1
|
Chianese U, Papulino C, Megchelenbrink W, Tambaro FP, Ciardiello F, Benedetti R, Altucci L. Epigenomic machinery regulating pediatric AML: clonal expansion mechanisms, therapies, and future perspectives. Semin Cancer Biol 2023; 92:84-101. [PMID: 37003397 DOI: 10.1016/j.semcancer.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a genetic, epigenetic, and transcriptional etiology mainly presenting somatic and germline abnormalities. AML incidence rises with age but can also occur during childhood. Pediatric AML (pAML) accounts for 15-20% of all pediatric leukemias and differs considerably from adult AML. Next-generation sequencing technologies have enabled the research community to "paint" the genomic and epigenomic landscape in order to identify pathology-associated mutations and other prognostic biomarkers in pAML. Although current treatments have improved the prognosis for pAML, chemoresistance, recurrence, and refractory disease remain major challenges. In particular, pAML relapse is commonly caused by leukemia stem cells that resist therapy. Marked patient-to-patient heterogeneity is likely the primary reason why the same treatment is successful for some patients but, at best, only partially effective for others. Accumulating evidence indicates that patient-specific clonal composition impinges significantly on cellular processes, such as gene regulation and metabolism. Although our understanding of metabolism in pAML is still in its infancy, greater insights into these processes and their (epigenetic) modulation may pave the way toward novel treatment options. In this review, we summarize current knowledge on the function of genetic and epigenetic (mis)regulation in pAML, including metabolic features observed in the disease. Specifically, we describe how (epi)genetic machinery can affect chromatin status during hematopoiesis, leading to an altered metabolic profile, and focus on the potential value of targeting epigenetic abnormalities in precision and combination therapy for pAML. We also discuss the possibility of using alternative epidrug-based therapeutic approaches that are already in clinical practice, either alone as adjuvant treatments and/or in combination with other drugs.
Collapse
Affiliation(s)
- Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Princess Máxima Center, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| | - Francesco Paolo Tambaro
- Bone Marrow Transplant Unit, Pediatric Oncology Department AORN Santobono Pausilipon, 80129, Naples Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy; IEOS, Institute for Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131 Naples, Italy.
| |
Collapse
|
2
|
Hepatitis Viruses Control Host Immune Responses by Modifying the Exosomal Biogenesis Pathway and Cargo. Int J Mol Sci 2022; 23:ijms231810862. [PMID: 36142773 PMCID: PMC9505460 DOI: 10.3390/ijms231810862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The development of smart immune evasion mechanisms is crucial for the establishment of acute and chronic viral hepatitis. Hepatitis is a major health problem worldwide arising from different causes, such as pathogens, metabolic disorders, and xenotoxins, with the five hepatitis viruses A, B, C, D, and E (HAV, HBV, HCV, HDV, and HEV) representing the majority of the cases. Most of the hepatitis viruses are considered enveloped. Recently, it was reported that the non-enveloped HAV and HEV are, in reality, quasi-enveloped viruses exploiting exosomal-like biogenesis mechanisms for budding. Regardless, all hepatitis viruses use exosomes to egress, regulate, and eventually escape from the host immune system, revealing another key function of exosomes apart from their recognised role in intercellular communication. This review will discuss how the hepatitis viruses exploit exosome biogenesis and transport capacity to establish successful infection and spread. Then, we will outline the contribution of exosomes in viral persistence and liver disease progression.
Collapse
|
3
|
Wang Q, Wang W, Sun XJ. Construction of a HOXA11-AS-Interact Ed Network in Keloid Fibroblasts Using Integrated Bioinformatic Analysis and in Vitro Validation. Front Genet 2022; 13:844198. [PMID: 35432479 PMCID: PMC9010035 DOI: 10.3389/fgene.2022.844198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Expression of the long noncoding RNA (lncRNA) HOXA11-AS significantly increased in keloids by unclarified molecular regulation mechanisms. Methods: Using successfully primary cultured keloid-derived fibroblasts from central region of chronic keloid tissues (sample 0), small interfering RNAs were designed and transfected into two keloid fibroblast samples (samples 1 and 2) to knockdown HOXA11-AS. One nonspecific transfection control (sample 3) and one blank control (sample 4) were used to remove nonspecific overlap from the studied group. The lncRNAs, messenger RNAs (mRNAs), and microRNAs (miRNAs) of five samples were sequenced to identify differentially expressed (DE) profiles in HOXA11-AS-knockdown keloid fibroblasts in samples 1 and 2 (by intersection), which facilitated removal of overlap with the nonspecific controls (samples 3 and 4, by union). Using stepwise bioinformatic analysis, a HOXA11-AS-interacted competing endogenous network (ceRNA) was screened based on three DE profiles. Results: Keloid fibroblasts with or without HOXA11-AS as well as with or without nonspecific interferences were successfully constructed respectively. A total of 1,396 mRNAs and 39 lncRNAs were significantly changed in keloid fibroblast with HOXA11-AS knockdown. Simultaneously, 1,626 mRNAs and 99 lncRNAs were significantly changed in keloid fibroblast with nonspecific interference. With removal of nonspecific overlap, a lncRNA–mRNA interactive network characterized by close natural/intronic antisense relationship was initially constructed in keloid fibroblast with HOXA11-AS knockdown. Based on this network, a lncRNA–mRNA–protein interaction network was extended by integration of the human protein–protein interaction network. Significant functional genes were screened using PageRank algorithm in the extended network. Three genes, including SNED1, NIPAL3, and VTN, were validated by real-time PCR in HOXA11-AS-knockdown keloid fibroblasts. Only NIPAL3 was predicted to be a target gene for HOXA11-AS via three competing endogenous miRNAs (hsa-miRNA-19a-3p, hsa-miR-141-3p, and hsa-miR-140-5p). Conclusion: An interactive network of HOXA11-AS–three miRNAs–NIPAL3 was predicted in keloid fibroblasts by integrative bioinformatic analysis and in vitro validation.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Wang
