1
|
Pudewell S, Wittich C, Kazemein Jasemi NS, Bazgir F, Ahmadian MR. Accessory proteins of the RAS-MAPK pathway: moving from the side line to the front line. Commun Biol 2021; 4:696. [PMID: 34103645 PMCID: PMC8187363 DOI: 10.1038/s42003-021-02149-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Health and disease are directly related to the RTK-RAS-MAPK signalling cascade. After more than three decades of intensive research, understanding its spatiotemporal features is afflicted with major conceptual shortcomings. Here we consider how the compilation of a vast array of accessory proteins may resolve some parts of the puzzles in this field, as they safeguard the strength, efficiency and specificity of signal transduction. Targeting such modulators, rather than the constituent components of the RTK-RAS-MAPK signalling cascade may attenuate rather than inhibit disease-relevant signalling pathways.
Collapse
Affiliation(s)
- Silke Pudewell
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Christoph Wittich
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Neda S. Kazemein Jasemi
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Farhad Bazgir
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
3
|
Pande S, Yang X, Friesel R. Interleukin-17 receptor D (Sef) is a multi-functional regulator of cell signaling. Cell Commun Signal 2021; 19:6. [PMID: 33436016 PMCID: PMC7805053 DOI: 10.1186/s12964-020-00695-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Interleukin-17 receptor D (IL17RD or IL-17RD) also known as Sef (similar expression to fibroblast growth factor), is a single pass transmembrane protein that is reported to regulate several signaling pathways . IL17RD was initially described as a feedback inhibitor of fibroblast growth factor (FGF) signaling during zebrafish and frog development. It was subsequently determined to regulate other receptor tyrosine kinase signaling cascades as well as several proinflammatory signaling pathways including Interleukin-17A (IL17A), Toll-like receptors (TLR) and Interleukin-1α (IL1α) in several vertebrate species including humans. This review will provide an overview of IL17RD regulation of signaling pathways and functions with emphasis on regulation of development and pathobiological conditions. We will also discuss gaps in our knowledge about IL17RD function to provide insight into opportunities for future investigation. Video Abstract.
Collapse
Affiliation(s)
- Shivangi Pande
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074 USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04496 USA
| | - Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074 USA
| | - Robert Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074 USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04496 USA
| |
Collapse
|
4
|
Korsensky L, Haif S, Heller R, Rabinovitz S, Haddad-Halloun J, Dahan N, Ron D. The tumor suppressor Sef is a scaffold for the classical NF-κB/RELA:P50 signaling module. Cell Signal 2019; 59:110-121. [DOI: 10.1016/j.cellsig.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/26/2019] [Accepted: 01/26/2019] [Indexed: 02/07/2023]
|
5
|
Regulation of FGF signaling: Recent insights from studying positive and negative modulators. Semin Cell Dev Biol 2016; 53:101-14. [DOI: 10.1016/j.semcdb.2016.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
|
6
|
Orphan receptor IL-17RD regulates Toll-like receptor signalling via SEFIR/TIR interactions. Nat Commun 2015; 6:6669. [PMID: 25808990 DOI: 10.1038/ncomms7669] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 02/18/2015] [Indexed: 11/08/2022] Open
Abstract
Receptor families of the innate immune response engage in 'cross-talk' to tailor optimal immune responses against invading pathogens. However, these responses are subject to multiple levels of regulation to keep in check aberrant inflammatory signals. Here, we describe a role for the orphan receptor interleukin-17 receptor D (IL-17RD) in negatively regulating Toll-like receptor (TLR)-induced responses. Deficiency of IL-17RD expression in cells leads to enhanced pro-inflammatory signalling and gene expression in response to TLR stimulation, and Il17rd(-/-) mice are more susceptible to TLR-induced septic shock. We demonstrate that the intracellular Sef/IL-17R (SEFIR) domain of IL-17RD targets TIR adaptor proteins to inhibit TLR downstream signalling thus revealing a paradigm involving cross-regulation of members of the IL-17R and TLR families.
