1
|
Amano Y, Yamane M, Honda H. RAID: Regression Analysis–Based Inductive DNA Microarray for Precise Read-Across. Front Pharmacol 2022; 13:879907. [PMID: 35935858 PMCID: PMC9354856 DOI: 10.3389/fphar.2022.879907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Chemical structure-based read-across represents a promising method for chemical toxicity evaluation without the need for animal testing; however, a chemical structure is not necessarily related to toxicity. Therefore, in vitro studies were often used for read-across reliability refinement; however, their external validity has been hindered by the gap between in vitro and in vivo conditions. Thus, we developed a virtual DNA microarray, regression analysis–based inductive DNA microarray (RAID), which quantitatively predicts in vivo gene expression profiles based on the chemical structure and/or in vitro transcriptome data. For each gene, elastic-net models were constructed using chemical descriptors and in vitro transcriptome data to predict in vivo data from in vitro data (in vitro to in vivo extrapolation; IVIVE). In feature selection, useful genes for assessing the quantitative structure–activity relationship (QSAR) and IVIVE were identified. Predicted transcriptome data derived from the RAID system reflected the in vivo gene expression profiles of characteristic hepatotoxic substances. Moreover, gene ontology and pathway analysis indicated that nuclear receptor-mediated xenobiotic response and metabolic activation are related to these gene expressions. The identified IVIVE-related genes were associated with fatty acid, xenobiotic, and drug metabolisms, indicating that in vitro studies were effective in evaluating these key events. Furthermore, validation studies revealed that chemical substances associated with these key events could be detected as hepatotoxic biosimilar substances. These results indicated that the RAID system could represent an alternative screening test for a repeated-dose toxicity test and toxicogenomics analyses. Our technology provides a critical solution for IVIVE-based read-across by considering the mode of action and chemical structures.
Collapse
|
2
|
Stading R, Gastelum G, Chu C, Jiang W, Moorthy B. Molecular mechanisms of pulmonary carcinogenesis by polycyclic aromatic hydrocarbons (PAHs): Implications for human lung cancer. Semin Cancer Biol 2021; 76:3-16. [PMID: 34242741 DOI: 10.1016/j.semcancer.2021.07.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/04/2023]
Abstract
Lung cancer has the second highest incidence and highest mortality compared to all other cancers. Polycyclic aromatic hydrocarbon (PAH) molecules belong to a class of compounds that are present in tobacco smoke, diesel exhausts, smoked foods, as well as particulate matter (PM). PAH-derived reactive metabolites are significant contributors to lung cancer development. The formation of these reactive metabolites entails metabolism of the parent PAHs by cytochrome P4501A1/1B1 (CYP1A1/1B1) and epoxide hydrolase enzymes. These reactive metabolites then react with DNA to form DNA adducts, which contribute to key gene mutations, such as the tumor suppressor gene, p53 and are linked to pulmonary carcinogenesis. PAH exposure also leads to upregulation of CYP1A1 transcription by binding to the aryl hydrocarbon receptor (AHR) and eliciting transcription of the CYP1A1 promoter, which comprises specific xenobiotic-responsive element (XREs). While hepatic and pulmonary CYP1A1/1B1 metabolize PAHs to DNA-reactive metabolites, the hepatic CYP1A2, however, may protect against lung tumor development by suppressing both liver and lung CYP1A1 enzymes. Further analysis of these enzymes has shown that PAH-exposure also induces sustained transcription of CYP1A1, which is independent of the persistence of the parent PAH. CYP1A2 enzyme plays an important role in the sustained induction of hepatic CYP1A1. PAH exposure may further contribute to pulmonary carcinogenesis by producing epigenetic alterations. DNA methylation, histone modification, long interspersed nuclear element (LINE-1) activation, and non-coding RNA, specifically microRNA (miRNA) alterations may all be induced by PAH exposure. The relationship between PAH-induced enzymatic reactive metabolite formation and epigenetic alterations is a key area of research that warrants further exploration. Investigation into the potential interplay between these two mechanisms may lead to further understanding of the mechanisms of PAH carcinogenesis. These mechanisms will be crucial for the development of effective targeted therapies and early diagnostic tools.