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Xiao-jie Sun
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Xiao-jie Sun,
| |
Collapse
|
4
|
Thakuri BKC, Zhang J, Zhao J, Nguyen LN, Nguyen LNT, Khanal S, Cao D, Dang X, Schank M, Wu XY, Morrison ZD, Gazzar ME, Li Z, Jiang Y, Ning S, Wang L, Moorman JP, Yao ZQ. LncRNA HOTAIRM1 promotes MDSC expansion and suppressive functions through the HOXA1-miR124 axis during HCV infection. Sci Rep 2020; 10:22033. [PMID: 33328510 PMCID: PMC7745042 DOI: 10.1038/s41598-020-78786-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) is a long non-coding RNA (lncRNA) that plays a pivotal role in regulating myeloid cell development via targeting HOXA1 gene expression. We and others have previously shown that myeloid-derived suppressor cells (MDSCs), a heterogeneous population of immature myeloid cells, expand during chronic viral (HCV, HIV) infections. However, the role of HOTAIRM1 in the development and suppression of MDSCs during viral infection remains unknown. In this study, we demonstrate that the expressions of HOTAIRM1 and its target HOXA1 are substantially upregulated to promote the expressions of immunosuppressive molecules, including arginase 1, inducible nitric oxide synthase, signal transducer and activator of transcription 3, and reactive oxygen species, in CD33+ myeloid cells derived from hepatitis C virus (HCV)-infected patients. We show that HCV-associated exosomes (HCV-Exo) can modulate HOTAIRM1, HOXA1, and miR124 expressions to regulate MDSC development. Importantly, overexpression of HOTAIRM1 or HOXA1 in healthy CD33+ myeloid cells promoted the MDSC differentiation and suppressive functions; conversely, silencing of HOTAIRM1 or HOXA1 expression in MDSCs from HCV patients significantly reduced the MDSC frequency and their suppressive functions. In essence, these results indicate that the HOTAIRM1-HOXA1-miR124 axis enhances the differentiation and suppressive functions of MDSCs and may be a potential target for immunomodulation in conjunction with antiviral therapy during chronic viral infection.
Collapse
Affiliation(s)
- Bal Krishna Chand Thakuri
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Jinyu Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam N Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam N T Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Sushant Khanal
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Dechao Cao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Xindi Dang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Xiao Y Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zheng D Morrison
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Zhengke Li
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Yong Jiang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Jonathan P Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
- Department of Veterans Affairs, Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Johnson City, TN, 37614, USA
| | - Zhi Q Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA.
- Department of Veterans Affairs, Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Johnson City, TN, 37614, USA.
- Center of Excellence for HIV/AIDS Care, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
5
|
Long noncoding RNA HOTAIRM1 promotes myeloid-derived suppressor cell expansion and suppressive functions through up-regulating HOXA1 expression during latent HIV infection. AIDS 2020; 34:2211-2221. [PMID: 33048872 PMCID: PMC7674250 DOI: 10.1097/qad.0000000000002700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Myeloid-derived suppressor cells (MDSCs) contribute to HIV progression by impairing antiviral immunity; however, the mechanisms responsible for MDSC development during HIV infection are incompletely understood. HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) is a long noncoding RNA (lncRNA) that plays a pivotal role in regulating myeloid cell development via targeting HOXA1. The role of HOTAIRM1--HOXA1 in the differentiation and functions of MDSCs during HIV infection remains unclear. METHODS In this study, we measured MDSC induction and suppressive functions by flow cytometry, RT-PCR, and co-culture experiments using CD33 myeloid cells derived from people living with HIV (PLHIV) on antiretroviral therapy (ART). We also manipulated the HOTAIRM1--HOXA1 axis in myeloid cells using knockdown and overexpression approaches. RESULTS We demonstrate that HOTAIRM1 and HOXA1 expressions are reciprocally upregulated and are responsible for increased levels of immunosuppressive molecules, such as arginase 1 (Arg1), inducible nitric oxide synthase (iNOS), signal transducer and activator of transcription 3 (STAT3), and reactive oxygen species (ROS), in CD33 myeloid cells derived from PLHIV on ART. We found that overexpression of HOTAIRM1 or HOXA1 in CD33 cells isolated from healthy individuals promoted the differentiation and suppressive functions of MDSCs, whereas silencing of HOTAIRM1 or HOXA1 expression in MDSCs derived from PLHIV significantly inhibited the frequency of MDSCs and expressions of the immunosuppressive molecules and reduced their immunosuppressive effects on T cells. CONCLUSION These results indicate that the HOTAIRM1--HOXA1 axis enhances differentiation and suppressive functions of MDSCs and could be a potential therapeutic target for immunomodulation during latent HIV infection.
