1
|
Wiest MJ, Gu C, Ham H, Gorvel L, Keddis MT, Griffing LW, Joo H, Gorvel JP, Billadeau DD, Oh S. Disruption of endosomal trafficking with EGA alters TLR9 cytokine response in human plasmacytoid dendritic cells. Front Immunol 2023; 14:1144127. [PMID: 37020542 PMCID: PMC10067882 DOI: 10.3389/fimmu.2023.1144127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) exhibit bifurcated cytokine responses to TLR9 agonists, an IRF7-mediated type 1 IFN response or a pro-inflammatory cytokine response via the activation of NF-κB. This bifurcated response has been hypothesized to result from either distinct signaling endosomes or endo-lysosomal trafficking delay of TLR9 agonists allowing for autocrine signaling to affect outcomes. Utilizing the late endosome trafficking inhibitor, EGA, we assessed the bifurcated cytokine responses of pDCs to TLR9 stimulation. EGA treatment of pDCs diminished both IFNα and pro-inflammatory cytokine expression induced by CpG DNAs (D- and K-type), CpG-DNAs complexed with DOTAP, and genomic DNAs complexed with LL37. Mechanistically, EGA suppressed phosphorylation of IKKα/β, STAT1, Akt, and p38, and decreased colocalization of CpG oligodeoxynucleotides with LAMP+ endo-lysosomes. EGA also diminished type 1 IFN expression by pDCs from systemic lupus erythematosus patients. Therefore, our findings help understand mechanisms for the bifurcated cytokine responses by pDCs and support future examination of the potential benefit of EGA in treating type 1 IFN-associated inflammatory diseases in the future.
Collapse
Affiliation(s)
- Matthew J. Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
- Baylor Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Chao Gu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Hyoungjun Ham
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Laurent Gorvel
- CRCM, Aix Marseille Universite, INSERM, Marseille, France
| | - Mira T. Keddis
- Department of Nephrology, Mayo Clinic, Scottsdale, AZ, United States
| | - Leroy W. Griffing
- Department of Rheumatology, Mayo Clinic, Scottsdale, AZ, United States
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
- Baylor Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | | | | | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
- Baylor Institute of Biomedical Studies, Baylor University, Waco, TX, United States
- *Correspondence: SangKon Oh,
| |
Collapse
|
2
|
Real-Hohn A, Blaas D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021; 13:1784. [PMID: 34578365 PMCID: PMC8473194 DOI: 10.3390/v13091784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Rhinoviruses (RVs) are the main cause of recurrent infections with rather mild symptoms characteristic of the common cold. Nevertheless, RVs give rise to enormous numbers of absences from work and school and may become life-threatening in particular settings. Vaccination is jeopardised by the large number of serotypes eliciting only poorly cross-neutralising antibodies. Conversely, antivirals developed over the years failed FDA approval because of a low efficacy and/or side effects. RV species A, B, and C are now included in the fifteen species of the genus Enteroviruses based upon the high similarity of their genome sequences. As a result of their comparably low pathogenicity, RVs have become a handy model for other, more dangerous members of this genus, e.g., poliovirus and enterovirus 71. We provide a short overview of viral proteins that are considered potential drug targets and their corresponding drug candidates. We briefly mention more recently identified cellular enzymes whose inhibition impacts on RVs and comment novel approaches to interfere with infection via aggregation, virus trapping, or preventing viral access to the cell receptor. Finally, we devote a large part of this article to adding the viral RNA genome to the list of potential drug targets by dwelling on its structure, folding, and the still debated way of its exit from the capsid. Finally, we discuss the recent finding that G-quadruplex stabilising compounds impact on RNA egress possibly via obfuscating the unravelling of stable secondary structural elements.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
3
|
Jiang LQ, Wang TY, Wang Y, Wang ZY, Bai YT. Co-disposition of chitosan nanoparticles by multi types of hepatic cells and their subsequent biological elimination: the mechanism and kinetic studies at the cellular and animal levels. Int J Nanomedicine 2019; 14:6035-6060. [PMID: 31534335 PMCID: PMC6681437 DOI: 10.2147/ijn.s208496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The clearance of nanomaterials (NMs) from the liver is essential for clinical safety, and their hepatic clearance is primarily determined by the co-disposition process of various types of hepatic cells. Studies of this process and the subsequent clearance routes are urgently needed for organic NMs, which are used as drug carriers more commonly than the inorganic ones. Materials and methods: In this study, the co-disposition of chitosan-based nanoparticles (CsNps) by macrophages and hepatocytes at both the cellular and animal levels as well as their subsequent biological elimination were investigated. RAW264.7 and Hepa1-6 cells were used as models of Kupffer cells and hepatocytes, respectively. Results: The cellular studies showed that CsNps released from RAW264.7 cells could enter Hepa1-6 cells through both clathrin- and caveolin-mediated endocytosis. The transport from Kupffer cells to hepatocytes was also studied in mice, and it was observed that most CsNps localized to the hepatocytes after intravenous injection. Following the distribution in hepatocytes, the hepatobiliary-fecal excretion route was shown to be the primary elimination route for CsNps, besides the kidney-urinary excretion route. The elimination of CsNps in mice was a lengthy process, with a half time of about 2 months. Conclusion: The demonstration in this study of the transport of CsNps from macrophages to hepatocytes and the subsequent hepatobiliary-fecal excretion provides basic information for the future development and clinical application of NMs.
