1
|
Griesser E, Vemula V, Mónico A, Pérez-Sala D, Fedorova M. Dynamic posttranslational modifications of cytoskeletal proteins unveil hot spots under nitroxidative stress. Redox Biol 2021; 44:102014. [PMID: 34062408 PMCID: PMC8170420 DOI: 10.1016/j.redox.2021.102014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
The cytoskeleton is a supramolecular structure consisting of interacting protein networks that support cell dynamics in essential processes such as migration and division, as well as in responses to stress. Fast cytoskeletal remodeling is achieved with the participation of regulatory proteins and posttranslational modifications (PTMs). Redox-related PTMs are emerging as critical players in cytoskeletal regulation. Here we used a cellular model of mild nitroxidative stress in which a peroxynitrite donor induced transient changes in the organization of three key cytoskeletal proteins, i.e., vimentin, actin and tubulin. Nitroxidative stress-induced reconfiguration of intermediate filaments, microtubules and actin structures were further correlated with their PTM profiles and dynamics of the PTM landscape. Using high-resolution mass spectrometry, 62 different PTMs were identified and relatively quantified in vimentin, actin and tubulin, including 12 enzymatic, 13 oxidative and 2 nitric oxide-derived modifications as well as 35 modifications by carbonylated lipid peroxidation products, thus evidencing the occurrence of a chain reaction with formation of numerous reactive species and activation of multiple signaling pathways. Our results unveil the presence of certain modifications under basal conditions and their modulation in response to stress in a target-, residue- and reactive species-dependent manner. Thus, some modifications accumulated during the experiment whereas others varied transiently. Moreover, we identified protein PTM "hot spots", such as the single cysteine residue of vimentin, which was detected in seven modified forms, thus, supporting its role in PTM crosstalk and redox sensing. Finally, identification of novel PTMs in these proteins paves the way for unveiling new cytoskeleton regulatory mechanisms.
Collapse
Affiliation(s)
- Eva Griesser
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Venukumar Vemula
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Andreia Mónico
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.
| |
Collapse
|
2
|
Bago Á, Íñiguez MA, Serrador JM. Nitric Oxide and Electrophilic Cyclopentenone Prostaglandins in Redox signaling, Regulation of Cytoskeleton Dynamics and Intercellular Communication. Front Cell Dev Biol 2021; 9:673973. [PMID: 34026763 PMCID: PMC8137968 DOI: 10.3389/fcell.2021.673973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) and electrophilic cyclopentenone prostaglandins (CyPG) are local mediators that modulate cellular response to oxidative stress in different pathophysiological processes. In particular, there is increasing evidence about their functional role during inflammation and immune responses. Although the mechanistic details about their relationship and functional interactions are still far from resolved, NO and CyPG share the ability to promote redox-based post-translational modification (PTM) of proteins that play key roles in cellular homeostasis, signal transduction and transcription. NO-induced S-nitrosylation and S-glutathionylation as well as cyclopentenone-mediated adduct formation, are a few of the main PTMs by which intra- and inter-cellular signaling are regulated. There is a growing body of evidence indicating that actin and actin-binding proteins are susceptible to covalent PTM by these agents. It is well known that the actin cytoskeleton is key for the establishment of interactions among leukocytes, endothelial and muscle cells, enabling cellular activation and migration. In this review we analyze the current knowledge about the actions exerted by NO and CyPG electrophilic lipids on the regulation of actin dynamics and cytoskeleton organization, and discuss some open questions regarding their functional relevance in the regulation of intercellular communication.
Collapse
Affiliation(s)
- Ángel Bago
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, Madrid, Spain
| | - Miguel A Íñiguez
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan M Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, Madrid, Spain
| |
Collapse
|
3
|
Viedma-Poyatos Á, González-Jiménez P, Langlois O, Company-Marín I, Spickett CM, Pérez-Sala D. Protein Lipoxidation: Basic Concepts and Emerging Roles. Antioxidants (Basel) 2021; 10:295. [PMID: 33669164 PMCID: PMC7919664 DOI: 10.3390/antiox10020295] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Protein lipoxidation is a non-enzymatic post-translational modification that consists of the covalent addition of reactive lipid species to proteins. This occurs under basal conditions but increases in situations associated with oxidative stress. Protein targets for lipoxidation include metabolic and signalling enzymes, cytoskeletal proteins, and transcription factors, among others. There is strong evidence for the involvement of protein lipoxidation in disease, including atherosclerosis, neurodegeneration, and cancer. Nevertheless, the involvement of lipoxidation in cellular regulatory mechanisms is less understood. Here we review basic aspects of protein lipoxidation and discuss several features that could support its role in cell signalling, including its selectivity, reversibility, and possibilities for regulation at the levels of the generation and/or detoxification of reactive lipids. Moreover, given the great structural variety of electrophilic lipid species, protein lipoxidation can contribute to the generation of multiple structurally and functionally diverse protein species. Finally, the nature of the lipoxidised proteins and residues provides a frameshift for a complex interplay with other post-translational modifications, including redox and redox-regulated modifications, such as oxidative modifications and phosphorylation, thus strengthening the importance of detailed knowledge of this process.