Collapse
|
7
|
Yang S, Wang Y, Mei K, Zhang S, Sun X, Ren F, Liu S, Yang Z, Wang X, Qin Z, Chang Z. Tumor necrosis factor receptor 2 (TNFR2)·interleukin-17 receptor D (IL-17RD) heteromerization reveals a novel mechanism for NF-κB activation. J Biol Chem 2014; 290:861-71. [PMID: 25378394 DOI: 10.1074/jbc.m114.586560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TNF receptor 2 (TNFR2) exerts diverse roles in the pathogenesis of inflammatory and autoimmune diseases. Here, we report that TNFR2 but not TNFR1 forms a heteromer with interleukin-17 receptor D (IL-17RD), also named Sef, to activate NF-κB signaling. TNFR2 associates with IL-17RD, leading to mutual receptor aggregation and TRAF2 recruitment, which further activate the downstream cascade of NF-κB signaling. Depletion of IL-17RD impaired TNFR2-mediated activation of NF-κB signaling. Importantly, IL-17RD was markedly increased in renal tubular epithelial cells in nephritis rats, and a strong interaction of TNFR2 and IL-17RD was observed in the renal epithelia. The IL-17RD·TNFR2 complex in activation of NF-κB may explain the role of TNFR2 in inflammatory diseases including nephritis.
Collapse
Affiliation(s)
- Shigao Yang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China, National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinyin Wang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kunrong Mei
- Center for Structural Biology, School of Life Sciences, Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union medical college, Beijing, 100050, China, and
| | - Xiaojun Sun
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fangli Ren
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sihan Liu
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zi Yang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinquan Wang
- Center for Structural Biology, School of Life Sciences, Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhijie Chang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China,
| |
Collapse
|
8
|
Peng W, Lei Q, Jiang Z, Hu Z. Characterization of Golgi scaffold proteins and their roles in compartmentalizing cell signaling. J Mol Histol 2013; 45:435-45. [PMID: 24337566 DOI: 10.1007/s10735-013-9560-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022]
Abstract
Subcellular compartmentalization has become an important theme in cell signaling. In particular, the Golgi apparatus (GA) plays a prominent role in compartmentalizing signaling cascades that originate at the plasma membrane or other organelles. To precisely regulate this process, cells have evolved a unique class of organizer proteins, termed "scaffold proteins". Sef, PAQR3, PAQR10 and PAQR11 are scaffold proteins that have recently been identified on the GA and are referred to as Golgi scaffolds. The major cell growth signaling pathways, such as Ras/MAPK, PI3K/AKT, insulin and VEGF (vascular endothelial growth factor), are tightly regulated spatially and temporally by these Golgi scaffolds to ensure a physiologically appropriate outcome. Here, we discuss the subcellular localization and characterization of the topology and functional domains of these Golgi scaffolds and summarize their roles in the compartmentalization of cell signaling. We also highlight the physiological and pathological roles of these Golgi scaffolds in tumorigenesis and developmental disorders.
Collapse
Affiliation(s)
- Wenna Peng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | | | | | | |
Collapse
|
9
|
Abstract
The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.
Collapse
Affiliation(s)
- Kai Hung Tiong
- School of Postgraduate Studies and Research, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Li Yen Mah
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, 126 Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, 126 Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Sun X, Wang Y, Yang S, Ren F, Xia Y, Chang Z. Activation of TAK1 by Sef-S induces apoptosis in 293T cells. Cell Signal 2013; 25:2039-46. [PMID: 23770285 DOI: 10.1016/j.cellsig.2013.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022]
Abstract
Sef (similar expression to fgf genes, also named IL-17RD) was identified as a negative regulator of fibroblast growth factor signaling. Sef-S, an alternative splice isoform of Sef, inhibits FGF-induced NIH3T3 cell proliferation. Here we report that Sef-S physically interacts with TAK1, induces Lys63-linked TAK1 polyubiquitination on lysine 209 and TAK1-mediated JNK and p38 activation. Co-overexpression of TAK1 WT, K34R, K150R, K158R mutants with Sef-S induces Lys63-linked TAK1 polyubiquitination whereas TAK1 K63R and K209R mutants fail. Furthermore, co-overexpression of Sef-S and TAK1 induce 293T cells apoptosis. These results reveal Sef-S actives Lys63-linked TAK1 polyubiquitination on lysine 209, induces TAK1-mediated JNK and p38 activation and also results apoptosis in 293T cells.
