1
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
3
|
Combining fMRI and DISC1 gene haplotypes to understand working memory-related brain activity in schizophrenia. Sci Rep 2022; 12:7351. [PMID: 35513527 PMCID: PMC9072540 DOI: 10.1038/s41598-022-10660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
The DISC1 gene is one of the most relevant susceptibility genes for psychosis. However, the complex genetic landscape of this locus, which includes protective and risk variants in interaction, may have hindered consistent conclusions on how DISC1 contributes to schizophrenia (SZ) liability. Analysis from haplotype approaches and brain-based phenotypes can contribute to understanding DISC1 role in the neurobiology of this disorder. We assessed the brain correlates of DISC1 haplotypes associated with SZ through a functional neuroimaging genetics approach. First, we tested the association of two DISC1 haplotypes, the HEP1 (rs6675281-1000731-rs999710) and the HEP3 (rs151229-rs3738401), with the risk for SZ in a sample of 138 healthy subjects (HS) and 238 patients. This approach allowed the identification of three haplotypes associated with SZ (HEP1-CTG, HEP3-GA and HEP3-AA). Second, we explored whether these haplotypes exerted differential effects on n-back associated brain activity in a subsample of 70 HS compared to 70 patients (diagnosis × haplotype interaction effect). These analyses evidenced that HEP3-GA and HEP3-AA modulated working memory functional response conditional to the health/disease status in the cuneus, precuneus, middle cingulate cortex and the ventrolateral and dorsolateral prefrontal cortices. Our results are the first to show a diagnosis-based effect of DISC1 haplotypes on working memory-related brain activity, emphasising its role in SZ.
Collapse
|
4
|
Mutations in DISC1 alter IP 3R and voltage-gated Ca 2+ channel functioning, implications for major mental illness. Neuronal Signal 2021; 5:NS20180122. [PMID: 34956649 PMCID: PMC8663806 DOI: 10.1042/ns20180122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) participates in a wide variety of
developmental processes of central neurons. It also serves critical roles that
underlie cognitive functioning in adult central neurons. Here we summarize
DISC1’s general properties and discuss its use as a model system for
understanding major mental illnesses (MMIs). We then discuss the cellular
actions of DISC1 that involve or regulate Ca2+ signaling in adult
central neurons. In particular, we focus on the tethering role DISC1 plays in
transporting RNA particles containing Ca2+ channel subunit RNAs,
including IP3R1, CACNA1C and CACNA2D1, and in transporting mitochondria into
dendritic and axonal processes. We also review DISC1’s role in modulating
IP3R1 activity within mitochondria-associated ER membrane (MAM).
Finally, we discuss DISC1-glycogen synthase kinase 3β (GSK3β)
signaling that regulates functional expression of voltage-gated Ca2+
channels (VGCCs) at central synapses. In each case, DISC1 regulates the movement
of molecules that impact Ca2+ signaling in neurons.
Collapse
|
5
|
Zinsmaier KE. Mitochondrial Miro GTPases coordinate mitochondrial and peroxisomal dynamics. Small GTPases 2021; 12:372-398. [PMID: 33183150 PMCID: PMC8583064 DOI: 10.1080/21541248.2020.1843957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Konrad E. Zinsmaier
- Departments of Neuroscience and Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Priya I, Sharma I, Sharma S, Gupta S, Arora M, Bhat GR, Mahajan R, Kapoor N. Genetic association of DISC1 variant rs3738401 with susceptibility to Schizophrenia risk in North Indian population. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
7
|
Dolleman-van der Weel MJ, Witter MP. The thalamic midline nucleus reuniens: potential relevance for schizophrenia and epilepsy. Neurosci Biobehav Rev 2020; 119:422-439. [PMID: 33031816 DOI: 10.1016/j.neubiorev.2020.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Anatomical, electrophysiological and behavioral studies in rodents have shown that the thalamic midline nucleus reuniens (RE) is a crucial link in the communication between hippocampal formation (HIP, i.e., CA1, subiculum) and medial prefrontal cortex (mPFC), important structures for cognitive and executive functions. A common feature in neurodevelopmental and neurodegenerative brain diseases is a dysfunctional connectivity/communication between HIP and mPFC, and disturbances in the cognitive domain. Therefore, it is assumed that aberrant functioning of RE may contribute to behavioral/cognitive impairments in brain diseases characterized by cortico-thalamo-hippocampal circuit dysfunctions. In the human brain the connections of RE are largely unknown. Yet, recent studies have found important similarities in the functional connectivity of HIP-mPFC-RE in humans and rodents, making cautious extrapolating experimental findings from animal models to humans justifiable. The focus of this review is on a potential involvement of RE in schizophrenia and epilepsy.