Collapse
Affiliation(s)
- Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| | - Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| | - Ophélie Langlois
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Idoia Company-Marín
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| |
Collapse
|
4
|
Duarte S, Melo T, Domingues R, de Dios Alché J, Pérez-Sala D. Insight into the cellular effects of nitrated phospholipids: Evidence for pleiotropic mechanisms of action. Free Radic Biol Med 2019; 144:192-202. [PMID: 31199965 DOI: 10.1016/j.freeradbiomed.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
Abstract
Nitrated phospholipids have been recently identified in biological systems and showed to display anti-oxidant and anti-inflammatory potential in models of inflammation in vitro. Here, we have explored the effects of nitrated 1-palmitoyl-2-oleyl-phosphatidyl choline (NO2-POPC) in cellular models. We have observed that NO2-POPC, but not POPC, induces cellular changes consisting in cytoskeletal rearrangement and cell shrinking, and ultimately, loss of cell adhesion or impaired cell attachment. NO2-POPC releases NO in vitro and induces accumulation of NO in cells. Nevertheless, the effects of NO2-POPC are not superimposable with those of NO donors, which points to distinctive mechanisms of action. Notably, they show a stronger parallelism, although not complete overlap, with the effects of nitrated fatty acids. Interestingly, redistribution of vimentin by NO2-POPC is attenuated in a C328S mutant, thus indicating that this residue may be a target for direct or indirect modification in NO2-POPC-treated cells. Additionally, NO2-POPC interacts with several typical lipoxidation targets in vitro, including vimentin and PPARγ constructs, likely through cysteine residues. Therefore, nitrated phospholipids emerge as potential novel electrophilic lipid mediators with selective actions.
Collapse
Affiliation(s)
- Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040, Madrid, Spain
| | - Tânia Melo
- Mass Spectrometry Center & QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry & CESAM& ECOMARE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosário Domingues
- Mass Spectrometry Center & QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry & CESAM& ECOMARE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Imaging Laboratory, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Zorrilla S, Mónico A, Duarte S, Rivas G, Pérez-Sala D, Pajares MA. Integrated approaches to unravel the impact of protein lipoxidation on macromolecular interactions. Free Radic Biol Med 2019; 144:203-217. [PMID: 30991143 DOI: 10.1016/j.freeradbiomed.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein modification by lipid derived reactive species, or lipoxidation, is increased during oxidative stress, a common feature observed in many pathological conditions. Biochemical and functional consequences of lipoxidation include changes in the conformation and assembly of the target proteins, altered recognition of ligands and/or cofactors, changes in the interactions with DNA or in protein-protein interactions, modifications in membrane partitioning and binding and/or subcellular localization. These changes may impact, directly or indirectly, signaling pathways involved in the activation of cell defense mechanisms, but when these are overwhelmed they may lead to pathological outcomes. Mass spectrometry provides state of the art approaches for the identification and characterization of lipoxidized proteins/residues and the modifying species. Nevertheless, understanding the complexity of the functional effects of protein lipoxidation requires the use of additional methodologies. Herein, biochemical and biophysical methods used to detect and measure functional effects of protein lipoxidation at different levels of complexity, from in vitro and reconstituted cell-like systems to cells, are reviewed, focusing especially on macromolecular interactions. Knowledge generated through innovative and complementary technologies will contribute to comprehend the role of lipoxidation in pathophysiology and, ultimately, its potential as target for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Andreia Mónico
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Sofia Duarte
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Germán Rivas
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María A Pajares
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Wilson C, Terman JR, González-Billault C, Ahmed G. Actin filaments-A target for redox regulation. Cytoskeleton (Hoboken) 2016; 73:577-595. [PMID: 27309342 DOI: 10.1002/cm.21315] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through noncovalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates-the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL-and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carlos Wilson
- Department of Biology, Faculty of Sciences, Universidad De Chile, Las Palmeras 3425, Santiago, 7800024, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Jonathan R Terman
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390. .,Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad De Chile, Las Palmeras 3425, Santiago, 7800024, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .,The Buck Institute for Research on Aging, Novato, California 94945.
| | - Giasuddin Ahmed
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.,Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
7
|
Abstract
Lipid-derived electrophilic molecules are endogenously generated and are causally involved in many pathophysiological effects. Prostaglandin D2, a major cyclooxygenase product in a variety of tissues and cells, readily undergoes dehydration to yield the J-series PGs such as 15-deoxy-Δ(12,14)-PGJ2 (15d-PGJ2). Because of the electrophilic α,β-unsaturated ketone moiety present in its cyclopentenone ring, 15d-PGJ2 acts as an endogenous electrophile. 15d-PGJ2 can covalently react via the Michael addition reaction with critical cellular nucleophiles, such as the free cysteine residues of proteins that play a key role in the regulation of the intracellular signaling pathways. Covalent modification of cellular proteins by 15d-PGJ2 may be one of the most important mechanisms by which 15d-PGJ2 induces many biological responses involved in the pathophysiological effects associated with inflammation. This current review is intended to provide a comprehensive summary of 15d-PGJ2 as an endogenous electrophilic mediator of biological activities.
