 10.1371/journal.pone.0018076] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 02/24/2011] [Indexed: 01/13/2023] Open
Abstract
Increased vascular permeability is an early event characteristic of tissue ischemia and angiogenesis. Although VEGF family members are potent promoters of endothelial permeability the role of placental growth factor (PlGF) is hotly debated. Here we investigated PlGF isoforms 1 and 2 and present in vitro and in vivo evidence that PlGF-1, but not PlGF-2, can inhibit VEGF-induced permeability but only during a critical window post-VEGF exposure. PlGF-1 promotes VE-cadherin expression via the trans-activating Sp1 and Sp3 interaction with the VE-cadherin promoter and subsequently stabilizes transendothelial junctions, but only after activation of endothelial cells by VEGF. PlGF-1 regulates vascular permeability associated with the rapid localization of VE-cadherin to the plasma membrane and dephosphorylation of tyrosine residues that precedes changes observed in claudin 5 tyrosine phosphorylation and membrane localization. The critical window during which PlGF-1 exerts its effect on VEGF-induced permeability highlights the importance of the translational significance of this work in that PLGF-1 likely serves as an endogenous anti-permeability factor whose effectiveness is limited to a precise time point following vascular injury. Clinical approaches that would pattern nature's approach would thus limit treatments to precise intervals following injury and bring attention to use of agents only during therapeutic windows.
Collapse
Affiliation(s)
- Jun Cai
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - Lin Wu
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - Xiaoping Qi
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - Lynn Shaw
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Sergio Li Calzi
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Sergio Caballero
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Wen G. Jiang
- Department of Surgery, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stanley A. Vinores
- Ophthalmology, Johns Hopkins University, Wilmer Eye Institute, Baltimore, Maryland, United States of America
| | - David Antonetti
- Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Asif Ahmed
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria B. Grant
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Michael E. Boulton
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
35
|
Double suicide genes selectively kill human umbilical vein endothelial cells. Virol J 2011; 8:74. [PMID: 21333030 PMCID: PMC3048567 DOI: 10.1186/1743-422x-8-74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 02/21/2011] [Indexed: 02/05/2023] Open
Abstract
Background To construct a recombinant adenovirus containing CDglyTK double suicide genes and evaluate the killing effect of the double suicide genes driven by kinase domain insert containing receptor (KDR) promoter on human umbilical vein endothelial cells. Methods Human KDR promoter, Escherichia coli (E. coli) cytosine deaminase (CD) gene and the herpes simplex virus-thymidine kinase (TK) gene were cloned using polymerase chain reaction (PCR). Plasmid pKDR-CDglyTK was constructed with the KDR promoter and CDglyTK genes. A recombinant adenoviral plasmid AdKDR-CDglyTK was then constructed and transfected into 293 packaging cells to grow and harvest adenoviruses. KDR-expressing human umbilical vein endothelial cells (ECV304) and KDR-negative liver cancer cell line (HepG2) were infected with the recombinant adenoviruses at different multiplicity of infection (MOI). The infection rate was measured by green fluorescent protein (GFP) expression. The infected cells were cultured in culture media containing different concentrations of prodrugs ganciclovir (GCV) and/or 5-fluorocytosine (5-FC). The killing effects were measured using two different methods, i.e. annexin V-FITC staining and terminal transferase-mediated dUTP nick end-labeling (TUNEL) staining. Results Recombinant adenoviruses AdKDR-CDglyTK were successfully constructed and they infected ECV304 and HepG2 cells efficiently. The infection rate was dependent on MOI of recombinant adenoviruses. ECV304 cells infected with AdKDR-CDglyTK were highly sensitive to GCV and 5-FC. The cell survival rate was dependent on both the concentration of the prodrugs and the MOI of recombinant adenoviruses. In contrast, there were no killing effects in the HepG2 cells. The combination of two prodrugs was much more effective in killing ECV304 cells than GCV or 5-FC alone. The growth of transgenic ECV304 cells was suppressed in the presence of prodrugs. Conclusion AdKDR-CDglyTK/double prodrog system may be a useful method for suppressing tumor angiogenesis.