Collapse
Affiliation(s)
- M J Dolleman-van der Weel
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| | - M P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| |
Collapse
|
8
|
Su P, Zhang H, Wong AHC, Liu F. The DISC1 R264Q variant increases affinity for the dopamine D2 receptor and increases GSK3 activity. Mol Brain 2020; 13:87. [PMID: 32493513 PMCID: PMC7271519 DOI: 10.1186/s13041-020-00625-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
The Disrupted in schizophrenia 1 (DISC1) gene encodes a scaffolding protein that is involved in many neural functions such as neurogenesis, neural differentiation, embryonic neuron migration and neurotransmitter signalling. DISC1 was originally implicated in schizophrenia in a single family with a drastic mutation, a chromosomal translocation severing the mid-point of the gene (aa 598). Some common DISC1 variants have also been associated with schizophrenia in the general population, but those located far from the chromosomal translocation breakpoint likely have a different functional impact. We previously reported that DISC1 forms a protein complex with dopamine D2 receptor (D2R), the main target for antipsychotic medications. The D2R-DISC1 complex is elevated in brain tissue from schizophrenia patients and facilitates glycogen synthase kinase (GSK)-3 signaling. The DISC1 R264Q variant is located within the region that binds the D2R, and we found that this polymorphism increases the affinity of DISC1 for the D2R and promotes GSK3 activity. Our results suggest a possible mechanism by which this common polymorphism could affect aspects of brain function that are relevant to psychosis and schizophrenia. This provides additional insight into molecular mechanisms underlying schizophrenia that could be exploited in the development of novel pharmacological treatments.
Collapse
Affiliation(s)
- Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Hailong Zhang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Sultana R, Lee CC. Expression of Behavioral Phenotypes in Genetic and Environmental Mouse Models of Schizophrenia. Front Behav Neurosci 2020; 14:29. [PMID: 32184711 PMCID: PMC7058961 DOI: 10.3389/fnbeh.2020.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/07/2020] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by multifactorial etiology involving complex interactions among genetic and environmental factors. "Multiple-hit" models of the disorder can explain its variable incidence and prevalence in related individuals. Hence, there is a dire need to understand these interactions in the emergence of schizophrenia. To test these factors in the emergence of schizophrenia-like behaviors, we employed a genetic mouse model of the disorder (harboring the DISC1 mutation) along with various environmental insults, such as early life stress (maternal separation of pups) and/or pharmacological interventions (ketamine injections). When assessed on a battery of behavioral tests, we found that environmental interventions affect the severity of behavioral phenotypes in terms of increased negative behavior, as shown by reduced mobility in the forced swim and tail suspension tests, and changes to positive and cognitive symptoms, such as increased locomotion and disrupted PPI along with reduced working memory, respectively. Among the various interventions, the genetic mutation had the most profound effect on behavioral aberrations, followed by an environmental intervention by ketamine injections and ketamine-injected animals that were maternally separated during early postnatal days. We conclude that although environmental factors increased the prevalence of aberrant behavioral phenotypes, genetic background is still the predominant influence on phenotypic alterations in these mouse models of schizophrenia.