Collapse
Affiliation(s)
- Rachel Stading
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Grady Gastelum
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Chun Chu
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
3
|
Rhon Calderón EA, Galarza RA, Faletti AG. 3-Methylcholanthrene impacts on the female germ cells of rats without causing systemic toxicity. Toxicology 2020; 429:152328. [DOI: 10.1016/j.tox.2019.152328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/16/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
|
4
|
Gábelová A, Poláková V, Prochazka G, Kretová M, Poloncová K, Regendová E, Luciaková K, Segerbäck D. Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation. Toxicol Appl Pharmacol 2013; 271:1-12. [DOI: 10.1016/j.taap.2013.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 12/11/2022]
|
5
|
Jiang W, Wang L, Kondraganti SR, Fazili IS, Couroucli XI, Felix EA, Moorthy B. Disruption of the gene for CYP1A2, which is expressed primarily in liver, leads to differential regulation of hepatic and pulmonary mouse CYP1A1 expression and augmented human CYP1A1 transcriptional activation in response to 3-methylcholanthrene in vivo. J Pharmacol Exp Ther 2010; 335:369-79. [PMID: 20732958 PMCID: PMC2967398 DOI: 10.1124/jpet.110.171173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 08/18/2010] [Indexed: 11/22/2022] Open
Abstract
The cytochrome P4501A (CYP1A) enzymes play important roles in the metabolic activation and detoxification of numerous environmental carcinogens, including polycyclic aromatic hydrocarbons (PAHs). In this study, we tested the hypothesis that hepatic CYP1A2 differentially regulates mouse hepatic and pulmonary CYP1A1 expression and suppresses transcriptional activation of human CYP1A1 (hCYP1A1) promoter in response to 3-methylcholanthrene (MC) in vivo. Administration of wild-type (WT) (C57BL/6J) or Cyp1a2-null mice with a single dose of MC (100 μmol/kg i.p.) caused significant increases in hepatic CYP1A1/1A2 activities, apoprotein content, and mRNA levels 1 day after carcinogen withdrawal compared with vehicle-treated controls. The induction persisted in the WT, but not Cyp1a2-null, animals, for up to 15 days. In the lung, MC caused persistent CYP1A1 induction for up to 8 days in both genotypes, with Cyp1a2-null mice displaying a greater extent of CYP1A1 expression. It is noteworthy that MC caused significant augmentation of human CYP1A1 promoter activation in transgenic mice expressing the hCYP1A1 and the reporter luciferase gene on a Cyp1a2-null background, compared with transgenic mice on the WT background. In contrast, the mouse endogenous hepatic, but not pulmonary, persistent CYP1A1 expression was repressed by MC in the hCYP1A1-Cyp1a2-null mice. Liquid chromatography-mass spectrometry experiments showed that CYP1A2 catalyzed the formation of 1-hydroxy-3-MC and/or 2-hydroxy-3-MC, a metabolite that may contribute to the regulation of CYP1A1 expression. In conclusion, the results suggest that CYP1A2 plays a pivotal role in the regulation of hepatic and pulmonary CYP1A1 by PAHs, a phenomenon that potentially has important implications for PAH-mediated carcinogenesis.
Collapse
Affiliation(s)
- Weiwu Jiang
- Baylor College of Medicine, 1102 Bates Street, Suite 530.01, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Fazili IS, Jiang W, Wang L, Felix EA, Khatlani T, Coumoul X, Barouki R, Moorthy B. Persistent induction of cytochrome P4501A1 in human hepatoma cells by 3-methylcholanthrene: evidence for sustained transcriptional activation of the CYP1A1 promoter. J Pharmacol Exp Ther 2010; 333:99-109. [PMID: 20051482 PMCID: PMC2846024 DOI: 10.1124/jpet.109.162222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/04/2010] [Indexed: 01/01/2023] Open
Abstract
Cytochrome P450 (P450)1A1 plays a critical role in the metabolic activation and detoxification of polycyclic aromatic hydrocarbons (PAHs), many of which are potent human carcinogens. In this investigation, we tested the hypothesis that MC elicits persistent induction of CYP1A1 expression in human hepatoma cells (HepG2) and that this phenomenon is mediated by sustained transcriptional activation of the CYP1A1 promoter. Treatment of HepG2 cells with MC resulted in marked induction (8-20-fold) of ethoxyresorufin O-de-ethylase activities, CYP1A1 apoprotein contents, and mRNA levels, which persisted for up to 96 h. MC also caused sustained transcriptional activation of the human CYP1A1 promoter for up to 96 h, as inferred from transient transfection experiments. Experiments with deletion constructs indicated that Ah response elements located at -886, -974, and -1047, but not -491, nucleotides from the start site, contributed to the sustained transcriptional activation of the CYP1A1 promoter. Electrophoretic mobility-shift and chromatin immunoprecipitation assays suggested that prolonged CYP1A1 induction was mediated by Ah receptor (AHR)-independent mechanisms. Experiments with [3H]MC and liquid chromatography-tandem mass spectrometry demonstrated rapid elimination of MC and its metabolites from the cells by 12 to 24 h, suggesting that these compounds did not elicit sustained CYP1A1 induction via the classical AHR-mediated pathway. In conclusion, the results of this study support the hypothesis that MC causes persistent induction of CYP1A1 in human hepatoma cells by mechanisms entailing sustained transcriptional activation of the CYP1A1 promoter via AHR-independent mechanisms. These observations have important implications for human carcinogenesis mediated by PAHs.