Collapse
|
6
|
The stem cell-specific long noncoding RNA HOXA10-AS in the pathogenesis of KMT2A-rearranged leukemia. Blood Adv 2020; 3:4252-4263. [PMID: 31867596 DOI: 10.1182/bloodadvances.2019032029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/18/2019] [Indexed: 01/10/2023] Open
Abstract
HOX genes are highly conserved, and their precisely controlled expression is crucial for normal hematopoiesis. Accordingly, deregulation of HOX genes can cause leukemia. However, despite of intensive research on the coding HOX genes, the role of the numerous long noncoding RNAs (lncRNAs) within the HOX clusters during hematopoiesis and their contribution to leukemogenesis are incompletely understood. Here, we show that the lncRNA HOXA10-AS, located antisense to HOXA10 and mir-196b in the HOXA cluster, is highly expressed in hematopoietic stem cells (HSCs) as well as in KMT2A-rearranged and NPM1 mutated acute myeloid leukemias (AMLs). Using short hairpin RNA- and locked nucleic acid-conjugated chimeric antisense oligonucleotide (LNA-GapmeR)-mediated HOXA10-AS-knockdown and CRISPR/Cas9-mediated excision in vitro, we demonstrate that HOXA10-AS acts as an oncogene in KMT2A-rearranged AML. Moreover, HOXA10-AS knockdown severely impairs the leukemic growth of KMT2A-rearranged patient-derived xenografts in vivo, while high HOXA10-AS expression can serve as a marker of poor prognosis in AML patients. Lentiviral expression of HOXA10-AS blocks normal monocytic differentiation of human CD34+ hematopoietic stem and progenitor cells. Mechanistically, we show that HOXA10-AS localizes in the cytoplasm and acts in trans to induce NF-κB target genes. In total, our data imply that the normally HSC-specific HOXA10-AS is an oncogenic lncRNA in KMT2A-r AML. Thus, it may also represent a potential therapeutic target in KMT2A-rearranged AML.
Collapse
|
7
|
lncRNAs: function and mechanism in cartilage development, degeneration, and regeneration. Stem Cell Res Ther 2019; 10:344. [PMID: 31753016 PMCID: PMC6873685 DOI: 10.1186/s13287-019-1458-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
With the increasing incidence of cartilage-related diseases such as osteoarthritis (OA) and intervertebral disc degeneration (IDD), heavier financial and social burdens need to be faced. Unfortunately, there is no satisfactory clinical method to target the pathophysiology of cartilage-related diseases. Many gene expressions, signaling pathways, and biomechanical dysregulations were involved in cartilage development, degeneration, and regeneration. However, the underlying mechanism was not clearly understood. Recently, lots of long non-coding RNAs (lncRNAs) were identified in the biological processes, including cartilage development, degeneration, and regeneration. It is clear that lncRNAs were important in regulating gene expression and maintaining chondrocyte phenotypes and homeostasis. In this review, we summarize the recent researches studying lncRNAs’ expression and function in cartilage development, degeneration, and regeneration and illustrate the potential mechanism of how they act in the pathologic process. With continued efforts, regulating lncRNA expression in the cartilage regeneration may be a promising biological treatment approach.
Collapse
|
8
|
Murillo-Maldonado JM, Riesgo-Escovar JR. The various and shared roles of lncRNAs during development. Dev Dyn 2019; 248:1059-1069. [PMID: 31454122 DOI: 10.1002/dvdy.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 01/03/2023] Open
Abstract
lncRNAs, genes transcribed but not translated, longer than 200 nucleotides, are classified as a separate class of nonprotein coding genes. Since their discovery, largely from RNAseq data, a number of pioneer studies have begun to unravel its myriad functions, centered on gene expression regulation, suggesting developmental and evolutionary conservation. Since they do not code for proteins and have no open reading frames, their functional constraints likely differ from that of protein coding genes, or of genes where the majority of the nucleotide sequence is required for function, like tRNAs. This has complicated assessment of both developmental and evolutionary conservation, and the identification of homologs in different species. Here we argue that other characteristics: general synteny and particular chromosomal placement regardless of sequence, sequence micro-motifs, and secondary structure allow for "homologs" to be identified and compared, confirming developmental and evolutionary conservation of lncRNAs. We conclude exemplifying a case in point: that of the evolutionarily conserved lncRNA acal, characterized and required for embryogenesis in Drosophila.
Collapse
Affiliation(s)
- Juan M Murillo-Maldonado
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobología, Campus UNAM Juriquilla, Universidad Nacional Autónoma de Mexico, Santiago de Querétaro, Querétaro, Mexico
| | - Juan R Riesgo-Escovar
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobología, Campus UNAM Juriquilla, Universidad Nacional Autónoma de Mexico, Santiago de Querétaro, Querétaro, Mexico
| |
Collapse
|
9
|
A Case of Identity: HOX Genes in Normal and Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11040512. [PMID: 30974862 PMCID: PMC6521190 DOI: 10.3390/cancers11040512] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cells are undifferentiated cells that have the unique ability to self-renew and differentiate into many different cell types. Their function is controlled by core gene networks whose misregulation can result in aberrant stem cell function and defects of regeneration or neoplasia. HOX genes are master regulators of cell identity and cell fate during embryonic development. They play a crucial role in embryonic stem cell differentiation into specific lineages and their expression is maintained in adult stem cells along differentiation hierarchies. Aberrant HOX gene expression is found in several cancers where they can function as either oncogenes by sustaining cell proliferation or tumor-suppressor genes by controlling cell differentiation. Emerging evidence shows that abnormal expression of HOX genes is involved in the transformation of adult stem cells into cancer stem cells. Cancer stem cells have been identified in most malignancies and proved to be responsible for cancer initiation, recurrence, and metastasis. In this review, we consider the role of HOX genes in normal and cancer stem cells and discuss how the modulation of HOX gene function could lead to the development of novel therapeutic strategies that target cancer stem cells to halt tumor initiation, progression, and resistance to treatment.
