1
|
Sanna D, Fadda A, Casula M, Palomba G, Sini MC, Colombino M, Rozzo C, Palmieri G, Gallo C, Carbone D, Siracusa L, Pulvirenti L, Ugone V. Antidiabetic potential of vanadium complexes combined with olive leaf extracts: a viable approach to reduce metal toxicity. Biometals 2025; 38:683-698. [PMID: 40014236 PMCID: PMC11965145 DOI: 10.1007/s10534-025-00673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Vanadium compounds are known for their antidiabetic properties due to their ability to interfere with numerous mechanisms that lead to the decrease of blood glucose levels. Although some of these compounds have reached clinical trials and have the advantage of being orally administrable, no vanadium-containing drugs are currently available on the market, primarily due to the high doses required, which can lead intestinal and renal problems in case of long-term treatments. In this study, plant extracts obtained from olive leaves (Olea europaea L.) were combined with vanadium complexes with established antidiabetic activity with the aim of reducing their metal toxicity and, at the same time, amplifying their hypoglycemic action. The extracts were characterized by chromatographic and spectroscopic methods showing a composition rich in polyphenols and a high antioxidant activity. Formulations containing a vanadium complex (bis(maltolato)oxidovanadium(IV), BMOV, or bis(picolinato)oxidovanadium(IV), BPOV) mixed with different amount of olive leaves extract were tested in vitro to evaluate intestinal toxicity and hypoglycemic activity. The results demonstrated that the plant extracts are generally non-toxic toward human colon fibroblast in the whole range of tested concentrations and some of them are particularly effective in reducing the toxicity of the two vanadium compounds. Further in vitro tests conducted on differentiated human adipocyte cell lines revealed a significant increase in glucose uptake following treatment with the mixed formulations, compared to the effect of the individual components, indicating a synergistic effect. Immunocytochemical assays suggested that the translocation of GLUT4 transporter can be involved in the mechanism of action.
Collapse
Affiliation(s)
- Daniele Sanna
- Consiglio Nazionale Delle Ricerche, Istituto Di Chimica Biomolecolare, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Angela Fadda
- Consiglio Nazionale Delle Ricerche, Istituto Di Scienze Delle Produzioni Alimentari, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Milena Casula
- Istituto Di Ricerca Genetica E Biomedica, Consiglio Nazionale Delle Ricerche, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Grazia Palomba
- Istituto Di Ricerca Genetica E Biomedica, Consiglio Nazionale Delle Ricerche, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Maria Cristina Sini
- Istituto Di Ricerca Genetica E Biomedica, Consiglio Nazionale Delle Ricerche, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Maria Colombino
- Istituto Di Ricerca Genetica E Biomedica, Consiglio Nazionale Delle Ricerche, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Carla Rozzo
- Istituto Di Ricerca Genetica E Biomedica, Consiglio Nazionale Delle Ricerche, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Giuseppe Palmieri
- Dipartimento Di Medicina, Chirurgia E Farmacia, Università Di Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Carmela Gallo
- Consiglio Nazionale Delle Ricerche, Istituto Di Chimica Biomolecolare, Via Campi Flegrei, 34, 80078, Pozzuoli, NA, Italy
| | - Dalila Carbone
- Consiglio Nazionale Delle Ricerche, Istituto Di Chimica Biomolecolare, Via Campi Flegrei, 34, 80078, Pozzuoli, NA, Italy
| | - Laura Siracusa
- Consiglio Nazionale Delle Ricerche, Istituto Di Chimica Biomolecolare, Via Paolo Gaifami, 18, 95126, Catania, Italy
| | - Luana Pulvirenti
- Consiglio Nazionale Delle Ricerche, Istituto Di Chimica Biomolecolare, Via Paolo Gaifami, 18, 95126, Catania, Italy
| | - Valeria Ugone
- Consiglio Nazionale Delle Ricerche, Istituto Di Chimica Biomolecolare, Traversa La Crucca 3, 07100, Sassari, Italy.