Collapse
|
36
|
Pathi SS, Jutooru I, Chadalapaka G, Sreevalsan S, Anand S, Thatcher GRJ, Safe S. GT-094, a NO-NSAID, inhibits colon cancer cell growth by activation of a reactive oxygen species-microRNA-27a: ZBTB10-specificity protein pathway. Mol Cancer Res 2011; 9:195-202. [PMID: 21156786 PMCID: PMC3069691 DOI: 10.1158/1541-7786.mcr-10-0363] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ethyl 2-((2,3-bis(nitrooxy)propyl)disulfanyl)benzoate (GT-094) is a novel nitric oxide (NO) chimera containing an nonsteroidal anti-inflammatory drug (NSAID) and NO moieties and also a disulfide pharmacophore that in itself exhibits cancer chemopreventive activity. In this study, the effects and mechanism of action of GT-094 were investigated in RKO and SW480 colon cancer cells. GT-094 inhibited cell proliferation and induced apoptosis in both cell lines and this was accompanied by decreased mitochondrial membrane potential (MMP) and induction of reactive oxygen species (ROS), and these responses were reversed after cotreatment with the antioxidant glutathione. GT-094 also downregulated genes associated with cell growth [cyclin D1, hepatocyte growth factor receptor (c-Met), epidermal growth factor receptor (EGFR)], survival (bcl-2, survivin), and angiogenesis [VEGF and its receptors (VEGFR1 and VEGFR2)]. Results of previous RNA interference studies in this laboratory has shown that these genes are regulated, in part, by specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4 that are overexpressed in colon and other cancer cell lines and not surprisingly, GT-094 also decreased Sp1, Sp3, and Sp4 in colon cancer cells. GT-094-mediated repression of Sp and Sp-regulated gene products was due to downregulation of microRNA-27a (miR-27a) and induction of ZBTB10, an Sp repressor that is regulated by miR-27a in colon cancer cells. Moreover, the effects of GT-094 on Sp1, Sp3, Sp4, miR-27a, and ZBTB10 were also inhibited by glutathione suggesting that the anticancer activity of GT-094 in colon cancer cells is due, in part, to activation of an ROS-miR-27a:ZBTB10-Sp transcription factor pathway.
Collapse
Affiliation(s)
- Satya S. Pathi
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Indira Jutooru
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Gayathri Chadalapaka
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Sandeep Sreevalsan
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - S. Anand
- Department of Medicinal Chemistry & Pharmacognosy University of Illinois at Chicago Chicago, IL 60612
| | - Gregory R. J. Thatcher
- Department of Medicinal Chemistry & Pharmacognosy University of Illinois at Chicago Chicago, IL 60612
| | - Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843-4466
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030
| |
Collapse
|
37
|
Ortholan C, Durivault J, Hannoun-Levi JM, Guyot M, Bourcier C, Ambrosetti D, Safe S, Pagès G. Bevacizumab/docetaxel association is more efficient than docetaxel alone in reducing breast and prostate cancer cell growth: a new paradigm for understanding the therapeutic effect of combined treatment. Eur J Cancer 2010; 46:3022-3036. [PMID: 20729074 DOI: 10.1016/j.ejca.2010.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 11/28/2022]
Abstract
Bevacizumab (Bvz), a Vascular Endothelial Growth Factor (VEGF)-targeted humanised monoclonal antibody, provides clinical benefit in combination with docetaxel (DXL), a microtubule-stabilising agent, in the treatment of metastatic breast and prostate cancers. Since VEGF and their receptors are expressed by tumour cells, we hypothesised that Bvz, in addition to its impact on neo-vascularisation, could have an impact on tumour cells and enhance the DXL activity. Hence, we studied the effect of DXL and Bvz on metastatic breast (MDA MB-231) and prostate (PC3) cancer cells lines. Bvz alone did not decrease cell proliferation but in combination with DXL, Bvz enhanced the anti-proliferative activity of DXL. Other anti-angiogenic factors Sunitinib, Sorafenib and Gefitinib enhanced the anti-proliferative effect of DXL. qPCR experiments showed that DXL significantly increased the VEGF and VEGF receptor 2 (VEGF-R2) mRNA levels. Activation of VEGF and VEGF-R2 promoters demonstrated that enhanced mRNA levels are partly due to transcriptional activation. ELISA assays showed that DXL induced accumulation of cytoplasmic VEGF but decreased extracellular levels by 39% (MDA) and 48% (PC3). Cell surface localisation of VEGF-R2 was increased by DXL alone, but decreased after combined treatment of DXL plus Bvz. Abnormal expression of VEGF-R2 was also shown on breast and prostate tumour samples reinforcing the results obtained on cellular models. In conclusion, DXL and Bvz in combination decreased extracellular VEGF and VEGF-R2 levels at the plasma membrane thereby blocking an important growth/survival loop. Thus, the combined therapeutic impact of Bvz and DXL observed in clinical trials is associated with enhanced anti-proliferative activity and inhibition of the vascular network.