Collapse
|
10
|
Botti G, De Chiara A, Di Bonito M, Cerrone M, Malzone MG, Collina F, Cantile M. Noncoding RNAs within the
HOX
gene network in tumor pathogenesis and progression. J Cell Physiol 2018; 234:395-413. [DOI: 10.1002/jcp.27036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Gerardo Botti
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Anna De Chiara
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Maurizio Di Bonito
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Margherita Cerrone
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Maria Gabriella Malzone
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Francesca Collina
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Monica Cantile
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| |
Collapse
|
11
|
Saha P, Verma S, Pathak RU, Mishra RK. Long Noncoding RNAs in Mammalian Development and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:155-198. [PMID: 28815540 DOI: 10.1007/978-981-10-5203-3_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following analysis of sequenced genomes and transcriptome of many eukaryotes, it is evident that virtually all protein-coding genes have already been discovered. These advances have highlighted an intriguing paradox whereby the relative amount of protein-coding sequences remain constant but nonprotein-coding sequences increase consistently in parallel to increasing evolutionary complexity. It is established that differences between species map to nonprotein-coding regions of the genome that surprisingly is transcribed extensively. These transcripts regulate epigenetic processes and constitute an important layer of regulatory information essential for organismal development and play a causative role in diseases. The noncoding RNA-directed regulatory circuit controls complex characteristics. Sequence variations in noncoding RNAs influence evolution, quantitative traits, and disease susceptibility. This chapter presents an account on a class of such noncoding transcripts that are longer than 200 nucleotides (long noncoding RNA-lncRNA) in mammalian development and diseases.
Collapse
Affiliation(s)
- Parna Saha
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Shreekant Verma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rashmi U Pathak
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
12
|
Bouckenheimer J, Assou S, Riquier S, Hou C, Philippe N, Sansac C, Lavabre-Bertrand T, Commes T, Lemaître JM, Boureux A, De Vos J. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum Reprod Update 2016; 23:19-40. [PMID: 27655590 DOI: 10.1093/humupd/dmw035] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/20/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human long non-coding RNAs (lncRNAs) are an emerging category of transcripts with increasingly documented functional roles during development. LncRNAs and roles during human early embryo development have recently begun to be unravelled. OBJECTIVE AND RATIONALE This review summarizes the most recent knowledge on lncRNAs and focuses on their expression patterns and role during early human embryo development and in pluripotent stem cells (PSCs). Public mRNA sequencing (mRNA-seq) data were used to illustrate these expression signatures. SEARCH METHODS The PubMed and EMBASE databases were first interrogated using specific terms, such as 'lncRNAs', to get an extensive overview on lncRNAs up to February 2016, and then using 'human lncRNAs' and 'embryo', 'development', or 'PSCs' to focus on lncRNAs involved in human embryo development or in PSC.Recently published RNA-seq data from human oocytes and pre-implantation embryos (including single-cell data), PSC and a panel of normal and malignant adult tissues were used to describe the specific expression patterns of some lncRNAs in early human embryos. OUTCOMES The existence and the crucial role of lncRNAs in many important biological phenomena in each branch of the life tree are now well documented. The number of identified lncRNAs is rapidly increasing and has already outnumbered that of protein-coding genes. Unlike small non-coding RNAs, a variety of mechanisms of action have been proposed for lncRNAs. The functional role of lncRNAs has been demonstrated in many biological and developmental processes, including cell pluripotency induction, X-inactivation or gene imprinting. Analysis of RNA-seq data highlights that lncRNA abundance changes significantly during human early embryonic development. This suggests that lncRNAs could represent candidate biomarkers for developing non-invasive tests for oocyte or embryo quality. Finally, some of these lncRNAs are also expressed in human cancer tissues, suggesting that reactivation of an embryonic lncRNA program may contribute to human malignancies. WIDER IMPLICATIONS LncRNAs are emerging potential key players in gene expression regulation. Analysis of RNA-seq data from human pre-implantation embryos identified lncRNA signatures that are specific to this critical step. We anticipate that further studies will show that these new transcripts are major regulators of embryo development. These findings might also be used to develop new tests/treatments for improving the pregnancy success rate in IVF procedures or for regenerative medicine applications involving PSC.
Collapse
Affiliation(s)
- Julien Bouckenheimer
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Sébastien Riquier
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Cyrielle Hou
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Nicolas Philippe
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France.,Coretec, Montpellier, France
| | - Caroline Sansac
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | | | - Thérèse Commes
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France.,Institut de Biologie Computationnelle, Montpellier F 34000, France
| | - Jean-Marc Lemaître
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France .,INSERM, U1183, Montpellier F 34000, France.,Stem Cell Core Facility SAFE-iPSC, INGESTEM, Saint-Eloi Hospital, Montpellier F 34000, France
| | - Anthony Boureux
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France .,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France.,Institut de Biologie Computationnelle, Montpellier F 34000, France.,Stem Cell Core Facility SAFE-iPSC, INGESTEM, Saint-Eloi Hospital, Montpellier F 34000, France.,Department of Cell and Tissue Engineering, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France
| |
Collapse
|
13
|
Saus E, Brunet-Vega A, Iraola-Guzmán S, Pegueroles C, Gabaldón T, Pericay C. Long Non-Coding RNAs As Potential Novel Prognostic Biomarkers in Colorectal Cancer. Front Genet 2016; 7:54. [PMID: 27148353 PMCID: PMC4828582 DOI: 10.3389/fgene.2016.00054] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/21/2016] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth most common cause of death worldwide. Surgery is usually the first line of treatment for patients with CRC but many tumors with similar histopathological features show significantly different clinical outcomes. The discovery of robust prognostic biomarkers in patients with CRC is imperative to achieve more effective treatment strategies and improve patient's care. Recent progress in next generation sequencing methods and transcriptome analysis has revealed that a much larger part of the genome is transcribed into RNA than previously assumed. Collectively referred to as non-coding RNAs (ncRNAs), some of these RNA molecules such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been shown to be altered and to play critical roles in tumor biology. This discovery leads to exciting possibilities for personalized cancer diagnosis, and therapy. Many lncRNAs are tissue and cancer-type specific and have already revealed to be useful as prognostic markers. In this review, we focus on recent findings concerning aberrant expression of lncRNAs in CRC tumors and emphasize their prognostic potential in CRC. Further studies focused on the mechanisms of action of lncRNAs will contribute to the development of novel biomarkers for diagnosis and disease progression.