| |
Collapse
|
2
|
Sanie-Jahromi F, Zia Z, Afarid M. A review on the effect of garlic on diabetes, BDNF, and VEGF as a potential treatment for diabetic retinopathy. Chin Med 2023; 18:18. [PMID: 36803536 PMCID: PMC9936729 DOI: 10.1186/s13020-023-00725-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Garlic is one of the favorite herbs in traditional medicine that has been reported to have many medicinal features. The aim of the current study is to review the latest documents on the effect of garlic on diabetes, VEGF, and BDNF and, finally, to review the existing studies on the effect of garlic on diabetic retinopathy. MAIN TEXT The therapeutic effect of garlic on diabetes has been investigated in various studies. Diabetes, especially in advanced stages, is associated with complications such as diabetic retinopathy, which is caused by the alteration in the expression of molecular factors involved in angiogenesis, neurodegeneration, and inflammation in the retina. There are different in-vitro and in-vivo reports on the effect of garlic on each of these processes. Considering the present concept, we extracted the most related English articles from Web of Science, PubMed, and Scopus English databases from 1980 to 2022. All in-vitro and animal studies, clinical trials, research studies, and review articles in this area were assessed and classified. RESULT AND CONCLUSION According to previous studies, garlic has been confirmed to have beneficial antidiabetic, antiangiogenesis, and neuroprotective effects. Along with the available clinical evidence, it seems that garlic can be suggested as a complementary treatment option alongside common treatments for patients with diabetic retinopathy. However, more detailed clinical studies are needed in this field.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Zahra Zia
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| |
Collapse
|
3
|
Treviño S, Diaz A. Vanadium and insulin: Partners in metabolic regulation. J Inorg Biochem 2020; 208:111094. [PMID: 32438270 DOI: 10.1016/j.jinorgbio.2020.111094] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Since the 1970s, the biological role of vanadium compounds has been discussed as insulin-mimetic or insulin-enhancer agents. The action of vanadium compounds has been investigated to determine how they influence the insulin signaling pathway. Khan and coworkers proposed key proteins for the insulin pathway study, introducing the concept "critical nodes". In this review, we also considered critical kinases and phosphatases that participate in this pathway, which will permit a better comprehension of a critical node, where vanadium can act: a) insulin receptor, insulin receptor substrates, and protein tyrosine phosphatases; b) phosphatidylinositol 3'-kinase, 3-phosphoinositide-dependent protein kinase and mammalian target of rapamycin complex, protein kinase B, and phosphatase and tensin homolog; and c) insulin receptor substrates and mitogen-activated protein kinases, each node having specific negative modulators. Additionally, leptin signaling was considered because together with insulin, it modulates glucose and lipid homeostasis. Even in recent literature, the possibility of vanadium acting against metabolic diseases or cancer is confirmed although the mechanisms of action are not well understood because these critical nodes have not been systematically investigated. Through this review, we establish that vanadium compounds mainly act as phosphatase inhibitors and hypothesize on their capacity to affect kinases, which are critical to other hormones that also act on common parts of the insulin pathway.
Collapse
Affiliation(s)
- Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, Puebla, C.P. 72560, Mexico.
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, 22 South, FCQ9, University City, Puebla, C.P. 72560, Mexico.
| |
Collapse
|
4
|
Sang YL, Zhang XH, Lin XS, Liu YH, Liu XY. Syntheses, crystal structures and biological activity of oxidovanadium(V) complexes with tridentate aroylhydrazone ligands. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1674292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ya-Li Sang
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| | - Xin-Hao Zhang
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| | - Xue-Song Lin
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| | - Yan-Hua Liu
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| | - Xiao-Yin Liu
- College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, P. R. China
| |
Collapse
|
5
|
Naito Y, Yoshikawa Y, Shintani M, Kamoshida S, Kajiwara N, Yasui H. Anti-hyperglycemic Effect of Long-Term Bis(hinokitiolato)zinc Complex ([Zn(hkt) 2]) Ingestion on Insulin Resistance and Pancreatic Islet Cells Protection in Type 2 Diabetic KK-A y Mice. Biol Pharm Bull 2017; 40:318-326. [PMID: 28250273 DOI: 10.1248/bpb.b16-00797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zinc (Zn) is a trace element with anti-diabetes mellitus (anti-DM) effects. Zn complexes exhibit stronger insulin-like activity than Zn ions. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) was recently reported to be a potent anti-DM candidate. We examined the effects of [Zn(hkt)2] on insulin resistance and pancreatic islet cells through in vivo long-term ingestion studies. In an in vivo study, we performed 4-month long-term [Zn(hkt)2] administration experiments in KK-Ay mice as a type 2 DM animal model. Ingestion of [Zn(hkt)2] resulted in lower blood glucose levels compared with the non-treated KK-Ay mice (control group). Additionally, [Zn(hkt)2] treatment decreased plasma insulin concentration compared with that of the non-treated KK-Ay group. [Zn(hkt)2] treatment resulted in a significant suppression of islet cell enlargement and a significantly decreased number of insulin-positive cells compared with the non-treated KK-Ay control group. The [Zn(hkt)2] treatment group showed the increasing tendency in the amount of Zn levels in peripheral organs; liver, muscle, adipose, and pancreas, compared with the non-treated KK-Ay control group. However, the Zn level in the pancreas of the [Zn(hkt)2] treatment group did not show the significant increase compared with the non-treated KK-Ay control group. This accumulation of Zn in pancreas suggested that [Zn(hkt)2] mainly effects on the peripheral tissue, and [Zn(hkt)2] has the less effect on the pancreas directly. Thus, we concluded that [Zn(hkt)2] exerted the main effect on peripheral organs by ameliorating insulin resistance.
Collapse
Affiliation(s)
- Yuki Naito
- Department of Analytical & Bioinorganic Chemistry, Division of Analytical & Physical Sciences, Kyoto Pharmaceutical University
| | | | | | | | | | | |
Collapse
|
6
|
Naito Y, Yoshikawa Y, Masuda K, Yasui H. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) activates Akt/protein kinase B independent of insulin signal transduction. J Biol Inorg Chem 2016; 21:537-48. [PMID: 27251140 DOI: 10.1007/s00775-016-1364-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Since many Zn complexes have been developed to enhance the insulin-like activity and increase the exposure and residence of Zn in the animal body, these complexes are recognized as one of the new candidates with action mechanism different from existing anti-diabetic drugs. However, the molecular mechanism by which Zn complexes exert an anti-DM effect is unknown. Therefore, we evaluated the activity of Zn complexes, especially related to the phosphorylation of insulin signaling pathway components. We focused on the insulin-like effects of the bis(hinokitiolato)zinc complex, [Zn(hkt)2], using 3T3-L1 adipocytes. [Zn(hkt)2] was taken up by cells and induced Akt phosphorylation in a time-dependent manner. Additionally, it showed inhibitory activity against PTP1B and PTEN, which are major negative regulators of insulin signaling. It did not promote the phosphorylation of IR (insulin receptor)-β or IRS (insulin receptor substrate)-1 by itself, but in combination with insulin, it enhanced the phosphorylation of IRβ. We conclude that [Zn(hkt)2] has effects on the proteins of insulin signaling pathway without insulin receptor mediation, and [Zn(hkt)2] promotes insulin function and shows the anti-DM effects. Thus, [Zn(hkt)2] may be the basis for improved DM treatments.