Collapse
Affiliation(s)
- Li-Qun Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ting-Yu Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zi-Yao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Phosphatidylinositol 3-Kinase/Akt and MEK/ERK Signaling Pathways Facilitate Sapovirus Trafficking and Late Endosomal Acidification for Viral Uncoating in LLC-PK Cells. J Virol 2018; 92:JVI.01674-18. [PMID: 30282712 PMCID: PMC6258943 DOI: 10.1128/jvi.01674-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/24/2022] Open
Abstract
Sapovirus, an important cause of acute gastroenteritis in humans and animals, travels from the early to the late endosomes and requires late endosomal acidification for viral uncoating. However, the signaling pathways responsible for these viral entry processes remain unknown. Here we demonstrate the receptor-mediated early activation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein extracellular signal-regulated kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways involved in sapovirus entry processes. Both signaling pathways were activated during the early stage of porcine sapovirus (PSaV) infection. However, depletion of the cell surface carbohydrate receptors by pretreatment with sodium periodate or neuraminidase reduced the PSaV-induced early activation of these signaling pathways, indicating that PSaV binding to the cell surface carbohydrate receptors triggered these cascades. Addition of bile acid, known to be essential for PSaV escape from late endosomes, was also found to exert a stiffening effect to stimulate both pathways. Inhibition of these signaling pathways by use of inhibitors specific for PI3K or MEK or small interfering RNAs (siRNAs) against PI3K or MEK resulted in entrapment of PSaV particles in early endosomes and prevented their trafficking to late endosomes. Moreover, phosphorylated PI3K and ERK coimmunoprecipitated subunit E of the V-ATPase proton pump that is important for endosomal acidification. Based on our data, we conclude that receptor binding of PSaV activates both PI3K/Akt and MEK/ERK signaling pathways, which in turn promote PSaV trafficking from early to late endosomes and acidification of late endosomes for PSaV uncoating. These signaling cascades may provide a target for potent therapeutics against infections by PSaV and other caliciviruses.IMPORTANCE Sapoviruses cause acute gastroenteritis in both humans and animals. However, the host signaling pathway(s) that facilitates host cell entry by sapoviruses remains largely unknown. Here we demonstrate that porcine sapovirus (PSaV) activates both PI3K/Akt and MEK/ERK cascades at an early stage of infection. Removal of cell surface receptors decreased PSaV-induced early activation of both cascades. Moreover, blocking of PI3K/Akt and MEK/ERK cascades entrapped PSaV particles in early endosomes and prevented their trafficking to the late endosomes. PSaV-induced early activation of PI3K and ERK molecules further mediated V-ATPase-dependent late endosomal acidification for PSaV uncoating. This work unravels a new mechanism by which receptor-mediated early activation of both cascades may facilitate PSaV trafficking from early to late endosomes and late endosomal acidification for PSaV uncoating, which in turn can be a new target for treatment of sapovirus infection.
Collapse
|
5
|
Qiu S, Côté M. From hitchhiker to hijacker: pathogen exploitation of endosomal phosphoinositides 1. Biochem Cell Biol 2018; 97:1-9. [PMID: 29746785 DOI: 10.1139/bcb-2017-0317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Signalling through phosphoinositide lipids is essential for regulating many cellular processes, including endosomal trafficking. A number of intracellular pathogens have found ways to subvert host trafficking pathways via exploitation of endosomal phosphoinositides. This review will discuss how pathogens such as bacteria, viruses, and eukaryotic parasites depend on endosomal phosphoinositides for infection as well as the mechanisms through which some are able to actively manipulate these signalling lipids to facilitate invasion, survival, replication, and immune evasion.
Collapse
Affiliation(s)
- Shirley Qiu
- a Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,b Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Marceline Côté
- a Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,b Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
6
|
Activation of PI3K, Akt, and ERK during early rotavirus infection leads to V-ATPase-dependent endosomal acidification required for uncoating. PLoS Pathog 2018; 14:e1006820. [PMID: 29352319 PMCID: PMC5792019 DOI: 10.1371/journal.ppat.1006820] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/31/2018] [Accepted: 12/15/2017] [Indexed: 11/19/2022] Open
Abstract
The cellular PI3K/Akt and/or MEK/ERK signaling pathways mediate the entry process or endosomal acidification during infection of many viruses. However, their roles in the early infection events of group A rotaviruses (RVAs) have remained elusive. Here, we show that late-penetration (L-P) human DS-1 and bovine NCDV RVA strains stimulate these signaling pathways very early in the infection. Inhibition of both signaling pathways significantly reduced production of viral progeny due to blockage of virus particles in the late endosome, indicating that neither of the two signaling pathways is involved in virus trafficking. However, immunoprecipitation assays using antibodies specific for pPI3K, pAkt, pERK and the subunit E of the V-ATPase co-immunoprecipitated the V-ATPase in complex with pPI3K, pAkt, and pERK. Moreover, Duolink proximity ligation assay revealed direct association of the subunit E of the V-ATPase with the molecules pPI3K, pAkt, and pERK, indicating that both signaling pathways are involved in V-ATPase-dependent endosomal acidification. Acidic replenishment of the medium restored uncoating of the RVA strains in cells pretreated with inhibitors specific for both signaling pathways, confirming the above results. Isolated components of the outer capsid proteins, expressed as VP4-VP8* and VP4-VP5* domains, and VP7, activated the PI3K/Akt and MEK/ERK pathways. Furthermore, psoralen-UV-inactivated RVA and CsCl-purified RVA triple-layered particles triggered activation of the PI3K/Akt and MEK/ERK pathways, confirming the above results. Our data demonstrate that multistep binding of outer capsid proteins of L-P RVA strains with cell surface receptors phosphorylates PI3K, Akt, and