Collapse
Affiliation(s)
- Takahiro Shibata
- a Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| |
Collapse
|
8
|
Aldini G, Domingues MR, Spickett CM, Domingues P, Altomare A, Sánchez-Gómez FJ, Oeste CL, Pérez-Sala D. Protein lipoxidation: Detection strategies and challenges. Redox Biol 2015; 5:253-266. [PMID: 26072467 PMCID: PMC4477048 DOI: 10.1016/j.redox.2015.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022] Open
Abstract
Enzymatic and non-enzymatic lipid metabolism can give rise to reactive species that may covalently modify cellular or plasma proteins through a process known as lipoxidation. Under basal conditions, protein lipoxidation can contribute to normal cell homeostasis and participate in signaling or adaptive mechanisms, as exemplified by lipoxidation of Ras proteins or of the cytoskeletal protein vimentin, both of which behave as sensors of electrophilic species. Nevertheless, increased lipoxidation under pathological conditions may lead to deleterious effects on protein structure or aggregation. This can result in impaired degradation and accumulation of abnormally folded proteins contributing to pathophysiology, as may occur in neurodegenerative diseases. Identification of the protein targets of lipoxidation and its functional consequences under pathophysiological situations can unveil the modification patterns associated with the various outcomes, as well as preventive strategies or potential therapeutic targets. Given the wide structural variability of lipid moieties involved in lipoxidation, highly sensitive and specific methods for its detection are required. Derivatization of reactive carbonyl species is instrumental in the detection of adducts retaining carbonyl groups. In addition, use of tagged derivatives of electrophilic lipids enables enrichment of lipoxidized proteins or peptides. Ultimate confirmation of lipoxidation requires high resolution mass spectrometry approaches to unequivocally identify the adduct and the targeted residue. Moreover, rigorous validation of the targets identified and assessment of the functional consequences of these modifications are essential. Here we present an update on methods to approach the complex field of lipoxidation along with validation strategies and functional assays illustrated with well-studied lipoxidation targets.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - M Rosário Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Pedro Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Francisco J Sánchez-Gómez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain
| | - Clara L Oeste
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain
| | - Dolores Pérez-Sala
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain.
| |
Collapse
|
9
|
Rac1 modification by an electrophilic 15-deoxy Δ(12,14)-prostaglandin J2 analog. Redox Biol 2015; 4:346-54. [PMID: 25677088 PMCID: PMC4326178 DOI: 10.1016/j.redox.2015.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 11/24/2022] Open
Abstract
Vascular endothelial cells (ECs) are important for maintaining vascular homeostasis. Dysfunction of ECs contributes to cardiovascular diseases, including atherosclerosis, and can impair the healing process during vascular injury. An important mediator of EC response to stress is the GTPase Rac1. Rac1 responds to extracellular signals and is involved in cytoskeletal rearrangement, reactive oxygen species generation and cell cycle progression. Rac1 interacts with effector proteins to elicit EC spreading and formation of cell-to-cell junctions. Rac1 activity has recently been shown to be modulated by glutathiolation or S-nitrosation via an active site cysteine residue. However, it is not known whether other redox signaling compounds can modulate Rac1 activity. An important redox signaling mediator is the electrophilic lipid, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). This compound is a downstream product of cyclooxygenase and forms covalent adducts with specific cysteine residues, and induces cellular signaling in a pleiotropic manner. In this study, we demonstrate that a biotin-tagged analog of 15d-PGJ2 (bt-15d-PGJ2) forms an adduct with Rac1 in vitro at the C157 residue, and an additional adduct was detected on the tryptic peptide associated with C178. Rac1 modification in addition to modulation of Rac1 activity by bt-15d-PGJ2 was observed in cultured ECs. In addition, decreased EC migration and cell spreading were observed in response to the electrophile. These results demonstrate for the first time that Rac1 is a target for 15d-PGJ2 in ECs, and suggest that Rac1 modification by electrophiles such as 15d-PGJ2 may alter redox signaling and EC function. • Recombinant Rac1 is modified by bt-15d-PGJ2 at C157 in vitro. • Rac1 is modified by bt-15d-PGJ2 in bovine aortic endothelial cells. • Rac1 activity is transiently stimulated by bt-15d-PGJ2. • 15d-PGJ2 inhibits endothelial cell migration and spreading.
Collapse
|
10
|
Wang J, Tan XF, Nguyen VS, Yang P, Zhou J, Gao M, Li Z, Lim TK, He Y, Ong CS, Lay Y, Zhang J, Zhu G, Lai SL, Ghosh D, Mok YK, Shen HM, Lin Q. A quantitative chemical proteomics approach to profile the specific cellular targets of andrographolide, a promising anticancer agent that suppresses tumor metastasis. Mol Cell Proteomics 2014; 13:876-86. [PMID: 24445406 DOI: 10.1074/mcp.m113.029793] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Drug target identification is a critical step toward understanding the mechanism of action of a drug, which can help one improve the drug's current therapeutic regime and expand the drug's therapeutic potential. However, current in vitro affinity-chromatography-based and in vivo activity-based protein profiling approaches generally face difficulties in discriminating specific drug targets from nonspecific ones. Here we describe a novel approach combining isobaric tags for relative and absolute quantitation with clickable activity-based protein profiling to specifically and comprehensively identify the protein targets of andrographolide (Andro), a natural product with known anti-inflammation and anti-cancer effects, in live cancer cells. We identified a spectrum of specific targets of Andro, which furthered our understanding of the mechanism of action of the drug. Our findings, validated through cell migration and invasion assays, showed that Andro has a potential novel application as a tumor metastasis inhibitor. Moreover, we have unveiled the target binding mechanism of Andro with a combination of drug analog synthesis, protein engineering, and mass-spectrometry-based approaches and determined the drug-binding sites of two protein targets, NF-κB and actin.