Collapse
Affiliation(s)
- Razia Sultana
- Neural Systems Laboratory, Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
10
|
Dahoun T, Nour MM, Adams RA, Trossbach S, Lee SH, Patel H, Curtis C, Korth C, Howes OD. Disrupted-in-schizophrenia 1 functional polymorphisms and D 2 /D 3 receptor availability: A [ 11 C]-(+)-PHNO imaging study. GENES BRAIN AND BEHAVIOR 2019; 18:e12596. [PMID: 31264367 DOI: 10.1111/gbb.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022]
Abstract
The disrupted-in-schizophrenia 1 (DISC1) protein has been implicated in a range of biological mechanisms underlying chronic mental disorders such as schizophrenia. Schizophrenia is associated with abnormal striatal dopamine signalling, and all antipsychotic drugs block striatal dopamine 2/3 receptors (D2/3 Rs). Importantly, the DISC1 protein directly interacts and forms a protein complex with the dopamine D2 receptor (D2 R) that inhibits agonist-induced D2 R internalisation. Moreover, animal studies have found large striatal increases in the proportion of D2 R receptors in a high affinity state (D2 high R) in DISC1 rodent models. Here, we investigated the relationship between the three most common polymorphisms altering the amino-acid sequence of the DISC1 protein (Ser704Cys (rs821616), Leu607Phe (rs6675281) and Arg264Gln (rs3738401)) and striatal D2/3 R availability in 41 healthy human volunteers, using [11 C]-(+)-PHNO positron emission tomography. We found no association between DISC1 polymorphisms and D2/3 R availability in the striatum and D2 R availability in the caudate and putamen. Therefore, despite a direct interaction between DISC1 and the D2 R, none of its main functional polymorphisms impact striatal D2/3 R binding potential, suggesting DISC1 variants act through other mechanisms.
Collapse
Affiliation(s)
- Tarik Dahoun
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Matthew M Nour
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, Russell Square House, London, UK.,Wellcome Centre for Human Neuroimaging (WCHN), University College London, London, UK
| | - Rick A Adams
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Division of Psychiatry, University College London, London, UK.,Institute of Cognitive Neuroscience, University College London, London, UK
| | - Svenja Trossbach
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sang H Lee
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.,Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Hamel Patel
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.,Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Charles Curtis
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Carsten Korth
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK
| |
Collapse
|
11
|
Liu CM, Liu YL, Hwu HG, Fann CSJ, Yang UC, Hsu PC, Chang CC, Chen WJ, Hwang TJ, Hsieh MH, Liu CC, Chien YL, Lin YT, Tsuang MT. Genetic associations and expression of extra-short isoforms of disrupted-in-schizophrenia 1 in a neurocognitive subgroup of schizophrenia. J Hum Genet 2019; 64:653-663. [PMID: 30976040 DOI: 10.1038/s10038-019-0597-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 01/20/2023]
Abstract
Disrupted-in-schizophrenia 1 (DISC1) was reported to be associated with schizophrenia. In a previous study, we found significant association with schizophrenia patients with deficient sustained attention assessed by continuous performance test (CPT). This study aimed to identify risk polymorphisms in this specific neurocognitive subgroup and investigate the expression of different isoforms of DISC1. A total of 83 genetic variants were identified through direct sequencing in 50 controls and 100 schizophrenia patients. Fourteen variants were genotyped in 600 controls and 912 patients. Patients were subgrouped by familial loading (multiplex or simplex) and performance on CPT. The frequency of AA genotype of rs11122324 at the 3'-UTR of Es and Esv1 isoforms and of rs2793091 at intron 4 were significantly higher in multiplex schizophrenia patients than those in controls (corrected p < 0.05). In further subgrouping, the frequency of AA genotype of the two SNPs were significantly higher in multiplex schizophrenia patients with deficient sustained attention than those in controls (corrected p < 0.005). The mRNA expression levels of two extra-short isoforms (Es and Esv1) in the EBV-transformed lymphocytes of schizophrenia were significantly higher than those of controls. Luciferase reporter assays demonstrated that the A-allele of rs11122324 significantly upregulated DISC1 extra-short isoforms transcription compared with the G-allele. We found two SNPs (rs11122324 and rs2793091) of DISC1 may be specifically associated with multiplex schizophrenia patients with deficient sustained attention. The SNP rs11122324 may be a risk polymorphism, which may have functional influence on the transcription of Es and Esv1 through increasing their expression.