Collapse
Affiliation(s)
- Cécile Ortholan
- University of Nice Sophia Antipolis, UMR CNRS 6543, Institute of Signalling, Developmental Biology and Cancer Research UMR CNRS 6543, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chhabra R, Dubey R, Saini N. Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases. Mol Cancer 2010; 9:232. [PMID: 20815877 PMCID: PMC2940846 DOI: 10.1186/1476-4598-9-232] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/03/2010] [Indexed: 12/19/2022] Open
Abstract
The small RNA molecules of about 19-22 nucleotides in length, aptly called microRNAs, perform the task of gene regulation in the cell. Interestingly, till the early nineties very little was known about them but eventually, the microRNAs have become forefront in the area of research. The huge number of microRNAs plus each one of them targeting a vast number of related as well as unrelated genes makes them very interesting molecules to study. To add to the mystery of miRNAs is the fact that the same miRNA can have antagonizing role in two different cell types i.e. in one cell type; the miRNA promotes proliferation whereas in another cell type the same miRNA inhibits proliferation. Another remarkable aspect of the microRNAs is that many of them exist in clusters. In humans alone, out of 721 microRNAs known, 247 of them occur in 64 clusters at an inter-miRNA distance of less than 5000bp. The reason for this clustering of miRNAs is not fully understood but since the miRNA clusters are evolutionary conserved, their significance cannot be ruled out. The objective of this review is to summarize the recent progress on the functional characterization of miR-23a~27a~24-2 cluster in humans in relation to various health and diseased conditions and to highlight the cooperative effects of the miRNAs of this cluster.
Collapse
Affiliation(s)
- Ravindresh Chhabra
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi-110007, India
| | | | | |
Collapse
|
39
|
Jutooru I, Chadalapaka G, Lei P, Safe S. Inhibition of NFkappaB and pancreatic cancer cell and tumor growth by curcumin is dependent on specificity protein down-regulation. J Biol Chem 2010; 285:25332-25344. [PMID: 20538607 PMCID: PMC2919096 DOI: 10.1074/jbc.m109.095240] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/10/2010] [Indexed: 12/19/2022] Open
Abstract
Curcumin activates diverse anticancer activities that lead to inhibition of cancer cell and tumor growth, induction of apoptosis, and antiangiogenic responses. In this study, we observed that curcumin inhibits Panc28 and L3.6pL pancreatic cancer cell and tumor growth in nude mice bearing L3.6pL cells as xenografts. In addition, curcumin decreased expression of p50 and p65 proteins and NFkappaB-dependent transactivation and also decreased Sp1, Sp3, and Sp4 transcription factors that are overexpressed in pancreatic cancer cells. Because both Sp transcription factors and NFkappaB regulate several common genes such as cyclin D1, survivin, and vascular endothelial growth factor that contribute to the cancer phenotype, we also investigated interactions between Sp and NFkappaB transcription factors. Results of Sp1, Sp3, and Sp4 knockdown by RNA interference demonstrate that both p50 and p65 are Sp-regulated genes and that inhibition of constitutive or tumor necrosis factor-induced NFkappaB by curcumin is dependent on down-regulation of Sp1, Sp3, and Sp4 proteins by this compound. Curcumin also decreased mitochondrial membrane potential and induced reactive oxygen species in pancreatic cancer cells, and this pathway is required for down-regulation of Sp proteins in these cells, demonstrating that the mitochondriotoxic effects of curcumin are important for its anticancer activities.