Collapse
Affiliation(s)
- Jigang Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
12
|
Abstract
The process of lipid peroxidation is widespread in biology and is mediated through both enzymatic and non-enzymatic pathways. A significant proportion of the oxidized lipid products are electrophilic in nature, the RLS (reactive lipid species), and react with cellular nucleophiles such as the amino acids cysteine, lysine and histidine. Cell signalling by electrophiles appears to be limited to the modification of cysteine residues in proteins, whereas non-specific toxic effects involve modification of other nucleophiles. RLS have been found to participate in several physiological pathways including resolution of inflammation, cell death and induction of cellular antioxidants through the modification of specific signalling proteins. The covalent modification of proteins endows some unique features to this signalling mechanism which we have termed the ‘covalent advantage’. For example, covalent modification of signalling proteins allows for the accumulation of a signal over time. The activation of cell signalling pathways by electrophiles is hierarchical and depends on a complex interaction of factors such as the intrinsic chemical reactivity of the electrophile, the intracellular domain to which it is exposed and steric factors. This introduces the concept of electrophilic signalling domains in which the production of the lipid electrophile is in close proximity to the thiol-containing signalling protein. In addition, we propose that the role of glutathione and associated enzymes is to insulate the signalling domain from uncontrolled electrophilic stress. The persistence of the signal is in turn regulated by the proteasomal pathway which may itself be subject to redox regulation by RLS. Cell death mediated by RLS is associated with bioenergetic dysfunction, and the damaged proteins are probably removed by the lysosome-autophagy pathway.
Collapse
|
13
|
Brioschi M, Polvani G, Fratto P, Parolari A, Agostoni P, Tremoli E, Banfi C. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function. PLoS One 2012; 7:e35841. [PMID: 22606238 PMCID: PMC3351458 DOI: 10.1371/journal.pone.0035841] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 03/27/2012] [Indexed: 12/13/2022] Open
Abstract
Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.
Collapse
Affiliation(s)
| | - Gianluca Polvani
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Science, University of Milan, Milan, Italy
| | | | - Alessandro Parolari
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Science, University of Milan, Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Science, University of Milan, Milan, Italy
- Department of Clinical Care and Respiratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Elena Tremoli
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- * E-mail:
| |
Collapse
|
14
|
Usatyuk PV, Natarajan V. Hydroxyalkenals and oxidized phospholipids modulation of endothelial cytoskeleton, focal adhesion and adherens junction proteins in regulating endothelial barrier function. Microvasc Res 2012; 83:45-55. [PMID: 21570987 PMCID: PMC3196796 DOI: 10.1016/j.mvr.2011.04.012] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
Abstract
Lipid peroxidation of polyunsaturated fatty acids generates bioactive aldehydes, which exhibit pro- and anti-inflammatory effects in cells and tissues. Accumulating evidence indicates that 4-hydroxynonenal (4-HNE), a major aldehyde derived from lipid peroxidation of n-6 polyunsaturated fatty acids trigger signals that modulates focal adhesion and adherens junction proteins thereby inducing endothelial barrier dysfunction. Similarly, oxidized phospholipids (Ox-PLs) generated by lipid peroxidation of phospholipids with polyunsaturated fatty acids have been implicated in atherogenesis, inflammation and gene expression. Interestingly, physiological concentration of Ox-PLs is anti-inflammatory and protect against endotoxin- and ventilator-associated acute lung injury. Thus, excess generation of bioactive hydroxyalkenals and Ox-PLs during oxidative stress contributes to pathophysiology of various diseases by modulating signaling pathways that regulate pro- and anti-inflammatory responses and barrier regulation. This review summarizes the role of 4-HNE and Ox-PLs affecting cell signaling pathways and endothelial barrier dysfunction through modulation of the activities of proteins/enzymes by Michael adducts formation, enhancing the level of protein tyrosine phosphorylation of the target proteins, and by reorganization of cytoskeletal, focal adhesion, and adherens junction proteins. A better understanding of molecular mechanisms of hydroxyalkenals- and Ox-PLs-mediated pro-and anti-inflammatory responses and barrier function may lead to development of novel therapies to ameliorate oxidative stress related cardio-pulmonary disorders.