Collapse
Affiliation(s)
- Yuki Naito
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yutaka Yoshikawa
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4-7-2 Minatojima-nakamachi, Chuo-ku, Kobe, 650-0046, Japan.
| | - Kazufumi Masuda
- Department of Physical Chemistry, Graduate School of Clinical Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
7
|
Pelletier J, Domingues N, Castro MMCA, Östenson CG. In vitro effects of bis(1,2-dimethyl-3-hydroxy-4-pyridinonato)oxidovanadium(IV), or VO(dmpp)2, on insulin secretion in pancreatic islets of type 2 diabetic Goto-Kakizaki rats. J Inorg Biochem 2015; 154:29-34. [PMID: 26559485 DOI: 10.1016/j.jinorgbio.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022]
Abstract
Vanadium compounds have been explored as therapy of diabetes, and most studies have focussed on insulin mimetic effects, i.e. reducing hyperglycemia by improving glucose sensitivity and thus glucose uptake in sensitive tissues. We have recently shown that bis(1,2-dimethyl-3-hydroxy-4-pyridinonato)oxidovanadium(IV), VO(dmpp)2, has promising effects when compared to another vanadium compound, bis(maltolato)oxidovanadium(IV), BMOV, and insulin itself, in isolated adipocytes and in vivo in Goto-Kakizaki (GK) rats, an animal model of hereditary type 2 diabetes (T2D).We now have investigated in GK rats whether VO(dmpp)2 also modulates another important defect in T2D, impaired insulin secretion. VO(dmpp)2, but not BMOV, stimulated insulin secretion from isolated GK rat pancreatic islets at high, 16.7mM, but not at low–normal, 3.3 mM, glucose concentration. Mechanistic studies demonstrate that the insulin releasing effect of VO(dmpp)2 is due to its interaction with several steps in the stimulus-secretion coupling for glucose, including islet glucose metabolism and K-ATP channels, L-type Ca2+ channels, modulation by protein kinases A and C, as well as the exocytotic machinery. In conclusion, VO(dmpp)2 exhibits properties of interest for treatment of the insulin secretory defect in T2D, in addition to its well-described insulin mimetic activity.
Collapse
Affiliation(s)
- Julien Pelletier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna D2:04, SE-171 76 Stockholm, Sweden
| | - Neuza Domingues
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - M Margarida C A Castro
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal; Coimbra Chemistry Centre, Rua Larga, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna D2:04, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
8
|
Levina A, McLeod AI, Pulte A, Aitken JB, Lay PA. Biotransformations of Antidiabetic Vanadium Prodrugs in Mammalian Cells and Cell Culture Media: A XANES Spectroscopic Study. Inorg Chem 2015; 54:6707-18. [PMID: 25906315 PMCID: PMC4511291 DOI: 10.1021/ic5028948] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The antidiabetic activities of vanadium(V)
and -(IV) prodrugs are determined by their ability to release active
species upon interactions with components of biological media. The
first X-ray absorption spectroscopic study of the reactivity of typical
vanadium (V) antidiabetics, vanadate ([VVO4]3–, A) and a vanadium(IV) bis(maltolato)
complex (B), with mammalian cell cultures has been performed
using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1
(mouse adipocytes and preadipocytes) cell lines, as well as the corresponding
cell culture media. X-ray absorption near-edge structure data were
analyzed using empirical correlations with a library of model vanadium(V),
-(IV), and -(III) complexes. Both A and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly
five- and six-coordinate VV species (∼75% total
V) in a cell culture medium within 24 h at 310 K. Speciation of V
in intact HepG2 cells also changed with the incubation time (from
∼20% to ∼70% VIV of total V), but it was
largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular
fractionation of A549 cells suggested that VV reduction
to VIV occurred predominantly in the cytoplasm, while accumulation
of VV in the nucleus was likely to have been facilitated
by noncovalent bonding to histone proteins. The nuclear VV is likely to modulate the transcription process and to be ultimately
related to cell death at high concentrations of V, which may be important
in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes)
showed a higher propensity to form VIV species, despite
the prevalence of VV in the medium. The distinct V biochemistry
in these cells is consistent with their crucial role in insulin-dependent
glucose and fat metabolism and may also point to an endogenous role
of V in adipocytes. The first detailed
speciation study of typical antidiabetic vanadium(V/IV) complexes
in mammalian cell culture systems showed that the complexes decomposed
rapidly in cell culture media and were further metabolized by the
cells, which included interconversions of VV and VIV species.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Andrew I McLeod
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anna Pulte
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jade B Aitken
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
Makinen MW, Salehitazangi M. The Structural Basis of Action of Vanadyl (VO 2+) Chelates in Cells. Coord Chem Rev 2014; 279:1-22. [PMID: 25237207 DOI: 10.1016/j.ccr.2014.