1
|
Marañón P, Isaza SC, Rey E, Rada P, García-García Y, Dear JW, García-Monzón C, Valverde ÁM, Egea J, González-Rodríguez Á. BMP6 participates in the molecular mechanisms involved in APAP hepatotoxicity. Arch Toxicol 2025; 99:1187-1202. [PMID: 39827450 PMCID: PMC11821676 DOI: 10.1007/s00204-024-03954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
Given the lack of accurate diagnostic methods of acetaminophen (APAP)-induced acute liver failure (ALF), the search for new biomarkers for its diagnosis is an urgent need. The aim of this study was to evaluate the role of bone morphogenetic protein 6 (BMP6) in APAP-induced ALF progression and its potential value as a biomarker of ALF. Hepatic and circulating BMP6 expression was assessed in APAP-treated mice and in serum samples from patients with APAP overdose. In addition, BMP6 expression and release was evaluated in hepatocytes after APAP exposure. BMP6 gene was silenced in Huh7 cells prior to APAP treatment and the culture medium (CM) was added to THP1 cells to evaluate the paracrine effects of hepatocyte BMP6 on APAP toxicity. Hepatic and serum BMP6 levels were increased in mice after APAP-induced ALF. In addition, a positive correlation was observed between circulating BMP6 and ALT activity in patients exposed to APAP overdose. Moreover, hepatocytes expressed and released BMP6 to the CM after APAP treatment. Indeed, the CM from APAP-treated Huh7 cells upregulated M1 and M2 markers in THP1 monocytes. The CM from BMP6-silenced Huh7, which was depleted of BMP6, reduced the expression of M2 markers in THP1 cells. In fact, expression of M2 markers was increased in THP1 cells exposed to BMP6. This study reveals that hepatic BMP6 expression is increased in APAP-induced acute liver injury, positioning it as a potential new biomarker of liver damage severity. Moreover, our data indicate that BMP6 might play a role in the hepatocyte-macrophage crosstalk during APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Patricia Marañón
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-P), Madrid, Spain.
| | - Stephania C Isaza
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-P), Madrid, Spain
| | - Esther Rey
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-P), Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Yaiza García-García
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-P), Madrid, Spain
| | - James W Dear
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Carmelo García-Monzón
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-P), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-P), Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
2
|
Jimmidi R, Monsivais D, Ta HM, Sharma KL, Bohren KM, Chamakuri S, Liao Z, Li F, Hakenjos JM, Li JY, Mishina Y, Pan H, Qin X, Robers MB, Sankaran B, Tan Z, Tang S, Vasquez YM, Wilkinson J, Young DW, Palmer SS, MacKenzie KR, Kim C, Matzuk MM. Discovery of highly potent and ALK2/ALK1 selective kinase inhibitors using DNA-encoded chemistry technology. Proc Natl Acad Sci U S A 2024; 121:e2413108121. [PMID: 39541346 PMCID: PMC11588046 DOI: 10.1073/pnas.2413108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Activin receptor type 1 (ACVR1; ALK2) and activin receptor like type 1 (ACVRL1; ALK1) are transforming growth factor beta family receptors that integrate extracellular signals of bone morphogenic proteins (BMPs) and activins into Mothers Against Decapentaplegic homolog 1/5 (SMAD1/SMAD5) signaling complexes. Several activating mutations in ALK2 are implicated in fibrodysplasia ossificans progressiva (FOP), diffuse intrinsic pontine gliomas, and ependymomas. The ALK2 R206H mutation is also present in a subset of endometrial tumors, melanomas, non-small lung cancers, and colorectal cancers, and ALK2 expression is elevated in pancreatic cancer. Using DNA-encoded chemistry technology, we screened 3.94 billion unique compounds from our diverse DNA-encoded chemical libraries (DECLs) against the kinase domain of ALK2. Off-DNA synthesis of DECL hits and biochemical validation revealed nanomolar potent ALK2 inhibitors. Further structure-activity relationship studies yielded center for drug discovery (CDD)-2789, a potent [NanoBRET (NB) cell IC50: 0.54 μM] and metabolically stable analog with good pharmacological profile. Crystal structures of ALK2 bound with CDD-2281, CDD-2282, or CDD-2789 show that these inhibitors bind the active site through Van der Waals interactions and solvent-mediated hydrogen bonds. CDD-2789 exhibits high selectivity toward ALK2/ALK1 in KINOMEscan analysis and NB K192 assay. In cell-based studies, ALK2 inhibitors effectively attenuated activin A and BMP-induced Phosphorylated SMAD1/5 activation in fibroblasts from individuals with FOP in a dose-dependent manner. Thus, CDD-2789 is a valuable tool compound for further investigation of the biological functions of ALK2 and ALK1 and the therapeutic potential of specific inhibition of ALK2.
Collapse
Affiliation(s)
- Ravikumar Jimmidi
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Diana Monsivais
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Hai Minh Ta
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Kiran L. Sharma
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Kurt M. Bohren
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Srinivas Chamakuri
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Zian Liao
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Feng Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - John M. Hakenjos
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Jian-Yuan Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Yuji Mishina
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, MI48109
| | - Haichun Pan
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, MI48109
| | - Xuan Qin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | | | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Zhi Tan
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Suni Tang
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Yasmin M. Vasquez
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | | | - Damian W. Young
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Stephen S. Palmer
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
| | - Kevin R. MacKenzie
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Choel Kim
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
3
|
Horvat Mercnik M, Schliefsteiner C, Sanchez-Duffhues G, Wadsack C. TGFβ signalling: a nexus between inflammation, placental health and preeclampsia throughout pregnancy. Hum Reprod Update 2024; 30:442-471. [PMID: 38519450 PMCID: PMC11215164 DOI: 10.1093/humupd/dmae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/16/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The placenta is a unique and pivotal organ in reproduction, controlling crucial growth and cell differentiation processes that ensure a successful pregnancy. Placental development is a tightly regulated and dynamic process, in which the transforming growth factor beta (TGFβ) superfamily plays a central role. This family of pleiotropic growth factors is heavily involved in regulating various aspects of reproductive biology, particularly in trophoblast differentiation during the first trimester of pregnancy. TGFβ signalling precisely regulates trophoblast invasion and the cell transition from cytotrophoblasts to extravillous trophoblasts, which is an epithelial-to-mesenchymal transition-like process. Later in pregnancy, TGFβ signalling ensures proper vascularization and angiogenesis in placental endothelial cells. Beyond its role in trophoblasts and endothelial cells, TGFβ signalling contributes to the polarization and function of placental and decidual macrophages by promoting maternal tolerance of the semi-allogeneic foetus. Disturbances in early placental development have been associated with several pregnancy complications, including preeclampsia (PE) which is one of the severe complications. Emerging evidence suggests that TGFβ is involved in the pathogenesis of PE, thereby offering a potential target for intervention in the human placenta. OBJECTIVE AND RATIONALE This comprehensive review aims to explore and elucidate the roles of the major members of the TGFβ superfamily, including TGFβs, bone morphogenetic proteins (BMPs), activins, inhibins, nodals, and growth differentiation factors (GDFs), in the context of placental development and function. The review focusses on their interactions within the major cell types of the placenta, namely trophoblasts, endothelial cells, and immune cells, in both normal pregnancies and pregnancies complicated by PE throughout pregnancy. SEARCH METHODS A literature search was carried out using PubMed and Google Scholar, searching terms: 'TGF signalling preeclampsia', 'pregnancy TGF signalling', 'preeclampsia tgfβ', 'preeclampsia bmp', 'preeclampsia gdf', 'preeclampsia activin', 'endoglin preeclampsia', 'endoglin pregnancy', 'tgfβ signalling pregnancy', 'bmp signalling pregnancy', 'gdf signalling pregnancy', 'activin signalling pregnancy', 'Hofbauer cell tgfβ signalling', 'placental macrophages tgfβ', 'endothelial cells tgfβ', 'endothelium tgfβ signalling', 'trophoblast invasion tgfβ signalling', 'trophoblast invasion Smad', 'trophoblast invasion bmp', 'trophoblast invasion tgfβ', 'tgfβ preeclampsia', 'tgfβ placental development', 'TGFβ placental function', 'endothelial dysfunction preeclampsia tgfβ signalling', 'vascular remodelling placenta TGFβ', 'inflammation pregnancy tgfβ', 'immune response pregnancy tgfβ', 'immune tolerance pregnancy tgfβ', 'TGFβ pregnancy NK cells', 'bmp pregnancy NK cells', 'bmp pregnancy tregs', 'tgfβ pregnancy tregs', 'TGFβ placenta NK cells', 'TGFβ placenta tregs', 'NK cells preeclampsia', 'Tregs preeclampsia'. Only articles published in English until 2023 were used. OUTCOMES A comprehensive understanding of TGFβ signalling and its role in regulating interconnected cell functions of the main placental cell types provides valuable insights into the processes essential for successful placental development and growth of the foetus during pregnancy. By orchestrating trophoblast invasion, vascularization, immune tolerance, and tissue remodelling, TGFβ ligands contribute to the proper functioning of a healthy maternal-foetal interface. However, dysregulation of TGFβ signalling has been implicated in the pathogenesis of PE, where the shallow trophoblast invasion, defective vascular remodelling, decreased uteroplacental perfusion, and endothelial cell and immune dysfunction observed in PE, are all affected by an altered TGFβ signalling. WIDER IMPLICATIONS The dysregulation of TGFβ signalling in PE has important implications for research and clinical practice. Further investigation is required to understand the underlying mechanisms, including the role of different ligands and their regulation under pathophysiological conditions, in order to discover new therapeutic targets. Distinguishing between clinically manifested subtypes of PE and studying TGFβ signalling in different placental cell types holistically is an important first step. To put this knowledge into practice, pre-clinical animal models combined with new technologies are needed. This may also lead to improved human research models and identify potential therapeutic targets, ultimately improving outcomes for affected pregnancies and reducing the burden of PE.
Collapse
Affiliation(s)
| | | | - Gonzalo Sanchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Tissue-Specific BMP Signalling ISPA-HUCA, Oviedo, Spain
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
4
|
Marañón P, Rey E, Isaza SC, Wu H, Rada P, Choya-Foces C, Martínez-Ruiz A, Martín MÁ, Ramos S, García-Monzón C, Cubero FJ, Valverde ÁM, González-Rodríguez Á. Inhibition of ALK3-mediated signalling pathway protects against acetaminophen-induced liver injury. Redox Biol 2024; 71:103088. [PMID: 38401290 PMCID: PMC10902147 DOI: 10.1016/j.redox.2024.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
Acetaminophen (APAP)-induced liver injury is one of the most prevalent causes of acute liver failure (ALF). We assessed the role of the bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 in APAP-induced hepatotoxicity. The molecular mechanisms that regulate the balance between cell death and survival and the response to oxidative stress induced by APAP was assessed in cultured human hepatocyte-derived (Huh7) cells treated with pharmacological inhibitors of ALK receptors and with modulated expression of ALK2 or ALK3 by lentiviral infection, and in a mouse model of APAP-induced hepatotoxicity. Inhibition of ALK3 signalling with the pharmacological inhibitor DMH2, or by silencing of ALK3, showed a decreased cell death both by necrosis and apoptosis after APAP treatment. Also, upon APAP challenge, ROS generation was ameliorated and, thus, ROS-mediated JNK and P38 MAPK phosphorylation was reduced in ALK3-inhibited cells compared to control cells. These results were also observed in an experimental model of APAP-induced ALF in which post-treatment with DMH2 after APAP administration significantly reduced liver tissue damage, apoptosis and oxidative stress. This study shows the protective effect of ALK3 receptor inhibition against APAP-induced hepatotoxicity. Furthermore, findings obtained from the animal model suggest that BMP signalling might be a new pharmacological target for the treatment of ALF.