Collapse
Affiliation(s)
- Indira Jutooru
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843 and
| | - Gayathri Chadalapaka
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843 and
| | - Ping Lei
- the Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas 77030
| | - Stephen Safe
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843 and
| |
Collapse
|
40
|
Jutooru I, Chadalapaka G, Abdelrahim M, Basha MR, Samudio I, Konopleva M, Andreeff M, Safe S. Methyl 2-cyano-3,12-dioxooleana-1,9-dien-28-oate decreases specificity protein transcription factors and inhibits pancreatic tumor growth: role of microRNA-27a. Mol Pharmacol 2010; 78:226-236. [PMID: 20488920 PMCID: PMC2917860 DOI: 10.1124/mol.110.064451] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/13/2010] [Indexed: 01/11/2023] Open
Abstract
The anticancer agent 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and its methyl ester (CDDO-Me) typically induce a broad spectrum of growth-inhibitory, proapoptotic, and antiangiogenic responses. Treatment of Panc1, Panc28, and L3.6pL pancreatic cancer cells with low micromolar concentrations of CDDO or CDDO-Me resulted in growth inhibition, induction of apoptosis, and down-regulation of cyclin D1, survivin, vascular endothelial growth factor (VEGF), and its receptor (VEGFR2). RNA interference studies indicate that these repressed genes are regulated by specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4, and Western blot analysis of lysates from pancreatic cancer cells treated with CDDO and CDDO-Me shows for the first time that both compounds decreased the expression of Sp1, Sp3, and Sp4. Moreover, CDDO-Me (7.5 mg/kg/day) also inhibited pancreatic human L3.6pL tumor growth and down-regulated Sp1, Sp3, and Sp4 in tumors using an orthotopic pancreatic cancer model. CDDO-Me also induced reactive oxygen species (ROS) and decreased mitochondrial membrane potential (MMP) in Panc1 and L3.6pL cells, and cotreatment with antioxidants (glutathione and dithiothreitol) blocked the formation of ROS, reversed the loss of MMP, and inhibited down-regulation of Sp1, Sp3, and Sp4. Repression of Sp and Sp-dependent genes by CDDO-Me was due to the down-regulation of microRNA-27a and induction of zinc finger and BTB domain containing 10 (ZBTB10), an Sp repressor, and these responses were also reversed by antioxidants. Thus, the anticancer activity of CDDO-Me is due, in part, to activation of ROS, which in turn targets the microRNA-27a:ZBTB10-Sp transcription factor axis. This results in decreased expression of Sp-regulated genes, growth inhibition, induction of apoptosis, and antiangiogenic responses.
Collapse
Affiliation(s)
- Indira Jutooru
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, Vet. Res. Bldg. 410, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jutooru I, Chadalapaka G, Sreevalsan S, Lei P, Barhoumi R, Burghardt R, Safe S. Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth. Exp Cell Res 2010; 316:2174-2188. [PMID: 20435036 PMCID: PMC2900380 DOI: 10.1016/j.yexcr.2010.04.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/05/2010] [Accepted: 04/26/2010] [Indexed: 11/18/2022]
Abstract
Arsenic trioxide exhibits antiproliferative, antiangiogenic and proapoptotic activity in cancer cells, and many genes associated with these responses are regulated by specificity protein (Sp) transcription factors. Treatment of cancer cells derived from urologic (bladder and prostate) and gastrointestinal (pancreas and colon) tumors with arsenic trioxide demonstrated that these cells exhibited differential responsiveness to the antiproliferative effects of this agent and this paralleled their differential repression of Sp1, Sp3 and Sp4 proteins in the same cell lines. Using arsenic trioxide-responsive KU7 and non-responsive 253JB-V bladder cancer cells as models, we show that in KU7 cells, < or =5 microM arsenic trioxide decreased Sp1, Sp3 and Sp4 and several Sp-dependent genes and responses including cyclin D1, epidermal growth factor receptor, bcl-2, survivin and vascular endothelial growth factor, whereas at concentrations up to 15 microM, minimal effects were observed in 253JB-V cells. Arsenic trioxide also inhibited tumor growth in athymic mice bearing KU7 cells as xenografts, and expression of Sp1, Sp3 and Sp4 was significantly decreased. Inhibitors of oxidative stress such as glutathione or dithiothreitol protected KU7 cells from arsenic trioxide-induced antiproliferative activity and Sp repression, whereas glutathione depletion sensitized 253JB-V cells to arsenic trioxide. Mechanistic studies suggested that arsenic trioxide-dependent downregulation of Sp and Sp-dependent genes was due to decreased mitochondrial membrane potential and induction of reactive oxygen species, and the role of peroxides in mediating these responses was confirmed using hydrogen peroxide.