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Much emphasis has been given to vanadium compounds as potential therapeutic reagents for the treatment of diabetes mellitus. Thus far, no vanadium compound has proven efficacious for long-term treatment of this disease in humans. Therefore, in review of the research literature, our goal has been to identify properties of vanadium compounds that are likely to favor physiological and biochemical compatibility for further development as therapeutic reagents. We have, therefore, limited our review to those vanadium compounds that have been used in both in vivo experiments with small, laboratory animals and in in vitro studies with primary or cultured cell systems and for which pharmacokinetic and pharmacodynamics results have been reported, including vanadium tissue content, vanadium and ligand lifetime in the bloodstream, structure in solution, and interaction with serum transport proteins. Only vanadyl (VO2+) chelates fulfill these requirements despite the large variety of vanadium compounds of different oxidation states, ligand structure, and coordination geometry synthesized as potential therapeutic agents. Extensive review of research results obtained with use of organic VO2+-chelates shows that the vanadyl chelate bis(acetylacetonato)oxidovanadium(IV) [hereafter abbreviated as VO(acac)2], exhibits the greatest capacity to enhance insulin receptor kinase activity in cells compared to other organic VO2+-chelates, is associated with a dose-dependent capacity to lower plasma glucose in diabetic laboratory animals, and exhibits a sufficiently long lifetime in the blood stream to allow correlation of its dose-dependent action with blood vanadium content. The properties underlying this behavior appear to be its high stability and capacity to remain intact upon binding to serum albumin. We relate the capacity to remain intact upon binding to serum albumin to the requirement to undergo transcytosis through the vascular endothelium to gain access to target tissues in the extravascular space. Serum albumin, as the most abundant transport protein in the blood stream, serves commonly as the carrier protein for small molecules, and transcytosis of albumin through capillary endothelium is regulated by a Src protein tyrosine kinase system. In this respect it is of interest to note that inorganic VO2+ has the capacity to enhance insulin receptor kinase activity of intact 3T3-L1 adipocytes in the presence of albumin, albeit weak; however, in the presence of transferrin no activation is observed. In addition to facilitating glucose uptake, the capacity of VO2+- chelates for insulin-like, antilipolytic action in primary adipocytes has also been reviewed. We conclude that measurement of inhibition of release of only free fatty acids from adipocytes stimulated by epinephrine is not a sufficient basis to ascribe the observations to purely insulin-mimetic, antilipolytic action. Adipocytes are known to contain both phosphodiesterase-3 and phosphodiesterase-4 (PDE3 and PDE4) isozymes, of which insulin antagonizes lipolysis only through PDE3B. It is not known whether the other isozyme in adipocytes is influenced directly by VO2+- chelates. In efforts to promote improved development of VO2+- chelates for therapeutic purposes, we propose synergism of a reagent with insulin as a criterion for evaluating physiological and biochemical specificity of action. We highlight two organic compounds that exhibit synergism with insulin in cellular assays. Interestingly, the only VO2+- chelate for which this property has been demonstrated, thus far, is VO(acac)2.
Collapse
Affiliation(s)
- Marvin W Makinen
- Department of Biochemistry & Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637 USA
| | - Marzieh Salehitazangi
- Department of Biochemistry & Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637 USA
| |
Collapse
|
10
|
Therapeutic properties of VO(dmpp)2 as assessed by in vitro and in vivo studies in type 2 diabetic GK rats. J Inorg Biochem 2014; 131:115-22. [DOI: 10.1016/j.jinorgbio.2013.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/15/2013] [Accepted: 11/17/2013] [Indexed: 01/28/2023]
|
11
|
Moroki T, Yoshikawa Y, Yoshizawa K, Tsubura A, Yasui H. Morphological analysis of the pancreas and liver in diabetic KK-Aymice treated with zinc and oxovanadium complexes. Metallomics 2014; 6:1632-8. [DOI: 10.1039/c4mt00087k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pathological conditions for type 2 diabetes mellitus in mice are recovered after treatment with a Zn2+complex in terms of histology of organs.
Collapse
Affiliation(s)
- Takayasu Moroki
- Department of Analytical and Bioinorganic Chemistry
- Division of Analytical and Physical Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414, Japan
| | - Yutaka Yoshikawa
- Department of Analytical and Bioinorganic Chemistry
- Division of Analytical and Physical Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414, Japan
- Department of Health
| | | | - Airo Tsubura
- Department of Pathology II
- Kansai Medical University
- Hirakata 573-1010, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry
- Division of Analytical and Physical Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414, Japan
| |
Collapse
|
12
|
Dias DM, Rodrigues JPGLM, Domingues NS, Bonvin AMJJ, Castro MMCA. Unveiling the Interaction of Vanadium Compounds with Human Serum Albumin by Using1H STD NMR and Computational Docking Studies. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Sakurai H. The discovery of vanadyl and zinc complexes for treating diabetes and metabolic syndromes. Expert Opin Drug Discov 2013; 2:873-87. [PMID: 23489004 DOI: 10.1517/17460441.2.6.873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incidence of diabetes mellitus has increased over the decades because of lifestyle changes. The number of people with diabetes mellitus worldwide is expected to increase from 150 million to 220 million by 2010 and to 300 million by 2025. There are two main types of diabetes mellitus. Type 1 diabetes mellitus is due to the autoimmune-mediated destruction of pancreatic β cells, resulting in absolute insulin deficiency; the patients require exogenous insulin injections. Type 2 is characterized by insulin resistance and abnormal insulin secretion and the patients require exercise, diet control and/or oral hypoglycemics. However, each treatment has some adverse effects, including physical burden, formation of self-antibodies for insulin injections, the severe side effects of hypoglycemics and the discontinuation of insulin synthesis in the pancreas. To overcome these adverse effects and replace the use of these agents, the author attempted to develop new antidiabetic agents with novel structures and mechanisms. This review focuses on the authors' recent development of vanadium and zinc complexes for antidiabetic and antimetabolic syndromes.