Collapse
Affiliation(s)
- Patricia Marañón
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.
| | - Esther Rey
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Stephania C Isaza
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Hanghang Wu
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carmen Choya-Foces
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - María Ángeles Martín
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain
| | - Sonia Ramos
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Madrid, Spain
| | - Carmelo García-Monzón
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Sols-Morreale (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
5
|
Seok MC, Koo HW, Jeong JH, Ko MJ, Lee BJ. Bone Substitute Options for Spine Fusion in Patients With Spine Trauma-Part II: The Role of rhBMP. Korean J Neurotrauma 2024; 20:35-44. [PMID: 38576507 PMCID: PMC10990692 DOI: 10.13004/kjnt.2024.20.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 04/06/2024] Open
Abstract
In Part II, we focus on an important aspect of spine fusion in patients with spine trauma: the pivotal role of recombinant human bone morphogenetic protein-2 (rhBMP-2). Despite the influx of diverse techniques facilitated by technological advancements in spinal surgery, spinal fusion surgery remains widely used globally. The persistent challenge of spinal pseudarthrosis has driven extensive efforts to achieve clinically favorable fusion outcomes, with particular emphasis on the evolution of bone graft substitutes. Part II of this review aims to build upon the foundation laid out in Part I by providing a comprehensive summary of commonly utilized bone graft substitutes for spinal fusion in patients with spinal trauma. Additionally, it will delve into the latest advancements and insights regarding the application of rhBMP-2, offering an updated perspective on its role in enhancing the success of spinal fusion procedures.
Collapse
Affiliation(s)
- Min cheol Seok
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Hae-Won Koo
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Myeong Jin Ko
- Department of Neurosurgery, College of Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Byung-Jou Lee
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
6
|
Ding J, Le H, Zhuang X, Xu W, Wang Y, Chang F. Investigating the Effectiveness of Stem Cells in Cartilage Tissue Engineering. JOURNAL OF BIOCHEMICAL TECHNOLOGY 2024; 15:1-5. [DOI: 10.51847/cl2gvlkqdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
7
|
Santibanez JF, Echeverria C, Millan C, Simon F. Transforming growth factor-beta superfamily regulates mesenchymal stem cell osteogenic differentiation: A microRNA linking. Acta Histochem 2023; 125:152096. [PMID: 37813068 DOI: 10.1016/j.acthis.2023.152096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
The ability to differentiate into cells of different lineages, such as bone cells, is the principal value of adult mesenchymal stem cells (MSCs), which can be used with the final aim of regenerating damaged tissue. Due to its potential use and importance in regenerative medicine and tissue engineering, several questions have been raised regarding the molecular mechanisms of MSC differentiation. As one of the crucial mediators in organism development, the transforming growth factor-beta (TGF-β) superfamily directs MSCs' commitment to selecting differentiation pathways. This review aims to give an overview of the current knowledge on the mechanisms of the TGF-β superfamily in MSCs bone differentiation, with additional insight into the mutual regulation of microRNAs and TGF-β in osteogenesis.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia; Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, General Gana 1780, Santiago 8370854, Chile.
| | - Cesar Echeverria
- Laboratory of Molecular Biology, Nanomedicine, and Genomic, Faculty of Medicine, University of Atacama, Copiapó 1532502, Chile
| | - Carola Millan
- Department of Sciences, Faculty of Liberal Arts, Adolfo Ibáñez University, Viña del Mar, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Çakmak A, Fuerkaiti S, Karagüzel D, Karaaslan Ç, Gümüşderelioğlu M. Enhanced Osteogenic Potential of Noggin Knockout C2C12 Cells on BMP-2 Releasing Silk Scaffolds. ACS Biomater Sci Eng 2023; 9:6175-6185. [PMID: 37796024 PMCID: PMC10646847 DOI: 10.1021/acsbiomaterials.3c00506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
The CRISPR/Cas9 mechanism offers promising therapeutic approaches for bone regeneration by stimulating or suppressing critical signaling pathways. In this study, we aimed to increase the activity of BMP-2 signaling through knockout of Noggin, thereby establishing a synergistic effect on the osteogenic activity of cells in the presence of BMP-2. Since Noggin is an antagonist expressed in skeletal tissues and binds to subunits of bone morphogenetic proteins (BMPs) to inhibit osteogenic differentiation, here Noggin expression was knocked out using the CRISPR/Cas9 system. In accordance with this purpose, C2C12 (mouse myoblast) cells were transfected with CRISPR/Cas9 plasmids. Transfection was achieved with Lipofectamine and confirmed with intense fluorescent signals in microscopic images and deletion in target sequence in Sanger sequencing analysis. Thus, Noggin knockout cells were identified as a new cell source for tissue engineering studies. Then, the transfected cells were seeded on highly porous silk scaffolds bearing BMP-2-loaded silk nanoparticles (30 ng BMP-2/mg silk nanoparticle) in the size of 288 ± 62 nm. BMP-2 is released from the scaffolds in a controlled manner for up to 60 days. The knockout of Noggin by CRISPR/Cas9 was found to synergistically promote osteogenic differentiation in the presence of BMP-2 through increased Coll1A1 and Ocn expression and mineralization. Gene editing of Noggin and BMP-2 increased almost 2-fold Col1A1 expression and almost 3-fold Ocn expression compared to the control group. Moreover, transfected cells produced extracellular matrix (ECM) containing collagen fibers on the scaffolds and mineral-like structures were formed on the fibers. In addition, mineralization characterized by intense Alizarin red staining was detected in transfected cells cultured in the presence of BMP-2, while the other groups did not exhibit any mineralized areas. As has been demonstrated in this study, the CRISPR/Cas9 mechanism has great potential for obtaining new cell sources to be used in tissue engineering studies.
Collapse
Affiliation(s)
- Anıl
Sera Çakmak
- Department
of Chemical Engineering, Hacettepe University, 06800 Ankara, Turkey
| | - Sümeyra Fuerkaiti
- Division
of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
| | - Dilara Karagüzel
- Department
of Biology, Molecular Biology Section, Hacettepe
University, 06800 Ankara, Turkey
| | - Çağatay Karaaslan
- Division
of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
- Department
of Biology, Molecular Biology Section, Hacettepe
University, 06800 Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Department
of Chemical Engineering, Hacettepe University, 06800 Ankara, Turkey
- Division
of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
9
|
Gao Y, Liu Z, Zhu T, Xin X, Jin Y, Wang L, Liu C, Song L. A bone morphogenetic protein regulates the shell formation of Crassostrea gigas under ocean acidification. Gene 2023; 884:147687. [PMID: 37541558 DOI: 10.1016/j.gene.2023.147687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are key factors controlling osteoblast differentiation, which have been proved to be involved in the hard tissue formation of marine mollusks. In the present study, a member of BMPs gene (CgBMP7) was identified from Pacific oyster Crassostrea gigas (C. gigas) with the aim to understand its possible role in the regulation of shell formation under ocean acidification (OA) conditions. The open reading frame (ORF) of CgBMP7 was of 1254 bp encoding a polypeptide of 417 amino acids. The deduced amino acid sequence of CgBMP7 was comprised of one signal peptide, one prodomain and one TGF-β domain, which shared 21.69%-61.10% identities with those from other species. The mRNA transcript of CgBMP7 was ubiquitously expressed in all the tested tissues of adult oysters with a higher expression level in mantle, notably highest in the middle fold (MF) of the three folds of mantle. The expression level of bone morphogenetic protein type I receptor (CgBMPR1B) mRNA was also highest in the MF and up-regulated dramatically post recombinant BMP7 protein (rCgBMP7) stimulation. After the blockage of BMPR1B with inhibitor LDN193189 (LDN), the mRNA expression level and phosphorylation level of CgSmad1/5/8 in mantle were decreased, and the mRNA expression levels of CgCaM and Cgengrailed-1 were down-regulated significantly. During the oysters were exposed to acidified seawater for weeks, the expression levels of CgBMP7, CgBMPR1B and CgSmad1/5/8 in the MF decreased significantly (p < 0.01) at the 4th week, and CgCaM and Cgengrailed-1 also exhibited the same variable expression patterns as CgBMP7. In addition, the growth of shell in the treatment group (pH 7.8) was slower than that in the control group (pH 8.1). These results collectively indicated that BMP7 was able to trigger the BMPR-Smad signaling pathway and involved in controlling the formation of oyster calcified shell under OA conditions.
Collapse
Affiliation(s)
- Yuqian Gao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Ting Zhu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaoyu Xin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China.
| |
Collapse
|
10
|
Huang J, Zhou M, You W, Luo X, Ke C. Molecular Characterization and Function of Bone Morphogenetic Protein 7 ( BMP7) in the Pacific Abalone, Haliotis discus hannai. Genes (Basel) 2023; 14:1128. [PMID: 37372307 DOI: 10.3390/genes14061128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) play important roles in a lot of biological processes, such as bone development, cell proliferation, cell differentiation, growth, etc. However, the functions of abalone BMP genes are still unknown. This study aimed to better understand the characterization and biological function of BMP7 of Haliotis discus hannai (hdh-BMP7) via cloning and sequencing analysis. The coding sequence (CDS) length of hdh-BMP7 is 1251 bp, which encodes 416 amino acids including a signal peptide (1-28 aa), a transforming growth factor-β (TGF-β) propeptide (38-272 aa), and a mature TGF-β peptide (314-416 aa). The analysis of expression showed that hdh-BMP7 mRNA was widely expressed in all the examined tissues of H. discus hannai. Four SNPs were related to growth traits. The results of RNA interference (RNAi) showed that the mRNA expression levels of hdh-BMPR I, hdh-BMPR II, hdh-smad1, and hdh-MHC declined after hdh-BMP7 was silenced. After RNAi experiment for 30 days, the shell length, shell width, and total weight were found to be reduced in H. discus hannai (p < 0.05). The results of real-time quantitative reverse transcription PCR revealed that the hdh-BMP7 mRNA was lower in abalone of the S-DD-group than in the L-DD-group. Based on these data, we hypothesized that BMP7 gene has a positive role in the growth of H. discus hannai.
Collapse
Affiliation(s)
- Jianfang Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Mingcan Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Oguić M, Čandrlić M, Tomas M, Vidaković B, Blašković M, Jerbić Radetić AT, Zoričić Cvek S, Kuiš D, Cvijanović Peloza O. Osteogenic Potential of Autologous Dentin Graft Compared with Bovine Xenograft Mixed with Autologous Bone in the Esthetic Zone: Radiographic, Histologic and Immunohistochemical Evaluation. Int J Mol Sci 2023; 24:6440. [PMID: 37047413 PMCID: PMC10094989 DOI: 10.3390/ijms24076440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
This prospective, randomized, controlled clinical trial reports clinical, radiographic, histologic and immunohistochemical results of autologous dentin graft (ADG) and its comparison with a mixture of bovine xenograft with autologous bone (BX+AB). After tooth extraction in the esthetic zone of maxilla, the alveolar ridge of 20 patients in the test group was augmented with ADG, while 17 patients in the control group received the combination of BX+AB. Cone beam computed tomography (CBCT) was performed before tooth extraction and after 4 months when a total of 22 bone biopsies were harvested and subjected to histological and immunohistochemical analysis. Radiological analysis showed comparable results of bone dimension loss in both groups. Quantitative histologic analysis showed comparable results with no statistically significant differences between the groups. Immunohistochemical staining with TNF-α and BMP-4 antibodies revealed immunopositivity in both groups. A statistically significant difference between the groups was found in the intensity of TNF-α in the area of newly formed bone (p = 0.0003) and around remaining biomaterial particles (p = 0.0027), and in the intensity of BMP-4 in the area around biomaterial particles (p = 0.0001). Overall, ADG showed biocompatibility and achieved successful bone regeneration in the esthetic zone of the maxilla similar to BX+AB.