Collapse
Affiliation(s)
- Xiaojun Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
11
|
Fuchs Y, Brunwasser M, Haif S, Haddad J, Shneyer B, Goldshmidt-Tran O, Korsensky L, Abed M, Zisman-Rozen S, Koren L, Carmi Y, Apte R, Yang RB, Orian A, Bejar J, Ron D. Sef is an inhibitor of proinflammatory cytokine signaling, acting by cytoplasmic sequestration of NF-κB. Dev Cell 2013; 23:611-23. [PMID: 22975329 DOI: 10.1016/j.devcel.2012.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/13/2012] [Accepted: 07/17/2012] [Indexed: 12/11/2022]
Abstract
The NF-κB transcription factor controls diverse biological processes. According to the classical model, NF-κB is retained in the cytoplasm of resting cells via binding to inhibitory, IκB proteins and translocates into the nucleus upon their ligand-induced degradation. Here we reveal that Sef, a known tumor suppressor and inhibitor of growth factor signaling, is a spatial regulator of NF-κB. Sef expression is regulated by the proinflammatory cytokines tumor necrosis factor and interleukin-1, and Sef specifically inhibits "classical" NF-κB (p50:p65) activation by these ligands. Like IκBs, Sef sequesters NF-κB in the cytoplasm of resting cells. However, contrary to IκBs, Sef continues to constrain NF-κB nuclear entry upon ligand stimulation. Accordingly, endogenous Sef knockdown markedly enhances stimulus-induced NF-κB nuclear translocation and consequent activity. This study establishes Sef as a feedback antagonist of proinflammatory cytokines and highlights its potential to regulate the crosstalk between proinflammatory cytokine receptors and receptor tyrosine kinases.
Collapse
Affiliation(s)
- Yaron Fuchs
- Department of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Murphy T, Hori S, Sewell J, Gnanapragasam VJ. Expression and functional role of negative signalling regulators in tumour development and progression. Int J Cancer 2010; 127:2491-9. [PMID: 20607827 DOI: 10.1002/ijc.25542] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alterations in intracellular signalling pathways such as the mitogen-activated protein kinases (MAPKs) are key common mechanisms of tumour development and progression. As such, there has been intense research into developing drugs that can inhibit or attenuate intracellular signalling. In recent years, there has been increasing recognition that the cell already has innate negative regulatory proteins that achieve this in normal homeostasis. These regulators provide a feedback inhibitory mechanism that controls the intensity and duration of activated signalling by exogenous stimuli. Members of this group include Raf kinase inhibitor protein 1, the MAPK phosphatases, the SPROUTY and SPRED families and similar expression to FGF. A number of studies have now demonstrated significant alterations in expression of negative regulators in malignant tissue in different cancer types. In functional studies, manipulated expression of these regulators has been shown to significantly influence tumour cell behaviour and phenotype. Here, we summarise the evidence for the functional expression of negative signalling regulators in tumour growth and progression and discuss their potential role as cancer biomarkers and targets for novel drug therapy.
Collapse
Affiliation(s)
- Tania Murphy
- Hutchison MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
13
|
|
14
|
Similar expression to FGF (Sef) inhibits fibroblast growth factor-induced tumourigenic behaviour in prostate cancer cells and is downregulated in aggressive clinical disease. Br J Cancer 2009; 101:1891-9. [PMID: 19888221 PMCID: PMC2788253 DOI: 10.1038/sj.bjc.6605379] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: The fibroblast growth factor (FGF) axis is an important mitogenic stimulus in prostate carcinogenesis. We have previously reported that transcript level of human similar expression to FGF (hSef), a key regulator of this pathway, is downregulated in clinical prostate cancer. In this study we further analysed the role of hSef in prostate cancer. Methods: hSef function was studied in in vitro and in vivo prostate cancer models using stable over-expression clones. Protein expression of hSef was studied in a comprehensive tissue microarray. Results: Stable over-expression of hSef resulted in reduced in vitro cancer cell proliferation, migration and invasive potential. In an in vivo xenograft model, the expression of hSef significantly retarded prostate tumour growth as compared with empty vector (P=0.03) and non-transfected (P=0.0001) controls. Histological examination further showed a less invasive tumour phenotype and reduced numbers of proliferating cells (P=0.0002). In signalling studies, hSef inhibited FGF-induced ERK phosphorylation, migration to the nucleus and activation of a reporter gene. Constitutively active Ras, however, was able to reverse these effects, suggesting that hSef exerts an effect either above or at the level of Ras in prostate cancer cells. In a large tissue microarray, we observed a significant loss of hSef protein in high-grade (P<0.0001) and metastatic (P<0.0001) prostate cancer. Conclusions: Considered together, the role of hSef in attenuating FGF signalling and evidence of downregulation in advanced tumours argue strongly for a tumour suppressor function in human prostate cancer.
Collapse
|
15
|
Abstract
The mitogen-activated protein kinase (MAPK) pathway allows cells to interpret external signals and respond in an appropriate way. Diverse cellular functions, ranging from differentiation and proliferation to migration and inflammation, are regulated by MAPK signalling. Therefore, cells have developed mechanisms by which this single pathway modulates numerous cellular responses from a wide range of activating factors. This specificity is achieved by several mechanisms, including temporal and spatial control of MAPK signalling components. Key to this control are protein scaffolds, which are multidomain proteins that interact with components of the MAPK cascade in order to assemble signalling complexes. Studies conducted on different scaffolds, in different biological systems, have shown that scaffolds exert substantial control over MAPK signalling, influencing the signal intensity, time course and, importantly, the cellular responses. Protein scaffolds, therefore, are integral elements to the modulation of the MAPK network in fundamental physiological processes.