ERK, which in turn directly interact with the subunit E of the V-ATPase to acidify the late endosome for uncoating of RVAs. This study provides a better understanding of the RVA-host interaction during viral uncoating, which is of importance for the development of strategies aiming at controlling or preventing RVA infections. Viral particles must transport their genome into the cytoplasm or the nucleus of host cells to initiate successful infection. Knowledge of how viruses may pirate host cell signaling cascades or molecules to promote their own replication can facilitate the development of antiviral drugs. Group A rotavirus (RVA) is a major etiological agent of acute gastroenteritis in young children and the young of various mammals. RVA enters cells by a complex multistep process. However, the cellular signaling cascades or molecules that facilitate these processes are incompletely understood. Here, we demonstrate that infection with late-penetration RVA strains results in phosphorylation of PI3K, Akt, and ERK signaling molecules at an early stage of infection, a process mediated by the multistep binding of RVAs outer capsid proteins. Specific inhibitors for PI3K/Akt and MEK/ERK signaling pathways trap the viral particles in late endosome, and acidic replenishment restores and releases them. Moreover, the RVA-induced phosphorylated PI3K, Akt, and ERK directly interact with the subunit E of the V-ATPase proton pump, required for endosomal acidification and RVA uncoating. Understanding how RVA-induced early activation of cellular signaling molecules mediates the V-ATPase-dependent endosomal acidification required for uncoating of viral particles opens up opportunities for targeted interventions against rotavirus entry.
Collapse
|
7
|
Real-Hohn A, Provance DW, Gonçalves RB, Denani CB, de Oliveira AC, Salerno VP, Oliveira Gomes AM. Impairing the function of MLCK, myosin Va or myosin Vb disrupts Rhinovirus B14 replication. Sci Rep 2017; 7:17153. [PMID: 29215055 PMCID: PMC5719429 DOI: 10.1038/s41598-017-17501-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022] Open
Abstract
Together, the three human rhinovirus (RV) species are the most frequent cause of the common cold. Because of their high similarity with other viral species of the genus Enterovirus, within the large family Picornaviridae, studies on RV infectious activities often offer a less pathogenic model for more aggressive enteroviruses, e.g. poliovirus or EV71. Picornaviruses enter via receptor mediated endocytosis and replicate in the cytosol. Most of them depend on functional F-actin, Rab proteins, and probably motor proteins. To assess the latter, we evaluated the role of myosin light chain kinase (MLCK) and two myosin V isoforms (Va and Vb) in RV-B14 infection. We report that ML-9, a very specific MLCK inhibitor, dramatically reduced RV-B14 entry. We also demonstrate that RV-B14 infection in cells expressing dominant-negative forms of myosin Va and Vb was impaired after virus entry. Using immunofluorescent localization and immunoprecipitation, we show that myosin Va co-localized with RV-B14 exclusively after viral entry (15 min post infection) and that myosin Vb was present in the clusters of newly synthesized RNA in infected cells. These clusters, observed at 180 min post infection, are reminiscent of replication sites. Taken together, these results identify myosin light chain kinase, myosin Va and myosin Vb as new players in RV-B14 infection that participate directly or indirectly in different stages of the viral cycle.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Biociências da Atividade Física, Escola de Educação Física e Desportos, Universidade Federal Rio do Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - D William Provance
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Diseases of Neglected Populations, Oswaldo Cruz Foundation/Fiocruz, Rio de Janeiro, Brazil
| | - Rafael Braga Gonçalves
- Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Caio Bidueira Denani
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Andréa Cheble de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Verônica P Salerno
- Departamento de Biociências da Atividade Física, Escola de Educação Física e Desportos, Universidade Federal Rio do Janeiro, Rio de Janeiro, Brazil
| | - Andre Marco Oliveira Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Larios JA, Jausoro I, Benitez ML, Bronfman FC, Marzolo MP. Neurotrophins regulate ApoER2 proteolysis through activation of the Trk signaling pathway. BMC Neurosci 2014; 15:108. [PMID: 25233900 PMCID: PMC4177048 DOI: 10.1186/1471-2202-15-108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/15/2014] [Indexed: 12/27/2022] Open
Abstract
Background ApoER2 and the neurotrophin receptors Trk and p75NTR are expressed in the CNS and regulate key functional aspects of neurons, including development, survival, and neuronal function. It is known that both ApoER2 and p75NTR are processed by metalloproteinases, followed by regulated intramembrane proteolysis. TrkA activation by nerve growth factor (NGF) increases the proteolytic processing of p75NTR mediated by ADAM17. Reelin induces the sheeding of ApoER2 ectodomain depending on metalloproteinase activity. However, it is not known if there is a common regulation mechanism for processing these receptors. Results We found that TrkA activation by NGF in PC12 cells induced ApoER2 processing, which was dependent on TrkA activation and metalloproteinases. NGF-induced ApoER2 proteolysis was independent of mitogen activated protein kinase activity and of phosphatidylinositol-3 kinase activity. In contrast, the basal proteolysis of ApoER2 increased when both kinases were pharmacologically inhibited. The ApoER2 ligand reelin regulated the proteolytic processing of its own receptor but not of p75NTR. Finally, in primary cortical neurons, which express both ApoER2 and TrkB, we found that the proteolysis of ApoER2 was also regulated by brain-derived growth factor (BDNF). Conclusions Our results highlight a novel relationship between neurotrophins and the reelin-ApoER2 system, suggesting that these two pathways might be linked to regulate brain development, neuronal survival, and some pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Maria-Paz Marzolo
- Departamento de Biología Celular y Molecular, Laboratorio de Tráfico Intracelular y Señalización, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Alameda 340, Santiago 8320000, Chile.