Collapse
Affiliation(s)
- Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan. .,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Ueng-Cheng Yang
- Institute of Bioinformatics, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chun Hsu
- Institute of Bioinformatics, National Yang-Ming University, Taipei, Taiwan
| | | | - Wei J Chen
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tzung-Jeng Hwang
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Ming H Hsieh
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Tin Lin
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Harvard Departments of Epidemiology and Psychiatry, Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
12
|
Dahoun T, Pardiñas AF, Veronese M, Bloomfield MAP, Jauhar S, Bonoldi I, Froudist-Walsh S, Nosarti C, Korth C, Hennah W, Walters J, Prata D, Howes OD. The effect of the DISC1 Ser704Cys polymorphism on striatal dopamine synthesis capacity: an [18F]-DOPA PET study. Hum Mol Genet 2018; 27:3498-3506. [PMID: 29945223 PMCID: PMC6168972 DOI: 10.1093/hmg/ddy242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 11/14/2022] Open
Abstract
Whilst the role of the Disrupted-in-Schizophrenia 1 (DISC1) gene in the aetiology of major mental illnesses is debated, the characterization of its function lends it credibility as a candidate. A key aspect of this functional characterization is the determination of the role of common non-synonymous polymorphisms on normal variation within these functions. The common allele (A) of the DISC1 single-nucleotide polymorphism (SNP) rs821616 encodes a serine (ser) at the Ser704Cys polymorphism, and has been shown to increase the phosphorylation of extracellular signal-regulated protein Kinases 1 and 2 (ERK1/2) that stimulate the phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme for dopamine biosynthesis. We therefore set out to test the hypothesis that human ser (A) homozygotes would show elevated dopamine synthesis capacity compared with cysteine (cys) homozygotes and heterozygotes (TT and AT) for rs821616. [18F]-DOPA positron emission tomography (PET) was used to index striatal dopamine synthesis capacity as the influx rate constant Kicer in healthy volunteers DISC1 rs821616 ser homozygotes (N = 46) and healthy volunteers DISC1 rs821616 cys homozygotes and heterozygotes (N = 56), matched for age, gender, ethnicity and using three scanners. We found DISC1 rs821616 ser homozygotes exhibited a significantly higher striatal Kicer compared with cys homozygotes and heterozygotes (P = 0.012) explaining 6.4% of the variance (partial η2 = 0.064). Our finding is consistent with its previous association with heightened activation of ERK1/2, which stimulates tyrosine hydroxylase activity for dopamine synthesis. This could be a potential mechanism mediating risk for psychosis, lending further credibility to the fact that DISC1 is of functional interest in the aetiology of major mental illness.
Collapse
Affiliation(s)
- Tarik Dahoun
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX37 JX, UK
| | - Antonio F Pardiñas
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, King’s College London, London, UK
| | - Michael A P Bloomfield
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
- Division of Psychiatry, University College London, London, UK
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Sameer Jauhar
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
| | - Ilaria Bonoldi
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
| | | | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
- Division of Imaging Sciences & Biomedical Engineering, Centre for the Developing Brain, King’s College London, London, UK
| | - Carsten Korth
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - William Hennah
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Mental Health Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
| | - James Walters
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Instituto Universitário de Lisboa (ISCTE-IUL), Cis-IUL, Lisbon, Portugal
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
| |
Collapse
|
13
|
Malavasi ELV, Economides KD, Grünewald E, Makedonopoulou P, Gautier P, Mackie S, Murphy LC, Murdoch H, Crummie D, Ogawa F, McCartney DL, O'Sullivan ST, Burr K, Torrance HS, Phillips J, Bonneau M, Anderson SM, Perry P, Pearson M, Constantinides C, Davidson-Smith H, Kabiri M, Duff B, Johnstone M, Polites HG, Lawrie SM, Blackwood DH, Semple CA, Evans KL, Didier M, Chandran S, McIntosh AM, Price DJ, Houslay MD, Porteous DJ, Millar JK. DISC1 regulates N-methyl-D-aspartate receptor dynamics: abnormalities induced by a Disc1 mutation modelling a translocation linked to major mental illness. Transl Psychiatry 2018; 8:184. [PMID: 30190480 PMCID: PMC6127284 DOI: 10.1038/s41398-018-0228-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023] Open
Abstract
The neuromodulatory gene DISC1 is disrupted by a t(1;11) translocation that is highly penetrant for schizophrenia and affective disorders, but how this translocation affects DISC1 function is incompletely understood. N-methyl-D-aspartate receptors (NMDAR) play a central role in synaptic plasticity and cognition, and are implicated in the pathophysiology of schizophrenia through genetic and functional studies. We show that the NMDAR subunit GluN2B complexes with DISC1-associated trafficking factor TRAK1, while DISC1 interacts with the GluN1 subunit and regulates dendritic NMDAR motility in cultured mouse neurons. Moreover, in the first mutant mouse that models DISC1 disruption by the translocation, the pool of NMDAR transport vesicles and surface/synaptic NMDAR expression are increased. Since NMDAR cell surface/synaptic expression is tightly regulated to ensure correct function, these changes in the mutant mouse are likely to affect NMDAR signalling and synaptic plasticity. Consistent with these observations, RNASeq analysis of the translocation carrier-derived human neurons indicates abnormalities of excitatory synapses and vesicle dynamics. RNASeq analysis of the human neurons also identifies many differentially expressed genes previously highlighted as putative schizophrenia and/or depression risk factors through large-scale genome-wide association and copy number variant studies, indicating that the translocation triggers common disease pathways that are shared with unrelated psychiatric patients. Altogether, our findings suggest that translocation-induced disease mechanisms are likely to be relevant to mental illness in general, and that such disease mechanisms include altered NMDAR dynamics and excitatory synapse function. This could contribute to the cognitive disorders displayed by translocation carriers.