Collapse
Affiliation(s)
- Indira Jutooru
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA
| | - Gayathri Chadalapaka
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA
| | - Sandeep Sreevalsan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA
| | - Ping Lei
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX 77030-3303 USA
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Robert Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX 77030-3303 USA
| |
Collapse
|
42
|
Coskun M, Boyd M, Olsen J, Troelsen JT. Control of intestinal promoter activity of the cellular migratory regulator gene ELMO3 by CDX2 and SP1. J Cell Biochem 2010; 109:1118-28. [PMID: 20127720 DOI: 10.1002/jcb.22490] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An important aspect of the cellular differentiation in the intestine is the migration of epithelial cells from the crypt to the villus tip. As homeodomaine transcription factor CDX2 has been suggested to influence cell migration, we performed a genome-wide promoter analysis for CDX2 binding in the differentiated human intestinal cancer cell line Caco-2 in order to identify CDX2-regulated genes involved in cellular migration. The engulfment and cell motility 3 (ELMO3) gene was identified as a potential CDX2 target gene. ELMO3 is an essential upstream regulator of the GTP-binding protein RAC during cell migration. However, no information is available about the transcriptional regulation of the ELMO3 gene. The aim of this study was to investigate the potential role of CDX2 in the regulation of the ELMO3 promoter activity. Electrophoretic mobility shift assays showed that CDX2 bound to conserved CDX2 sequences and mutations of the CDX2-binding sites, significantly reduced the promoter activity. Reporter gene assays demonstrated that the region mediating ELMO3 basal transcriptional activity to be located between -270 and -31 bp. Sequence analysis revealed no typical TATA-box, but four GC-rich sequences. In vitro analyses (electrophoretic mobility shift assays and promoter analyses) demonstrate that the SP1-binding sites are likely to play an important role in regulating the ELMO3 promoter activity. Furthermore, we showed here that CDX2 and SP1 can activate the ELMO3 promoter. Taken together, the present study reports the first characterization of the ELMO3 promoter and suggests a significant role of CDX2 in the basal transcriptional regulation of the intestine-specific expression of ELMO3, possibly through interaction with SP1.
Collapse
Affiliation(s)
- Mehmet Coskun
- Faculty of Health Sciences, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|
43
|
Pillai S, Kovacs M, Chellappan S. Regulation of vascular endothelial growth factor receptors by Rb and E2F1: role of acetylation. Cancer Res 2010; 70:4931-40. [PMID: 20516113 DOI: 10.1158/0008-5472.can-10-0501] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
E2F transcription factors regulate a variety of cellular processes, but their role in angiogenesis is not clear. We find that many genes involved in angiogenesis such as FLT-1, KDR, and angiopoietin 2 have potential E2F1 binding sites in their promoter. Chromatin immunoprecipitation (ChIP) assays showed that E2F1 can associate with these promoters and the recruitment of E2F1 was enhanced upon vascular endothelial growth factor (VEGF) stimulation with concomitant dissociation of Rb, leading to the transcriptional activation of these promoters. Transient transfection experiments showed that these promoters were induced by E2F1 and repressed by Rb, whereas depletion of E2F1 decreased their expression. The increased binding of E2F1 to these promoters upon VEGF stimulation correlated with the acetylation of histones and E2F1; this required VEGF receptor function, as seen in ChIP-re-ChIP experiments. This suggests the existence of a positive feedback loop regulating E2F1 acetylation and VEGF receptor expression. Acetylation associated with VEGF signaling seems to be predominantly mediated by P300/CBP-associated factor, and the depletion of histone acetyl transferases disrupted the formation of angiogenic tubules. These results suggest a novel role for E2F1 and acetylation in the angiogenic process.
