1
|
Ma H, Mueed A, Ma Y, Ibrahim M, Su L, Wang Q. Fecal Microbiota Transplantation Activity of Floccularia luteovirens Polysaccharides and Their Protective Effect on Cyclophosphamide-Induced Immunosuppression and Intestinal Injury in Mice. Foods 2024; 13:3881. [PMID: 39682952 DOI: 10.3390/foods13233881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Floccularia luteovirens polysaccharides (FLP1s) have potential biological activities. Our previous study showed that FLP1s positively regulated gut immunity and microbiota. However, it is still unclear whether FLP1s mediate gut microbiota in immunosuppressed mice. This research aims to explore the relationship between FLP1-mediated gut microbes and intestinal immunity in immunosuppressed mice through fecal microbiota transplantation (FMT). The results demonstrated that FLP1s exhibited prebiotic and anti-immunosuppressive effects on CTX-induced immunosuppressed mice. FFLP1 treatment (microbiota transplantation from the fecal sample) remarkably elevated the production of sIgA and secretion of the anti-inflammatory cytokines IL-4, TNF-α, and IFN-γ in the intestine of CTX-treated mice, inducing activation of the MAPK pathway. Moreover, FFLP1s mitigated oxidative stress by activating the Nrf2/Keap1 signaling pathway and strengthened the intestinal barrier function by upregulating the expression level of tight junction proteins (occludin, claudin-1, MUC-2, and ZO-1). Furthermore, FFPL1s restored gut dysbiosis in CTX-treated immunosuppressed mice by increasing the abundance of Alloprevotella, Lachnospiraceae, and Bacteroides. They also modified the composition of fecal metabolites, leading to enhanced regulation of lipolysis in adipocytes, the cGMP-PKG pathway, the Rap1 signaling pathway, and ovarian steroidogenesis, as indicated by KEGG pathway analysis. These findings indicate that FLP1s could modulate the response of the intestinal immune system through regulation of the gut microbiota, thus promoting immune activation in CTX-treated immunosuppressed mice. FLP1s can serve as a natural protective agent against CTX-induced immune injury.
Collapse
Affiliation(s)
- He Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yanxu Ma
- Jilin Sericulture Science Research Institute, Changchun 130012, China
| | - Muhammad Ibrahim
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
2
|
Ma H, Mueed A, Liu D, Ali A, Wang T, Ibrahim M, Su L, Wang Q. Polysaccharides of Floccularia luteovirens regulate intestinal immune response, and oxidative stress activity through MAPK/Nrf2/Keap1 signaling pathway in immunosuppressive mice. Int J Biol Macromol 2024; 277:134140. [PMID: 39074695 DOI: 10.1016/j.ijbiomac.2024.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
This study explores the novel immunomodulatory effects of polysaccharides from the rare Floccularia luteovirens, a fungus with significant potential yet unexplored bioactive components, traditionally used in Tibetan medicine. This study employs a wide array of analytical techniques, including HPGPC, HPLC, western blotting, ELISA, and 16S rRNA gene sequencing, to comprehensively investigate FLP1's effects. The main structure of FLP1 was characterized by IF-TR and NMR spectrometry. The structural backbone of FLP1 was →3,6)-β-D-Glcp-(1 → and →2,3)-α-D-Manp-(1→. After immunosuppressed mice treated with FLP1, the findings demonstrated that FLP1 stimulated the production of secretory sIgA and secretion of cytokines (IL-4, TNF-α, and IFN-γ) in the intestine of Cy-treated mice, resulting in the activation of the MAPK pathway. Additionally, FLP1 protected oxidative stress by triggering Nrf2/Keap1 pathways and antioxidation enzymes (SOD, MDA, T-AOC, CAT, and GSH-Px). It also enhanced the intestinal barrier function by regulating the villous height ratio and expression of tight-junction protein. Furthermore, FLP1 remarkably reversed the gut microbiota dysbiosis in immunosuppressed mice by increasing the abundance of Oscilliospiraceae, and Lachnospiraceae, and altered the fecal metabolites by increasing LysoPE (0:0/18:0); 0:0/16:0; 18:1(11Z)/0:0, LysoPG (16:0/0:0), LysoPG 18:1 (2n) PE (14:0/20:1), echinenone, 2-(2-Nitroimidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide, and suberic acid which is closely related to the immunity function. These results suggested that FLP1 may regulate the intestinal immune response by modulating the gut microbiota and fecal metabolites in immunosuppressed mice thereby activating the immune system.
Collapse
Affiliation(s)
- He Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Daiyao Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Akhtar Ali
- School of Agriculture, Food and Ecosystem Sciences, the University of Melbourne, Parkville, VIC 3010, Australia
| | - Tianci Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Muhammad Ibrahim
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China.