Collapse
Affiliation(s)
- Matko Oguić
- Doctoral School of Biomedicine and Health, Faculty of Medicine, University of Rijeka, 51 000 Rijeka, Croatia
- Dental Clinic Rident, 51 000 Rijeka, Croatia
| | - Marija Čandrlić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Matej Tomas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Bruno Vidaković
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Marko Blašković
- Private Practice, 51 000 Rijeka, Croatia
- Department of Oral Surgery, Faculty of Dental Medicine Rijeka, University of Rijeka, 51 000 Rijeka, Croatia
| | | | - Sanja Zoričić Cvek
- Department of Anatomy, Faculty of Medicine, University of Rijeka, 51 000 Rijeka, Croatia
| | - Davor Kuiš
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Department of Periodontology, Faculty of Dental Medicine Rijeka, University of Rijeka, 51 000 Rijeka, Croatia
- Clinical Hospital Center Rijeka, 51 000 Rijeka, Croatia
| | - Olga Cvijanović Peloza
- Department of Anatomy, Faculty of Medicine, University of Rijeka, 51 000 Rijeka, Croatia
| |
Collapse
|
12
|
Imrecoxib and celecoxib affect sacroiliac joint inflammation in axSpA by regulating bone metabolism and angiogenesis. Clin Rheumatol 2023; 42:1585-1592. [PMID: 36800138 DOI: 10.1007/s10067-023-06541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/07/2023] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE To analyze the changes in the levels of bone metabolism markers related to sacroiliac joint (SIJ) inflammation in patients with axial spondyloarthritis (axSpA) after treatment with imrecoxib and celecoxib and evaluate their relationship with clinical efficacy. METHODS A total of 120 patients with axSpA with at least 2 magnetic resonance imaging (MRI) SIJ scans during a 12-week follow-up were enrolled. The levels of bone metabolism markers, including dickkopf-1(DKK-1), sclerostin, vascular endothelial growth factor (VEGF), bone morphogenetic protein-2 (BMP-2), osteoprotegerin (OPG), noggin, β-catenin, and RUNX2, were measured twice, and their association with disease activity and the Spondyloarthritis Research Consortium of Canada (SPARCC) score for SIJ were analyzed by univariate analysis of covariance. RESULTS A total of 116 patients completed the follow-up. The levels of sclerostin, OPG, noggin, DKK-1, and RUNX2 were increased, whereas those of VEGF and β-catenin were decreased. The levels of sclerostin and OPG were negatively correlated with disease duration. The levels of VEGF and β-catenin were significantly decreased (F = 7.866, P = 0.003; F = 4.106, P = 0.047) in patients with disease remission. A decrease in ESR was significantly correlated with decreased levels of Runx2 and SPARCC scores, with the levels of sclerostin being significantly elevated in the SPARCC-reduced group. There were no statistically significant differences between the imrecoxib and celecoxib groups (P> 0.05). CONCLUSION Imrecoxib and celecoxib affect SIJ inflammation, disease activity, and the course of disease by regulating bone metabolism and angiogenesis in axSpA. Key Points •After treatment with imrecoxib and celecoxib, the levels of sclerostin, OPG, noggin, DKK-1, and RUNX2 were increased, whereas those of VEGF and β-catenin were decreased, correlating with the course of disease, disease activity, and SIJ inflammation. • A decrease in ESR was significantly correlated with a decrease in the levels of RUNX2 and SIJ inflammation.. • The levels of sclerostin were more significantly elevated in SIJ inflammation remission group.. •Imrecoxib and celecoxib affect SIJ inflammation by regulating bone metabolism and angiogenesis in axSpA..
Collapse
|
13
|
Modukuri RK, Monsivais D, Li F, Palaniappan M, Bohren KM, Tan Z, Ku AF, Wang Y, Madasu C, Li JY, Tang S, Miklossy G, Palmer SS, Young DW, Matzuk MM. Discovery of Highly Potent and BMPR2-Selective Kinase Inhibitors Using DNA-Encoded Chemical Library Screening. J Med Chem 2023; 66:2143-2160. [PMID: 36719862 PMCID: PMC9924264 DOI: 10.1021/acs.jmedchem.2c01886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 02/01/2023]
Abstract
The discovery of monokinase-selective inhibitors for patients is challenging because the 500+ kinases encoded by the human genome share highly conserved catalytic domains. Until now, no selective inhibitors unique for a single transforming growth factor β (TGFβ) family transmembrane receptor kinase, including bone morphogenetic protein receptor type 2 (BMPR2), have been reported. This dearth of receptor-specific kinase inhibitors hinders therapeutic options for skeletal defects and cancer as a result of an overactivated BMP signaling pathway. By screening 4.17 billion "unbiased" and "kinase-biased" DNA-encoded chemical library molecules, we identified hits CDD-1115 and CDD-1431, respectively, that were low-nanomolar selective kinase inhibitors of BMPR2. Structure-activity relationship studies addressed metabolic lability and high-molecular-weight issues, resulting in potent and BMPR2-selective inhibitor analogs CDD-1281 (IC50 = 1.2 nM) and CDD-1653 (IC50 = 2.8 nM), respectively. Our work demonstrates that DNA-encoded chemistry technology (DEC-Tec) is reliable for identifying novel first-in-class, highly potent, and selective kinase inhibitors.
Collapse
Affiliation(s)
- Ram K. Modukuri
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
| | - Diana Monsivais
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
| | - Feng Li
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
- Department
of Pharmacology and Chemical Biology, Baylor
College of Medicine, Houston, Texas77030, United States
| | - Murugesan Palaniappan
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
| | - Kurt M. Bohren
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
| | - Zhi Tan
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
- Department
of Pharmacology and Chemical Biology, Baylor
College of Medicine, Houston, Texas77030, United States
| | - Angela F. Ku
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
| | - Yong Wang
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
| | - Chandrashekhar Madasu
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
| | - Jian-Yuan Li
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
| | - Suni Tang
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
| | - Gabriella Miklossy
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
| | - Stephen S. Palmer
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
| | - Damian W. Young
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
- Department
of Pharmacology and Chemical Biology, Baylor
College of Medicine, Houston, Texas77030, United States
| | - Martin M. Matzuk
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas77030, United States
- Department
of Pharmacology and Chemical Biology, Baylor
College of Medicine, Houston, Texas77030, United States
| |
Collapse
|
14
|
Patnam M, Dommaraju SR, Masood F, Herbst P, Chang JH, Hu WY, Rosenblatt MI, Azar DT. Lymphangiogenesis Guidance Mechanisms and Therapeutic Implications in Pathological States of the Cornea. Cells 2023; 12:319. [PMID: 36672254 PMCID: PMC9856498 DOI: 10.3390/cells12020319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Corneal lymphangiogenesis is one component of the neovascularization observed in several inflammatory pathologies of the cornea including dry eye disease and corneal graft rejection. Following injury, corneal (lymph)angiogenic privilege is impaired, allowing ingrowth of blood and lymphatic vessels into the previously avascular cornea. While the mechanisms underlying pathological corneal hemangiogenesis have been well described, knowledge of the lymphangiogenesis guidance mechanisms in the cornea is relatively scarce. Various signaling pathways are involved in lymphangiogenesis guidance in general, each influencing one or multiple stages of lymphatic vessel development. Most endogenous factors that guide corneal lymphatic vessel growth or regression act via the vascular endothelial growth factor C signaling pathway, a central regulator of lymphangiogenesis. Several exogenous factors have recently been repurposed and shown to regulate corneal lymphangiogenesis, uncovering unique signaling pathways not previously known to influence lymphatic vessel guidance. A strong understanding of the relevant lymphangiogenesis guidance mechanisms can facilitate the development of targeted anti-lymphangiogenic therapeutics for corneal pathologies. In this review, we examine the current knowledge of lymphatic guidance cues, their regulation of inflammatory states in the cornea, and recently discovered anti-lymphangiogenic therapeutic modalities.
Collapse
Affiliation(s)
- Mehul Patnam
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil R. Dommaraju
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Faisal Masood
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Derakhshani A, Mousavi SM, Rezaei M, Afgar A, Keyhani AR, Mohammadi MA, Dabiri S, Fasihi Harandi M. Natural history of Echinococcus granulosus microcyst development in long term in vitro culture and molecular and morphological changes induced by insulin and BMP-4. Front Vet Sci 2023; 9:1068602. [PMID: 36699324 PMCID: PMC9868913 DOI: 10.3389/fvets.2022.1068602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Cystic echinococcosis (CE) caused by the cestode Echinococcus granulosus is a disease of worldwide public health and economic importance. The determinants and underlying cellular mechanisms of CE development and fate in intermediate hosts are largely unknown. Hormones and cytokines such as insulin and BMP-4 are the key players in the development, differentiation, and apoptosis. In this study, we evaluated the long term natural history of E. granulosus microcysts in an vitro setting and the molecular and morphological changes induced by the growth factors, insulin and BMP4 during the development of metacestode stage of E. granulosus. Methods E. granulosus protoscoleces were cultivated and the parasite development was followed in the long term mono-phasic culture for 105 days and the morphometric, molecular and immunohistochemical changes were evaluated, including the microcysts number and size, microcysts development and deformation rates as well as the markers of calcification (Alizarin Red staining) and apoptosis (BAX, BCL2, Caspase-3, Caspase-8 and TNF-α expression) in the microcysts. Also the biological, histological and molecular consequences of insulin and BMP-4 treatment on the parasite development were evaluated. Results Insulin and BMP-4 treatment of microcysts resulted in significant increase in microcyst formation, increased size, reduced apoptosis and deformation of the microcysts. Alizarin red staining of the microcysts treated with the insulin and BMP-4 confirmed that calcium deposition is significantly lower than the untreated microcysts. Also Alizarin Red staining and Immunohistochemistry of the microcysts indicates that calcium accumulation in deformed microcysts is higher than the normal ones on day 105. The microcysts began to wrinkle and the germinal layer was partially detached from the laminated layer on day 84. Conclusion Results of the present study suggest that the degenerative changes in hydatid cysts can be slowed down by insulin and BMP-4, indicating that cellular factors and host hormones could contribute to the longevity of hydatid cysts. Significant evidences are provided suggesting that the microcysts cultivated in vitro can undergo calcification and apoptotic processes similar to what have been observed in the natural hydatid infection in the intermediate hosts.
Collapse
Affiliation(s)
- Ali Derakhshani
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mohammad Mousavi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Rezaei
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Reza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Mohammadi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Department of Pathology, Afzalipour Medical School, Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Majid Fasihi Harandi ✉
| |
Collapse
|
16
|
Korableva NN, Berestnev EV, Kiselyov SM, Chipsanova NF. Fibrodysplasia Ossificans Progressiva: Literature Review and Case Report. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i6s.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background. Fibrodysplasia ossificans progressiva (FOP) is a genetic disease of the heterotopic ossification group associated with the mutation in ACVR1/ALK2 gene. FOP is characterized by progressive heterotopic endochondral ossification of connective tissue that occurs in postnatal period. It leads to formation of qualitatively normal bone in extraskeletal areas. Congenital hallux deformity is typical for this disease. The clinical picture is characterized by aggravations that are usually caused by trauma or viral infections. Formation of Heterotopic ossificate formation can be observed during aggravations. There is no etiological treatment for FOP. Systemic glucocorticosteroids, non-steroidal anti-inflammatory drug (NSAIDs), mast cell stabilisers, antileukotriene drugs and bisphosphonates can be used in these patients. Clinical case description. The child was born with congenital hallux deformity typical for FOP. The disease onset was noted at the age of 2 years 8 months with a tumor-like painful mass on the neck. Oncological (lymphoproliferative) disease was suspected but biopsy from the lesion did not confirm its malignant nature. The child was consulted by pediatric rheumatologist who has diagnosed FOP. Etanercept and zoledronic acid were administrated, though etanercept was later discontinued. For now, the child receives zoledronic acid infusions 2 times per year and daily NSAIDs. Conclusion. The difficulties in FOP diagnosing are associated to its sporadic nature and clinical picture similarity to other diseases. Suspected malignancy leads to biopsy that is highly undesirable in FOP patients due to high risk of iatrogenic complications.