Collapse
Affiliation(s)
- Ester Saus
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain
| | - Anna Brunet-Vega
- Department of Oncology Research, Parc Taulí Foundation, Corporació Sanitària Parc Taulí - University Institute - UAB Barcelona Sabadell, Spain
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain
| | - Cinta Pegueroles
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain; Institució Catalana de Recerca i Estudis AvançatsBarcelona, Spain
| | - Carles Pericay
- Department of Oncology Research, Parc Taulí Foundation, Corporació Sanitària Parc Taulí - University Institute - UAB BarcelonaSabadell, Spain; Oncology Service, Hospital de Sabadell, Corporació Sanitària Parc Taulí - University Institute - UAB BarcelonaSabadell, Spain
| |
Collapse
|
14
|
De Kumar B, Krumlauf R. HOXs and lincRNAs: Two sides of the same coin. SCIENCE ADVANCES 2016; 2:e1501402. [PMID: 27034976 PMCID: PMC4805430 DOI: 10.1126/sciadv.1501402] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/28/2015] [Indexed: 05/13/2023]
Abstract
The clustered Hox genes play fundamental roles in regulation of axial patterning and elaboration of the basic body plan in animal development. There are common features in the organization and regulatory landscape of Hox clusters associated with their highly conserved functional roles. The presence of transcribed noncoding sequences embedded within the vertebrate Hox clusters is providing insight into a new layer of regulatory information associated with Hox genes.
Collapse
Affiliation(s)
- Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
Human NUP98-IQCG fusion protein induces acute myelomonocytic leukemia in mice by dysregulating the Hox/Pbx3 pathway. Leukemia 2015; 30:1590-3. [PMID: 26675333 DOI: 10.1038/leu.2015.347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Kim D, Song J, Han J, Kim Y, Chun CH, Jin EJ. Two non-coding RNAs, MicroRNA-101 and HOTTIP contribute cartilage integrity by epigenetic and homeotic regulation of integrin-α1. Cell Signal 2013; 25:2878-87. [PMID: 24018042 DOI: 10.1016/j.cellsig.2013.08.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/31/2013] [Indexed: 12/18/2022]
Abstract
Non-coding RNAs have been less studied in cartilage development and destruction regulated by sophisticated molecular events despite their considerable theranostic potential. In this study, we identified significant down-regulation of mR-101 and up-regulation of lncRNA, HOTTIP in the processes of endochondral ossification and osteoarthritic progression. In wing mesenchymal cells, up-expression of miR-101 by TGF-β3 treatment is targeting DNMT-3B and thereby altered the methylation of integrin-α1 addressed as a positive regulator of endochondral ossification in this study. In like manner, down-regulation of miR-101 also coordinately up-regulated DNMT-3B, down-regulated integrin-α1, and resulted in cartilage destruction. In an OA animal model, introduction of lentiviruses that encoded miR-101 or integrin-α1 successfully reduced cartilage destruction. In like manner, long non-coding RNA (lncRNA), HOTTIP, a known regulator for HoxA genes, was highly up-regulated and concurrent down-regulation of HoxA13 displayed the suppression of integrin-α1 in OA chondrocytes. In conclusion, two non-coding RNAs, miR-101 and HOTTIP regulate cartilage development and destruction by modulating integrin-α1 either epigenetically by DNMT-3B or transcriptionally by HoxA13 and data further suggest that these non-coding RNAs could be a potent predictive biomarker for OA as well as a therapeutic target for preventing cartilage-related diseases.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk 570-749, Republic of Korea
| | | | | | | | | | | |
Collapse
|
17
|
Wei P, Han B, Chen Y. Role of long non-coding RNAs in normal and malignant hematopoiesis. SCIENCE CHINA-LIFE SCIENCES 2013; 56:867-75. [PMID: 24030284 DOI: 10.1007/s11427-013-4550-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/30/2013] [Indexed: 01/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) are defined as a class of nonprotein-coding transcripts greater than 200 nucleotides in length, which have diverse functions in development and diseases including hematopoiesis. Recent advances have revealed that lncRNAs regulate hematopoietic development at almost every stage, including differentiation of the myelocyte, lymphocyte, and erythrocyte. Abnormal regulation of the lncRNAs may block aspects of blood development, which can lead to different types of hematopoietic disorders. These findings highlight the role of lncRNAs as potential therapeutic tools in malignant hematopoiesis. In this review, we summarize recent progress in the study of functional lncRNAs associated with blood development, as well as dysregulated lncRNAs involved in diverse blood diseases by interacting with crucial susceptibility genes in different pathways. In addition, we discuss genome-wide studies on lncRNAs, which are helpful for genome screening and in-depth functional study of lncRNAs associated with blood development and disease.
Collapse
Affiliation(s)
- Panpan Wei
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | | | | |
Collapse
|
18
|
Han BW, Chen YQ. Potential pathological and functional links between long noncoding RNAs and hematopoiesis. Sci Signal 2013; 6:re5. [PMID: 23962981 DOI: 10.1126/scisignal.2004099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differential abundance and activity of long noncoding RNAs (lncRNAs) are recognized as the hallmark features in various diseases. We highlight the lncRNAs that play a functional role in the development of blood cells. Many lncRNAs and the protein complexes within which they interact have been implicated in various types of cancers. Multiple lncRNAs participate in normal and may be implicated in malignant hematopoiesis associated with blood cell cancers, such as leukemia, by regulating gene expression through such mechanisms as redirecting chromatin remodeling complexes and activating epigenetic silencing, either of which can inactivate tumor suppressor genes or activate oncogenes. Because of their potential importance in cancers of the blood, lncRNAs may be useful as diagnostic and prognostic markers, and it may be possible to develop lncRNA-mediated therapy.