| |
Collapse
|
9
|
Wang X, Zhang H, Abel AM, Young AJ, Xie L, Xie Z. Role of phosphatidylinositol 3-kinase (PI3K) and Akt1 kinase in porcine reproductive and respiratory syndrome virus (PRRSV) replication. Arch Virol 2014; 159:2091-6. [DOI: 10.1007/s00705-014-2016-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/02/2014] [Indexed: 11/30/2022]
|
10
|
Alonso C, Galindo I, Cuesta-Geijo MA, Cabezas M, Hernaez B, Muñoz-Moreno R. African swine fever virus-cell interactions: from virus entry to cell survival. Virus Res 2012; 173:42-57. [PMID: 23262167 PMCID: PMC7114420 DOI: 10.1016/j.virusres.2012.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 11/28/2022]
Abstract
Viruses have adapted to evolve complex and dynamic interactions with their host cell. The viral entry mechanism determines viral tropism and pathogenesis. The entry of African swine fever virus (ASFV) is dynamin-dependent and clathrin-mediated, but other pathways have been described such as macropinocytosis. During endocytosis, ASFV viral particles undergo disassembly in various compartments that the virus passes through en route to the site of replication. This disassembly relies on the acid pH of late endosomes and on microtubule cytoskeleton transport. ASFV interacts with several regulatory pathways to establish an optimal environment for replication. Examples of these pathways include small GTPases, actin-related signaling, and lipid signaling. Cellular cholesterol, the entire cholesterol biosynthesis pathway, and phosphoinositides are central molecular networks required for successful infection. Here we report new data on the conformation of the viral replication site or viral factory and the remodeling of the subcellular structures. We review the virus-induced regulation of ER stress, apoptosis and autophagy as key mechanisms of cell survival and determinants of infection outcome. Finally, future challenges for the development of new preventive strategies against this virus are proposed on the basis of current knowledge about ASFV-host interactions.
Collapse
Affiliation(s)
- Covadonga Alonso
- Dpto. de Biotecnología, INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de Coruña Km 7.5, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
Productive entry pathways of human rhinoviruses. Adv Virol 2012; 2012:826301. [PMID: 23227049 PMCID: PMC3513715 DOI: 10.1155/2012/826301] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/18/2012] [Indexed: 12/20/2022] Open
Abstract
Currently, complete or partial genome sequences of more than 150 human rhinovirus (HRV) isolates are known. Twelve species A use members of the low-density lipoprotein receptor family for cell entry, whereas the remaining HRV-A and all HRV-B bind ICAM-1. HRV-Cs exploit an unknown receptor. At least all A and B type viruses depend on receptor-mediated endocytosis for infection. In HeLa cells, they are internalized mainly by a clathrin- and dynamin-dependent mechanism. Upon uptake into acidic compartments, the icosahedral HRV capsid expands by ~4% and holes open at the 2-fold axes, close to the pseudo-3-fold axes and at the base of the star-shaped dome protruding at the vertices. RNA-protein interactions are broken and new ones are established, the small internal myristoylated capsid protein VP4 is expelled, and amphipathic N-terminal sequences of VP1 become exposed. The now hydrophobic subviral particle attaches to the inner surface of endosomes and transfers its genomic (+) ssRNA into the cytosol. The RNA leaves the virus starting with the poly(A) tail at its 3′-end and passes through a membrane pore contiguous with one of the holes in the capsid wall. Alternatively, the endosome is disrupted and the RNA freely diffuses into the cytoplasm.
Collapse
|
12
|
Endosomal maturation, Rab7 GTPase and phosphoinositides in African swine fever virus entry. PLoS One 2012; 7:e48853. [PMID: 23133661 PMCID: PMC3486801 DOI: 10.1371/journal.pone.0048853] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 10/02/2012] [Indexed: 11/22/2022] Open
Abstract
Here we analyzed the dependence of African swine fever virus (ASFV) infection on the integrity of the endosomal pathway. Using confocal immunofluorescence with antibodies against viral capsid proteins, we found colocalization of incoming viral particles with early endosomes (EE) during the first minutes of infection. Conversely, viral capsid protein was not detected in acidic late endosomal compartments, multivesicular bodies (MVBs), late endosomes (LEs) or lysosomes (LY). Using an antibody against a viral inner core protein, we found colocalization of viral cores with late compartments from 30 to 60 minutes postinfection. The absence of capsid protein staining in LEs and LYs suggested that virus desencapsidation would take place at the acid pH of these organelles. In fact, inhibitors of intraluminal acidification of endosomes caused retention of viral capsid staining virions in Rab7 expressing endosomes and more importantly, severely impaired subsequent viral protein production. Endosomal acidification in the first hour after virus entry was essential for successful infection but not thereafter. In addition, altering the balance of phosphoinositides (PIs) which are responsible of the maintenance of the endocytic pathway impaired ASFV infection. Early infection steps were dependent on the production of phosphatidylinositol 3-phosphate (PtdIns3P) which is involved in EE maturation and multivesicular body (MVB) biogenesis and on the interconversion of PtdIns3P to phosphatidylinositol 3, 5-biphosphate (PtdIns(3,5)P2). Likewise, GTPase Rab7 activity should remain intact, as well as processes related to LE compartment physiology, which are crucial during early infection. Our data demonstrate that the EE and LE compartments and the integrity of the endosomal maturation pathway orchestrated by Rab proteins and PIs play a central role during early stages of ASFV infection.