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; College of Plant Protection, Jilin Agricultural University, Changchun 130012, China.
| |
Collapse
|
3
|
Liu Y, Li Y, Sun B, Kang J, Hu X, Zou L, Cui SW, Guo Q. Glucans from Armillaria luteo-virens: Structural Characterization and In Vivo Immunomodulatory Investigation under Different Administration Routes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6006-6018. [PMID: 38456292 DOI: 10.1021/acs.jafc.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Polysaccharides fromArmillaria luteo-virens (ALP) were investigated for structural characterization and immunomodulatory activities. Three fractions (ALP-1, ALP-2, and ALP-3) were obtained with the yield of 2.4, 3.7, and 3.0 wt %, respectively. ALP-1 was proposed as a β-(1 → 3)(1 → 6)-glucan with a triple-helix conformation; ALP-2 and ALP-3 were both identified as α-(1 → 4)(1 → 6)-glucan differing in their Mw and branching degree with a spherical conformation. The in vitro digestibility experiment and in vivo experiments using cyclophosphamide (CY)-treated mice demonstrated that intraperitoneal injection of α-glucan (1 mg·kg-1·day-1) and intragastric gavage of β-glucan (10 mg·kg-1·day-1) both effectively restored the decrease in body weight, immune organ indexes, immune cell activities, serum immune marker levels, colonic short-chain fatty acids (SCFA) levels, and Bacteroidetes/Firmicutes ratio in immunosuppression mice. This study provides novel insights into the immunomodulatory activity of α- and β-glucans under different administration routes, thereby promoting their application in both food and pharmaceutical areas.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, Hangzhou, 311300 Zhejiang Province, P. R. China
| | - Yanmei Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bo Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian 710119 Shaanxi, P. R. China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Steve W Cui
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
4
|
Li Z, Wang M, Yang Z. Structural characterization, anti-tumor and immunomodulatory activity of intracellular polysaccharide from Armillaria luteo-virens. Carbohydr Res 2023; 534:108945. [PMID: 37738818 DOI: 10.1016/j.carres.2023.108945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 07/28/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Armillaria luteo-virens (A. luteo-virens) is a kind of edible fungus mainly exists in Qinghai-Tibet of China, but at present only very few studies focus on the bioactivities of its polysaccharides. This study aimed to purify and characterize the structure features of a novel intracellular polysaccharide (ALP-A) derived from A. luteo-virens and explore its potential anti-tumor and immunomodulatory activities. Through systematic separation and purification, we obtained a homogeneous ALP-A with an average molecular weight of 23693Da. Structural analysis indicated that ALP-A was mainly composed of glucose and mannose with a molar ratio of 6.02:1. The repeating unit of ALP-A was →4) -α-D-Glcp-(1→ backbone with α-Glcp-(1→ and α-Manp-(6→ side chains which branched at O-2 position. The anti-tumor assays in vivo suggested that ALP-A could effectively restrain S180 solid tumor growth, protect immune organs and promote the secretion of cytokines (IL2, IL6 and TNF-α) in serum. Besides, in vitro immunomodulatory assays indicated that ALP-A could improve proliferation, phagocytic capacity and raise the level of NO and cytokines in Raw264.7 cells. These results demonstrate that ALP-A which possess potential antitumor and immunomodulatory abilities can be developed as a new functional food.
Collapse
Affiliation(s)
- Zhang Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Miao Wang
- Laboratory Animal Center, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Zhirong Yang
- Key Laboratory of Biological Resource and Ecological Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Ni Y, Cao L, Li W, Zhang Q, Feng R, Zhao Z, Zhao X. The Research Status and Prospects of Floccularia luteovirens: A Mycorrhizal Fungus with Edible Fruiting Bodies. J Fungi (Basel) 2023; 9:1071. [PMID: 37998876 PMCID: PMC10672661 DOI: 10.3390/jof9111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Floccularia luteovirens, a rare wild edible and medicinal fungus, is endemic to the Tibetan plateau. However, attempts to artificially domesticate this species have not been successful, resulting in extremely limited utilization of this valuable resource. This paper presents the geographical distribution of F. luteovirens, along with its ecological and biological characteristics. It explores population relations, symbiotic relationships, soil microbial community relations, fruiting body occurrence conditions, nutritional metabolism, and reproductive patterns. The cultivation techniques, as well as the edible and medicinal value of this mushroom, are also reviewed. Through an overall analysis of the physiological characteristics and current research status of F. luteovirens, the paper discusses its development prospects. The aim is to provide a reference for other researchers and promote its artificial domestication, resource development, and utilization.
Collapse
Affiliation(s)
- Yanqing Ni
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.Z.); (R.F.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Luping Cao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Wensheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.Z.); (R.F.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.Z.); (R.F.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Zhiqiang Zhao
- Zhuoni County Agricultural Technology Extension Station, Gannan 747600, China;
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.Z.); (R.F.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| |
Collapse
|
6
|
Li Y, Wang P, Zhang Z, Liu Q. A novel lectin from mushroom Phellodon melaleucus displays hemagglutination activity, and antitumor activity in a B16 melanoma mouse model. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Xing R, Deng YF, Yao Y, Gao QB, Zhang FQ, Wang JL, Liu HR, Chen SL. Fine-scale genetic diversity and genet dynamics of the fairy ring fungus Floccularia luteovirens on the Qinghai–Tibet plateau. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Armillaria luteo-virens Sacc Ameliorates Dextran Sulfate Sodium Induced Colitis through Modulation of Gut Microbiota and Microbiota-Related Bile Acids. Nutrients 2021; 13:nu13113926. [PMID: 34836184 PMCID: PMC8623807 DOI: 10.3390/nu13113926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 01/08/2023] Open
Abstract
Armillaria luteo-virens Sacc (ALS) is a rare wild Chinese medicinal and edible basidiomycete. However, its protective effect on intestinal functions and the underlying mechanism is still unknown. This work explored the improvement of dextran sulfate sodium (DSS)-induced colitis by ALS. ALS supplementation markedly improved colitis symptoms, gut barrier integrity, and goblet loss in DSS-treated mice. In addition, ALS inhibited colonic inflammation through the inhibition/activation of the mitogen-activated protein kinases/NF-κB signaling pathway. The 16S rRNA gene-based microbiota analysis revealed that ALS altered the gut microbiota composition, decreasing the richness of Enterobacteriaceae and increasing the abundance of Lactobacillaceae. The bile-acid-targeted metabolomic analysis showed that ALS recovered the microbial bile acid metabolism in the gut, enabling the activation of the farnesoid X receptor signaling by these acids, thus maintaining the intestinal homeostasis. Importantly, broad-spectrum antibiotic treatment reduced the efficacy of ALS-induced protection from colitis. Overall, our findings suggest that ALS may represent a novel approach in the nutritional intervention to prevent colitis.