Collapse
Affiliation(s)
- Matthew D. Brown
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - David B. Sacks
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
16
|
Rong Z, Wang A, Li Z, Ren Y, Cheng L, Li Y, Wang Y, Ren F, Zhang X, Hu J, Chang Z. IL-17RD (Sef or IL-17RLM) interacts with IL-17 receptor and mediates IL-17 signaling. Cell Res 2009; 19:208-15. [PMID: 19079364 PMCID: PMC4603938 DOI: 10.1038/cr.2008.320] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interleukin-17 (IL-17 or IL-17A) production is a hallmark of T(H)17 cells, a new unique lineage of CD4(+) T lymphocytes contributing to the pathogenesis of multiple autoimmune and inflammatory diseases. IL-17 receptor (IL-17R or IL-17RA) is essential for IL-17 biological activity. Emerging data suggest that the formation of a heteromeric and/or homomeric receptor complex is required for IL-17 signaling. Here we show that the orphan receptor IL-17RD (Sef, similar expression to FGF genes or IL-17RLM) is associated and colocalized with IL-17R. Importantly, IL-17RD mediates IL-17 signaling, as evaluated using a luciferase reporter driven by the native promoter of 24p3, an IL-17 target gene. In addition, an IL-17RD mutant lacking the intracellular domain dominant-negatively suppresses IL-17R-mediated IL-17 signaling. Moreover, IL-17RD as well as IL-17R is associated with TRAF6, an IL-17R downstream molecule. These results indicate that IL-17RD is a part of the IL-17 receptor signaling complex, therefore providing novel evidence for IL-17 signaling through a heteromeric and/or homomeric receptor complex.
Collapse
Affiliation(s)
- Zhili Rong
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Anan Wang
- Department of Laboratory Medicine and Pathobiology, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Canada M5G 1X8
| | - Zhiyong Li
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yongming Ren
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Long Cheng
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yinghua Li
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yinyin Wang
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Fangli Ren
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Xiaoning Zhang
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Canada M5G 1X8
| | - Zhijie Chang
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Ekerot M, Stavridis M, Delavaine L, Mitchell M, Staples C, Owens D, Keenan I, Dickinson R, Storey K, Keyse S. Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter. Biochem J 2008; 412:287-98. [PMID: 18321244 PMCID: PMC2474557 DOI: 10.1042/bj20071512] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 11/19/2022]
Abstract
DUSP6 (dual-specificity phosphatase 6), also known as MKP-3 [MAPK (mitogen-activated protein kinase) phosphatase-3] specifically inactivates ERK1/2 (extracellular-signal-regulated kinase 1/2) in vitro and in vivo. DUSP6/MKP-3 is inducible by FGF (fibroblast growth factor) signalling and acts as a negative regulator of ERK activity in key and discrete signalling centres that direct outgrowth and patterning in early vertebrate embryos. However, the molecular mechanism by which FGFs induce DUSP6/MKP-3 expression and hence help to set ERK1/2 signalling levels is unknown. In the present study, we demonstrate, using pharmacological inhibitors and analysis of the murine DUSP6/MKP-3 gene promoter, that the ERK pathway is critical for FGF-induced DUSP6/MKP-3 transcription. Furthermore, we show that this response is mediated by a conserved binding site for the Ets (E twenty-six) family of transcriptional regulators and that the Ets2 protein, a known target of ERK signalling, binds to the endogenous DUSP6/MKP-3 promoter. Finally, the murine DUSP6/MKP-3 promoter coupled to EGFP (enhanced green fluorescent protein) recapitulates the specific pattern of endogenous DUSP6/MKP-3 mRNA expression in the chicken neural plate, where its activity depends on FGFR (FGF receptor) and MAPK signalling and an intact Ets-binding site. These findings identify a conserved Ets-factor-dependent mechanism by which ERK signalling activates DUSP6/MKP-3 transcription to deliver ERK1/2-specific negative-feedback control of FGF signalling.