Collapse
|
13
|
Acosta EG, Castilla V, Damonte EB. Differential requirements in endocytic trafficking for penetration of dengue virus. PLoS One 2012; 7:e44835. [PMID: 22970315 PMCID: PMC3436767 DOI: 10.1371/journal.pone.0044835] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/13/2012] [Indexed: 11/22/2022] Open
Abstract
The entry of DENV into the host cell appears to be a very complex process which has been started to be studied in detail. In this report, the route of functional intracellular trafficking after endocytic uptake of dengue virus serotype 1 (DENV-1) strain HW, DENV-2 strain NGC and DENV-2 strain 16681 into Vero cells was studied by using a susceptibility to ammonium chloride assay, dominant negative mutants of several members of the family of cellular Rab GTPases that participate in regulation of transport through endosome vesicles and immunofluorescence colocalization. Together, the results presented demonstrate that in spite of the different internalization route among viral serotypes in Vero cells and regardless of the viral strain, DENV particles are first transported to early endosomes in a Rab5-dependent manner. Then a Rab7-dependent pathway guides DENV-2 16681 to late endosomes, whereas a yet unknown sorting event controls the transport of DENV-2 NGC, and most probably DENV-1 HW, to the perinuclear recycling compartments where fusion membrane would take place releasing nucleocapsid into the cytoplasm. Besides the demonstration of a different intracellular trafficking for two DENV-2 strains that shared the initial clathrin-independent internalization route, these studies proved for the first time the involvement of the slow recycling pathway for DENV-2 productive infection.
Collapse
Affiliation(s)
- Eliana G. Acosta
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elsa B. Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
14
|
Ehrhardt C. From virus entry to release: the diverse functions of PI3K during RNA virus infections. Future Virol 2011. [DOI: 10.2217/fvl.11.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RNA viruses are the causative agents of severe diseases in vertebrates. Upon viral infection, various intracellular signaling pathways are induced within the infected cells. While most of the different cellular signaling responses are initiated as antiviral defense mechanisms to counteract invading pathogens, they may also be exploited by viruses to support their replication. Recently, PI3K has been added to the growing list of signaling factors and pathways that are activated upon viral infections and regulate the replication process. Here, the current knowledge on RNA virus-induced PI3K-regulated signaling processes and how the pathogens take advantage of these activities within the infected cells is summarized.
Collapse
Affiliation(s)
- Christina Ehrhardt
- Institute of Molecular Virology (IMV), ZMBE, Westfaelische-Wilhelms-University, Von Esmarch-Str. 56, D-48149 Münster, Germany
| |
Collapse
|
15
|
Barlan A, Danthi P, Wiethoff C. Lysosomal localization and mechanism of membrane penetration influence nonenveloped virus activation of the NLRP3 inflammasome. Virology 2011; 412:306-14. [PMID: 21315400 PMCID: PMC3060956 DOI: 10.1016/j.virol.2011.01.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/06/2010] [Accepted: 01/14/2011] [Indexed: 01/31/2023]
Abstract
Adenovirus (Ad) endosomal membrane penetration activates the NLRP3 inflammasome by releasing lysosomal cathepsin B (catB) into the cytoplasm. We therefore examined the extent to which inflammasome activation correlates with Ad colocalization with catB-enriched lysosomes. Inflammasome activation, is greater during infections with Ad5 possessing an Ad16 fiber (Ad5F16gfp), or Ad5gfp neutralized by human serum, than Ad5gfp alone. Enhanced IL-1β release by Ad5F16gfp is partially due to increased TLR9 signaling but also correlates with greater release of catB into the cytoplasm. This increased TLR9 signaling and catB release correlates with a greater localization of Ad5F16gfp to lysosomes prior to endosomal escape. Another nonenveloped virus, reovirus, requires catB to penetrate cell membranes. However, reovirus did not release catB into the cytoplasm despite significantly greater colocalization with lysosomes compared to Ad5gfp and efficient membrane penetration. Thus, not only lysosomal localization, but the mechanism of membrane penetration influences viral activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- A.U. Barlan
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153
| | - P. Danthi
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - C.M. Wiethoff
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153
| |
Collapse
|
16
|
Khan AG, Pickl-Herk A, Gajdzik L, Marlovits TC, Fuchs R, Blaas D. Entry of a heparan sulphate-binding HRV8 variant strictly depends on dynamin but not on clathrin, caveolin, and flotillin. Virology 2011; 412:55-67. [PMID: 21262518 DOI: 10.1016/j.virol.2010.12.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/22/2010] [Accepted: 12/22/2010] [Indexed: 02/08/2023]
Abstract
The major group human rhinovirus type 8 can enter cells via heparan sulphate. When internalized into ICAM-1 negative rhabdomyosarcoma (RD) cells, HRV8 accumulated in the cells but caused CPE only after 3 days when used at high MOI. Adaptation by three blind passages alternating between RD and HeLa cells resulted in variant HRV8v with decreased stability at acidic pH allowing for productive infection in the absence of ICAM-1. HRV8v produced CPE at 10 times lower MOI within 1 day. Confocal fluorescence microscopy colocalization and the use of pharmacological and dominant negative inhibitors revealed that viral uptake is clathrin, caveolin, and flotillin independent. However, it is blocked by dynasore, amiloride, and EIPA. Furthermore, HRV8v induced FITC-dextran uptake and colocalized with this fluid phase marker. Except for the complete inhibition by dynasore, the entry pathway of HRV8v via HS is similar to that of HRV14 in RD cells that overexpress ICAM-1.