Collapse
|
17
|
Discovery of Some Heterocyclic Molecules as Bone Morphogenetic Protein 2 (BMP-2)-Inducible Kinase Inhibitors: Virtual Screening, ADME Properties, and Molecular Docking Simulations. Molecules 2022; 27:molecules27175571. [PMID: 36080338 PMCID: PMC9457949 DOI: 10.3390/molecules27175571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are growth factors that have a vital role in the production of bone, cartilage, ligaments, and tendons. Tumors’ upregulation of bone morphogenetic proteins (BMPs) and their receptors are key features of cancer progression. Regulation of the BMP kinase system is a new promising strategy for the development of anti-cancer drugs. In this work, based on a careful literature study, a library of benzothiophene and benzofuran derivatives was subjected to different computational techniques to study the effect of chemical structure changes on the ability of these two scaffolds to target BMP-2 inducible kinase, and to reach promising candidates with proposed activity against BMP-2 inducible kinase. The results of screening against Lipinski’s and Veber’s Rules produced twenty-one outside eighty-four compounds having drug-like molecular nature. Computational ADMET studies favored ten compounds (11, 26, 27, 29, 30, 31, 34, 35, 65, and 72) with good pharmacokinetic profile. Computational toxicity studies excluded compound 34 to elect nine compounds for molecular docking studies which displayed eight compounds (26, 27, 29, 30, 31, 35, 65, and 72) as promising BMP-2 inducible kinase inhibitors. The nine fascinating compounds will be subjected to extensive screening against serine/threonine kinases to explore their potential against these critical proteins. These promising candidates based on benzothiophene and benzofuran scaffolds deserve further clinical investigation as BMP-2 kinase inhibitors for the treatment of cancer.
Collapse
|
18
|
Wang J, Chen S, Pan C, Li G, Tang Z. Application of Small Molecules in the Central Nervous System Direct Neuronal Reprogramming. Front Bioeng Biotechnol 2022; 10:799152. [PMID: 35875485 PMCID: PMC9301571 DOI: 10.3389/fbioe.2022.799152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
The lack of regenerative capacity of neurons leads to poor prognoses for some neurological disorders. The use of small molecules to directly reprogram somatic cells into neurons provides a new therapeutic strategy for neurological diseases. In this review, the mechanisms of action of different small molecules, the approaches to screening small molecule cocktails, and the methods employed to detect their reprogramming efficiency are discussed, and the studies, focusing on neuronal reprogramming using small molecules in neurological disease models, are collected. Future research efforts are needed to investigate the in vivo mechanisms of small molecule-mediated neuronal reprogramming under pathophysiological states, optimize screening cocktails and dosing regimens, and identify safe and effective delivery routes to promote neural regeneration in different neurological diseases.
Collapse
Affiliation(s)
| | | | | | - Gaigai Li
- *Correspondence: Gaigai Li, ; Zhouping Tang,
| | | |
Collapse
|
19
|
Hayashi T, Asakura M, Kawase M, Matsubara M, Uematsu Y, Mieki A, Kawai T. Bone Tissue Engineering in Rat Calvarial Defects Using Induced Bone-like Tissue by rhBMPs from Immature Muscular Tissues In Vitro. Int J Mol Sci 2022; 23:ijms23136927. [PMID: 35805943 PMCID: PMC9266849 DOI: 10.3390/ijms23136927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
This study aimed to induce bone-like tissue from immature muscular tissue (IMT) in vitro using commercially available recombinant human bone morphogenetic protein (rhBMP)-2, rhBMP-4, and rhBMP-7, and then implanting this tissue into a calvarial defect in rats to assess healing. IMTs were extracted from 20-day-old Sprague-Dawley (SD) fetal rats, placed on expanded polytetrafluoroethylene (ePTFE) with 10 ng/μL each of rhBMP-2, BMP-4, and BMP-7, and cultured for two weeks. The specimens were implanted into calvarial defects in 3-week-old SD rats for up to three weeks. Relatively strong radiopacity was observed on micro-CT two weeks after culture, and bone-like tissue, comprising osteoblastic cells and osteoids, was partially observed by H&E staining. Calcium, phosphorus, and oxygen were detected in the extracellular matrix using an electron probe micro analyzer, and X-ray diffraction patterns and Fourier transform infrared spectroscopy spectra of the specimen were found to have typical apatite crystal peaks and spectra, respectively. Furthermore, partial strong radiopacity and ossification were confirmed one week after implantation, and a dominant novel bone was observed after two weeks in the defect site. Thus, rhBMP-2, BMP-4, and BMP-7 differentiated IMT into bone-like tissue in vitro, and this induced bone-like tissue has ossification potential and promotes the healing of calvarial defects. Our results suggest that IMT is an effective tissue source for bone tissue engineering.
Collapse
|
20
|
Structural Mapping of BMP Conformational Epitopes and Bioengineering Design of Osteogenic Peptides to Specifically Target the Epitope-Binding Sites. Cell Mol Bioeng 2022; 15:341-352. [PMID: 36119132 PMCID: PMC9474794 DOI: 10.1007/s12195-022-00725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/11/2022] [Indexed: 11/03/2022] Open
Abstract
Introduction Human bone morphogenetic proteins (BMPs) constitute a large family of cytokines related to members of the transforming growth factor-β superfamily, which fulfill biological functions by specificity binding to their cognate type I (BRI) and type II (BRII) receptors through conformational wrist and linear knuckle epitopes, respectively. Methods and Results We systematically examined the intermolecular recognition and interaction between the BMP proteins and BRI receptor at structural, energetic and dynamic levels. The BRI-binding site consists of three hotspot regions on BMP surface, which totally contribute ~70% potency to the BMP-BRI binding events and represent the core sections of BMP conformational wrist epitope; the contribution increases in the order: hotspot 2 (~ 8%) < hotspot 3 (~ 20%) < hotspot 1 (~ 40%). Multiple sequence alignment and structural superposition revealed a consensus sequence pattern and a similar binding mode of the three hotspots shared by most BMP members, indicating a high conservation of wrist epitope in BMP family. The three hotspots are natively folded into wellstructured U-shaped,, loop and double-stranded conformations in BMP proteins, which, however, would become largely disordered when splitting from the protein context to derive osteogenic peptides in free state, thus largely impairing their rebinding capability to BRI receptor. In this respect, cyclization strategy was employed to constrain hotspot 1/3-derived peptides into a native-like conformation, which was conducted by adding a disulfide bond across the ending arms of linear peptides based on their native conformations. Fluorescence-based assays substantiated that the cyclization can effectively improve the binding affinities of osteogenic peptides to BRI receptor by 3-6-fold. The cyclic peptides also exhibit a good selectivity for BRI over BRII (> 5-fold), confirming that they can specifically target the wrist epitope-binding site of BRI receptor. Conclusion The rationally designed cyclic peptides can be regarded as the promising lead entities that should be further chemically modified to enhance their in vivo biological stability for further bioengineering therapeutic osteogenic peptides against chondrocyte senescence and bone disorder.
Collapse
|
21
|
Exosomal miR-143-3p derived from follicular fluid promotes granulosa cell apoptosis by targeting BMPR1A in polycystic ovary syndrome. Sci Rep 2022; 12:4359. [PMID: 35288625 PMCID: PMC8921316 DOI: 10.1038/s41598-022-08423-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder that occurs in women of reproductive age. Anovulation caused by abnormal follicular development is still the main characteristic of PCOS patients with infertile. Granulosa cell (GC) is an important part of the follicular microenvironment, the dysfunction of which can affect follicular development. Increasing evidence indicates that exosomal miRNAs derived from the follicular fluid (FF) of patients play critical roles during PCOS. However, which follicular fluid-derived exosomal miRNAs play a pivotal role in controlling granulosa cell function and consequently follicular development remain largely unknown, as does the underlying mechanism. Herein, we showed that miR-143-3p is highly expressed in the follicular fluid exosomes of patients with PCOS and can be delivered into granulosa cells. Furthermore, functional experiments showed that translocated miR-143-3p promoted granulosa cell apoptosis, which is important in follicle development. Mechanistically, BMPR1A was identified as a direct target of miR-143-3p. Overexpression of BMPR1A reversed the effects of exosomal miR-143-3p on GC apoptosis and proliferation by activating the Smad1/5/8 signaling pathway. These results demonstrate that miR-143-3p-containing exosomes derived from PCOS follicular fluid promoted granulosa cell apoptosis by targeting BMPR1A and blocking the Smad1/5/8 signaling pathway. Our findings provide a novel mechanism underlying the roles of exosomal-miRNAs in the follicular fluid of PCOS patients and facilitate the development of therapeutic strategies for PCOS.
Collapse
|
22
|
Dayawansa NH, Baratchi S, Peter K. Uncoupling the Vicious Cycle of Mechanical Stress and Inflammation in Calcific Aortic Valve Disease. Front Cardiovasc Med 2022; 9:783543. [PMID: 35355968 PMCID: PMC8959593 DOI: 10.3389/fcvm.2022.783543] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a common acquired valvulopathy, which carries a high burden of mortality. Chronic inflammation has been postulated as the predominant pathophysiological process underlying CAVD. So far, no effective medical therapies exist to halt the progression of CAVD. This review aims to outline the known pathways of inflammation and calcification in CAVD, focussing on the critical roles of mechanical stress and mechanosensing in the perpetuation of valvular inflammation. Following initiation of valvular inflammation, dysregulation of proinflammatory and osteoregulatory signalling pathways stimulates endothelial-mesenchymal transition of valvular endothelial cells (VECs) and differentiation of valvular interstitial cells (VICs) into active myofibroblastic and osteoblastic phenotypes, which in turn mediate valvular extracellular matrix remodelling and calcification. Mechanosensitive signalling pathways convert mechanical forces experienced by valve leaflets and circulating cells into biochemical signals and may provide the positive feedback loop that promotes acceleration of disease progression in the advanced stages of CAVD. Mechanosensing is implicated in multiple aspects of CAVD pathophysiology. The mechanosensitive RhoA/ROCK and YAP/TAZ systems are implicated in aortic valve leaflet mineralisation in response to increased substrate stiffness. Exposure of aortic valve leaflets, endothelial cells and platelets to high shear stress results in increased expression of mediators of VIC differentiation. Upregulation of the Piezo1 mechanoreceptor has been demonstrated to promote inflammation in CAVD, which normalises following transcatheter valve replacement. Genetic variants and inhibition of Notch signalling accentuate VIC responses to altered mechanical stresses. The study of mechanosensing pathways has revealed promising insights into the mechanisms that perpetuate inflammation and calcification in CAVD. Mechanotransduction of altered mechanical stresses may provide the sought-after coupling link that drives a vicious cycle of chronic inflammation in CAVD. Mechanosensing pathways may yield promising targets for therapeutic interventions and prognostic biomarkers with the potential to improve the management of CAVD.
Collapse
Affiliation(s)
- Nalin H. Dayawansa
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Zhang JM, Wang KN, Zhang Y, Zhang JZ, Yuan XP, Zou GJ, Cao Z, Zhang CJ. BRCC36 promotes intestinal mucosal barrier injury caused by BMP2 after ischemia reperfusion via inhibiting PPARγ signaling. Biosci Biotechnol Biochem 2022; 86:331-339. [PMID: 34888627 DOI: 10.1093/bbb/zbab210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022]
Abstract
As one of the most common pathological changes in trauma and surgery practice, intestinal ischemia-reperfusion (I/R) injury is regarded as a major precipitating factor in the occurrence and development of fatal diseases. BRCA1-BRCA2-containing complex subunit 36 (BRCC36), a deubiquitinase, has been proved important in a variety of pathophysiological processes such as DNA repair, cell cycle regulation, tumorigenesis, and inflammatory response. However, the effect of BRCC36 on intestinal mucosal barrier injury after I/R has not been fully elucidated. Our research found that BRCC36 aggravated intestinal mucosal barrier injury caused by bone morphogenetic protein 2 after I/R by downregulating peroxisome proliferator-activated receptor-γ (PPARγ) signaling. These results suggested that BRCC36/PPARγ axis might serve as a potential therapeutic target for preventing intestinal mucosal barrier injury after I/R.