Collapse
|
9
|
Liu Z, Lu H, Zhang X, Chen Q. The Genomic and Transcriptomic Analyses of Floccularia luteovirens, a Rare Edible Fungus in the Qinghai-Tibet Plateau, Provide Insights into the Taxonomy Placement and Fruiting Body Formation. J Fungi (Basel) 2021; 7:jof7110887. [PMID: 34829176 PMCID: PMC8618933 DOI: 10.3390/jof7110887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022] Open
Abstract
Floccularia luteovirens is a famous and precious edible mushroom (Huang Mogu) on the Qinghai–Tibet plateau that has a unique flavor and remarkable medical functions. Herein, we report a reference-grade 27 Mb genome of F. luteovirens containing 7068 protein-coding genes. The genome component and gene functions were predicted. Genome ontology enrichment and pathway analyses indicated the potential production capacity for terpenoids, polyketides and polysaccharides. Moreover, 16 putative gene clusters and 145 genes coding for secondary metabolites were obtained, including guadinomine and melleolides. In addition, phylogenetic and comparative genomic analyses shed light on the precise classification of F. luteovirens suggesting that it belongs to the genus Floccularia instead of Armillaria. RNA-sequencing and comparative transcriptomic analysis revealed differentially expressed genes during four developmental stages of F. luteovirens, that of which helps to identify important genes regulating fruiting body formation for strain modification. This study will provide insight into artificial cultivation and increase the production of useful metabolites.
Collapse
Affiliation(s)
- Zhengjie Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Z.L.); (H.L.); (X.Z.)
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Z.L.); (H.L.); (X.Z.)
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Z.L.); (H.L.); (X.Z.)
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Z.L.); (H.L.); (X.Z.)
- Correspondence: ; Tel.: +86-0571-8698-4316
| |
Collapse
|
10
|
Li S, Gao J, Hou L, Gao Y, Sun J, Zhang N, Fan B, Wang F. The Small Molecule Fractions of Floccularia luteovirens Induce Apoptosis of NSCLC Cells through Activating Caspase-3 Activity. Int J Mol Sci 2021; 22:ijms221910609. [PMID: 34638946 PMCID: PMC8508712 DOI: 10.3390/ijms221910609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/18/2023] Open
Abstract
Floccularia luteovirens is a rare wild edible and medicinal fungus endemic to the Qinghai-Tibet Plateau. In this study, the hollow fiber membranes with molecular weights of 50 kDa, 6 kDa and 3 kDa were used to extract different fractions of F. luteovirens, which were named as #1, #2 and #3. Then the antitumor activity of these fractions on NSCLC cell lines, PC9 and NCI-H460, were investigated by using MTT assay, flow cytometry analysis and Western blot assay. The results indicated that the #2 and #3 fractions showed obviously inhibitory activities on PC9 and NCI-H460 tumor cells and proved that these small molecule fractions induced apoptosis of NSCLC cells by activating caspase-3. Finally, a total of 15 components, including six amino acids, two nucleosides, two glycosides, two terpenoids, one phenylpropanoid, one ester and one alkaloid, were identified in #2 and #3 fractions. This is the first evidence that the small molecule components of F. luteovirens were able to inhibit lung cancer by inducing apoptosis in a caspase-3 manner. The present study indicated the benefits of F. luteovirens in lung cancer treatment, which might be a potential resource of functional food and drugs.
Collapse
|
11
|
Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product. J Fungi (Basel) 2021; 7:jof7090728. [PMID: 34575766 PMCID: PMC8466349 DOI: 10.3390/jof7090728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Mushrooms have remained an eternal part of traditional cuisines due to their beneficial health potential and have long been recognized as a folk medicine for their broad spectrum of nutraceuticals, as well as therapeutic and prophylactic uses. Nowadays, they have been extensively investigated to explain the chemical nature and mechanisms of action of their biomedicine and nutraceuticals capacity. Mushrooms belong to the astounding dominion of Fungi and are known as a macrofungus. Significant health benefits of mushrooms, including antiviral, antibacterial, anti-parasitic, antifungal, wound healing, anticancer, immunomodulating, antioxidant, radical scavenging, detoxification, hepatoprotective cardiovascular, anti-hypercholesterolemia, and anti-diabetic effects, etc., have been reported around the globe and have attracted significant interests of its further exploration in commercial sectors. They can function as functional foods, help in the treatment and therapeutic interventions of sub-optimal health states, and prevent some consequences of life-threatening diseases. Mushrooms mainly contained low and high molecular weight polysaccharides, fatty acids, lectins, and glucans responsible for their therapeutic action. Due to the large varieties of mushrooms present, it becomes challenging to identify chemical components present in them and their beneficial action. This article highlights such therapeutic activities with their active ingredients for mushrooms.