Collapse
Affiliation(s)
- Smitha Pillai
- Drug Discovery Program, Department of Oncologic Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | | |
Collapse
|
44
|
Li X, Mertens-Talcott SU, Zhang S, Kim K, Ball J, Safe S. MicroRNA-27a Indirectly Regulates Estrogen Receptor {alpha} Expression and Hormone Responsiveness in MCF-7 Breast Cancer Cells. Endocrinology 2010; 151:2462-2473. [PMID: 20382698 PMCID: PMC2875816 DOI: 10.1210/en.2009-1150] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 03/16/2010] [Indexed: 12/31/2022]
Abstract
MicroRNA-27a (miR-27a) is expressed in MCF-7 breast cancer cells, and antisense miR-27a (as-miR-27a) induces ZBTB10, a specificity protein (Sp) repressor. Both as-miR-27a and overexpression of ZBTB10 decreased Sp1, Sp3, and Sp4 mRNA and protein expression in MCF-7 cells, and this was also accompanied by decreased levels of estrogen receptor alpha (ERalpha) mRNA and protein. RNA interference studies confirmed that basal expression of ERalpha was dependent on Sp1 but not Sp3 or Sp4 in MCF-7 cells. as-miR-27a and overexpression of ZBTB10 inhibited 17beta-estradiol (E2)-induced transactivation in MCF-7 cells, and this was accompanied by decreased binding of Sp and ER proteins in cell lysates to oligonucleotides containing GC-rich motifs or estrogen-responsive elements, respectively. as-miR-27a and overexpression of ZBTB10 arrested MCF-7 cells in G(0)/G(1) and inhibited E2-induced G(0)/G(1) to S phase progression. as-miR-27a induced only a minimal increase in Myt-1, another miR-27a regulated gene, and this was not accompanied by Myt-1-dependent G(2)/M arrest as observed previously in ER-negative MDA-MB-231 breast cancer cells. Thus, miR-27a indirectly regulates E2-responsiveness in MCF-7 cells through suppression of ZBTB10, thereby enhancing expression of ERalpha.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, Texas 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
45
|
Guo S, Colbert LS, Fuller M, Zhang Y, Gonzalez-Perez RR. Vascular endothelial growth factor receptor-2 in breast cancer. Biochim Biophys Acta Rev Cancer 2010; 1806:108-21. [PMID: 20462514 DOI: 10.1016/j.bbcan.2010.04.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 12/31/2022]
Abstract
Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR was structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival.
Collapse
Affiliation(s)
- Shanchun Guo
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | |
Collapse
|
46
|
Previdi S, Malek A, Albertini V, Riva C, Capella C, Broggini M, Carbone GM, Rohr J, Catapano CV. Inhibition of Sp1-dependent transcription and antitumor activity of the new aureolic acid analogues mithramycin SDK and SK in human ovarian cancer xenografts. Gynecol Oncol 2010; 118:182-8. [PMID: 20452660 DOI: 10.1016/j.ygyno.2010.03.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 03/20/2010] [Accepted: 03/27/2010] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Increased activity of Sp family of transcription factors is a frequent and critical event in cancer development and progression. Genes governing tumor growth, invasion and angiogenesis are regulated by Sp factors, like Sp1, Sp3 or Sp4, and are frequently over-expressed in tumors. Targeting Sp factors has been explored as a therapeutic approach. Mithramycin (MTM) is a natural antibiotic that binds DNA and inhibit Sp1-dependent transcription. New analogues, named MTM-SDK and MTM-SK, were recently obtained by genetic engineering of the MTM biosynthetic pathway and have demonstrated improved transcriptional and antiproliferative activity in ovarian cancer cell lines in vitro. In the present study we evaluated the activity of the new compounds in human ovarian cancer xenografts. METHODS Expression of Sp1 and target proteins in ovarian cancer specimens and tumor xenografts was assessed by immunohistochemistry. Drug-induced silencing of Sp1-regulated genes in cells and tumor xenograft samples was assessed by quantitative RT-PCR. Toxicity and antitumor activity of the compounds were investigated in healthy and tumor-bearing immunocompromised mice, respectively. RESULTS Expression of Sp1 was frequently increased in human epithelial ovarian cancers. MTM-SDK and MTM-SK acted as potent inhibitors of Sp1-dependent transcription both in vitro and in tumor xenografts. Both compounds were well tolerated even after prolonged administration and delayed growth of ovarian tumor xenografts. MTM-SDK was particularly effective against orthotopic tumors leading to a significant increase of survival and delay of tumor progression. CONCLUSIONS MTM-SDK and MTM-SK show relevant activity in vivo and represent interesting candidates for treatment of ovarian cancers.