Collapse
Affiliation(s)
- Abdul Ghafoor Khan
- Dept. Med. Biochem., Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Dr. Bohr Gasse 9/3, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Human rhinoviruses (HRVs) are a major cause of the common cold. The more than one hundred serotypes, divided into species HRV-A and HRV-B, either bind intercellular adhesion molecule 1 (major group viruses) or members of the low-density lipoprotein receptor (minor group viruses) for cell entry. Some major group HRVs can also access the host cell via heparan sulphate proteoglycans. The cell attachment protein(s) of the recently discovered phylogenetic clade HRV-C is unknown. The respective receptors direct virus uptake via clathrin-dependent or independent endocytosis or via macropinocytosis. Triggered by ICAM-1 and/or the low pH environment in endosomes the virions undergo conformational alterations giving rise to hydrophobic subviral particles. These are handed over from the receptors to the endosomal membrane. According to the current view, the RNA genome is released through an opening at one of the fivefold axes of the icosahedral capsid and crosses the membrane through a pore presumably formed by viral proteins. Alternatively, the membrane may be ruptured allowing subviral particles and RNA to enter the cytosol. Whether a channel is formed or the membrane is disrupted most probably depends on the respective HRV receptor.
Collapse
Affiliation(s)
- Renate Fuchs
- Department of Pathophysiology, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
18
|
Lozach PY, Mancini R, Bitto D, Meier R, Oestereich L, Overby AK, Pettersson RF, Helenius A. Entry of bunyaviruses into mammalian cells. Cell Host Microbe 2010; 7:488-99. [PMID: 20542252 PMCID: PMC7172475 DOI: 10.1016/j.chom.2010.05.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 03/16/2010] [Accepted: 04/28/2010] [Indexed: 01/31/2023]
Abstract
The Bunyaviridae constitute a large family of enveloped animal viruses, many members of which cause serious diseases. However, early bunyavirus-host cell interactions and entry mechanisms remain largely uncharacterized. Investigating Uukuniemi virus, a bunyavirus of the genus Phlebovirus, we found that virus attachment to the cell surface was specific but inefficient, with 25% of bound viruses being endocytosed within 10 min, mainly via noncoated vesicles. The viruses entered Rab5a+ early endosomes and, subsequently, Rab7a+ and LAMP-1+ late endosomes. Acid-activated penetration, occurring 20-40 min after internalization, required maturation of early to late endosomes. The pH threshold for viral membrane fusion was 5.4, and entry was sensitive to temperatures below 25 degrees C. Together, our results indicate that Uukuniemi virus penetrates host cells by acid-activated membrane fusion from late endosomal compartments. This study also highlights the importance of the degradative branch of the endocytic pathway in facilitating entry of late-penetrating viruses.
Collapse
Affiliation(s)
- Pierre-Yves Lozach
- ETH Zurich, Institute of Biochemistry, Schafmattstrasse 18, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Although viruses are simple in structure and composition, their interactions with host cells are complex. Merely to gain entry, animal viruses make use of a repertoire of cellular processes that involve hundreds of cellular proteins. Although some viruses have the capacity to penetrate into the cytosol directly through the plasma membrane, most depend on endocytic uptake, vesicular transport through the cytoplasm, and delivery to endosomes and other intracellular organelles. The internalization may involve clathrin-mediated endocytosis (CME), macropinocytosis, caveolar/lipid raft-mediated endocytosis, or a variety of other still poorly characterized mechanisms. This review focuses on the cell biology of virus entry and the different strategies and endocytic mechanisms used by animal viruses.
Collapse
Affiliation(s)
- Jason Mercer
- ETH Zurich, Institute of Biochemistry, CH-8093 Zurich, Switzerland.
| | | | | |
Collapse
|
20
|
Human rhinovirus 14 enters rhabdomyosarcoma cells expressing icam-1 by a clathrin-, caveolin-, and flotillin-independent pathway. J Virol 2010; 84:3984-92. [PMID: 20130060 DOI: 10.1128/jvi.01693-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1) mediates binding and entry of major group human rhinoviruses (HRVs). Whereas the entry pathway of minor group HRVs has been studied in detail and is comparatively well understood, the pathway taken by major group HRVs is largely unknown. Use of immunofluorescence microscopy, colocalization with specific endocytic markers, dominant negative mutants, and pharmacological inhibitors allowed us to demonstrate that the major group virus HRV14 enters rhabdomyosarcoma cells transfected to express human ICAM-1 in a clathrin-, caveolin-, and flotillin-independent manner. Electron microscopy revealed that many virions accumulated in long tubular structures, easily distinguishable from clathrin-coated pits and caveolae. Virus entry was strongly sensitive to the Na(+)/H(+) ion exchange inhibitor amiloride and moderately sensitive to cytochalasin D. Thus, cellular uptake of HRV14 occurs via a pathway exhibiting some, but not all, characteristics of macropinocytosis and is similar to that recently described for adenovirus 3 entry via alpha(v) integrin/CD46 in HeLa cells.