Collapse
Affiliation(s)
- Bo-Wei Han
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | | |
Collapse
|
19
|
Tsumagari K, Baribault C, Terragni J, Chandra S, Renshaw C, Sun Z, Song L, Crawford GE, Pradhan S, Lacey M, Ehrlich M. DNA methylation and differentiation: HOX genes in muscle cells. Epigenetics Chromatin 2013; 6:25. [PMID: 23916067 PMCID: PMC3750649 DOI: 10.1186/1756-8935-6-25] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/21/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tight regulation of homeobox genes is essential for vertebrate development. In a study of genome-wide differential methylation, we recently found that homeobox genes, including those in the HOX gene clusters, were highly overrepresented among the genes with hypermethylation in the skeletal muscle lineage. Methylation was analyzed by reduced representation bisulfite sequencing (RRBS) of postnatal myoblasts, myotubes and adult skeletal muscle tissue and 30 types of non-muscle-cell cultures or tissues. RESULTS In this study, we found that myogenic hypermethylation was present in specific subregions of all four HOX gene clusters and was associated with various chromatin epigenetic features. Although the 3' half of the HOXD cluster was silenced and enriched in polycomb repression-associated H3 lysine 27 trimethylation in most examined cell types, including myoblasts and myotubes, myogenic samples were unusual in also displaying much DNA methylation in this region. In contrast, both HOXA and HOXC clusters displayed myogenic hypermethylation bordering a central region containing many genes preferentially expressed in myogenic progenitor cells and consisting largely of chromatin with modifications typical of promoters and enhancers in these cells. A particularly interesting example of myogenic hypermethylation was HOTAIR, a HOXC noncoding RNA gene, which can silence HOXD genes in trans via recruitment of polycomb proteins. In myogenic progenitor cells, the preferential expression of HOTAIR was associated with hypermethylation immediately downstream of the gene. Other HOX gene regions also displayed myogenic DNA hypermethylation despite being moderately expressed in myogenic cells. Analysis of representative myogenic hypermethylated sites for 5-hydroxymethylcytosine revealed little or none of this base, except for an intragenic site in HOXB5 which was specifically enriched in this base in skeletal muscle tissue, whereas myoblasts had predominantly 5-methylcytosine at the same CpG site. CONCLUSIONS Our results suggest that myogenic hypermethylation of HOX genes helps fine-tune HOX sense and antisense gene expression through effects on 5' promoters, intragenic and intergenic enhancers and internal promoters. Myogenic hypermethylation might also affect the relative abundance of different RNA isoforms, facilitate transcription termination, help stop the spread of activation-associated chromatin domains and stabilize repressive chromatin structures.
Collapse
Affiliation(s)
- Koji Tsumagari
- Hayward Human Genetics Program and Tulane Cancer Center, Tulane Health Sciences Center, New Orleans LA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ehrlich M, Lacey M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics 2013; 5:553-68. [PMID: 24059801 PMCID: PMC3864898 DOI: 10.2217/epi.13.43] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Differentiation-related DNA methylation is receiving increasing attention, partly owing to new, whole-genome analyses. These revealed that cell type-specific differential methylation in gene bodies is more frequent than in promoters. We review new insights into the functionality of DNA methylation during differentiation, with emphasis on the methylomes of myoblasts, myotubes and skeletal muscle versus non-muscle samples. Biostatistical analyses of data from reduced representation bisulfite sequencing are discussed. Lastly, a model is presented for how promoter and intragenic DNA hypermethylation affect gene expression, including increasing the efficiency of polycomb silencing at some promoters, downmodulating other promoters rather than silencing them, counteracting enhancers with heterologous specificity, altering chromatin conformation by inhibiting the binding of CTCF, modulating mRNA transcript levels by inhibiting overlapping promoters of noncoding RNA genes or by regulating the use of alternative mRNA promoters, modulating transcription termination, regulating alternative splicing and acting as barriers to the spread of activating chromatin.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Hayward Human Genetics Program, Tulane Cancer Center, and Center for Bioinformatics & Genomics, Tulane Health Sciences Center, New Orleans, LA 70112, USA.
| | | |
Collapse
|
21
|
Yu H, Lindsay J, Feng ZP, Frankenberg S, Hu Y, Carone D, Shaw G, Pask AJ, O'Neill R, Papenfuss AT, Renfree MB. Evolution of coding and non-coding genes in HOX clusters of a marsupial. BMC Genomics 2012; 13:251. [PMID: 22708672 PMCID: PMC3541083 DOI: 10.1186/1471-2164-13-251] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/22/2012] [Indexed: 12/13/2022] Open
Abstract
Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.
Collapse
Affiliation(s)
- Hongshi Yu
- ARC Centre of Excellence in Kangaroo Genomics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Raincrow JD, Dewar K, Stocsits C, Prohaska SJ, Amemiya CT, Stadler PF, Chiu CH. Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:451-64. [PMID: 21688387 DOI: 10.1002/jez.b.21420] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/27/2011] [Accepted: 04/24/2011] [Indexed: 12/12/2022]
Abstract
Teleost fishes have extra Hox gene clusters owing to shared or lineage-specific genome duplication events in rayfinned fish (actinopterygian) phylogeny. Hence, extrapolating between genome function of teleosts and human or even between different fish species is difficult. We have sequenced and analyzed Hox gene clusters of the Senegal bichir (Polypterus senegalus), an extant representative of the most basal actinopterygian lineage. Bichir possesses four Hox gene clusters (A, B, C, D); phylogenetic analysis supports their orthology to the four Hox gene clusters of the gnathostome ancestor. We have generated a comprehensive database of conserved Hox noncoding sequences that include cartilaginous, lobe-finned, and ray-finned fishes (bichir and teleosts). Our analysis identified putative and known Hox cis-regulatory sequences with differing depths of conservation in Gnathostoma. We found that although bichir possesses four Hox gene clusters, its pattern of conservation of noncoding sequences is mosaic between outgroups, such as human, coelacanth, and shark, with four Hox gene clusters and teleosts, such as zebrafish and pufferfish, with seven or eight Hox gene clusters. Notably, bichir Hox gene clusters have been invaded by DNA transposons and this trend is further exemplified in teleosts, suggesting an as yet unrecognized mechanism of genome evolution that may explain Hox cluster plasticity in actinopterygians. Taken together, our results suggest that actinopterygian Hox gene clusters experienced a reduction in selective constraints that surprisingly predates the teleost-specific genome duplication.