Collapse
Affiliation(s)
- Elise L V Malavasi
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | | | - Ellen Grünewald
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Paraskevi Makedonopoulou
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Shaun Mackie
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Laura C Murphy
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Hannah Murdoch
- Molecular Pharmacology Group, Wolfson Building, Institute of Neuroscience and Psychology, The University of Glasgow, University Avenue, Glasgow, UK
| | - Darragh Crummie
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Fumiaki Ogawa
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Shane T O'Sullivan
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Helen S Torrance
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Jonathan Phillips
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Marion Bonneau
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Susan M Anderson
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Paul Perry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Matthew Pearson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Costas Constantinides
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Hazel Davidson-Smith
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Mostafa Kabiri
- Translational In Vivo Models at Sanofi, Frankfurt, Germany
| | - Barbara Duff
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - Mandy Johnstone
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | | | - Stephen M Lawrie
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | | | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Michel Didier
- Translational Sciences at Sanofi, Chilly-Mazarin, France
| | | | | | - David J Price
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, UK
| | - Miles D Houslay
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - J Kirsty Millar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
14
|
Tropea D, Hardingham N, Millar K, Fox K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 2018; 596:2747-2771. [PMID: 30008190 PMCID: PMC6046077 DOI: 10.1113/jp274330] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.
Collapse
Affiliation(s)
- Daniela Tropea
- Neurospychiatric GeneticsTrinity Center for Health Sciences and Trinity College Institute of Neuroscience (TCIN)Trinity College DublinDublinIreland
| | - Neil Hardingham
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| | - Kirsty Millar
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineWestern General HospitalUniversity of EdinburghCrewe RoadEdinburghUK
| | - Kevin Fox
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| |
Collapse
|
15
|
Teng S, Thomson PA, McCarthy S, Kramer M, Muller S, Lihm J, Morris S, Soares DC, Hennah W, Harris S, Camargo LM, Malkov V, McIntosh AM, Millar JK, Blackwood DH, Evans KL, Deary IJ, Porteous DJ, McCombie WR. Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia. Mol Psychiatry 2018; 23:1270-1277. [PMID: 28630456 PMCID: PMC5984079 DOI: 10.1038/mp.2017.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWERacross), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWERacross P=0.0339). The burden of singleton disruptive variants in the DISC1 Interactome was associated with low cognitive ability at age 11 (FWERacross P=0.0043). These results identify altered regulation of schizophrenia candidate genes by DISC1 and its core Interactome as an alternate pathway for schizophrenia risk, consistent with the emerging effects of rare copy number variants associated with intellectual disability.