Collapse
Affiliation(s)
- Sara Previdi
- Laboratory of Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Su B, Xiang B, Wang L, Cao L, Xiao L, Li X, Li X, Wu M, Li G. Profiling and comparing transcription factors activated in non-metastatic and metastatic nasopharyngeal carcinoma cells. J Cell Biochem 2010; 109:173-83. [PMID: 19911387 DOI: 10.1002/jcb.22395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcription factors (TFs) are modulators of gene expression that are critically important in the establishment and progression of human cancers. In the current study, the activity profiles of TFs in a normal nasopharyngeal epithelial cell line and in nasopharyngeal carcinoma (NPC) cell lines were studied using oligonucleotide array-based TF assays. Compared to the normal epithelial cell line NP69, nine TFs in the non-metastatic NPC cell line (6-10B) and eight TFs in a metastatic NPC cell line (5-8F) were upregulated. Among upregulated TFs, Sp1, AP2, and ATF/CREB families exhibited relatively high activities in NPC cell lines. Transcription levels of Sp1, ATF-1, ATF-2, AP2alpha, AP2gamma, and CREB1 were higher in 5-8F cells than in 6-10B cells. In addition, higher expression of the Sp1 target genes MMP-9 and VEGF was observed in 5-8F cells. Sp1 silencing reduced VEGF and MMP-9 expression. Inhibition of Sp1 expression and activity in 5-8F cells by mithramycin resulted in downregulated expression and secretion of MMP-9 and VEGF, concomitant with inhibition of cell migration and invasion. These results suggest that dynamic changes in TF activities occur in NPC cells and that these changes may play important roles in regulating the expression of genes associated with the development and progression of NPC.
Collapse
Affiliation(s)
- Bo Su
- Cancer Research Institute, Central South University, Changsha 410078, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kessler T, Bayer M, Schwöppe C, Liersch R, Mesters RM, Berdel WE. Compounds in clinical Phase III and beyond. Recent Results Cancer Res 2010; 180:137-163. [PMID: 20033382 DOI: 10.1007/978-3-540-78281-0_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Targeted therapies against cancer have become more and more important. In particular, the inhibition of tumor angiogenesis and vascular targeting have been the focus of new treatment strategies. Numerous new substances were developed as angiogenesis inhibitors and evaluated in clinical trials for safety, tolerance, and efficacy. With positive study results, some of these molecules have already been approved for clinical use. For example, this is true for the vascular endothelial growth factor neutralizing antibody bevacizumab (BEV) in metastatic colorectal cancer, nonsmall cell lung cancer, renal cancer, and breast cancer. The tyrosine kinase (TK) inhibitors sorafenib and sunitinib have been approved for metastatic renal cancer as well as for hepatocellular carcinoma, and sunitinib has also been approved for gastrointestinal stroma tumors. In this chapter we try to give an overview of the substances currently investigated in Phase III studies and beyond with regard to antiangiogenesis in cancer therapy.