Collapse
|
12
|
Zhao S, Gao Q, Rong C, Wang S, Zhao Z, Liu Y, Xu J. Immunomodulatory Effects of Edible and Medicinal Mushrooms and Their Bioactive Immunoregulatory Products. J Fungi (Basel) 2020; 6:E269. [PMID: 33171663 PMCID: PMC7712035 DOI: 10.3390/jof6040269] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Mushrooms have been valued as food and health supplements by humans for centuries. They are rich in dietary fiber, essential amino acids, minerals, and many bioactive compounds, especially those related to human immune system functions. Mushrooms contain diverse immunoregulatory compounds such as terpenes and terpenoids, lectins, fungal immunomodulatory proteins (FIPs) and polysaccharides. The distributions of these compounds differ among mushroom species and their potent immune modulation activities vary depending on their core structures and fraction composition chemical modifications. Here we review the current status of clinical studies on immunomodulatory activities of mushrooms and mushroom products. The potential mechanisms for their activities both in vitro and in vivo were summarized. We describe the approaches that have been used in the development and application of bioactive compounds extracted from mushrooms. These developments have led to the commercialization of a large number of mushroom products. Finally, we discuss the problems in pharmacological applications of mushrooms and mushroom products and highlight a few areas that should be improved before immunomodulatory compounds from mushrooms can be widely used as therapeutic agents.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Qi Gao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Shouxian Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Zhekun Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (S.Z.); (Q.G.); (C.R.); (S.W.); (Z.Z.); (Y.L.)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
13
|
Singh RS, Walia AK, Kennedy JF. Mushroom lectins in biomedical research and development. Int J Biol Macromol 2020; 151:1340-1350. [DOI: 10.1016/j.ijbiomac.2019.10.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
14
|
Dang J, Chen C, Ma J, Dawa Y, Wang Q, Tao Y, Wang Q, Ji T. Preparative isolation of highly polar free radical inhibitor from Floccularia luteovirens using hydrophilic interaction chromatography directed by on-line HPLC-DPPH assay. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1142:122043. [DOI: 10.1016/j.jchromb.2020.122043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
|
15
|
Chemical characterization, antioxidant properties and anticancer activity of exopolysaccharides from Floccularia luteovirens. Carbohydr Polym 2019; 229:115432. [PMID: 31826528 DOI: 10.1016/j.carbpol.2019.115432] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 01/30/2023]
Abstract
Two polysaccharides, ALF1 and ALF2 were obtained from the fermentation liquid of Floccularia luteovirens. These fractions had good performance in scavenging radicals and ALF1 exhibited obvious antioxidant activities. Further, linkage analysis and NMR were used to characterize the structures of ALF1. Linkage and NMR data comprehensively showed that ALF1 mainly contained six kinds of linkage type units as →4)-β-D-Manp→, 1,3-α-Fucp→, α-L-Araf-C1→, →6)-β-D-Galp-C1→, →4)-α-D-GlcAp-(1→ and →3)-β-D-Glcp(1→. In addition, ALF1 had good bioactivities such as anticancer and antioxidant activities. ALF1 was proven to be able to inhibit tumor cells without affecting the normal cells. Besides, ALF1 improved the activities of SOD, GSH-Px and CAT, and decreased the production of MDA which result in protecting PC12 cells against H2O2-induced oxidative stress. ALF1 decreased ROS production, and stabilize mitochondrial membrane potential. The findings indicated that the fermentation liquid of Floccularia luteovirens could be used as a potential natural source of antioxidant.
Collapse
|
16
|
An Inulin-Specific Lectin with Anti-HIV-1 Reverse Transcriptase, Antiproliferative, and Mitogenic Activities from the Edible Mushroom Agaricus bitorquis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1341370. [PMID: 31016184 PMCID: PMC6444243 DOI: 10.1155/2019/1341370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/27/2019] [Indexed: 12/03/2022]
Abstract
A novel lectin (ABL) was purified from the dried fruiting bodies of Agaricus bitorquis. An efficient 3-step purification protocol involved two consecutive steps of ion exchange chromatography on Q-Sepharose and SP-Sepharose and gel filtration by FPLC on Superdex 75. ABL is a monomeric protein with the molecular mass of 27.6 kDa, which is different from other lectins from genus Agaricus. Its N-terminal amino acid sequence is EYTISIRVYQTNPKGFNRPV which is unique and sharing considerably high similarity of other mushroom lectins. The hemagglutinating activity of the lectin was inhibited by inulin. Based on hemagglutination tests, ABL prefers rabbit, human type A, and AB erythrocytes to human type B and O erythrocytes. The lectin inhibits the activity of HIV-1 reverse transcriptase and the proliferation of leukemia cell (L1210) with an IC50 value of 4.69 and 4.97 μM, respectively. Furthermore, ABL demonstrates the highest mitogenic activity with a response of 24177.7 ± 940.6 [3H-methyl] thymidine counts per minute (CPM) at a concentration of 0.91 μM.
Collapse
|
17
|
Zhou R, Liu ZK, Zhang YN, Wong JH, Ng TB, Liu F. Research Progress of Bioactive Proteins from the Edible and Medicinal Mushrooms. Curr Protein Pept Sci 2019; 20:196-219. [DOI: 10.2174/1389203719666180613090710] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/25/2018] [Indexed: 01/04/2023]
Abstract
For centuries, mushrooms have been widely used as traditional Chinese medicine in Asia.