Collapse
Affiliation(s)
- Jin-Ming Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Kun-Nan Wang
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- The Fifth Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Yun Zhang
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jun-Ze Zhang
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xin-Pu Yuan
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Gui-Jun Zou
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhen Cao
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chao-Jun Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- The Fifth Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
24
|
Wang X, Li P, He S, Xing S, Cao Z, Cao X, Liu B, Li ZH. Effects of tralopyril on histological, biochemical and molecular impacts in Pacific oyster, Crassostrea gigas. CHEMOSPHERE 2022; 289:133157. [PMID: 34871613 DOI: 10.1016/j.chemosphere.2021.133157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Recently, the toxic effects of tralopyril, as a new antifouling biocide, on aquatic organisms have aroused widespread attention about the potential toxicity. However, the mechanism of tralopyril on marine mollusks has not been elaborated clearly. In this study, the histological, biochemical and molecular impacts of tralopyril on adult Crassostrea gigas were investigated. The results indicated that the 96 h LC50 of tralopyril to adult Crassostrea gigas was 911 μg/L. After exposure to tralopyril (0, 40, 80 and 160 μg/L) for 6 days, the mantle mucus secretion coverage ratio of Crassostrea gigas was increased with a dose-dependent pattern. Catalase (CAT) activity was significantly increased, amylase (AMS) activity, acid phosphatase (ACP) activity and calcium ion (Ca2+) concentration significantly decreased. Meanwhile, integrated biomarker responses (IBR) index suggested that higher concentrations of tralopyril caused severer damage to Crassostrea gigas. In addition, the mRNA expression levels of biomineralization related genes in the mantle were significantly upregulated. Collectively, this study firstly revealed the histological, biochemical and molecular impacts of tralopyril exposure on adult Crassostrea gigas, which provided new insights for understanding the toxicity of tralopyril in marine mollusks.
Collapse
Affiliation(s)
- Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
25
|
Uda Y, Saini V, Petty CA, Alshehri M, Shi C, Spatz JM, Santos R, Newell CM, Huang TY, Kochen A, Kim JW, Constantinou CK, Saito H, Held KD, Hesse E, Pajevic PD. Parathyroid hormone signaling in mature osteoblasts/osteocytes protects mice from age-related bone loss. Aging (Albany NY) 2021; 13:25607-25642. [PMID: 34968192 PMCID: PMC8751595 DOI: 10.18632/aging.203808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023]
Abstract
Aging is accompanied by osteopenia, characterized by reduced bone formation and increased bone resorption. Osteocytes, the terminally differentiated osteoblasts, are regulators of bone homeostasis, and parathyroid hormone (PTH) receptor (PPR) signaling in mature osteoblasts/osteocytes is essential for PTH-driven anabolic and catabolic skeletal responses. However, the role of PPR signaling in those cells during aging has not been investigated. The aim of this study was to analyze the role of PTH signaling in mature osteoblasts/osteocytes during aging. Mice lacking PPR in osteocyte (Dmp1-PPRKO) display an age-dependent osteopenia characterized by a significant decrease in osteoblast activity and increase in osteoclast number and activity. At the molecular level, the absence of PPR signaling in mature osteoblasts/osteocytes is associated with an increase in serum sclerostin and a significant increase in osteocytes expressing 4-hydroxy-2-nonenals, a marker of oxidative stress. In Dmp1-PPRKO mice there was an age-dependent increase in p16Ink4a/Cdkn2a expression, whereas it was unchanged in controls. In vitro studies demonstrated that PTH protects osteocytes from oxidative stress-induced cell death. In summary, we reported that PPR signaling in osteocytes is important for protecting the skeleton from age-induced bone loss by restraining osteoclast's activity and protecting osteocytes from oxidative stresses.
Collapse
Affiliation(s)
- Yuhei Uda
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Vaibhav Saini
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher A. Petty
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Majed Alshehri
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Chao Shi
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, P.R. China
| | - Jordan M. Spatz
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Roberto Santos
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Carly M. Newell
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Tim Y. Huang
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Alejandro Kochen
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Ji W. Kim
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Christodoulos K. Constantinou
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Hiroaki Saito
- Heisenberg-Group for Molecular Skeletal Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Kathryn D. Held
- Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Eric Hesse
- Heisenberg-Group for Molecular Skeletal Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
26
|
Bi Y, Feng W, Kang Y, Wang K, Yang Y, Qu L, Chen H, Lan X, Pan C. Detection of mRNA Expression and Copy Number Variations Within the Goat Fec B Gene Associated With Litter Size. Front Vet Sci 2021; 8:758705. [PMID: 34733908 PMCID: PMC8558618 DOI: 10.3389/fvets.2021.758705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The Booroola fecundity (Fec B ) gene, as the first major fecundity gene identified in Booroola sheep, has attracted careful attention. So far, previous research have uncovered the FecB mutation (Q249R) as the main mutation by virtue of which sheep exhibits multiple lambing phenomena. This mutation is now being intensively studied and widely used. However, such effect of the FecB mutation has not been applied to goats, and similar types of the Fec B gene in goats still need to be studied. Thus, the current study attempted to verify potential mutations in the goat Fec B gene as well as investigate their functions related to fecundity. First, Fec B expression was investigated in six different goat tissues, and we found that Fec B expression was highest in the mammary gland, followed by the ovary. Next, the influence of the Fec B gene was analyzed from a new perspective, where five potential copy number variations (CNVs) (CNV1-5) within the Fec B gene were identified for the first time, and then their effects on litter size were measured. Our results point out that CNV3 (P = 3.44E-4) and CNV5 (P = 0.034) could significantly influence the litter size of goats. Identically, the combination genotype of CNV3 and CNV5 which consisted of their dominant genotypes was also significantly associated with goat litter size (P = 7.80E-5). Hence, CNV3 and CNV5 could serve as potential DNA molecular markers applied to DNA editing and DNA microarray. Additionally, the abovementioned study has laid a theoretical foundation for the detection of potential fertility-related quantitative trait loci within the goat Fec B gene.
Collapse
Affiliation(s)
- Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Weijie Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yuxin Kang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ke Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yuta Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China.,Life Science Research Center, Yulin University, Yulin, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Provincial, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
27
|
Shu DY, Lovicu FJ. Insights into Bone Morphogenetic Protein-(BMP-) Signaling in Ocular Lens Biology and Pathology. Cells 2021; 10:cells10102604. [PMID: 34685584 PMCID: PMC8533954 DOI: 10.3390/cells10102604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to the transforming growth factor-beta (TGFβ) superfamily. Although originally discovered to possess osteogenic properties, BMPs have since been identified as critical regulators of many biological processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental developmental processes such as induction of lens morphogenesis, and specialized differentiation of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as abrogate pathological processes such as TGFβ-induced epithelial-mesenchymal transition (EMT) and apoptosis. In this review, we summarize recent insights in this topic and discuss the complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. By understanding the molecular mechanisms underlying BMP activity, we can advance their potential therapeutic role in cataract prevention and lens regeneration.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Correspondence: ; Tel.: +61-2-9351-5170
| |
Collapse
|
28
|
Huang Y, Liao L, Su H, Chen X, Jiang T, Liu J, Hou Q. Psoralen accelerates osteogenic differentiation of human bone marrow mesenchymal stem cells by activating the TGF-β/Smad3 pathway. Exp Ther Med 2021; 22:940. [PMID: 34306204 PMCID: PMC8281312 DOI: 10.3892/etm.2021.10372] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Psoralen, one of the active ingredients in Psoralea corylifolia, has been previously reported to regulate the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). A previous study revealed that psoralen can regulate the expression levels of microRNA-488 and runt-related transcription factor 2 (Runx2) to promote the osteogenic differentiation of BMSCs. However, the underlying signalling pathway in this process remains to be fully elucidated. BMSCs have also been confirmed to play a key role in the occurrence and development of osteoporosis, and are expected to be potential seed cells in the treatment of osteoporosis. In order to explore the potential signalling pathways of psoralen acting on BMSCs, in the present study, human BMSCs (hBMSCs) were treated with different concentrations of psoralen (0.1, 1, 10 and 100 µmol/l) and the TGF-β receptor I (RI) inhibitor SB431542 (5 µmol/l) in vitro for 3, 7 or 14 days. Cell Counting Kit-8 and MTT assays were used to measure cell proliferation and cell viability of hBMSCs following psoralen administration. Alkaline phosphatase (ALP) activity and alizarin red S staining were used to assess the osteogenic differentiation ability of hBMSCs. Reverse transcription-quantitative PCR and western blotting were used to measure the expression of osteogenic differentiation-related genes [bone morphogenetic protein 4 (BMP4), osteopontin (OPN), Runx2 and Osterix] and proteins associated with the TGF-β/Smad3 pathway [TGF-β1, TGF-β RI, phosphorylated (p-)Smad and Smad3]. Psoralen was found to increase the proliferation and viability of hBMSCs. Although different concentrations of psoralen enhanced ALP activity and the calcified nodule content in hBMSCs, the enhancement effects were more potent at lower concentrations (0.1, 1 and 10 µmol/l). The expression of BMP4, OPN, Osterix, Runx2, TGF-β1, TGF-β RI and p-Smad3 was also promoted by psoralen at lower concentrations (0.1, 1 and 10 µmol/l). In addition, whilst SB431542 could inhibit calcium deposition and osteogenic differentiation-related gene expression in hBMSCs, psoralen effectively reversed the inhibitory effects of SB431542. In conclusion, psoralen accelerates the osteogenic differentiation of hBMSCs by activating the TGF-β/Smad3 pathway, which may be valuable for the future clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Yongquan Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China.,Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Liu Liao
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Haitao Su
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xinlin Chen
- Department of Preventive Medicine and Health Statistics, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Tao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Qiuke Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
29
|
Morita W, Snelling SJB, Wheway K, Watkins B, Appleton L, Murphy RJ, Carr AJ, Dakin SG. Comparison of Cellular Responses to TGF-β1 and BMP-2 Between Healthy and Torn Tendons. Am J Sports Med 2021; 49:1892-1903. [PMID: 34081556 DOI: 10.1177/03635465211011158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendons heal by fibrotic repair, increasing the likelihood of reinjury. Animal tendon injury and overuse models have identified transforming growth factor beta (TGF-β) and bone morphogenetic proteins (BMPs) as growth factors actively involved in the development of fibrosis, by mediating extracellular matrix synthesis and cell differentiation. PURPOSE To understand how TGF-β and BMPs contribute to fibrotic processes using tendon-derived cells isolated from healthy and diseased human tendons. STUDY DESIGN Controlled laboratory study. METHODS Tendon-derived cells were isolated from patients with a chronic rotator cuff tendon tear (large to massive, diseased) and healthy hamstring tendons of patients undergoing anterior cruciate ligament repair. Isolated cells were incubated with TGF-β1 (10 ng/mL) or BMP-2 (100 ng/mL) for 3 days. Gene expression was measured by real-time quantitative polymerase chain reaction. Cell signaling pathway activation was determined by Western blotting. RESULTS TGF-β1 treatment induced ACAN mRNA expression in both cell types but less in the diseased compared with healthy cells (P < .05). BMP-2 treatment induced BGN mRNA expression in healthy but not diseased cells (P < .01). In the diseased cells, TGF-β1 treatment induced increased ACTA2 mRNA expression (P < .01) and increased small mothers against decapentaplegic (SMAD) signaling (P < .05) compared with those of healthy cells. Moreover, BMP-2 treatment induced ACTA2 mRNA expression in the diseased cells only (P < .05). CONCLUSION Diseased tendon-derived cells show reduced expression of the proteoglycans aggrecan and biglycan in response to TGF-β1 and BMP-2 treatments. These same treatments induced enhanced fibrotic differentiation and canonical SMAD cell signaling in diseased compared with healthy cells. CLINICAL RELEVANCE Findings from this study suggest that diseased tendon-derived cells respond differently than healthy cells in the presence of TGF-β1 and BMP-2. The altered responses of diseased cells may influence fibrotic repair processes during tendon healing.