Collapse
|
21
|
Abstract
The picornavirus family consists of a large number of small RNA viruses, many of which are significant pathogens of humans and livestock. They are amongst the simplest of vertebrate viruses comprising a single stranded positive sense RNA genome within a T = 1 (quasi T = 3) icosahedral protein capsid of approximately 30 nm diameter. The structures of a number of picornaviruses have been determined at close to atomic resolution by X-ray crystallography. The structures of cell entry intermediate particles and complexes of virus particles with receptor molecules or antibodies have also been obtained by X-ray crystallography or at a lower resolution by cryo-electron microscopy. Many of the receptors used by different picornaviruses have been identified, and it is becoming increasingly apparent that many use co-receptors and alternative receptors to bind to and infect cells. However, the mechanisms by which these viruses release their genomes and transport them across a cellular membrane to gain access to the cytoplasm are still poorly understood. Indeed, detailed studies of cell entry mechanisms have been made only on a few members of the family, and it is yet to be established how broadly the results of these are applicable across the full spectrum of picornaviruses. Working models of the cell entry process are being developed for the best studied picornaviruses, the enteroviruses. These viruses maintain particle integrity throughout the infection process and function as genome delivery modules. However, there is currently no model to explain how viruses such as cardio- and aphthoviruses that appear to simply dissociate into subunits during uncoating deliver their genomes into the cytoplasm.
Collapse
Affiliation(s)
- Tobias J. Tuthill
- Faculty of Biological Sciences, Institute for Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK, Institute for Animal Health, Pirbright, Surrey GU24 ONF, UK,
| | - Elisabetta Groppelli
- Faculty of Biological Sciences Institute for Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - James M. Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA,
| | - David J. Rowlands
- Faculty of Biological Sciences Institute for Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| |
Collapse
|
22
|
Internalization of swine vesicular disease virus into cultured cells: a comparative study with foot-and-mouth disease virus. J Virol 2009; 83:4216-26. [PMID: 19225001 DOI: 10.1128/jvi.02436-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We performed a comparative analysis of the internalization mechanisms used by three viruses causing important vesicular diseases in animals. Swine vesicular disease virus (SVDV) internalization was inhibited by treatments that affected clathrin-mediated endocytosis and required traffic through an endosomal compartment. SVDV particles were found in clathrin-coated pits by electron microscopy and colocalized with markers of early endosomes by confocal microscopy. SVDV infectivity was significantly inhibited by drugs that raised endosomal pH. When compared to foot-and-mouth disease virus (FMDV), which uses clathrin-mediated endocytosis, the early step of SVDV was dependent on the integrity of microtubules. SVDV-productive endocytosis was more sensitive to plasma membrane cholesterol extraction than that of FMDV, and differential cell signaling requirements for virus infection were also found. Vesicular stomatitis virus, a model virus internalized by clathrin-mediated endocytosis, was included as a control of drug treatments. These results suggest that different clathrin-mediated routes are responsible for the internalization of these viruses.
Collapse
|
23
|
Human rhinovirus type 2 uncoating at the plasma membrane is not affected by a pH gradient but is affected by the membrane potential. J Virol 2009; 83:3778-87. [PMID: 19193784 DOI: 10.1128/jvi.01739-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The minor receptor group human rhinovirus type 2 enters host cells by endocytosis via members of the low-density-lipoprotein receptor family. In late endosomes, it undergoes a conformational change solely induced by a pH of < or =5.6, resulting in RNA transfer across the endosomal membrane into the cytoplasm. To determine potential driving forces of this process, we investigated whether RNA penetration might depend on the pH gradient and/or the membrane potential between the acidic endosome lumen and the neutral cytoplasm. Since these parameters are difficult to assess in endosomes, we took advantage of the possibility of inducing structural changes, RNA release, and consequently infection from the plasma membrane. To manipulate the pH gradient, cell-bound virus was exposed to membrane-permeant or -impermeant acidic buffers at 4 degrees C, and this was followed by a shift to 34 degrees C in medium containing bafilomycin to prevent RNA release from endosomes. To manipulate the plasma membrane potential, similar experiments were carried out, but these included K(+) diffusion potentials in the presence of the K(+) ionophore valinomycin. We demonstrated that infection does not depend on a pH gradient but is enhanced by plasma membrane hyperpolarization compared to plasma membrane depolarization.