Apart from polysaccharides and some small-molecule components, such as flavones, polyphenols and
terpenes, mushrooms produce a large number of pharmaceutically active proteins, which have become
popular sources of natural antitumor, antimicrobial, immunoenhancing agents. These bioactive proteins
include lectins, laccases, Ribosome Inactivating Proteins (RIPs), nucleases, and Fungal Immunomodulatory
Proteins (FIPs). The review is to summarize the characterstics of structure and bioactivities involved
in antitumor, antiviral, antifungal, antibacterial and immunoenhancing activities of proteins from
edible mushrooms, to better understand their mechanisms, and to direct research.
Collapse
Affiliation(s)
- Rong Zhou
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Zhao Kun Liu
- Department of History, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Ye Ni Zhang
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, 300071, China
| |
Collapse
|
18
|
Xing R, Gao QB, Zhang FQ, Fu PC, Wang JL, Yan HY, Chen SL. Genetic variation and phylogenetic relationships of the ectomycorrhizal Floccularia luteovirens on the Qinghai-Tibet Plateau. J Microbiol 2017; 55:600-606. [PMID: 28674972 DOI: 10.1007/s12275-017-7101-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
Floccularia luteovirens, as an ectomycorrhizal fungus, is widely distributed in the Qinghai-Tibet Plateau. As an edible fungus, it is famous for its unique flavor. Former studies mainly focus on the chemical composition and genetic structure of this species. However, the phylogenetic relationship between genotypes remains unknown. In this study, the genetic variation and phylogenetic relationship between the genotypes of F. luteovirens in Qinghai-Tibet Plateau was estimated through the analysis on two protein-coding genes (rpb1 and ef-1α) from 398 individuals collected from 24 wild populations. The sample covered the entire range of this species during all the growth seasons from 2011 to 2015. 13 genotypes were detected and moderate genetic diversity was revealed. Based on the results of network analysis, the maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) analyses, the genotypes H-1, H-4, H-6, H-8, H-10, and H-11 were grouped into one clade. Additionally, a relatively higher genotype diversity (average h value is 0.722) and unique genotypes in the northeast edge of Qinghai- Tibet plateau have been found, combined with the results of mismatch analysis and neutrality tests indicated that Southeast Qinghai-Tibet plateau was a refuge for F. luteovirens during the historical geological or climatic events (uplifting of the Qinghai-Tibet Plateau or Last Glacial Maximum). Furthermore, the present distribution of the species on the Qinghai-Tibet plateau has resulted from the recent population expansion. Our findings provide a foundation for the future study of the evolutionary history and the speciation of this species.
Collapse
Affiliation(s)
- Rui Xing
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China.,Key Laboratory of Crop Molecular Breeding of Qinghai Provice, Qinghai, P. R. China
| | - Qing-Bo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China
| | - Fa-Qi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China.,Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Peng-Cheng Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China
| | - Jiu-Li Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China
| | - Hui-Ying Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China
| | - Shi-Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China.
| |
Collapse
|
19
|
Wu J, Wang J, Wang S, Rao P. Lunatin, a novel lectin with antifungal and antiproliferative bioactivities from Phaseolus lunatus billb. Int J Biol Macromol 2016; 89:717-24. [PMID: 27164500 DOI: 10.1016/j.ijbiomac.2016.04.092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 02/08/2023]
Abstract
A novel lectin with a molecular mass of 24.3kDa, designated Lunatin, was isolated from edible seeds of Phaseolus lunatus billb. The purification scheme consisted of ammonium sulfate precipitation, affinity chromatography, ion exchange chromatography, and gel filtration chromatography. The lectin is a glycoprotein, as determined by staining with periodic acid-Schiff (PAS), and its N-terminal amino acid sequence was determined to be DAVIYRGPGDLHTGS. Lunatin exhibited hemagglutinating activity towards human blood group A erythrocytes, which was mostly preserved up to 50°C and retained at ambient temperature at pH 2.0-11.0. d-fructose, d-galactose, d-glucose, and mannitol were capable of inhibiting its hemagglutinating activity. Lunatin was found to be a metal-dependent protein, as its activity was inhibited by the metallic compounds K2Cr2O7, SnCl2, and LiCl, though it was unaffected by MgCl2, ZnCl2, BaCl2, CuCl2, FeCl3, or CaCl2. In addition, Lunatin exerted potent antifungal activity toward a variety of fungal species, including Sclerotium rolfsii, Physalospora piricola, Fusarium oxysporum, and Botrytis cinerea. Finally, proliferation of K562 leukemia cells was strongly inhibited by Lunatin, with an IC50 of 13.7μM, whereas HeLa and HepG2 cells were only weakly affected. These findings further the identification and understanding of functional factors in edible plant seeds.
Collapse
Affiliation(s)
- Jinhong Wu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Minhou District, Fuzhou 350108, China; Department of Food Science and Engineering, Shanghai Food Safety and Engineering Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jun Wang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Minhou District, Fuzhou 350108, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Minhou District, Fuzhou 350108, China.
| | - Pingfan Rao
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Minhou District, Fuzhou 350108, China
| |
Collapse
|
20
|
Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 2015; 16:7802-38. [PMID: 25856678 PMCID: PMC4425051 DOI: 10.3390/ijms16047802] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022] Open
Abstract
Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell-cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.