Collapse
Affiliation(s)
- Jeremy D Raincrow
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472:120-4. [PMID: 21423168 DOI: 10.1038/nature09819] [Citation(s) in RCA: 1559] [Impact Index Per Article: 111.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 01/12/2011] [Indexed: 12/14/2022]
Abstract
The genome is extensively transcribed into long intergenic noncoding RNAs (lincRNAs), many of which are implicated in gene silencing. Potential roles of lincRNAs in gene activation are much less understood. Development and homeostasis require coordinate regulation of neighbouring genes through a process termed locus control. Some locus control elements and enhancers transcribe lincRNAs, hinting at possible roles in long-range control. In vertebrates, 39 Hox genes, encoding homeodomain transcription factors critical for positional identity, are clustered in four chromosomal loci; the Hox genes are expressed in nested anterior-posterior and proximal-distal patterns colinear with their genomic position from 3' to 5'of the cluster. Here we identify HOTTIP, a lincRNA transcribed from the 5' tip of the HOXA locus that coordinates the activation of several 5' HOXA genes in vivo. Chromosomal looping brings HOTTIP into close proximity to its target genes. HOTTIP RNA binds the adaptor protein WDR5 directly and targets WDR5/MLL complexes across HOXA, driving histone H3 lysine 4 trimethylation and gene transcription. Induced proximity is necessary and sufficient for HOTTIP RNA activation of its target genes. Thus, by serving as key intermediates that transmit information from higher order chromosomal looping into chromatin modifications, lincRNAs may organize chromatin domains to coordinate long-range gene activation.
Collapse
|
24
|
Coulombe Y, Lemieux M, Moreau J, Aubin J, Joksimovic M, Bérubé-Simard FA, Tabariès S, Boucherat O, Guillou F, Larochelle C, Tuggle CK, Jeannotte L. Multiple promoters and alternative splicing: Hoxa5 transcriptional complexity in the mouse embryo. PLoS One 2010; 5:e10600. [PMID: 20485555 PMCID: PMC2868907 DOI: 10.1371/journal.pone.0010600] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/13/2010] [Indexed: 12/28/2022] Open
Abstract
Background The genomic organization of Hox clusters is fundamental for the precise spatio-temporal regulation and the function of each Hox gene, and hence for correct embryo patterning. Multiple overlapping transcriptional units exist at the Hoxa5 locus reflecting the complexity of Hox clustering: a major form of 1.8 kb corresponding to the two characterized exons of the gene and polyadenylated RNA species of 5.0, 9.5 and 11.0 kb. This transcriptional intricacy raises the question of the involvement of the larger transcripts in Hox function and regulation. Methodology/Principal Findings We have undertaken the molecular characterization of the Hoxa5 larger transcripts. They initiate from two highly conserved distal promoters, one corresponding to the putative Hoxa6 promoter, and a second located nearby Hoxa7. Alternative splicing is also involved in the generation of the different transcripts. No functional polyadenylation sequence was found at the Hoxa6 locus and all larger transcripts use the polyadenylation site of the Hoxa5 gene. Some larger transcripts are potential Hoxa6/Hoxa5 bicistronic units. However, even though all transcripts could produce the genuine 270 a.a. HOXA5 protein, only the 1.8 kb form is translated into the protein, indicative of its essential role in Hoxa5 gene function. The Hoxa6 mutation disrupts the larger transcripts without major phenotypic impact on axial specification in their expression domain. However, Hoxa5-like skeletal anomalies are observed in Hoxa6 mutants and these defects can be explained by the loss of expression of the 1.8 kb transcript. Our data raise the possibility that the larger transcripts may be involved in Hoxa5 gene regulation. Significance Our observation that the Hoxa5 larger transcripts possess a developmentally-regulated expression combined to the increasing sum of data on the role of long noncoding RNAs in transcriptional regulation suggest that the Hoxa5 larger transcripts may participate in the control of Hox gene expression.
Collapse
Affiliation(s)
- Yan Coulombe
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Hox genes, a highly conserved subgroup of the homeobox superfamily, have crucial roles in development, regulating numerous processes including apoptosis, receptor signalling, differentiation, motility and angiogenesis. Aberrations in Hox gene expression have been reported in abnormal development and malignancy, indicating that altered expression of Hox genes could be important for both oncogenesis and tumour suppression, depending on context. Therefore, Hox gene expression could be important in diagnosis and therapy.