Collapse
Affiliation(s)
- Wataru Morita
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah J B Snelling
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kim Wheway
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Bridget Watkins
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Louise Appleton
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Richard J Murphy
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Brighton and Sussex University NHS Trust, Royal Sussex County Hospital, Brighton, UK
| | - Andrew J Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Stephanie G Dakin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Wang Y, Sun J, Zhang Y, Liu W, Yang S, Yang J. Stichopus japonicus Polysaccharide Stimulates Osteoblast Differentiation through Activation of the Bone Morphogenetic Protein Pathway in MC3T3-E1 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2576-2584. [PMID: 33417444 DOI: 10.1021/acs.jafc.0c06466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study aimed to examine the combined use of bone morphogenetic protein-2 (BMP-2) and polysaccharide isolated from Stichopus japonicus on osteogenic differentiation of MC3T3-E1 cells. Osteogenic differentiation was measured via histochemical staining of alkaline phosphatase (ALP) assay, alizarin red staining of mineralization assay, Western blotting, ELISA, and a qRT-PCR evaluation for the expression of BMP-2, runt-related transcription factor-2 (Runx-2), osteocalcin (OCN), osteopontin (OPN), and collagen type I (Col I) in MC3T3-E1 cells. Immunofluorescence assay was utilized to assess the BMP-2 localized on the cell surface. The results illustrated that SP-2 was able to increase ALP expression and accelerate the mineralization. Osteoblasts cultured on BMP-2/SP-2 substrate increased the expression levels of BMP-2, Runx-2, Col I, OCN, and OPN. SP-2 increased the binding efficiency involving a BMP-2 and its cell surface receptor. The dose of 5 μg/mL SP-2 used showed the best function of inducing osteoblast differentiation. These findings indicated that SP-2 is a more effective enhancer that cooperated with BMP-2 to induce osteoblastic differentiation by utilizing the BMP-2 signaling pathway.
Collapse
Affiliation(s)
- Yanjie Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, No.1 Qinggongyuan, Dalian 116034, P. R. China
| | - Jinghe Sun
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, No.1 Qinggongyuan, Dalian 116034, P. R. China
| | - Yanqi Zhang
- Department of Statistics, Iowa State University, 2438 Osborn Drive, Ames, Iowa 50011, United States
| | - Wenzhuan Liu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, No.1 Qinggongyuan, Dalian 116034, P. R. China
| | - Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 3192 Molecular Biology Building, Ames, Iowa 50011, United States
| | - Jingfeng Yang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, No.1 Qinggongyuan, Dalian 116034, P. R. China
| |
Collapse
|
31
|
Ferrà-Cañellas MDM, Munar-Bestard M, Garcia-Sureda L, Lejeune B, Ramis JM, Monjo M. BMP4 micro-immunotherapy increases collagen deposition and reduces PGE2 release in human gingival fibroblasts and increases tissue viability of engineered 3D gingiva under inflammatory conditions. J Periodontol 2021; 92:1448-1459. [PMID: 33393105 PMCID: PMC8724682 DOI: 10.1002/jper.20-0552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Background We aimed to evaluate the effect of low doses (LD) bone morphogenetic protein‐2 (BMP2) and BMP4 micro‐immunotherapy (MI) in two in vitro models of periodontal wound healing/regeneration. Methods We first evaluated the effect of LD of BMP2 and BMP4 MI on a 2D cell culture using human gingival fibroblasts (hGF) under inflammatory conditions induced by IL1β. Biocompatibility, inflammatory response (Prostaglandin E2 (PGE2) release), collagen deposition and release of extracellular matrix (ECM) organization‐related enzymes (matrix metalloproteinase‐1 (MMP1) and metalloproteinase inhibitor 1 (TIMP1)) were evaluated after short (3 days) and long‐term (24 days) treatment with BMP2 or BMP4 MI. Then, given the results obtained in the 2D cell culture, LD BMP4 MI treatment was evaluated in a 3D cell culture model of human tissue equivalent of gingiva (GTE) under the same inflammatory stimulus, evaluating the biocompatibility, inflammatory response and effect on MMP1 and TIMP1 release. Results LD BMP4 was able to decrease the release of the inflammatory mediator PGE2 and completely re‐establish the impaired collagen metabolism induced by IL1β treatment. In the 3D model, LD BMP4 treatment improved tissue viability compared with the vehicle, with similar levels to 3D tissues without inflammation. No significant effects were observed on PGE2 levels nor MMP1/TIMP1 ratio after LD BMP4 treatment, although a tendency to decrease PGE2 levels was observed after 3 days. Conclusions LD BMP4 MI treatment shows anti‐inflammatory and regenerative properties on hGF, and improved viability of 3D gingiva under inflammatory conditions. LD BMP4 MI treatment could be used on primary prevention or maintenance care of periodontitis.
Collapse
Affiliation(s)
- Maria Del Mar Ferrà-Cañellas
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain.,Preclinical Research Department, Labo'Life España, Consell, Spain
| | - Marta Munar-Bestard
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain.,Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, Spain
| | | | - Beatrice Lejeune
- Preclinical and Clinical Research, Regulatory Affairs Department, Labo'Life France, Nantes, France
| | - Joana Maria Ramis
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain.,Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, Spain
| | - Marta Monjo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain.,Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
32
|
Kumar S, Punetha M, Jose B, Bharati J, Khanna S, Sonwane A, Green JA, Whitworth K, Sarkar M. Modulation of granulosa cell function via CRISPR-Cas fuelled editing of BMPR-IB gene in goats (Capra hircus). Sci Rep 2020; 10:20446. [PMID: 33235250 PMCID: PMC7686318 DOI: 10.1038/s41598-020-77596-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
BMPs are multifunctional growth factors implicated in regulating the ovarian function as key intra-ovarian factors. Biological effects of BMPs are mediated through binding with membrane bound receptors like BMPR-IB and initiating downstream Smad signaling pathway. FecB mutation, regarded as a loss of function mutation in the BMPR-IB gene was identified in certain sheep breeds having high fecundity. Similar type of fecundity genes in goats have not been discovered so far. Hence, the current study was designed to investigate the effects of BMPR-IB gene modulation on granulosa cell function in goats. The BMPR-IB gene was knocked out using CRISPR-Cas technology in granulosa cells and cultured in vitro with BMP-4 stimulation for three different durations In addition, the FecB mutation was introduced in the BMPR-IB gene applying Easi-CRISPR followed by BMP-4/7 stimulation for 72 h. Steroidogenesis and cell viability were studied to explore the granulosa cell function on BMPR-IB gene modulation. BMPRs were found to be expressed stage specifically in granulosa cells of goats. Higher transcriptional abundance of R-Smads, LHR and FSHR indicating sensitisation of Smad signaling and increased gonadotropin sensitivity along with a significant reduction in the cell proliferation and viability was observed in granulosa cells upon BMPR-IB modulation. The inhibitory action of BMP-4/7 on P4 secretion was abolished in both KO and KI cells. Altogether, the study has revealed an altered Smad signaling, steroidogenesis and cell viability upon modulation of BMPR-IB gene in granulosa cells similar to that are documented in sheep breeds carrying the FecB mutation.
Collapse
Affiliation(s)
- Sai Kumar
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Meeti Punetha
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Bosco Jose
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Jaya Bharati
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Shivani Khanna
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Arvind Sonwane
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Jonathan A Green
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, USA
| | - Kristin Whitworth
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, USA
| | - Mihir Sarkar
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
33
|
Bernardi S, Macchiarelli G, Bianchi S. Autologous Materials in Regenerative Dentistry: Harvested Bone, Platelet Concentrates and Dentin Derivates. Molecules 2020; 25:molecules25225330. [PMID: 33203172 PMCID: PMC7696510 DOI: 10.3390/molecules25225330] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 01/04/2023] Open
Abstract
The jawbone is a peculiar type of bone tissue, unique for its histological, anatomical and physiological characteristics. Therefore, a defect in the maxilla or in the mandible, because of pathological sequelae is difficult to prevent and to restore. Several biomaterials have been and are currently being developed to respond to the demands of regenerative medicine. A specific group of biomaterials used in regenerative dentistry is represented by the autologous materials. Platelet concentrates harvested bone and dentin derivates are indeed used in an attempt to minimise the alveolar resorption or in vertical ridge augmentation procedures or in sinus lift interventions. The aim of this review is to examine the properties of the above-listed materials, to compare them and to indicate eventual clinical applications.
Collapse
Affiliation(s)
- Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.M.); (S.B.)
- Centre of Microscopy, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-086-342-3344
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.M.); (S.B.)
| | - Serena Bianchi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.M.); (S.B.)
| |
Collapse
|
34
|
Imran FS, Al-Thuwaini TM, Al-Shuhaib MBS, Lepretre F. A Novel Missense Single Nucleotide Polymorphism in the GREM1 Gene is Highly Associated with Higher Reproductive Traits in Awassi Sheep. Biochem Genet 2020; 59:422-436. [PMID: 33048279 DOI: 10.1007/s10528-020-10006-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022]
Abstract
GREM1 (gremlin1) is a known inhibitor for BMP15 (bone morphogenetic protein 15) family, but its genetic diversity in sheep is unknown. The present study was conducted to analyze the polymorphism of GREM1 gene using PCR- single-strand conformation polymorphism (SSCP) and DNA sequencing methods and to assess the possible association of GREM1 gene polymorphism with reproductive traits in Awassi ewes. A total of 224 ewes, 124 producing singles and 100 producing twins, were included in the study. Two SSCP patterns were detected in two amplified loci within the exon 2. Two exonic novel single nucleotide polymorphism (SNP)s were identified, c.74 T > G (the silent SNP p.Met123 =) and c.30 T > A with (the missense SNP p.Ile237Phe). Statistical analyses indicated a non-significant (P > 0.05) association of p.Met123 = with the analyzed reproductive traits of fecundity, prolificacy, litter size, and twinning rate. Meanwhile, p.Ile237Phe SNP exhibited a highly significant (P < 0.01) association with the measured reproductive traits, in which ewes with TA genotype (with p.Ile237Phe SNP) exhibited higher litter size, twinning ratio, fecundity, and prolificacy than those with TT genotype (without p.Ile237Phe SNP). The deleterious impact of p.Ile237Phe SNP was observed by the means of ten different state-of-the-art in silico tools that predicted a highly damaging effect of p.Ile237Phe SNP on the structure, function, and stability of gremlin1. In conclusion, the results of our study suggest that p.Ile237Phe SNP has a remarkable negative impact on the gremlin1 structure, function, and stability. Since gremlin1 is a known inhibitor of reproductive performance, a consequent higher reproductive performance was observed in ewes with damaged gremlin1 (with p.Ile237Phe SNP) than those with non-damaged gremlin1 (without p.Ile237Phe SNP). Therefore, it can be stated that the implementation of the novel p.Ile237Phe SNP in the GREM1 gene could be a useful marker in marker-assisted selection. This manuscript is the first one to describe GREM1 gene variations in sheep.
Collapse
Affiliation(s)
- Faris S Imran
- Branch of Physiology, College of Veterinary Medicine, University of Kerbala, Fraiha, Kerbala, 56001, Iraq
| | - Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil, 51001, Iraq
| | - Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil, 51001, Iraq.
| | - Frederic Lepretre
- Univ. Lille, Plateau de Genomique Fonctionnelle Et Structurale, CHU Lille, Lille, France
| |
Collapse
|
35
|
Serum Levels of Bone Morphogenetic Proteins 2 and 4 in Patients with Acute Myocardial Infarction. Cells 2020; 9:cells9102179. [PMID: 32992577 PMCID: PMC7601292 DOI: 10.3390/cells9102179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Bone morphogenetic proteins-2 and -4 (BMPs) have been implicated in left ventricular remodeling (LVR) processes such as an inflammation and fibrogenesis. We hypothesized that this knowledge could be translated into clinics. Methods: We studied the dynamics of serum levels of BMPs, its correlation with markers of LVR and with parameters of echocardiography in patients (n = 31) during the six-month follow-up period after myocardial infarction (MI). Results: Elevated serum levels of BMPs decreased by the six-month follow-up period. BMP-2 decreased from the first day after MI, and BMP-4 decreased from the Day 14. The elevated level of BMP-2 at Day 1 was associated with a lower level of troponin I, reperfusion time and better left ventricular ejection fraction (LV EF) at the six-month follow-up. Elevated serum level of BMP-4 at Day 1 was associated with a lower level of a soluble isoform of suppression of tumorigenicity 2 (sST2), age and reperfusion time. An elevated level of BMP-2 at the six-month follow-up was associated with higher levels of BMP-4, high-sensitivity C-reactive protein (hCRP) and sST2. High serum level of BMP-2 correlated with high levels of hCRP and matrix metalloproteinase (MMP)-9 on Day 7. High serum level of BMP-4 correlated with low levels of hCRP, MMP-9 at Day 3, sST2 at Day 1 and with decreased LV EF on Day 7. The findings of multivariate analysis support the involvement of BMP-2 in the development of post-infarction LVR. Conclusions: Our research translates experimental data about the BMPs in the development of adverse LVR into the clinic. Elevated serum levels of BMPs decreased by the end of the six-month period after MI. BMP-2 decreased from the first day and BMP-4 decreased from Day 14. BMP-2 and BMP-4 were associated with the development of LVR. Their correlations with markers of inflammation, degradation of the extracellular matrix, hemodynamic stress and markers of myocardial damage further support our hypothesis. Diagnostic and predictive values of these BMPs at the development of post-infarction LVR in vivo should be investigated further.