Collapse
Key Words
- dual-specificity phosphatase 6 (dusp6)
- fibroblast growth factor (fgf)
- mitogen-activated protein kinase (mapk)
- mitogen-activated protein kinase phosphatase-3 (mkp-3)
- phosphatase
- transcription
- aer, apical ectodermal ridge
- chip, chromatin immunoprecipitation
- cona, concanavalin a
- dmem, dulbecco's modified eagle's medium
- dusp, dual-specificity phosphatase
- egfp, enhanced green fluorescent protein
- elk1, ets-like kinase 1
- emsa, electrophoretic mobility-shift assay
- er, oestrogen receptor
- erk, extracellular-signal-regulated kinase
- ets, e twenty-six
- fbs, fetal bovine serum
- fgf, fibroblast growth factor
- fgfr, fgf receptor
- fkhd, forkhead mutant
- βgal, β-galactosidase
- ha, haemagglutinin
- hh10, hamburger and hamilton stage 10
- 4-ht, 4-hydroxytamoxifen
- iκbα, inhibitor of nuclear factor κb α
- jnk, c-jun n-terminal kinase
- mapk, mitogen-activated protein kinase
- mek, mapk/erk kinase
- mkk, mapk kinase
- mkkk, mapk kinase kinase
- mkp, mapk phosphatase
- mrfp, monomeric red fluorescent protein
- nf-κb, nuclear factor κb
- pbx1, pre-b-cell leukaemia transcription factor 1
- pi3k, phosphoinositide 3-kinase
- rsv, rous sarcoma virus
- srf, serum-response factor
- sry, sex-determining region y
- tnfα, tumour necrosis factor α
Collapse
Affiliation(s)
- Maria Ekerot
- *Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, Dundee DD1 9SY, U.K
| | - Marios P. Stavridis
- †Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Laurent Delavaine
- *Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, Dundee DD1 9SY, U.K
| | - Michael P. Mitchell
- ‡Bioinformatics & Biostatistics Group, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, U.K
| | - Christopher Staples
- *Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, Dundee DD1 9SY, U.K
| | - David M. Owens
- *Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, Dundee DD1 9SY, U.K
| | - Iain D. Keenan
- *Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, Dundee DD1 9SY, U.K
| | - Robin J. Dickinson
- *Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, Dundee DD1 9SY, U.K
| | - Kate G. Storey
- †Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Stephen M. Keyse
- *Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, Dundee DD1 9SY, U.K
| |
Collapse
|
18
|
Ren Y, Cheng L, Rong Z, Li Z, Li Y, Zhang X, Xiong S, Hu J, Fu XY, Chang Z. hSef potentiates EGF-mediated MAPK signaling through affecting EGFR trafficking and degradation. Cell Signal 2008; 20:518-33. [PMID: 18096367 PMCID: PMC4514529 DOI: 10.1016/j.cellsig.2007.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/16/2007] [Accepted: 11/16/2007] [Indexed: 12/15/2022]
Abstract
Sef (similar expression to fgf genes) was identified as an effective antagonist of fibroblast growth factor (FGF) in vertebrates. Previous reports have demonstrated that Sef interacts with FGF receptors (FGFRs) and inhibits FGF signaling, however, its role in regulating epidermal growth factor receptor (EGFR) signaling remains unclear. In this report, we found that hSef localizes to the plasma membrane (PM) and is subjected to rapid internalization and well localizes in early/recycling endosomes while poorly in late endosomes/lysosomes. We observed that hSef interacts and functionally colocalizes with EGFR in early endosomes in response to EGF stimulation. Importantly, we demonstrated that overexpression of hSef attenuates EGFR degradation and potentiates EGF-mediated mitogen-activated protein kinase (MAPK) signaling by interfering EGFR trafficking. Finally, our data showed that, with overexpression of hSef, elevated levels of Erk phosphorylation and differentiation of rat pheochromocytoma (PC12) cells occur in response to EGF stimulation. Taken together, these data suggest that hSef plays a positive role in the EGFR-mediated MAPK signaling pathway. This report, for the first time, reveals opposite roles for Sef in EGF and FGF signalings.
Collapse
Affiliation(s)
- Yongming Ren
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing (100084), China
| | - Long Cheng
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing (100084), China
| | - Zhili Rong
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing (100084), China
| | - Zhiyong Li
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing (100084), China
| | - Yinghua Li
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing (100084), China
| | - Xinjun Zhang
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing (100084), China
| | - Shiqin Xiong
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing (100084), China
| | - Jim Hu
- Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Xin-Yuan Fu
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing (100084), China
- Department of Microbiology and Immunology, Walther Oncology Center, Indiana University School of Medicine, Indianapolis, USA
| | - Zhijie Chang
- School of Medicine, Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing (100084), China
| |
Collapse
|
19
|
Know thy Sef: A novel class of feedback antagonists of receptor tyrosine kinase signaling. Int J Biochem Cell Biol 2008; 40:2040-52. [DOI: 10.1016/j.biocel.2008.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 02/06/2023]
|