Collapse
Affiliation(s)
- Peter V. Usatyuk
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
15
|
Shores DR, Binion DG, Freeman BA, Baker PR. New insights into the role of fatty acids in the pathogenesis and resolution of inflammatory bowel disease. Inflamm Bowel Dis 2011; 17:2192-204. [PMID: 21910181 PMCID: PMC4100336 DOI: 10.1002/ibd.21560] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/05/2010] [Indexed: 12/12/2022]
Abstract
Dietary and endogenously modified lipids modulate inflammation by functioning as intra- and intercellular signaling molecules. Proinflammatory lipid mediators such as the eicosanoids compete against the signaling actions of newly discovered modified fatty acids that act to resolve inflammation. In inflammatory bowel disease, multiple aberrancies in lipid metabolism have been discovered, which shed further light on the pathogenesis of intestinal inflammation. Mechanisms by which lipids modulate inflammation, abnormalities of lipid metabolism in the setting of inflammatory bowel disease, and potential therapeutic application of lipid derivatives in this setting are discussed.
Collapse
Affiliation(s)
- Darla R. Shores
- Division of Pediatric Gastroenterology, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - David G. Binion
- Division of Gastroenterology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Paul R.S. Baker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Garzón B, Oeste CL, Díez-Dacal B, Pérez-Sala D. Proteomic studies on protein modification by cyclopentenone prostaglandins: Expanding our view on electrophile actions. J Proteomics 2011; 74:2243-63. [DOI: 10.1016/j.jprot.2011.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/04/2011] [Accepted: 03/24/2011] [Indexed: 01/11/2023]
|
17
|
Modulation of mammary cancer cell migration by 15-deoxy-delta(12,14)-prostaglandin J(2): implications for anti-metastatic therapy. Biochem J 2010; 430:69-78. [PMID: 20536428 DOI: 10.1042/bj20091193] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, a number of steps in the progression of metastatic disease have been shown to be regulated by redox signalling. Electrophilic lipids affect redox signalling through the post-translational modification of critical cysteine residues in proteins. However, the therapeutic potential as well as the precise mechanisms of action of electrophilic lipids in cancer cells is poorly understood. In the present study, we investigate the effect of the electrophilic prostaglandin 15d-PGJ2 (15-deoxy-Delta12,14-prostaglandin J2) on metastatic properties of breast cancer cells. 15d-PGJ2 was shown to decrease migration, stimulate focal-adhesion disassembly and cause extensive F-actin (filamentous actin) reorganization at low concentrations (0.03-0.3 microM). Importantly, these effects seem to be independent of PPARgamma (peroxisome-proliferator-activated receptor gamma) and modification of actin or Keap1 (Kelch-like ECH-associated protein 1), which are known protein targets of 15d-PGJ2 at higher concentrations. Interestingly, the p38 inhibitor SB203580 was able to prevent both 15d-PGJ2-induced F-actin reorganization and focal-adhesion disassembly. Taken together, the results of the present study suggest that electrophiles such as 15d-PGJ2 are potential anti-metastatic agents which exhibit specificity for migration and adhesion pathways at low concentrations where there are no observed effects on Keap1 or cytotoxicity.
Collapse
|
18
|
Mueller MJ, Berger S. Reactive electrophilic oxylipins: pattern recognition and signalling. PHYTOCHEMISTRY 2009; 70:1511-21. [PMID: 19555983 DOI: 10.1016/j.phytochem.2009.05.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 05/20/2023]
Abstract
Oxidized lipids in plants comprise a variety of reactive electrophiles that contain an alpha,beta-unsaturated carbonyl group. While some of these compounds are formed enzymatically, many of them are formed by non-enzymatic pathways. In addition to their chemical reactivity/toxicity low levels of these compounds are also biologically active. Despite their structural diversity and biosynthetic origin, common biological activities such as induction of defense genes, activation of detoxification responses and growth inhibition have been documented. However, reactive electrophilic oxylipins are poorly defined as a class of compounds but have at least two properties in common, i.e., lipophilicity and thiol-reactivity. Thiol-reactivity is a property of reactive oxylipins (RES) shared by reactive oxygen and nitrogen species (ROS and RNS) and enables these agents to modify proteins in vivo. Thiol-modification is assumed to represent a key mechanism involved in signal transduction. A metaanalysis of proteomic studies reveals that RES oxylipins, ROS and RNS apparently chemically modify a similar set of highly sensitive proteins, virtually all of which are targets for thioredoxins. Moreover, most of these proteins are redox-regulated, i.e., posttranslational thiol-modification alters the activity or function of these proteins. On the transcriptome level, effects of RES oxylipins and ROS on gene induction substantially overlap but are clearly different. Besides electrophilicity other structural properties such as target affinity apparently determine target selectivity and biological activity. In this context, different signalling mechanisms and signal transduction components identified in plants and non-plant organisms as well as putative functions of RES oxylipins are discussed.