Collapse
Affiliation(s)
- Hiromu Sakurai
- Kyoto Pharmaceutical University, Department of Analytical and Bioinorganic Chemistry, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
14
|
Abstract
The current status and likely future directions of complexes of V(V/IV), Cr(III), Mo(VI), W(VI), Zn(II), Cu(II), and Mn(III) as potential oral drugs against type 2 diabetes are reviewed. We propose a unified model of extra- and intracellular mechanisms of anti-diabetic efficacies of V(V/IV), Mo(VI), W(VI), and Cr(III), centred on high-oxidation-state oxido/peroxido species that inhibit protein tyrosine phosphatases (PTPs) involved in insulin signalling. The postulated oxidative mechanism of anti-diabetic activity of Cr(III) via carcinogenic Cr(VI/V) (which adds to safety concerns) is consistent with recent clinical trials on Cr(III) picolinate, where activity was apparent only in patients with poorly controlled diabetes (high oxidative stress), and the correlation between the anti-diabetic activities and ease of oxidation of Cr(III) supplements and their metabolites in vivo. Zn(II) and Cu(II) anti-diabetics act via different mechanisms and are unlikely to be used as specific anti-diabetics due to their diverse and unpredictable biological activities. Hence, future research directions are likely to centre on enhancing the bioavailability and selectivity of V(V/IV), Mo(VI), or W(VI) drugs. The strategy of potentiating circulating insulin with metal ions has distinct therapeutic advantages over interventions that stimulate the release of more insulin, or use insulin mimetics, because of many adverse side-effects of increased levels of insulin, including increased risks of cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, NSW, Australia
| | | |
Collapse
|
15
|
Naito Y, Yoshikawa Y, Yasui H. Cellular Mechanism of Zinc–Hinokitiol Complexes in Diabetes Mellitus. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2011. [DOI: 10.1246/bcsj.20100262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Study of the antidiabetic capacity of the VO(dmpp)2 complex. J Inorg Biochem 2010; 104:987-92. [DOI: 10.1016/j.jinorgbio.2010.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/30/2010] [Accepted: 05/07/2010] [Indexed: 01/29/2023]
|
17
|
Zuo YQ, Liu WP, Niu YF, Tian CF, Xie MJ, Chen XZ, Li L. Bis(α-furancarboxylato)oxovanadium(IV) prevents and improves dexamethasone-induced insulin resistance in 3T3-L1 adipocytes. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.10.0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
Previous studies showed that bis(α-furancarboxylato)oxovanadium(IV) (BFOV), an orally active antidiabetic organic vanadium complex, could improve insulin resistance in animals with type 2 diabetes. The present study has been carried out to evaluate the effects of BFOV on insulin-resistant glucose metabolism using dexamethasone-treated 3T3-L1 adipocytes as an in-vitro model of insulin resistance. The results showed that BFOV, similar to vanadyl sulfate and rosiglitazone, caused a concentration-dependent increase in glucose consumption by insulin-resistant adipocytes. Moreover, BFOV enhanced the action of insulin and completely prevented the development of insulin resistance induced by dexamethasone, leading to glucose consumption equal to that by normal cells. In addition, dexamethasone reduced the mRNA expression of insulin receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT4) in 3T3-L1 adipocytes, while BFOV normalized the expression of IRS-1 and GLUT4. These findings suggest that BFOV prevents and improves dexamethasone-induced insulin resistance in 3T3-L1 adipocytes by enhancing expression of IRS-1 and GLUT4 mRNA.