Collapse
Affiliation(s)
- Nilay Shah
- Nilay Shah and Saraswati Sukumar are at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
26
|
Ester AR, Weymouth KS, Burt A, Wise C, Scott A, Gurnett CA, Dobbs MB, Blanton SH, Hecht JT. Altered transmission of HOX and apoptotic SNPs identify a potential common pathway for clubfoot. Am J Med Genet A 2009; 149A:2745-52. [PMID: 19938081 PMCID: PMC2795347 DOI: 10.1002/ajmg.a.33130] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Clubfoot is a common birth defect that affects 135,000 newborns each year worldwide. It is characterized by equinus deformity of one or both feet and hypoplastic calf muscles. Despite numerous study approaches, the cause(s) remains poorly understood although a multifactorial etiology is generally accepted. We considered the HOXA and HOXD gene clusters and insulin-like growth factor binding protein 3 (IGFBP3) as candidate genes because of their important roles in limb and muscle morphogenesis. Twenty SNPs from the HOXA and HOXD gene clusters and 12 SNPs in IGFBP3 were genotyped in a sample composed of non-Hispanic white and Hispanic multiplex and simplex families (discovery samples) and a second sample of non-Hispanic white simplex trios (validation sample). Four SNPs (rs6668, rs2428431, rs3801776, and rs3779456) in the HOXA cluster demonstrated altered transmission in the discovery sample, but only rs3801776, located in the HOXA basal promoter region, showed altered transmission in both the discovery and validation samples (P = 0.004 and 0.028). Interestingly, HOXA9 is expressed in muscle during development. An SNP in IGFBP3, rs13223993, also showed altered transmission (P = 0.003) in the discovery sample. Gene-gene interactions were identified between variants in HOXA, HOXD, and IGFBP3 and with previously associated SNPs in mitochondrial-mediated apoptotic genes. The most significant interactions were found between CASP3 SNPS and variants in HOXA, HOXD, and IGFBP3. These results suggest a biologic model for clubfoot in which perturbation of HOX and apoptotic genes together affect muscle and limb development, which may cause the downstream failure of limb rotation into a plantar grade position.
Collapse
Affiliation(s)
- Audrey R. Ester
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Katelyn S. Weymouth
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Amber Burt
- Miami Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carol Wise
- Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Allison Scott
- Shriners Hospital for Children, Houston 77030, TX, USA
| | - Christina A Gurnett
- Department of Neurology, Washington School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew B. Dobbs
- Department of Neurology, Washington School of Medicine, St. Louis, MO, 63110, USA
- Department of Orthopaedic Surgery, Washington University School of Medicine and Shriners Hospital for Children, St. Louis, MO 63110, USA
| | - Susan H. Blanton
- Miami Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA
- Shriners Hospital for Children, Houston 77030, TX, USA
| |
Collapse
|
27
|
A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood 2009; 113:2526-34. [PMID: 19144990 DOI: 10.1182/blood-2008-06-162164] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have identified an intergenic transcriptional activity that is located between the human HOXA1 and HOXA2 genes, shows myeloid-specific expression, and is up-regulated during granulocytic differentiation. The novel gene, termed HOTAIRM1 (HOX antisense intergenic RNA myeloid 1), is transcribed antisense to the HOXA genes and originates from the same CpG island that embeds the start site of HOXA1. The transcript appears to be a noncoding RNA containing no long open-reading frame; sucrose gradient analysis shows no association with polyribosomal fractions. HOTAIRM1 is the most prominent intergenic transcript expressed and up-regulated during induced granulocytic differentiation of NB4 promyelocytic leukemia and normal human hematopoietic cells; its expression is specific to the myeloid lineage. Its induction during retinoic acid (RA)-driven granulocytic differentiation is through RA receptor and may depend on the expression of myeloid cell development factors targeted by RA signaling. Knockdown of HOTAIRM1 quantitatively blunted RA-induced expression of HOXA1 and HOXA4 during the myeloid differentiation of NB4 cells, and selectively attenuated induction of transcripts for the myeloid differentiation genes CD11b and CD18, but did not noticeably impact the more distal HOXA genes. These findings suggest that HOTAIRM1 plays a role in the myelopoiesis through modulation of gene expression in the HOXA cluster.
Collapse
|
28
|
Mituyama T, Yamada K, Hattori E, Okida H, Ono Y, Terai G, Yoshizawa A, Komori T, Asai K. The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Res 2008; 37:D89-92. [PMID: 18948287 PMCID: PMC2686472 DOI: 10.1093/nar/gkn805] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We developed a pair of databases that support two important tasks: annotation of anonymous RNA transcripts and discovery of novel non-coding RNAs. The database combo is called the Functional RNA Database and consists of two databases: a rewrite of the original version of the Functional RNA Database (fRNAdb) and the latest version of the UCSC GenomeBrowser for Functional RNA. The former is a sequence database equipped with a powerful search function and hosts a large collection of known/predicted non-coding RNA sequences acquired from existing databases as well as novel/predicted sequences reported by researchers of the Functional RNA Project. The latter is a UCSC Genome Browser mirror with large additional custom tracks specifically associated with non-coding elements. It also includes several functional enhancements such as a presentation of a common secondary structure prediction at any given genomic window ⩽500 bp. Our GenomeBrowser supports user authentication and user-specific tracks. The current version of the fRNAdb is a complete rewrite of the former version, hosting a larger number of sequences and with a much friendlier interface. The current version of UCSC GenomeBrowser for Functional RNA features a larger number of tracks and richer features than the former version. The databases are available at http://www.ncrna.org/.
Collapse
Affiliation(s)
- Toutai Mituyama
- National Institute of Advanced Industrial Science and Technology, Computational Biology Research Center, Tokyo 135-0064, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Non-protein-coding sequences increasingly dominate the genomes of multicellular organisms as their complexity increases, in contrast to protein-coding genes, which remain relatively static. Most of the mammalian genome and indeed that of all eukaryotes is expressed in a cell- and tissue-specific manner, and there is mounting evidence that much of this transcription is involved in the regulation of differentiation and development. Different classes of small and large noncoding RNAs (ncRNAs) have been shown to regulate almost every level of gene expression, including the activation and repression of homeotic genes and the targeting of chromatin-remodeling complexes. ncRNAs are involved in developmental processes in both simple and complex eukaryotes, and we illustrate this in the latter by focusing on the animal germline, brain, and eye. While most have yet to be systematically studied, the emerging evidence suggests that there is a vast hidden layer of regulatory ncRNAs that constitutes the majority of the genomic programming of multicellular organisms and plays a major role in controlling the epigenetic trajectories that underlie their ontogeny.
Collapse
|