Collapse
Affiliation(s)
- Inayat S Fazili
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Jiang W, Wang L, Zhang W, Coffee R, Fazili IS, Moorthy B. Persistent induction of cytochrome P450 (CYP)1A enzymes by 3-methylcholanthrene in vivo in mice is mediated by sustained transcriptional activation of the corresponding promoters. Biochem Biophys Res Commun 2009; 390:1419-24. [PMID: 19900403 PMCID: PMC2787915 DOI: 10.1016/j.bbrc.2009.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022]
Abstract
There is significant human exposure to polycyclic aromatic hydrocarbons (PAHs), many of which are potent carcinogens. Cytochrome P450 (CYP)1A enzymes play key roles in the metabolic activation of PAHs to carcinogenic metabolites. We previously showed persistent induction of CYP1A enzymes by 3-methylcholanthrene (MC) in vivo in rodents. In this study, we tested the hypothesis that MC elicits persistent induction of CYP1A1 and 1A2 in vivo by mechanisms entailing sustained transcriptional activation of the corresponding promoters. Adult male wild type (WT) (Cd-1) mice, transgenic mice expressing the human CYP1A1 promoter or the mouse CYP1A2 promoter were treated with the vehicle corn oil (CO) or the carcinogenic PAH, 3-methylcholanthrene (MC), once daily for 4days, and luciferase reporter gene expression was determined at 1, 8, 15, and 22days after MC withdrawal by bioluminescent imaging. Pulmonary and hepatic endogenous expression of CYP1A1 and 1A2 was also determined at the enzymatic, protein, and mRNA levels. The major findings were that MC elicited marked enhancement in the luciferase expression in the CYP1A1-luc as well CYP1A2-luc transgenic mice that was sustained for up to 22days, the magnitude of induction being more pronounced in the CYP1A1-luc mice. MC also caused persistent induction of endogenous CYP1A1 and 1A2 expression in the WT, CYP1A1-luc, and 1A2-luc mice for up to 22days. In conclusion, our results support the hypothesis that MC elicits sustained CYP1A1 and 1A2 expression by sustained transcriptional activation of the corresponding promoters. Thus, these novel transgenic models should be very useful for further understanding of the molecular mechanisms of persistent CYP1A induction, in relation to PAH-mediated carcinogenesis.
Collapse
Affiliation(s)
- Weiwu Jiang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
8
|
Xiao Y, Xue X, Wu YF, Xin GZ, Qian Y, Xie TP, Gong LK, Ren J. beta-Naphthoflavone protects mice from aristolochic acid-I-induced acute kidney injury in a CYP1A dependent mechanism. Acta Pharmacol Sin 2009; 30:1559-65. [PMID: 19890363 DOI: 10.1038/aps.2009.156] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM The role of CYP1A in the protection of aristolochic acid (AA)I-induced nephrotoxicity has been suggested. In the present study we investigated the effects of beta-naphthoflavone (BNF), a non-carcinogen CYP1A inducer, on AAI-induced kidney injury. METHODS Mice were pretreated with 80 mg/kg BNF by daily intraperitoneal injection (ip) for 3 days followed by a single ip of 10 mg/kg AAI. AAI and its major metabolites in blood, liver and kidney, the expression of CYP1A1 and CYP1A2 in microsomes of liver and kidney, as well as the nephrotoxicity were evaluated. RESULTS BNF pretreatment prevented AAI-induced renal damage by facilitating the disposal of AAI in liver. BNF pretreatment induced the expression of CYP1A1 in both liver and kidney; but the induction of CYP1A2 was only observed in liver. CONCLUSION BNF prevents AAI-induced kidney toxicity primarily through CYP1A induction.
Collapse
|
9
|
Kondraganti SR, Jiang W, Jaiswal AK, Moorthy B. Persistent induction of hepatic and pulmonary phase II enzymes by 3-methylcholanthrene in rats. Toxicol Sci 2008; 102:337-44. [PMID: 18203689 PMCID: PMC3758893 DOI: 10.1093/toxsci/kfn007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We reported earlier that exposure of rats to 3-methylcholanthrene (MC) causes sustained induction of hepatic cytochrome P450 (CYP)1A expression for up to 45 days by mechanisms other than persistence of the parent MC (Moorthy, J. 2000. Pharmacology. Exp. Ther. 294, 313-322). The CYP1A genes are members of the Ah gene battery that also encode CYP1B1 and phase II enzymes such as glutathione S-transferase (GST-alpha), UDP glucuronyl transferase (UGT)1A, NAD(P)H (nicotinamide adenine dinucleotide phosphate, reduced):quinone oxidoreductase I (NQO1), aldehyde dehydrogenase (ALDH), etc. Therefore, in this investigation, we tested the hypothesis that MC elicits persistent induction of CYP1B1 and phase II genes, which are in part regulated by the Ah receptor (AHR). Female Sprague-Dawley rats were treated with MC (100 mumol/kg), ip, once daily for 4 days, and expression of CYP1B1 and several phase II (e.g., GST-alpha, NQO1) genes and their corresponding proteins were determined in lung and liver. The major finding was that MC persistently induced (3- to 10-fold) the expression of several phase II enzymes, including GST-alpha, NQO1, UGT1A1, ALDH, and epoxide hydrolase in both tissues for up to 28 days. However, MC did not elicit sustained induction of CYP1B1. Our results thus support the hypothesis that MC elicits coordinated and sustained induction of phase II genes presumably via persistent activation of the AHR, a phenomenon that may have implications for chemical-induced carcinogenesis and chemopreventive strategies in humans.
Collapse
Affiliation(s)
| | - Weiwu Jiang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Anil K. Jaiswal
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|