Collapse
Affiliation(s)
- Torsten Kessler
- Department of Medicine, Hematology and Oncology, University of Münster, Albert-Schweitzer-Strasse, 33, 48129, Münster, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Chintharlapalli S, Papineni S, Abdelrahim M, Abudayyeh A, Jutooru I, Chadalapaka G, Wu F, Mertens-Talcott S, Vanderlaag K, Cho SD, Smith R, Safe S. Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18beta-olean-1,12-dien-30-oate in colon cancer cells. Int J Cancer 2009; 125:1965-1974. [PMID: 19582879 PMCID: PMC2766353 DOI: 10.1002/ijc.24530] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Methyl 2-cyano-3,11-dioxo-18beta-olean-1,12-dien-30-oate (CDODA-Me) is a synthetic derivative of glycyrrhetinic acid, a triterpenoid phytochemical found in licorice extracts. CDODA-Me inhibited growth of RKO and SW480 colon cancer cells and this was accompanied by decreased expression of Sp1, Sp3 and Sp4 protein and mRNA and several Sp-dependent genes including survivin, vascular endothelial growth factor (VEGF), and VEGF receptor 1 (VEGFR1 or Flt-1). CDODA-Me also induced apoptosis, arrested RKO and SW480 cells at G(2)/M, and inhibited tumor growth in athymic nude mice bearing RKO cells as xenografts. CDODA-Me decreased expression of microRNA-27a (miR-27a), and this was accompanied by increased expression of 2 miR-27a-regulated mRNAs, namely ZBTB10 (an Sp repressor) and Myt-1 which catalyzes phosphorylation of cdc2 to inhibit progression of cells through G(2)/M. Both CDODA-Me and antisense miR-27a induced comparable responses in RKO and SW480 cells, suggesting that the potent anticarcinogenic activity of CDODA-Me is due to repression of oncogenic miR-27a.
Collapse
Affiliation(s)
- Sudhakar Chintharlapalli
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX
| | - Sabitha Papineni
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Maen Abdelrahim
- M. D. Anderson Cancer Center, Orlando Regional Health Care, Orlando, FL
| | - Ala Abudayyeh
- Department of Gastroenterology, Baylor College of Medicine, Houston, TX
| | - Indira Jutooru
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Gayathri Chadalapaka
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Fei Wu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
| | - Susanne Mertens-Talcott
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Kathy Vanderlaag
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Sung Dae Cho
- Department of Oral Pathology, School of Dentistry, Institute of Oral Sciences, Chonbuk National University, Jeonbuk, South Korea
| | - Roger Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX
| | - Stephen Safe
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| |
Collapse
|
50
|
Papineni S, Chintharlapalli S, Abdelrahim M, Lee SO, Burghardt R, Abudayyeh A, Baker C, Herrera L, Safe S. Tolfenamic acid inhibits esophageal cancer through repression of specificity proteins and c-Met. Carcinogenesis 2009; 30:1193-1201. [PMID: 19406933 PMCID: PMC2704282 DOI: 10.1093/carcin/bgp092] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/06/2009] [Accepted: 04/09/2009] [Indexed: 12/15/2022] Open
Abstract
The non-steroidal anti-inflammatory drug tolfenamic acid (TA) inhibits proliferation of SEG-1 and BIC-1 esophageal cancer cells with half-maximal growth inhibitory concentration values of 36 and 48 muM, respectively. TA also increased Annexin V staining in both cell lines, indicative of proapoptotic activity. Treatment of SEG-1 and BIC-1 cells with TA for up to 72 h decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and this was accompanied by decreased expression of the well-characterized Sp-regulated genes cyclin D1, vascular endothelial growth factor and survivin. TA also decreased hepatocyte growth factor receptor, (c-Met), a receptor tyrosine kinase that is overexpressed in esophageal cancer cells and tumors and is an important drug target. Knockdown of Sp1, Sp3 and Sp4 by RNA interference in SEG-1 and BIC-1 cells also decreased c-Met expression, demonstrating that c-Met is an Sp-regulated gene in esophageal cancer cells. Sp1 was overexpressed in esophageal cancer cells and tumors and increased Sp1 staining was observed in esophageal tumors from patients. TA (20 mg/kg/day) also decreased tumor growth and weight in athymic nude mice bearing SEG-1 cells as xenografts and this was accompanied by increased apoptosis and decreased Sp1 and c-Met staining in tumors from treated mice. Thus, TA-dependent downregulation of Sp transcription factors and c-Met defines a novel chemotherapeutic approach for treatment of esophageal cancer.
Collapse
Affiliation(s)
- Sabitha Papineni
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | - Sudhakar Chintharlapalli
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Maen Abdelrahim
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, FL 32806, USA
| | - Syng-ook Lee
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| | - Robert Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Ala Abudayyeh
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cheryl Baker
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, FL 32806, USA
| | - Luis Herrera
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, FL 32806, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA
| |
Collapse
|