Collapse
|
36
|
Zhao J, Cui B, Yao H, Lin Z, Dong Y. A Potential Role of Bone Morphogenetic Protein 7 in Shell Formation and Growth in the Razor Clam Sinonovacula constricta. Front Physiol 2020; 11:1059. [PMID: 32982790 PMCID: PMC7485270 DOI: 10.3389/fphys.2020.01059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/31/2020] [Indexed: 01/02/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) not only play essential roles in bone development but also are involved in embryonic growth, organogenesis cell proliferation and differentiation. However, the previous studies on the functions of shellfish BMPs genes are still very limited. To better understand its molecular structure and biological function, BMP7 of the razor clam Sinonovacula constricta (Sc-BMP7) was cloned and characterized in this study. The full length of Sc-BMP7 is 2252 bp, including an open reading frame (ORF) of 1257 bp encoding 418 amino acids. The protein sequence included a signal peptide (1–32 aa), a prodomain (38–270 aa) and a TGF-β domain (317–418 aa). The quantitative expression of eleven adult tissues showed that Sc-BMP7 was significantly higher expressed in the gill, foot, and mantle (P < 0.05), but lower in hemocytes and hepatopancreas. In the early development stages, low expression was detected in the stages of unfertilized mature eggs, fertilized eggs, 4-cell embryos, blastula, gastrulae, whereas it increased after the stage of trochophore and demonstrated the highest expression in umbo larvae (P < 0.01). In shell repair experiment, Sc-BMP7 showed increasing expression level after 12 h. The higher expression of Sc-BMP7 was detected while Ca2+ concentration was reduced in seawater. After inhibiting Sc-BMP7 expression using RNA interference (RNAi) technology, expression of Sc-BMP7 mRNA and protein were significantly down-regulated (P < 0.05) in the central zone of mantle (nacre formation related tissue) and the pallial zone of mantle (prismatic layer formation related tissue). Association analysis identified two shared SNPs in exon of Sc-BMP7 gene from 246 individuals of two groups. These results indicated that BMP7 might be involved in shell formation and growth. These results would contribute to clarify the role of Sc-BMP7 in the regulation of growth and shell formation, and provide growth-related markers for molecular marker assisted breeding of this species.
Collapse
Affiliation(s)
- Jiaxi Zhao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Baoyue Cui
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Hanhan Yao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yinghui Dong
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
37
|
Wang H, Ni Z, Yang J, Li M, Liu L, Pan X, Xu L, Wang X, Fang S. IL-1β promotes osteogenic differentiation of mouse bone marrow mesenchymal stem cells via the BMP/Smad pathway within a certain concentration range. Exp Ther Med 2020; 20:3001-3008. [PMID: 32855666 PMCID: PMC7444350 DOI: 10.3892/etm.2020.9065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammatory factors play an important role in the process of fracture healing. The influence of interleukin (IL)-1β, a key inflammatory factory, on new bone formation has been controversial. The aim of the present study was to investigate whether IL-1β affects the osteogenic differentiation of mouse bone marrow mesenchymal stem cells (MBMMSCs), and examined its effective concentration range and molecular mechanism of action. MBMMSC proliferation in the presence of IL-1β was observed using a Cell-Counting Kit-8 assay, and the effect of IL-1β on MBMMSC apoptosis was examined via flow cytometry. Alkaline phosphatase assay, Alizarin Red staining and quantitative assays were performed to evaluate the osteogenic differentiation of MBMMSCs. The expression levels of osteogenic differentiation markers were detected using reverse transcription-quantitative PCR (RT-qPCR). It was demonstrated that within a concentration range of 0.01-1 ng/ml, IL-1β promoted osteogenic differentiation of MBMMSCs and did not induce apoptosis. Furthermore, RT-qPCR results indicated that IL-1β increased osteogenic gene expression within this concentration range. Moreover, Western blotting results identified that the bone morphogenetic protein/Smad (BMP/Smad) signaling pathway was significantly activated by IL-1β under osteogenic conditions. Therefore, the present results suggested that within a certain concentration range, IL-1β promoted osteogenic differentiation and function of MBMMSCs via the BMP/Smad signaling pathway.
Collapse
Affiliation(s)
- Hao Wang
- Department of Orthopedics, Huainan First People's Hospital, Anhui University of Science and Technology, Huainan, Anhui 232000, P.R. China.,Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Zhihao Ni
- Department of Orthopedics, Hefei First People's Hospital, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Jiazhao Yang
- Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Meng Li
- Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Lei Liu
- Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Xuejie Pan
- Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Lei Xu
- Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Xujin Wang
- Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Shiyuan Fang
- Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| |
Collapse
|
38
|
Temporal TGF-β Supergene Family Signalling Cues Modulating Tissue Morphogenesis: Chondrogenesis within a Muscle Tissue Model? Int J Mol Sci 2020; 21:ijms21144863. [PMID: 32660137 PMCID: PMC7402331 DOI: 10.3390/ijms21144863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Temporal translational signalling cues modulate all forms of tissue morphogenesis. However, if the rules to obtain specific tissues rely upon specific ligands to be active or inactive, does this mean we can engineer any tissue from another? The present study focused on the temporal effect of “multiple” morphogen interactions on muscle tissue to figure out if chondrogenesis could be induced, opening up the way for new tissue models or therapies. Gene expression and histomorphometrical analysis of muscle tissue exposed to rat bone morphogenic protein 2 (rBMP-2), rat transforming growth factor beta 3 (rTGF-β3), and/or rBMP-7, including different combinations applied briefly for 48 h or continuously for 30 days, revealed that a continuous rBMP-2 stimulation seems to be critical to initiate a chondrogenesis response that was limited to the first seven days of culture, but only in the absence of rBMP-7 and/or rTGF-β3. After day 7, unknown modulatory effects retard rBMP-2s’ effect where only through the paired-up addition of rBMP-7 and/or rTGF-β3 a chondrogenesis-like reaction seemed to be maintained. This new tissue model, whilst still very crude in its design, is a world-first attempt to better understand how multiple morphogens affect tissue morphogenesis with time, with our goal being to one day predict the chronological order of what signals have to be applied, when, for how long, and with which other signals to induce and maintain a desired tissue morphogenesis.
Collapse
|
39
|
Saito Y, Tsutsui T, Takayama A, Moroi A, Yoshizawa K, Ueki K. Effect of low-intensity pulsed ultrasound on injured temporomandibular joints with or without articular disc removal in a rabbit model. J Dent Sci 2020; 16:287-295. [PMID: 33384811 PMCID: PMC7770256 DOI: 10.1016/j.jds.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/14/2020] [Indexed: 11/30/2022] Open
Abstract
Background/purpose Dynamic stimulation can induce bone and cartilage growth. The purpose of this study was to examine the effect of low-intensity pulsed ultrasound (LIPUS) on injured temporomandibular joints (TMJs) in a rabbit model. Materials and methods Twenty-four female Japanese white rabbits (age: 12–16 weeks, weight: 2.0–2.5 kg) were equally divided into 4 groups. In two groups, discectomy was performed with (the LD group) and without (the D group) subsequent LIPUS treatment. In the other groups, a sham operation was performed with (the LC group) and without (the C group) subsequent LIPUS treatment. Two animals in each group were sacrificed at each time point (2, 4, and 8 weeks postoperatively). Mandibular measurements were made using three-dimensional computed tomography. We performed histological and immunohistochemical examination of the articular disc, and the cartilage layer and bone at the 30- and 60-degree sites in each condyle. Results There were no statistically significant differences among the groups in terms of thickness of the disc or the fibrous articular zone, or the number of BMP-2 positive cells. In terms of mandibular length, there were differences among the groups after 4 (P = 0.0498) and 8 weeks (P = 0.0260). Specifically, there was a difference between the LC group and the C group after 4 weeks (P = 0.014) and 8 weeks (P = 0.029). Conclusions This study suggests that LIPUS has little effect on cartilage after TMJ injury. It may promote bone growth in a normal TMJ, although discectomy seems to reduce this effect.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Takamitsu Tsutsui
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Akihiro Takayama
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Akinori Moroi
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kunio Yoshizawa
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Koichiro Ueki
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
40
|
Injamuri S, Rahaman MN, Shen Y, Huang Y. Relaxin enhances bone regeneration with BMP‐2‐loaded hydroxyapatite microspheres. J Biomed Mater Res A 2020; 108:1231-1242. [DOI: 10.1002/jbm.a.36897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Sahitya Injamuri
- Department of Biological SciencesMissouri University of Science and Technology Rolla Missouri
| | - Mohamed N. Rahaman
- Department of Materials Science and EngineeringMissouri University of Science and Technology Rolla Missouri
| | - Youqu Shen
- Department of Materials Science and EngineeringMissouri University of Science and Technology Rolla Missouri
| | - Yue‐Wern Huang
- Department of Biological SciencesMissouri University of Science and Technology Rolla Missouri
| |
Collapse
|
41
|
Abstract
Over the last decades, the association between vascular calcification (VC) and all-cause/cardiovascular mortality, especially in patients with high atherogenic status, such as those with diabetes and/or chronic kidney disease, has been repeatedly highlighted. For over a century, VC has been noted as a passive, degenerative, aging process without any treatment options. However, during the past decades, studies confirmed that mineralization of the arteries is an active, complex process, similar to bone genesis and formation. The main purpose of this review is to provide an update of the existing biomarkers of VC in serum and develop the various pathogenetic mechanisms underlying the calcification process, including the pivotal roles of matrix Gla protein, osteoprotegerin, bone morphogenetic proteins, fetuin-a, fibroblast growth-factor-23, osteocalcin, osteopontin, osteonectin, sclerostin, pyrophosphate, Smads, fibrillin-1 and carbonic anhydrase II.
Collapse
|
42
|
Zhang Y, Zhang M, Xie W, Wan J, Tao X, Liu M, Zhen Y, Lin F, Wu B, Zhai Z, Wang C. Gremlin-1 is a key regulator of endothelial-to-mesenchymal transition in human pulmonary artery endothelial cells. Exp Cell Res 2020; 390:111941. [PMID: 32145252 DOI: 10.1016/j.yexcr.2020.111941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Endothelial-to-mesenchymal transition (EndMT) has been implicated in initiation and progression of pulmonary arterial hypertension (PAH). Gremlin-1 promotes vascular remodeling of PAH and mediates epithelial-mesenchymal transition, which is similar to EndMT. In the present study we investigated the potential role of gremlin-1 plays in EndMT of pulmonary artery endothelial cells (PAECs). METHODS Immunofluorescence staining was performed to detect the expression of alpha smooth muscle actin (α-SMA) and von Willebrand factor (VWF). Migration and angiogenic responses of PAECs were determined by transwell assay and tube formation assay, respectively. Protein expression levels were determined by western blotting. RESULTS Gremlin-1 induced EndMT of PAECs in a phospho-smad2/3-dependent manner. This was characterized by the loss of platelet endothelial cell adhesion molecule 1 and an increase in protein levels of a-SMA, nerve-cadherin, and matrix metalloproteinase 2. It was also determined that gremlin-1 facilitated the migration and angiogenic responses of PAECs in a dose-dependent manner. Bone morphogenetic protein 7 (BMP-7) was found to attenuate gremlin-1-mediated EndMT, migration and angiogenesis of PAECs by inducing phosphorylation of Smad1/5/8 and suppressing phosphorylation of Smad2/3. CONCLUSION Gremlin-1 mediates EndMT in PAECs, and BMP-7 reverses gremlin-1-induced EndMT by an induction of p-Smad1/5/8 and suppression of p-Smad2/3.