Collapse
|
21
|
Singh SS, Wang H, Chan YS, Pan W, Dan X, Yin CM, Akkouh O, Ng TB. Lectins from edible mushrooms. Molecules 2014; 20:446-69. [PMID: 25558856 PMCID: PMC6272671 DOI: 10.3390/molecules20010446] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022] Open
Abstract
Mushrooms are famous for their nutritional and medicinal values and also for the diversity of bioactive compounds they contain including lectins. The present review is an attempt to summarize and discuss data available on molecular weights, structures, biological properties, N-terminal sequences and possible applications of lectins from edible mushrooms. It further aims to update and discuss/examine the recent advancements in the study of these lectins regarding their structures, functions, and exploitable properties. A detailed tabling of all the available data for N-terminal sequences of these lectins is also presented here.
Collapse
Affiliation(s)
- Senjam Sunil Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India.
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China.
| | - Yau Sang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Cui Ming Yin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Ouafae Akkouh
- Department of Biology and Medical Laboratory Research, Leiden University of Applied Science, Zernikedreef 11, Leiden 2333 CK, The Netherlands.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
22
|
Isolation and characterization of a novel lectin from the edible mushroom Stropharia rugosoannulata. Molecules 2014; 19:19880-91. [PMID: 25460311 PMCID: PMC6271533 DOI: 10.3390/molecules191219880] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022] Open
Abstract
To date, only a few steroids have been isolated from the mushroom Stropharia rugosoannulata which can be cultivated. In this paper, a novel lectin (SRL) with a molecular weight of 38 kDa, and a unique IKSGVYRIVSWQGALGPEAR N-terminal sequence was isolated from S. rugosoannulata, which represents the first protein isolated from the mushroom. The purification methods included (NH4)2SO4 precipitation, ion exchange chromatography on CM-cellulose, Q-Sepharose, and SP-Sepharose, and gel- filtration on Superdex-75. The lectin was adsorbed on all three types of ion exchangers and was purified more than 450-fold. The lectin was stable below 70 °C (with half of the activity preserved at 80 °C), and in the presence of NaOH and HCl solutions up to a concentration of 12.5 mM and 25 mM, respectively. The hemagglutinating activity of SRL was inhibited by inulin. Cd2+ and Hg2+ ions strongly reduced the hemagglutinating activity at concentrations from 1.25 mM to 10 mM. SRL exhibited anti-proliferative activity toward both hepatoma Hep G2 cells and leukemia L1210 cells, with an IC50 of 7 μM and 19 μM, respectively. The activity of HIV-1 reverse transcriptase could also be inhibited by SRL, with an IC50 of 10 μM.
Collapse
|
23
|
Genetic diversity and population structure of Armillaria luteo-virens (Physalacriaceae) in Qinghai-Tibet Plateau revealed by SSR markers. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Sekete M, Ma D, Wang B, Wang HX, Gong Z, Ng TB. An acid-tolerant lectin coupled with high Hg2+ potentiated hemagglutination enhancing property purified from Amanita hemibapha var. ochracea. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Liu Q, Zhu M, Du F, Wang H, Ng TB. Isolation and Characterization of a Novel Mannose- and Fructose-Binding Lectin from the Edible Wild Mushroom Hygrophorus russula (Fr.) Quél. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2014. [DOI: 10.3136/fstr.20.1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Qin Liu
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University
| | - Mengjuan Zhu
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University
| | - Fang Du
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong
| |
Collapse
|
26
|
Tsai PF, Ma CY, Wu JSB. A novel glycoprotein from mushroom Hypsizygus marmoreus (Peck) Bigelow with growth inhibitory effect against human leukaemic U937 cells. Food Chem 2013; 141:1252-8. [DOI: 10.1016/j.foodchem.2013.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/30/2013] [Accepted: 04/06/2013] [Indexed: 11/24/2022]
|
27
|
Purification and characterization of a thermostable mycelial lectin from basidiomycete Lentinus squarrosulus. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0273-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Liu Q, Ng T, Wang H. Isolation and characterization of a novel lectin from the wild mushroom Oudemansiella radicata (Relhan.: Fr.) sing. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0699-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Singh RS, Walia AK. Microbial lectins and their prospective mitogenic potential. Crit Rev Microbiol 2012; 40:329-47. [DOI: 10.3109/1040841x.2012.733680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Jing N, Shi J, Li G, Sun Z, You J. Determination of fatty acids from mushrooms using high performance liquid chromatography with fluorescence detection and online mass spectrometry. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Wu Y, Wang H, Ng TB. Purification and characterization of a lectin with antiproliferative activity toward cancer cells from the dried fruit bodies of Lactarius flavidulus. Carbohydr Res 2011; 346:2576-81. [DOI: 10.1016/j.carres.2011.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 09/02/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
|
32
|
|
33
|
Zhao JK, Zhao YC, Li SH, Wang HX, Ng TB. Isolation and characterization of a novel thermostable lectin from the wild edible mushroom Agaricus arvensis. J Basic Microbiol 2011; 51:304-11. [DOI: 10.1002/jobm.201000267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022]
|
34
|
|
35
|
Extraction and purification of a lectin from red kidney bean and preliminary immune function studies of the lectin and four Chinese herbal polysaccharides. J Biomed Biotechnol 2010; 2010:217342. [PMID: 20976304 PMCID: PMC2952811 DOI: 10.1155/2010/217342] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/09/2010] [Accepted: 07/20/2010] [Indexed: 12/16/2022] Open
Abstract
Reversed micelles were used to extract lectin from red kidney beans and factors affecting reverse micellar systems (pH value, ionic strength and extraction time) were studied. The optimal conditions were extraction at pH 4–6, back extraction at pH 9–11, ion strength at 0.15 M NaCl, extraction for 4–6 minutes and back extraction for 8 minutes. The reverse micellar system was compared with traditional extraction methods and demonstrated to be a time-saving method for the extraction of red kidney bean lectin. Mitogenic activity of the lectin was reasonably good compared with commercial phytohemagglutinin (extracted from Phaseolus vulgaris) Mitogenic properties of the lectin were enhanced when four Chinese herbal polysaccharides were applied concurrently, among which 50 μg/mL Astragalus mongholicus polysaccharides (APS) with 12.5 μg/mL red kidney bean lectin yielded the highest mitogenic activity and 100 mg/kg/bw APS with 12.5 mg/kg/bw red kidney bean lectin elevated mouse nonspecific immunity.