Collapse
Affiliation(s)
- Martin J Mueller
- Julius-von-Sachs-Institute for Biosciences, Pharm. Biology, Biocenter, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany.
| | | |
Collapse
|
19
|
Hop proanthocyanidins induce apoptosis, protein carbonylation, and cytoskeleton disorganization in human colorectal adenocarcinoma cells via reactive oxygen species. Food Chem Toxicol 2009; 47:827-36. [PMID: 19271284 DOI: 10.1016/j.fct.2009.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proanthocyanidins (PCs) have been shown to suppress the growth of diverse human cancer cells and are considered as promising additions to the arsenal of chemopreventive phytochemicals. An oligomeric mixture of PCs from hops (Humulus lupulus) significantly decreased cell viability of human colon cancer HT-29 cells in a dose-dependent manner. Hop PCs, at 50 or 100 microg/ml, exhibited apoptosis-inducing properties as shown by the increase in caspase-3 activity. Increased levels of intracellular reactive oxygen species (ROS) was accompanied by an augmented accumulation of protein carbonyls. Mass spectrometry-based proteomic analysis in combination with 2-alkenal-specific immunochemical detection identified beta-actin and protein disulfide isomerase as major putative targets of acrolein adduction. Incubation of HT-29 cells with hop PCs resulted in morphological changes that indicated disruption of the actin cytoskeleton. PC-mediated hydrogen peroxide (H2O2) formation in the cell culture media was also quantified; but, the measured H2O2 levels would not explain the observed changes in the oxidative modifications of actin. These findings suggest new modes of action for proanthocyandins as anticarcinogenic agents in human colon cancer cells, namely, promotion of protein oxidative modifications and cytoskeleton derangement.
Collapse
|
20
|
Baker PR, Schopfer FJ, O’Donnell VB, Freeman BA. Convergence of nitric oxide and lipid signaling: anti-inflammatory nitro-fatty acids. Free Radic Biol Med 2009; 46:989-1003. [PMID: 19200454 PMCID: PMC2761210 DOI: 10.1016/j.freeradbiomed.2008.11.021] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 11/11/2008] [Accepted: 11/21/2008] [Indexed: 12/25/2022]
Abstract
The signaling mediators nitric oxide ( NO) and oxidized lipids, once viewed to transduce metabolic and inflammatory information via discrete and independent pathways, are now appreciated as interdependent regulators of immune response and metabolic homeostasis. The interactions between these two classes of mediators result in reciprocal control of mediator synthesis that is strongly influenced by the local chemical environment. The relationship between the two pathways extends beyond coregulation of NO and eicosanoid formation to converge via the nitration of unsaturated fatty acids to yield nitro derivatives (NO(2)-FA). These pluripotent signaling molecules are generated in vivo as an adaptive response to oxidative inflammatory conditions and manifest predominantly anti-inflammatory signaling reactions. These actions of NO(2)-FA are diverse, with these species serving as a potential chemical reserve of NO, reacting with cellular nucleophiles to posttranslationally modify protein structure, function, and localization. In this regard these species act as potent endogenous ligands for peroxisome proliferator-activated receptor gamma. Functional consequences of these signaling mechanisms have been shown in multiple model systems, including the inhibition of platelet and neutrophil functions, induction of heme oxygenase-1, inhibition of LPS-induced cytokine release in monocytes, increased insulin sensitivity and glucose uptake in adipocytes, and relaxation of preconstricted rat aortic segments. These observations have propelled further in vitro and in vivo studies of mechanisms of NO(2)-FA signaling and metabolism, highlighting the therapeutic potential of this class of molecules as anti-inflammatory drug candidates.
Collapse
Affiliation(s)
- Paul R.S. Baker
- University of Pittsburgh School of Medicine Department of Pharmacology & Chemical Biology, E1340 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15213
- To whom correspondence should be addressed. ;
| | - Francisco J. Schopfer
- University of Pittsburgh School of Medicine Department of Pharmacology & Chemical Biology, E1340 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15213
| | - Valerie B. O’Donnell
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath park, Cardiff CF14 4XN, United Kingdom
| | - Bruce A. Freeman
- University of Pittsburgh School of Medicine Department of Pharmacology & Chemical Biology, E1340 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15213
- To whom correspondence should be addressed. ;
| |
Collapse
|
21
|
Abstract
Thrombocytopenia is a critical problem that occurs in many hematologic diseases, as well as after cancer therapy and radiation exposure. Platelet transfusion is the most commonly used therapy but has limitations of alloimmunization, availability, and expense. Thus, the development of safe, small, molecules to enhance platelet production would be advantageous for the treatment of thrombocytopenia. Herein, we report that an important lipid mediator and a peroxisome proliferator-activated receptor gamma (PPARgamma) ligand called 15-deoxy-Delta(12,14) prostaglandin J(2) (15d-PGJ(2)), increases Meg-01 maturation and platelet production. 15d-PGJ(2) also promotes platelet formation from culture-derived mouse and human megakaryocytes and accelerates platelet recovery after in vivo radiation-induced bone marrow injury. Interestingly, the platelet-enhancing effects of 15d-PGJ(2) in Meg-01 cells are independent of PPARgamma, but dependent on reactive oxygen species (ROS) accumulation; treatment with antioxidants such as glutathione ethyl ester (GSH-EE); or N-acetylcysteine (NAC) attenuate 15d-PGJ(2)-induced platelet production. Collectively, these data support the concept that megakaryocyte redox status plays an important role in platelet generation and that small electrophilic molecules may have clinical efficacy for improving platelet numbers in thrombocytopenic patients.