Collapse
|
24
|
Site of human rhinovirus RNA uncoating revealed by fluorescent in situ hybridization. J Virol 2009; 83:3770-7. [PMID: 19158243 DOI: 10.1128/jvi.00265-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
By using fluorescent in situ hybridization (FISH), we visualized viral RNA of human rhinovirus type 2 (HRV2) during its entry into HeLa cells. RNA uncoating of HRV2 is entirely dependent on low endosomal pH (< or =5.6). When internalized into cells treated with bafilomycin, which results in neutralization of the endosomal pH, no FISH signal was recorded, whereas in the absence of the drug, fluorescent dots were seen. Therefore, FISH detects the genomic viral RNA only upon its release from the capsid. Free viral RNA was first seen at 10 min postinfection (p.i.) in the perinuclear area of the cell, which is indicative of RNA release in/from late endosomal compartments. Pulse-chase experiments and observation of HRV2 RNA and capsid proteins via microscopy, Western blotting, and reverse transcription-PCR revealed that the RNA signal persisted whereas the protein signal disappeared. This demonstrates transport of capsids to lysosomes and degradation. In contrast, viral RNA that had already been transferred into the cytoplasm escaped lysosomal breakdown as indicated by a persistent FISH signal. Taken together, our results demonstrate by direct means RNA arrival in the cytosol within 10 min p.i. Based on persistence of the FISH signal and productive infection in the presence of the microtubule-depolymerizing drug nocodazole, we localized this process to endosomal carrier vesicles/late endosomes.
Collapse
|
25
|
Lau C, Wang X, Song L, North M, Wiehler S, Proud D, Chow CW. Syk associates with clathrin and mediates phosphatidylinositol 3-kinase activation during human rhinovirus internalization. THE JOURNAL OF IMMUNOLOGY 2008; 180:870-80. [PMID: 18178826 DOI: 10.4049/jimmunol.180.2.870] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human rhinovirus (HRV) causes the common cold. The most common acute infection in humans, HRV is a leading cause of exacerbations of asthma and chronic obstruction pulmonary disease because of its ability to exacerbate airway inflammation by altering epithelial cell biology upon binding to its receptor, ICAM-1. ICAM-1 regulates not only viral entry and replication but also signaling pathways that lead to inflammatory mediator production. We recently demonstrated the Syk tyrosine kinase to be an important mediator of HRV-ICAM-1 signaling: Syk regulates replication-independent p38 MAPK activation and IL-8 expression. In leukocytes, Syk regulates receptor-mediated internalization via PI3K. Although PI3K has been shown to regulate HRV-induced IL-8 expression and clathrin-mediated endocytosis of HRV, the role of airway epithelial Syk in this signaling pathway is not known. We postulated that Syk regulates PI3K activation and HRV endocytosis in the airway epithelium. Using confocal microscopy and immunoprecipitation, we demonstrated recruitment of the normally cytosolic Syk to the plasma membrane upon HRV16-ICAM-1 binding, along with Syk-clathrin coassociation. Subsequent incubation at 37 degrees C to permit internalization revealed redistribution of Syk to punctate structures resembling endosomes and colocalization with HRV16. Internalized HRV was not detected in cells overexpressing the kinase inactive Syk(K396R) mutant, indicating that kinase activity was necessary for endocytosis. HRV-induced PI3K activation was dependent on Syk; Syk knockdown by small interfering RNA significantly decreased phosphorylation of the PI3K substrate Akt. Together, these data reveal Syk to be an important mediator of HRV endocytosis and HRV-induced PI3K activation.
Collapse
Affiliation(s)
- Christine Lau
- Division of Respirology, Multi-Organ Transplantation Programme, University Health Network, Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Endocytosis in the shiitake mushroom Lentinula edodes and involvement of GTPase LeRAB7. EUKARYOTIC CELL 2007; 6:2406-18. [PMID: 17921351 DOI: 10.1128/ec.00222-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endocytosis is the process by which substrates enter a cell without passing through the plasma membrane but rather invaginate the cell membrane and form intracellular vesicles. Rab7 regulates endocytic trafficking between early and late endosomes and between late endosomes and lysosomes. LeRab7 in Lentinula edodes is strongly homologous to Rab7 in Homo sapiens. Receptors for activated C kinase-1 (LeRACK1) and Rab5 GTPase (LeRAB5) were isolated as interacting partners of LeRab7, and the interactions were confirmed by in vivo and in vitro protein interaction assays. The three genes showed differential expression in the various developmental stages of the mushroom. In situ hybridization showed that the three transcripts were localized in regions of active growth, such as the outer region of trama cells, and the subhymenium of the hymenophore of mature fruiting bodies and the prehymenophore of young fruiting bodies. The existence of endocytosis in the mycelium and hymenophores was confirmed by the internalization of FM4-64. LeRAB7 was partially colocalized with the AM4-64 and was located in the late endocytic pathway. This is the first report of the presence of endocytosis in homobasidiomycetes. LeRAB7, LeRAB5, and LeRACK1 may contribute to the growth of L. edodes and cell differentiation in hymenophores.
Collapse
|
27
|
Brabec-Zaruba M, Berka U, Blaas D, Fuchs R. Induction of autophagy does not affect human rhinovirus type 2 production. J Virol 2007; 81:10815-7. [PMID: 17670838 PMCID: PMC2045498 DOI: 10.1128/jvi.00143-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of autophagy has been shown to be beneficial for the replication of poliovirus, a phenomenon that might also apply for other picornaviruses. We demonstrate that de novo synthesis of human rhinovirus type 2 (HRV2), an HRV of the minor receptor group, is unaffected by tamoxifen, rapamycin, and 3-methyladenine (3-MA), drugs either stimulating (tamoxifen and rapamycin) or inhibiting (3-MA) autophagic processes. Furthermore, LC3-positive vesicles (i.e., autophagosomes) are not induced upon infection. Therefore, multiplication of this particular picornavirus is not dependent on autophagy.
Collapse
Affiliation(s)
- Marianne Brabec-Zaruba
- Department of Pathophysiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|