Collapse
Affiliation(s)
- Yi-Qing Zuo
- Yunnan Pharmacological Laboratories of Natural Products, Kunming Medical College, Kunming, PR China
| | - Wei-Ping Liu
- Kunming Institute of Precious Metals, Kunming, PR China
| | - Yan-Fen Niu
- Yunnan Pharmacological Laboratories of Natural Products, Kunming Medical College, Kunming, PR China
| | - Chang-Fu Tian
- Yunnan Pharmacological Laboratories of Natural Products, Kunming Medical College, Kunming, PR China
| | - Ming-Jin Xie
- Department of Chemistry, Yunnan University, Kunming, PR China
| | - Xi-Zhu Chen
- Kunming Institute of Precious Metals, Kunming, PR China
| | - Ling Li
- Yunnan Pharmacological Laboratories of Natural Products, Kunming Medical College, Kunming, PR China
| |
Collapse
|
18
|
Aureliano M, Crans DC. Decavanadate (V10 O28 6-) and oxovanadates: oxometalates with many biological activities. J Inorg Biochem 2009; 103:536-546. [PMID: 19110314 DOI: 10.1016/j.jinorgbio.2008.11.010] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 11/10/2008] [Accepted: 11/18/2008] [Indexed: 02/07/2023]
Abstract
The decameric vanadate species V(10)O(28)(6-), also referred to as decavanadate, impact proteins, lipid structures and cellular function, and show some effects in vivo on oxidative stress processes and other biological properties. The mode of action of decavanadate in many biochemical systems depends, at least in part, on the charge and size of the species and in some cases competes with the simpler oxovanadate species. The orange decavanadate that contains 10 vanadium atoms is a stable species for several days at neutral pH, but at higher pH immediately converts to the structurally and functionally distinct lower oxovanadates such as the monomer, dimer or tetramer. Although the biological effects of vanadium are generally assumed to derive from monomeric vanadate or the vanadyl cation, we show in this review that not all effects can be attributed to these simple oxovanadate forms. This topic has not previously been reviewed although background information is available [D.C. Crans, Comments Inorg. Chem. 16 (1994) 35-76; M. Aureliano (Ed.), Vanadium Biochemistry, Research Signpost Publs., Kerala, India, 2007]. In addition to pumps, channels and metabotropic receptors, lipid structures represent potential biological targets for decavanadate and some examples have been reported. Decavanadate interact with enzymes, polyphosphate, nucleotide and inositol 3-phosphate binding sites in the substrate domain or in an allosteric site, in a complex manner. In mitochondria, where vanadium was shown to accumulate following decavanadate in vivo administration, nM concentration of decavanadate induces membrane depolarization in addition to inhibiting oxygen consumption, suggesting that mitochondria may be potential targets for decameric toxicity. In vivo effects of decavanadate in piscine models demonstrated that antioxidant stress markers, lipid peroxidation and vanadium subcellular distribution is dependent upon whether or not the solutions administered contain decavanadate. The present review summarizes the reports on biological effects of decavanadate and highlights the importance of considering decavanadate in evaluations of the biological effects of vanadium.
Collapse
Affiliation(s)
- Manuel Aureliano
- CCMar and Dept. Chemistry, Biochemistry and Pharmacy, FCT, University of Algarve, Faro, Portugal.
| | | |
Collapse
|
19
|
Hiromura M, Adachi Y, Machida M, Hattori M, Sakurai H. Glucose lowering activity by oral administration of bis(allixinato)oxidovanadium(iv) complex in streptozotocin-induced diabetic mice and gene expression profiling in their skeletal muscles. Metallomics 2009. [DOI: 10.1039/b815384c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Roess DA, Smith SML, Winter P, Zhou J, Dou P, Baruah B, Trujillo AM, Levinger NE, Yang X, Barisas BG, Crans DC. Effects of vanadium-containing compounds on membrane lipids and on microdomains used in receptor-mediated signaling. Chem Biodivers 2008; 5:1558-1570. [PMID: 18729092 PMCID: PMC3159192 DOI: 10.1002/cbdv.200890144] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is increasing evidence for the involvement of plasma membrane microdomains in insulin receptor function. Moreover, disruption of these structures, which are typically enriched in sphingomyelin and cholesterol, results in insulin resistance. Treatment strategies for insulin resistance include the use of vanadium (V) compounds which have been shown in animal models to enhance insulin responsiveness. One possible mechanism for insulin-enhancing effects might involve direct effects of V compounds on membrane lipid organization. These changes in lipid organization promote the partitioning of insulin receptors and other receptors into membrane microdomains where receptors are optimally functional. To explore this possibility, we have used several strategies involving V complexes such as [VO(2)(dipic)](-) (pyridin-2,6-dicarboxylatodioxovanadium(V)), decavanadate (V(10)O(28)(6-), V(10)), BMOV (bis(maltolato)oxovanadium(IV)), and [VO(saltris)](2) (2-salicylideniminato-2-(hydroxymethyl)-1,3-dihydroxypropane-oxovanadium(V)). Our strategies include an evaluation of interactions between V-containing compounds and model lipid systems, an evaluation of the effects of V compounds on lipid fluidity in erythrocyte membranes, and studies of the effects of V-containing compounds on signaling events initiated by receptors known to use membrane microdomains as signaling platforms.