Collapse
Affiliation(s)
- Yunxia Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Meng Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, NO 2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Wanmu Xie
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Jun Wan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Xincao Tao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Yanan Zhen
- Division of Cardiovascular Surgery, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Fan Lin
- Division of Cardiovascular Surgery, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Bo Wu
- Department of Lung Transplantation, the People's Hospital of Wuxi, 299 Qingyang Rd, Wuxi, 214023, China
| | - Zhenguo Zhai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, NO 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China; Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
43
|
Kuterbekov M, Jonas AM, Glinel K, Picart C. Osteogenic Differentiation of Adipose-Derived Stromal Cells: From Bench to Clinics. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:461-474. [PMID: 32098603 DOI: 10.1089/ten.teb.2019.0225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In addition to mesenchymal stem cells, adipose-derived stem/stromal cells (ASCs) are an attractive source for a large variety of cell-based therapies. One of their most important potential applications is related to the regeneration of bone tissue thanks to their capacity to differentiate in bone cells. However, this requires a proper control of their osteogenic differentiation, which depends not only on the initial characteristics of harvested cells but also on the conditions used for their culture. In this review, we first briefly describe the preclinical and clinical trials using ASCs for bone regeneration and present the quantitative parameters used to characterize the osteogenic differentiation of ASCs. We then focus on the soluble factors influencing the osteogenic differentiation of ACS, including the steroid hormones and various growth factors, notably the most osteoinductive ones, the bone morphogenetic proteins (BMPs). Impact statement Adipose-derived stromal/stem cells are reviewed for their use in bone regeneration.
Collapse
Affiliation(s)
- Mirasbek Kuterbekov
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Grenoble Institute of Technology, University Grenoble Alpes, LMGP, Grenoble, France
| | - Alain M Jonas
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Karine Glinel
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Catherine Picart
- Grenoble Institute of Technology, University Grenoble Alpes, LMGP, Grenoble, France.,Biomimetism and Regenerative Medicine Lab, CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Université Grenoble-Alpes/CEA/CNRS, Grenoble, France
| |
Collapse
|
44
|
Aluganti Narasimhulu C, Singla DK. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells 2020; 9:cells9020280. [PMID: 31979268 PMCID: PMC7073173 DOI: 10.3390/cells9020280] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein-7 is (BMP-7) is a potent anti-inflammatory growth factor belonging to the Transforming Growth Factor Beta (TGF-β) superfamily. It plays an important role in various biological processes, including embryogenesis, hematopoiesis, neurogenesis and skeletal morphogenesis. BMP-7 stimulates the target cells by binding to specific membrane-bound receptor BMPR 2 and transduces signals through mothers against decapentaplegic (Smads) and mitogen activated protein kinase (MAPK) pathways. To date, rhBMP-7 has been used clinically to induce the differentiation of mesenchymal stem cells bordering the bone fracture site into chondrocytes, osteoclasts, the formation of new bone via calcium deposition and to stimulate the repair of bone fracture. However, its use in cardiovascular diseases, such as atherosclerosis, myocardial infarction, and diabetic cardiomyopathy is currently being explored. More importantly, these cardiovascular diseases are associated with inflammation and infiltrated monocytes where BMP-7 has been demonstrated to be a key player in the differentiation of pro-inflammatory monocytes, or M1 macrophages, into anti-inflammatory M2 macrophages, which reduces developed cardiac dysfunction. Therefore, this review focuses on the molecular mechanisms of BMP-7 treatment in cardiovascular disease and its role as an anti-fibrotic, anti-apoptotic and anti-inflammatory growth factor, which emphasizes its potential therapeutic significance in heart diseases.
Collapse
|
45
|
Koguchi M, Nakahara Y, Ito H, Wakamiya T, Yoshioka F, Ogata A, Inoue K, Masuoka J, Izumi H, Abe T. BMP4 induces asymmetric cell division in human glioma stem-like cells. Oncol Lett 2019; 19:1247-1254. [PMID: 31966054 PMCID: PMC6956386 DOI: 10.3892/ol.2019.11231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a high recurrence rate and has very poor prognosis in humans. The median survival is still <2 years. Therefore, a new treatment strategy should be established. Recently, this cancer has been thought to be heterogeneous, consisting of cancer stem cells (CSCs) that are self-renewable, multipotent, and treatment resistant. So various strategies targeting glioma stem-like cells (GSCs) have been investigated. This study focused on strategies targeting GSCs through the induction of differentiation using bone morphogenetic protein 4 (BMP4). The expression of CD133, a cancer stem cell marker, under BMP4 treatment in GSCs was examined using flow cytometry, western blotting, and quantitative PCR. Immunofluorescent staining of GSCs was also performed to examine the type of cell division: asymmetric cell division (ACD) or symmetric cell division (SCD). We obtained the following results. The BMP4 treatment caused downregulation of CD133 expression. Moreover, it induced ACD in GSCs. While the ACD ratio was 23% without BMP4 treatment, it was 38% with BMP4 treatment (P=0.004). Furthermore, the tumor sphere assay demonstrated that BMP4 suppresses self-renewal ability. In conclusion, these findings may provide a new perspective on how BMP4 treatment reduces the tumorigenicity of GSCs.
Collapse
Affiliation(s)
- Motofumi Koguchi
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yukiko Nakahara
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hiroshi Ito
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Tomihiro Wakamiya
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Fumitaka Yoshioka
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Atsushi Ogata
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kohei Inoue
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Jun Masuoka
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hideki Izumi
- Laboratory of Molecular Medicine, Life Sciences Institute, Saga Medical Center KOSEIKAN, Saga 840-8571, Japan
| | - Tatsuya Abe
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
46
|
Impact of bone extracellular matrix mineral based nanoparticles on structure and stability of purified bone morphogenetic protein 2 (BMP-2). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111563. [DOI: 10.1016/j.jphotobiol.2019.111563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023]
|
47
|
Yaghubi E, Daneshpazhooh M, DJalali M, Mohammadi H, Sepandar F, Fakhri Z, Ghaedi E, Keshavarz SA, Balighi K, Mahmoudi H, Zarei M, Javanbakht MH. Effects of l-carnitine supplementation on cardiovascular and bone turnover markers in patients with pemphigus vulgaris under corticosteroids treatment: A randomized, double-blind, controlled trial. Dermatol Ther 2019; 32:e13049. [PMID: 31369185 DOI: 10.1111/dth.13049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/14/2019] [Accepted: 07/22/2019] [Indexed: 01/12/2023]
Abstract
Pemphigus vulgaris (PV) is a severe, bullous, autoimmune disease of the skin and mucous membranes. Corticosteroids are usually the main core treatment for controlling PV, which could lead to several side effects such as insulin resistance, osteoporosis, and cardiovascular disorders. The aim of this study is to evaluate the protective effects of l-carnitine (LC) supplementation in PV patients under corticosteroid treatment. In this randomized, double-blind, placebo-controlled clinical trial, 48 patients with PV were divided randomly into two groups to receive 2 g LC (n = 24) or a placebo (n = 24) for 8 weeks, respectively. Serum levels of osteopontin (OPN), bone morphogenic protein 4 (BMP4), cystatin C, systolic and diastolic blood pressure, 25 hydroxyvitamin D3, and LC were evaluated at the beginning and at the end of the study. LC supplementation demonstrated a significant increase in serum carnitine (p < .001). In addition, at the end of the trial, LC supplementation significantly decreased serum BMP4 (p = .003), OPN (p = .03), and cystatin C (p = .001) levels. There was no significant effect on blood pressure in comparison with the placebo. During study, no harmful side effects were reported by patients. These findings indicate that LC supplementation significantly leads to favorable changes in OPN, BMP4, and cystatin C in PV patients under corticosteroid therapy. However, further investigations are required to confirm these results.
Collapse
Affiliation(s)
- Elham Yaghubi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Diseases Research Center, Department of Dermatology, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahmoud DJalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Sepandar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Fakhri
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ehsan Ghaedi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Ali Keshavarz
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kamran Balighi
- Autoimmune Bullous Diseases Research Center, Department of Dermatology, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamidreza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Department of Dermatology, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahnaz Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
48
|
RETRACTED: Astragalus polysaccharide promotes proliferation and osteogenic differentiation of bone mesenchymal stem cells by down-regulation of microRNA-152. Biomed Pharmacother 2019; 115:108927. [DOI: 10.1016/j.biopha.2019.108927] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
|
49
|
Saik OV, Nimaev VV, Usmonov DB, Demenkov PS, Ivanisenko TV, Lavrik IN, Ivanisenko VA. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med Genomics 2019; 12:47. [PMID: 30871556 PMCID: PMC6417156 DOI: 10.1186/s12920-019-0492-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Currently, more than 150 million people worldwide suffer from lymphedema. It is a chronic progressive disease characterized by high-protein edema of various parts of the body due to defects in lymphatic drainage. Molecular-genetic mechanisms of the disease are still poorly understood. Beginning of a clinical manifestation of primary lymphedema in middle age and the development of secondary lymphedema after treatment of breast cancer can be genetically determined. Disruption of endothelial cell apoptosis can be considered as one of the factors contributing to the development of lymphedema. However, a study of the relationship between genes associated with lymphedema and genes involved in endothelial apoptosis, in the associative gene network was not previously conducted. METHODS In the current work, we used well-known methods (ToppGene and Endeavour), as well as methods previously developed by us, to prioritize genes involved in endothelial apoptosis and to find potential participants of molecular-genetic mechanisms of lymphedema among them. Original methods of prioritization took into account the overrepresented Gene Ontology biological processes, the centrality of vertices in the associative gene network, describing the interactions of endothelial apoptosis genes with genes associated with lymphedema, and the association of the analyzed genes with diseases that are comorbid to lymphedema. RESULTS An assessment of the quality of prioritization was performed using criteria, which involved an analysis of the enrichment of the top-most priority genes by genes, which are known to have simultaneous interactions with lymphedema and endothelial cell apoptosis, as well as by genes differentially expressed in murine model of lymphedema. In particular, among genes involved in endothelial apoptosis, KDR, TNF, TEK, BMPR2, SERPINE1, IL10, CD40LG, CCL2, FASLG and ABL1 had the highest priority. The identified priority genes can be considered as candidates for genotyping in the studies involving the search for associations with lymphedema. CONCLUSIONS Analysis of interactions of these genes in the associative gene network of lymphedema can improve understanding of mechanisms of interaction between endothelial apoptosis and lymphangiogenesis, and shed light on the role of disturbance of these processes in the development of edema, chronic inflammation and connective tissue transformation during the progression of the disease.
Collapse
Affiliation(s)
- Olga V. Saik
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Vadim V. Nimaev
- Laboratory of Surgical Lymphology and Lymphodetoxication, Research Institute of Clinical and Experimental Lymрhology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, st. Timakova 2, Novosibirsk, 630117 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Dilovarkhuja B. Usmonov
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
- Department of Neurosurgery, Ya. L. Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics, Ministry of Health of the Russian Federation, st. Frunze 17, Novosibirsk, 630091 Russia
| | - Pavel S. Demenkov
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Timofey V. Ivanisenko
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Inna N. Lavrik
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Medical Faculty, Pfalzer Platz 28, 39106 Magdeburg, Germany
| | - Vladimir A. Ivanisenko
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| |
Collapse
|
50
|
Khanijou M, Seriwatanachai D, Boonsiriseth K, Suphangul S, Pairuchvej V, Srisatjaluk RL, Wongsirichat N. Bone graft material derived from extracted tooth: A review literature. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2019. [DOI: 10.1016/j.ajoms.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|