Collapse
|
36
|
Singh RS, Bhari R, Kaur HP. Mushroom lectins: current status and future perspectives. Crit Rev Biotechnol 2010; 30:99-126. [PMID: 20105049 DOI: 10.3109/07388550903365048] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lectins are nonimmune proteins or glycoproteins that bind specifically to cell surface carbohydrates, culminating in cell agglutination. These are known to play key roles in host defense system and also in metastasis. Many new sources have been explored for the occurrence of lectins during the last few years. Numerous novel lectins with unique specificities and exploitable properties have been discovered. Mushrooms have attracted a number of researchers in food and pharmaceuticals. Many species have long been used in traditional Chinese medicines or functional foods in Japan and other Asian countries. A number of bioactive constituents have been isolated from mushrooms including polysaccharides, polysaccharopeptides, polysaccharide-protein complexes, proteases, ribonucleases, ribosome inactivating proteins, antifungal proteins, immunomodulatory proteins, enzymes, lectins, etc. Mushroom lectins are endowed with mitogenic, antiproliferative, antitumor, antiviral, and immune stimulating potential. In this review, an attempt has been made to collate the information on mushroom lectins, their blood group and sugar specificities, with an emphasis on their biomedical potential and future perspectives.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India.
| | | | | |
Collapse
|
37
|
Zhang G, Sun J, Wang H, Ng TB. First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:775-781. [PMID: 20378319 DOI: 10.1016/j.phymed.2010.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/18/2009] [Accepted: 02/04/2010] [Indexed: 05/29/2023]
Abstract
To date only a ribonuclease and a protein with anti-HIV-1 reverse transcriptase activity have been isolated from mushrooms of the genus Russula. In this study a novel lectin, with a molecular weight of 32 kDa, and a unique N-terminal sequence different from other lectins, was isolated from the mushroom Russula lepida. It represents the first lectin isolated from Russula mushrooms. The purification scheme involved (NH4)2SO4 precipitation, ion exchange chromatography on diethylaminoethyl DEAE-cellulose and SP-Sepharose, and fast protein liquid chromatography-gel filtration on Superdex 75. The hemagglutinating activity of the lectin (RLL) was inhibited by inulin and O-nitrophenyl-beta-D-galacto-pyranoside. The lectin was stable at temperatures up to 70 degrees C (half of the activity was preserved at 80 degrees C), and in the presence of NaOH or HCl solutions up to a concentration of 12.5 mM. Its hemagglutinating activity was reduced in the presence of Mn2+, Co2+, and Hg2+ ions, and enhanced by Cu2+ ions. It exhibited antiproliferative activity toward hepatoma Hep G2 cells and human breast cancer MCF-7 cells with an IC(50) of 1.6 microM and 0.9 microM, respectively. Daily intraperitoneal injections of RLL (5.0 mg/kg body weight/day for 20 days) brought about 67.6% reduction in the weight of S-180 tumor. RLL was devoid of antifungal, ribonuclease, and HIV-1 reverse transcriptase inhibitory activities.
Collapse
Affiliation(s)
- G Zhang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China
| | | | | | | |
Collapse
|
38
|
Effect of submerged culture conditions on exopolysaccharides production by Armillaria luteo-virens Sacc QH and kinetic modeling. Bioprocess Biosyst Eng 2010; 34:103-11. [DOI: 10.1007/s00449-010-0451-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
|
39
|
A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. J Biomed Biotechnol 2010; 2010:716515. [PMID: 20625408 PMCID: PMC2896861 DOI: 10.1155/2010/716515] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 12/04/2022] Open
Abstract
A lectin designated as Hericium erinaceum agglutinin (HEA) was isolated from dried fruiting bodies of the mushroom Hericium erinaceum with a chromatographic procedure which entailed DEAE-cellulose, CM-cellulose, Q-Sepharose, and FPLC Superdex 75. Its molecular mass was estimated to be 51 kDa and its N-terminal amino acid sequences was distinctly different from those of other isolated mushroom lectins. The hemagglutinating activity of HEA was inhibited at the minimum concentration of 12.5 mM by inulin. The lectin was stable at pH 1.9–12.1 and at temperatures up to 70°C, but was inhibited by Hg2+, Cu2+, and Fe3+ ions. The lectin exhibited potent mitogenic activity toward mouse splenocytes, and demonstrated antiproliferative activity toward hepatoma (HepG2) and breast cancer (MCF7) cells with an IC50 of 56.1 μM and 76.5 μM, respectively. It manifested HIV-1 reverse transcriptase inhibitory activity with an IC50 of 31.7 μM. The lectin exhibited potent mitogenic activity toward murine splenocytes but was devoid of antifungal activity.