Collapse
|
22
|
Taylor-Clark TE, Undem BJ, Macglashan DW, Ghatta S, Carr MJ, McAlexander MA. Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol 2008; 73:274-81. [PMID: 18000030 DOI: 10.1124/mol.107.040832] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Inflammation contributes to pain hypersensitivity through multiple mechanisms. Among the most well characterized of these is the sensitization of primary nociceptive neurons by arachidonic acid metabolites such as prostaglandins through G protein-coupled receptors. However, in light of the recent discovery that the nociceptor-specific ion channel transient receptor potential A1 (TRPA1) can be activated by exogenous electrophilic irritants through direct covalent modification, we reasoned that electrophilic carbon-containing A- and J-series prostaglandins, metabolites of prostaglandins (PG) E(2) and D(2), respectively, would excite nociceptive neurons through direct activation of TRPA1. Consistent with this prediction, the PGD(2) metabolite 15-deoxy-Delta(12,14)-prostaglandin J(2) (15dPGJ(2)) activated heterologously expressed human TRPA1 (hTRPA1-HEK), as well as a subset of chemosensitive mouse trigeminal neurons. The effects of 15dPGJ(2) on neurons were blocked by both the nonselective TRP channel blocker ruthenium red and the TRPA1 inhibitor (HC-030031), but unaffected by the TRPV1 blocker iodo-resiniferatoxin. In whole-cell patch-clamp studies on hTRPA1-HEK cells, 15dPGJ(2) evoked currents similar to equimolar allyl isothiocyanate (AITC) in the nominal absence of calcium, suggesting a direct mechanism of activation. Consistent with the hypothesis that TRPA1 activation required reactive electrophilic moieties, A- and J-series prostaglandins, and the isoprostane 8-iso-prostaglandin A(2)-evoked calcium influx in hTRPA1-HEK cells with similar potency and efficacy. It is noteworthy that this effect was not mimicked by their nonelectrophilic precursors, PGE(2) and PGD(2), or PGB(2), which differs from PGA(2) only in that its electrophilic carbon is rendered unreactive through steric hindrance. Taken together, these data suggest a novel mechanism through which reactive prostanoids may activate nociceptive neurons independent of prostaglandin receptors.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Johns Hopkins Medical Institutions, Johns Hopkins Asthma and Allergy Center, 3A.44, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Uchida K, Shibata T. 15-Deoxy-Delta(12,14)-prostaglandin J2: an electrophilic trigger of cellular responses. Chem Res Toxicol 2007; 21:138-44. [PMID: 18052108 DOI: 10.1021/tx700177j] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrophilic molecules are endogenously generated and are causally involved in many pathophysiological effects. Prostaglandin D (20 (PGD (2)), a major cyclooxygenase product in a variety of tissues, readily undergoes dehydration to yield the cyclopentenone-type PGs of the J (2)-series such as 15-deoxy-Delta (12,14)-PGJ (2) (15d-PGJ (2)). 15d-PGJ (2) is an electrophile, which can covalently react via the Michael addition reaction with nucleophiles, such as the free sulfhydryls of glutathione and cysteine residues in cellular proteins that play an important role in the control of the redox cell-signaling pathways. Covalent binding of 15d-PGJ (2) to cellular proteins may be one of the mechanisms by which 15d-PGJ (2) induces a cellular response involved in most of the pathophysiological effects associated with inflammation. In the present perspective, we provide a comprehensive summary of 15d-PGJ (2) as an electrophilic mediator of cellular responses.
Collapse
Affiliation(s)
- Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | | |
Collapse
|
24
|
Gharbi S, Garzón B, Gayarre J, Timms J, Pérez-Sala D. Study of protein targets for covalent modification by the antitumoral and anti-inflammatory prostaglandin PGA1: focus on vimentin. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:1474-1484. [PMID: 17960581 DOI: 10.1002/jms.1291] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Prostaglandins with cyclopentenone structure (cyPG) display potent antiproliferative actions that have elicited their study as potential anticancer agents. Several natural and synthetic analogs of the cyPG prostaglandin A(1) (PGA(1)) have proven antitumoral efficacy in cancer cell lines and animal models. In addition, PGA(1) has been used as an inhibitor of transcription factor NF-kappaB-mediated processes, including inflammatory gene expression and viral replication. An important determinant for these effects is the ability of cyPG to form Michael adducts with free thiol groups. The chemical nature of this interaction implies that PGA(1) could covalently modify cysteine residues in a large number of cellular proteins potentially involved in its beneficial effects. However, only a few targets of PGA(1) have been identified. In previous work, we have observed that a biotinylated analog of PGA(1) that retains the cyclopentenone moiety (PGA(1)-B) binds to multiple targets in fibroblasts. Here, we have addressed the identification of these targets through a proteomic approach. Cell fractionation followed by avidin affinity chromatography yielded a fraction enriched in proteins modified by PGA(1)-B. Analysis of this fraction by SDS-PAGE and LC-MS/MS allowed the identification of the chaperone Hsp90, elongation and initiation factors for protein synthesis and cytoskeletal proteins including actin, tubulin and vimentin. Furthermore, we have characterized the modification of vimentin both in vitro and in intact cells. Our observations indicate that cysteine 328 is the main site for PGA(1) addition. These results may contribute to a better understanding of the mechanism of action of PGA(1) and the potential of cyPG-based therapeutic strategies.