Collapse
Affiliation(s)
- Deborah A. Roess
- Departments of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1872
| | - Steven M. L. Smith
- Departments of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1872
| | - Peter Winter
- Departments of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1872
| | - Jun Zhou
- Departments of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1872
| | - Ping Dou
- Departments of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1872
| | - Bharat Baruah
- Departments of Chemistry, Colorado State University, Fort Collins, CO 80523-1872
| | | | - Nancy E. Levinger
- Departments of Chemistry, Colorado State University, Fort Collins, CO 80523-1872
| | - Xioda Yang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100083
| | - B. George Barisas
- Departments of Chemistry, Colorado State University, Fort Collins, CO 80523-1872
| | - Debbie C. Crans
- Departments of Chemistry, Colorado State University, Fort Collins, CO 80523-1872
| |
Collapse
|
21
|
Hiromura M, Sakurai H. Action Mechanism of Insulin-Mimetic Vanadyl-Allixin Complex. Chem Biodivers 2008; 5:1615-1621. [DOI: 10.1002/cbdv.200890149] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Bastos AMB, da Silva JG, da S. Maia PI, Deflon VM, Batista AA, Ferreira AV, Botion LM, Niquet E, Beraldo H. Oxovanadium(IV) and (V) complexes of acetylpyridine-derived semicarbazones exhibit insulin-like activity. Polyhedron 2008. [DOI: 10.1016/j.poly.2008.02.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
SAKURAI H. Treatment of Diabetes in Experimental Animals by Metallocomplexes. YAKUGAKU ZASSHI 2008; 128:317-22. [DOI: 10.1248/yakushi.128.317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiromu SAKURAI
- Institute for Oriental Medicine, Suzuka University of Medical Science
| |
Collapse
|
24
|
Li M, Wei D, Ding W, Baruah B, Crans DC. Anti-diabetic effects of cesium aqua (N,N'-ethylene(salicylideneiminato)-5-sulfonato) oxovanadium (IV) dihydrate in streptozotocin-induced diabetic rats. Biol Trace Elem Res 2008; 121:226-32. [PMID: 17968514 DOI: 10.1007/s12011-007-8049-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 08/22/2007] [Accepted: 09/25/2007] [Indexed: 01/23/2023]
Abstract
The study has been designed to investigate the anti-diabetic effects of cesium aqua (N,N'-ethylene (salicylideneiminato)-5-sulfonato) oxovanadium (IV) dihydrate (VO(salen-SO(3))), an organic vanadium compound, in streptozotocin-induced diabetic rats. VO(salen-SO(3)) was orally administrated to diabetic rats at the dose of 0.3 mg/ml through drinking water for 24 days. Blood glucose level was significantly declined, and oral glucose tolerance was improved after VO(salen-SO(3)) treatment. Moreover, liver and muscle glycogen concentrations were markedly increased in VO(salen-SO(3))-treated diabetic rats. On the other hand, aspartate amino transferase and blood urea nitrogen in serum were significantly decreased after treatment with VO(salen-SO(3)). Taken together, these results suggested that VO(salen-SO(3)) may be of potential value in the therapy of diabetic symptom and hyperglycemia-induced hepatic and renal dysfunction.
Collapse
Affiliation(s)
- Ming Li
- College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
25
|
Molecular mechanism of antidiabetic zinc–allixin complexes: regulations of glucose utilization and lipid metabolism. J Biol Inorg Chem 2008; 13:675-84. [DOI: 10.1007/s00775-008-0352-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 02/05/2008] [Indexed: 01/03/2023]
|
26
|
Levina A, McLeod AI, Seuring J, Lay PA. Reactivity of potential anti-diabetic molybdenum(VI) complexes in biological media: A XANES spectroscopic study. J Inorg Biochem 2007; 101:1586-93. [PMID: 17764745 DOI: 10.1016/j.jinorgbio.2007.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/29/2007] [Accepted: 07/10/2007] [Indexed: 11/18/2022]
Abstract
The application of Mo(VI) complexes as anti-diabetic agents is a subject of considerable recent interest. The stability and speciation of [Mo(VI)O(4)](2-) and three analogs of known anti-diabetic V(IV) complexes ([Mo(VI)O(2)L(2)]; where LH=2,4-pentanedione, l-cysteine ethyl ester or N,N-diethyldithiocarbamic acid) in natural and simulated biological fluids (including blood and its components, cell culture media, and artificial digestion systems) were studied using MoK-edge XANES (X-ray absorption near-edge structure) spectroscopy of freeze-dried samples at 20K. All of the studied [MoO(2)L(2)] complexes decomposed extensively under simulated gastric and intestinal digestion conditions (3 h at 310 K), as well as in blood plasma or in cell culture medium (24 h at 310 K). The reaction products of [MoO(4)](2-) and [MoO(2)L(2)] with biological fluids could be satisfactorily modelled (using multiple linear regression analyses) as mixtures of tetrahedral and octahedral Mo(VI) species (with O-donor ligands) in various ratios, which were dependent on the nature of the medium rather than that of the initial Mo(VI) compounds. Red blood cells take up Mo(VI) predominantly in the form of [MoO(4)](2-). Implications of these results to the development of Mo(VI)-based anti-diabetics and to the mechanisms of natural uptake and metabolism of Mo(VI) are discussed.