Collapse
|
40
|
Zhao S, Zhao Y, Li S, Zhao J, Zhang G, Wang H, Ng TB. A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica. Glycoconj J 2010; 27:259-65. [DOI: 10.1007/s10719-009-9274-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Ye XJ, Ng TB. A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from cicada (Cicada flammata). Appl Microbiol Biotechnol 2009; 86:1409-18. [DOI: 10.1007/s00253-009-2363-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 01/11/2023]
|
42
|
Xiong HY, Fei DQ, Zhou JS, Yang CJ, Ma GL. Steroids and other constituents from the mushroom Armillaria lueo-virens. Chem Nat Compd 2009. [DOI: 10.1007/s10600-009-9456-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Abstract
There are only a few reports on agglutinins from ascomycete and medicinal fungi. An HA (haemagglutinin), with an N-terminal amino acid sequence different from those of known lectins, was isolated in the present study from dried fruiting bodies of the medicinal ascomycete fungus Cordyceps militaris. The purification protocol consisted of affinity chromatography, ion-exchange chromatography and gel filtration. The haemagglutinating activity of the HA could not be inhibited by simple sugars or heparin, and was stable over the pH range 2–13 and up to 60°C. Chemical modification of tryptophan and tyrosine residues had no effect. The HA exhibited some antiproliferative activity towards hepatoma (HepG2) cells and inhibited HIV-1 reverse transcriptase (IC50=10 μM). However, it did not exhibit antifungal activity, mitogenic activity towards splenocytes, nitric oxide-inducing activity towards macrophages or RNase activity. The results of the present study add to the meagre information pertaining to agglutinins from ascomycete and medicinal mushrooms. It is revealed in this study that C. militaris HA differs from other ascomycete mushroom HAs in a variety of biochemical characteristics.
Collapse
|
44
|
Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella. Toxicon 2008; 53:360-6. [PMID: 19111567 DOI: 10.1016/j.toxicon.2008.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/04/2008] [Accepted: 12/08/2008] [Indexed: 11/21/2022]
Abstract
From the dried fruiting bodies of the toxic mushroom Inocybe umbrinella, a novel lectin with a molecular mass of 17 kDa has been isolated with about 160-fold purification. The purification protocol comprised ion exchange chromatography on DEAE-cellulose, and CM-cellulose, and gel filtration on Superdex 75. Among the carbohydrates tested, raffinose, d-melibiose, alpha-lactose and d(+)-galactose could inhibit the hemagglutinating activity of the lectin. The hemagglutinating activity was stable between 10 and 60 degrees C, in 12.5-100mM HCl, and in 50mM NaOH. The hemagglutinating activity was inhibited by Ca(2+), Mn(2+)and Mg(2+) ions, but was unaffected by Fe(3+), Zn(2+) and Al(3+) ions. The lectin inhibited HIV-1 reverse transcriptase with an IC(50) of 4.7+/-0.2 microM. Proliferation of tumor cells including hepatoma HepG2 cells and breast cancer MCF7 cells was inhibited by the lectin with an IC(50) of 3.5+/-0.2 microM and 7.4+/-0.3 micoM, respectively. The lectin has a unique N-terminal amino acid sequence, DGVLATNAVA. It did not exhibit antifungal activity. The present report is the first on an Inocybe lectin and represents one of the very few reports on lectins from toxic mushrooms.
Collapse
|
45
|
Improvement of exo-polysaccharides production and modeling kinetics by Armillaria luteo-virens Sacc. in submerged cultivation. Lebensm Wiss Technol 2008. [DOI: 10.1016/j.lwt.2007.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Tong MH, Chien PJ, Chang HH, Tsai MJ, Sheu F. High processing tolerances of immunomodulatory proteins in Enoki and Reishi mushrooms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3160-3166. [PMID: 18422333 DOI: 10.1021/jf800205g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study investigated the processing tolerances of two mushroom proteins with immunomodulatory activities, including FVE from Enoki ( Flammulia velutipes ) and LZ8 from Reishi ( Ganoderma lucidum ) mushrooms, under food processing treatments such as heating, sterilization, frozen storage, extraction in acid/alkaline conditions, and dehydration. Results showed that the capability of these two proteins to induce IFN-gamma secretion by murine splenocytes remained after 100 degrees C heating for 30 min, 121 degrees C autoclaving for 15 min, and -80 degrees C freezing. The retained activities of both proteins on cell proliferation and IFN-gamma production did not decrease at 0.6 M hydrochloric acid (at pH 2) but strikingly dropped at 5 M sodium hydrate (at pH 13). After vacuum dehydration, FVE and LZ8 retained most of their activities on cell proliferation; nevertheless, the IFN-gamma secretion decreased to about half of the initial values. These findings suggest that these two mushroom proteins have a good thermal/freezing resistance, acid tolerance, and dehydration stability and are candidates for processing in food and nutraceutical utilization.
Collapse
Affiliation(s)
- Man-Hua Tong
- Department of Horticulture, National Taiwan University, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|