Collapse
Affiliation(s)
- Severine Gharbi
- Cancer Proteomics Group, Ludwig Institute for Cancer Research, London, and Department of Gynaecological Oncology, University College London, UK
| | | | | | | | | |
Collapse
|
25
|
Abstract
Aerobes, including humans, are consistently exposed to oxidative stress by consuming oxygen. The biological significance of oxidative stress via reactive oxygen and nitrogen species consists of two stages: reversible redox regulation and irreversible oxidative molecular damage, which are sometimes intermingled. During the past decade, many signaling cascades associated with oxidative stress have been discovered. An interaction between Keap1 and the Nrf2 transcription factor is among the most fundamental mechanisms of the defense system against oxidative or similar stress. Furthermore, it became apparent that reactive oxygen species are actively produced through enzymes such as xanthine oxidoreductase and nicotinamide adenine dinucleotide phosphate, reduced (NADPH) oxidases in non-phagocytic cells as well. The role of alpha-tocopherol solely as an anti-oxidant was also questioned. Now there is a long list of pathological states implicating oxidative stress. At the same time, genome projects on various species have been completed. These efforts convincingly led to a new era of oxidative stress investigation, contributing powerful strategies to select candidate genes or biomolecules. Herein are reviewed recent advances and novel concepts in this field, including oxygenomics. These fruitful results may lead to more accurate and useful pathological diagnosis and more efficient prophylaxis and therapeutic interventions on human diseases.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
26
|
Dalle-Donne I, Carini M, Vistoli G, Gamberoni L, Giustarini D, Colombo R, Maffei Facino R, Rossi R, Milzani A, Aldini G. Actin Cys374 as a nucleophilic target of alpha,beta-unsaturated aldehydes. Free Radic Biol Med 2007; 42:583-98. [PMID: 17291982 DOI: 10.1016/j.freeradbiomed.2006.11.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
We have recently shown that actin can be modified by the Michael addition of 4-hydroxynonenal to Cys374. Here, we have exposed purified actin at increasing acrolein concentrations and have identified the sites of acrolein addition using LC-ESI-MS/MS. Acrolein reacted with Cys374, His87, His173, and, minimally, His40. Cys374 adduction by both 4-hydroxynonenal and acrolein negligibly affected the polymerization of aldehyde-modified (carbonylated) actin, as shown by fluorescence measurements. Differently, acrolein binding at histidine residues, when Cys374 was completely saturated, inhibited polymerization in a dose-dependent manner. Molecular modeling analyses indicated that structural distortions of the ATP-binding site, induced by four acrolein-Michael adducts, could explain the changes in the polymerization process. Aldehyde binding to Cys374 does not alter significantly actin polymerization because this residue is located in a very flexible region, whose covalent modifications do not alter the protein folding. These data demonstrate that Cys374 represents the primary target site of alpha,beta-unsaturated aldehyde addition to actin in vitro. As Cys374 is a preferential target for various oxidative/nitrosative modifications, and actin is one of the main carbonylated proteins in vivo, these findings also suggest that the highly reactive Cys374 could serve as a carbonyl scavenger of reactive alpha,beta-unsaturated aldehydes and other electrophilic lipids.
Collapse
Affiliation(s)
- Isabella Dalle-Donne
- Department of Biology, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sánchez-Gómez FJ, Gayarre J, Avellano MI, Pérez-Sala D. Direct evidence for the covalent modification of glutathione-S-transferase P1-1 by electrophilic prostaglandins: Implications for enzyme inactivation and cell survival. Arch Biochem Biophys 2007; 457:150-9. [PMID: 17169324 DOI: 10.1016/j.abb.2006.10.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 10/24/2006] [Accepted: 10/26/2006] [Indexed: 01/22/2023]
Abstract
Glutathione-S-transferases (GST) catalyze the conjugation of electrophilic compounds to glutathione, thus playing a key role in cell survival and tumor chemoresistance. Cyclopentenone prostaglandins (cyPG) are electrophilic eicosanoids that display potent antiproliferative properties, through multiple mechanisms not completely elucidated. Here we show that the cyPG 15-deoxy-Delta(12,14)-PGJ2 (15d-PGJ2) binds to GSTP1-1 covalently, as demonstrated by mass spectrometry and by the use of biotinylated 15d-PGJ2. Moreover, cyPG inactivate GSTP1-1 irreversibly. The presence of the cyclopentenone moiety is important for these effects. Covalent interactions also occur in cells, in which 15d-PGJ2 binds to endogenous GSTP1-1, irreversibly reduces GST free-thiol content and inhibits GST activity. Protein delivery of GSTP1-1 improves cell survival upon serum deprivation whereas 15d-PGJ2-treated GSTP1-1 displays a reduced protective effect. These results show the first evidence for the formation of stable adducts between cyPG and GSTP1-1 and may offer new perspectives for the development of irreversible GST inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Francisco J Sánchez-Gómez
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | | | | |
Collapse
|