Collapse
Affiliation(s)
- Aviva Levina
- Centre for Heavy Metals Research and Centre for Structural Biology and Structural Chemistry, School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
27
|
Hiromura M, Nakayama A, Adachi Y, Doi M, Sakurai H. Action mechanism of bis(allixinato)oxovanadium(IV) as a novel potent insulin-mimetic complex: regulation of GLUT4 translocation and FoxO1 transcription factor. J Biol Inorg Chem 2007; 12:1275-87. [PMID: 17805585 DOI: 10.1007/s00775-007-0295-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 08/20/2007] [Indexed: 12/27/2022]
Abstract
Bis(allixinato)oxovanadium(IV), VO(alx)(2) (alx is 3-hydroxy-5-methoxy-6-methyl-2-pentyl-4-pyrone), has been reported to act as an antidiabetic agent in streptozotocin-induced type-1-like and obesity-linked KKA(y) type 2 diabetic model mice. VO(alx)(2) is also proposed as a candidate agent for treating metabolic syndromes in animals. However, its functional mechanism is yet to be clarified. In this study, we examined whether VO(alx)(2) contributes to both the activation of the insulin signaling cascade that activates glucose transporter 4 (GLUT4) translocation and the regulation of the forkhead box O1 (FoxO1) transcription factor that controls the gene transcription of gluconeogenesis genes. The following three important results were obtained: (1) intracellular vanadium concentration in 3T3-L1 adipocytes is higher after treatment with VO(alx)(2) than with VOSO(4); (2) VO(alx)(2) stimulates the translocation of GLUT4 to the plasma membrane following activation of the tyrosine phosphorylation of the insulin receptor beta-subunit (IRbeta) and insulin receptor substrate (IRS) as well as Akt kinase in 3T3-L1 adipocytes; and (3) the mechanism of inhibition of glucose-6-phosphatase (G6Pase) catalytic subunit gene expression by vanadium is due to disruption of FoxO1 binding with the G6Pase promoter, which indicates that FoxO1 is phosphorylated by VO(alx)(2)-stimulated Akt in HepG2 cells. On the basis of these results, we propose that the critical functions of VO(alx)(2) involve the activation of phosphatidylinositol 3-kinase-Akt signaling through the enhancement of tyrosine phosphorylation of IRbeta and IRS, which in turn transmits the signal to activate GLUT4 translocation, and the regulation of the DNA binding activity of the FoxO1 transcription factor.
Collapse
Affiliation(s)
- Makoto Hiromura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
28
|
Basuki W, Hiromura M, Sakurai H. Molecular Mechanism for Antidiabetic Activity of [meso-Tetrakis(4-sulfonatophenyl)porphyrinato]oxovanadium(IV) (VO(tpps)) Complex. Studies on Akt Phosphorylation and GLUT4 Translocation in 3T3-L1 Adipocytes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.1605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Yasumatsu N, Yoshikawa Y, Adachi Y, Sakurai H. Antidiabetic copper(II)-picolinate: impact of the first transition metal in the metallopicolinate complexes. Bioorg Med Chem 2007; 15:4917-22. [PMID: 17531495 DOI: 10.1016/j.bmc.2007.04.062] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 11/21/2022]
Abstract
In order to examine the effect of metallopicolinate complexes with first transition metals and develop complexes that are more active than an insulinomimetic leading compound such as oxovanadium(IV)-picolinate complex, VO(pa)2, 10 metallopicolinate complexes were prepared, and their in vitro insulinomimetic and in vivo antidiabetic activities were evaluated. The in vitro activity was estimated by determining the inhibitory effects of these complexes on free fatty acid release from isolated rat adipocytes treated with epinephrine. Among the complexes, Cu(pa)2, and Mn(pa)3 exhibited higher activity than their respective metal ions and better activity than VO(pa)2. Since Cu(pa)2 was non-toxic in the cultured rat hepatic M cells, this complex was given streptozotocin (STZ)-induced type 1-like diabetic mice by single intraperitoneal injection, and found that this complex exhibited a higher hypoglycemic effect than the VO(pa)2 complex. Based on these results, we propose that Cu(pa)2 may be a potent alternative antidiabetic agent.
Collapse
Affiliation(s)
- Naoko Yasumatsu
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | |
Collapse
|
30
|
Basuki W, Hiromura M, Sakurai H. Insulinomimetic Zn complex (Zn(opt)2) enhances insulin signaling pathway in 3T3-L1 adipocytes. J Inorg Biochem 2007; 101:692-9. [PMID: 17316811 DOI: 10.1016/j.jinorgbio.2006.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/23/2006] [Accepted: 12/27/2006] [Indexed: 01/28/2023]
Abstract
Zinc (Zn) is an essential trace element with multiple regulatory functions, involving insulin synthesis, secretion, signaling and glucose transport. Since 2000, we have proposed that Zn complexes with different coordination environments exhibit high insulinomimetic and antidiabetic activities in type 2 diabetic animals. However, the molecular mechanism for the activities is still unsolved. The purpose of this study was to reveal the molecular mechanism of several types of Zn complexes in 3T3-L1 adipocytes, with respect to insulin signaling pathway. Obtained results shows that bis(1-oxy-2-pyridine-thiolato)Zn(II), Zn(opt)2, with S(2)O(2) coordination environment induced most strongly Akt/protein kinase B (Akt/PKB) phosphorylation, in which the optimal phosphorylation was achieved at a concentration of 25 microM, and this Zn(opt)2-induced Akt/PKB phosphorylation was inhibited by wortmannin at 100 nM. Further, the phosphorylation was maximal at 5-10 min stimulation, in agreement with the Zn uptake which was also maximal at 5-10 min stimulation. The Akt/PKB phosphorylation was in concentration- and time-dependent manners. Zn(opt)2 was also capable to translocate GLUT4 protein to the plasma membrane. We conclude that Zn(opt)2 was revealed to exhibit both insulinomimetic and antidiabetic activities by activating insulin signaling cascade through Akt/PKB phosphorylation, which in turn caused the GLUT4 translocation from the cytosol to the plasma membrane.
Collapse
Affiliation(s)
- Wanny Basuki
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Misasagi, Kyoto 607-8414, Japan
| | | | | |
Collapse
|