Collapse
Affiliation(s)
- S Teng
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Biology, Howard University, Washington DC, USA
| | - P A Thomson
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - S McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - M Kramer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Muller
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J Lihm
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Morris
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - D C Soares
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - W Hennah
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
| | - S Harris
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - L M Camargo
- UCB New Medicines, One Broadway, Cambridge, MA, USA
| | - V Malkov
- Genetics and Pharmacogenomics, MRL, Merck & Co, Boston, MA, USA
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J K Millar
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - D H Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - K L Evans
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - D J Porteous
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - W R McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
16
|
Gene polymorphisms of DISC1 is associated with schizophrenia: Evidence from a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:64-73. [PMID: 29031911 DOI: 10.1016/j.pnpbp.2017.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Previous studies suggest an association between Disrupted in schizophrenia 1 (DISC1) polymorphisms and schizophrenia (SCZ). However, the available data are often inconsistent, regarding the difference in sample size, ethnicity, genotyping method, etc. Thus, we carried out a meta-analysis to determine whether DISC1 polymorphisms contributed susceptibility to SCZ. METHODS A methodical literature review was operated using the English and Chinese core electronic databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were applied to determine the correlation between DISC1 gene polymorphisms and SCZ susceptibility. Subgroup analyses were carried out by stratification of ethnicity. P values were Bonferroni adjusted to account for multiple testing. Publication bias was evaluated by funnel plots, Egger's test and the trim and fill method. RESULTS Meta-analyses results suggested that DISC1 polymorphisms (rs821616 and rs821597) increased SCZ risk in overall populations. In subgroups of ethnicity, DISC1 polymorphisms (rs821616 and rs821597) was associated with susceptibility to SCZ among the Chinese population (for rs821616: TT+AT vs. AA: OR=1.338, 95% CI=1.124-1.592, P=0.001; T vs. A: OR=1.300, 95% CI=1.124-1.504, P<0.000; for rs821597: AA+AG vs. GG: OR=1.508, 95% CI=1.268-1.794, P<0.001; A vs. G: OR=1.345, 95% CI=1.184-1.527, P<0.001). A positive correlation was also observed between the single marker rs821616 and SCZ among the Japanese population in the recessive model (TT vs. AT+AA: OR=1.524, 95% CI=1.185-1.959, P=0.001). There was no significant relationship between other DISC1 polymorphisms (rs3738401, rs2273890, rs3738398, rs3738402, rs2492367, rs843979, rs3737597, rs4658971, rs1538979, rs1000731 and rs3738399) and SCZ. CONCLUSIONS DISC1 polymorphisms increased a risk of SCZ, especially in the Chinese population. In order to further corroborate our findings, large well-designed epidemiological studies are needed.
Collapse
|
17
|
Xu Y, Ren J, Ye H. Association between variations in the disrupted in schizophrenia 1 gene and schizophrenia: A meta-analysis. Gene 2018; 651:94-99. [PMID: 29410289 DOI: 10.1016/j.gene.2018.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/17/2017] [Accepted: 01/20/2018] [Indexed: 10/18/2022]
Abstract
Schizophrenia is a severe psychiatric disorder. Genetic and functional studies have strongly implicated the disrupted in schizophrenia 1 gene (DISC1) as a candidate susceptibility gene for schizophrenia. Moreover, recent association studies have indicated that several DISC1 single nucleotide polymorphisms (SNPs) are associated with schizophrenia. However, the association is hardly replicate in different ethnic group. Here, we performed a meta-analysis of the association between DISC1 SNPs and schizophrenia in which the samples were divided into subgroups according to ethnicity. Both rs3738401 and rs821616 showed not significantly association with schizophrenia in the Caucasian, Asian, Japanese or Han Chinese populations.
Collapse
Affiliation(s)
- Yiliang Xu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China.
| | - Jun Ren
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
18
|
Hartung H, Cichon N, De Feo V, Riemann S, Schildt S, Lindemann C, Mulert C, Gogos JA, Hanganu-Opatz IL. From Shortage to Surge: A Developmental Switch in Hippocampal-Prefrontal Coupling in a Gene-Environment Model of Neuropsychiatric Disorders. Cereb Cortex 2018; 26:4265-4281. [PMID: 27613435 PMCID: PMC5066837 DOI: 10.1093/cercor/bhw274] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022] Open
Abstract
Cognitive deficits represent a major burden of neuropsychiatric disorders and result in part from abnormal communication within hippocampal–prefrontal circuits. While it has been hypothesized that this network dysfunction arises during development, long before the first clinical symptoms, experimental evidence is still missing. Here, we show that pre-juvenile mice mimicking genetic and environmental risk factors of disease (dual-hit GE mice) have poorer recognition memory that correlates with augmented coupling by synchrony and stronger directed interactions between prefrontal cortex and hippocampus. The network dysfunction emerges already during neonatal development, yet it initially consists in a diminished hippocampal theta drive and consequently, a weaker and disorganized entrainment of local prefrontal circuits in discontinuous oscillatory activity in dual-hit GE mice when compared with controls. Thus, impaired maturation of functional communication within hippocampal–prefrontal networks switching from hypo- to hyper-coupling may represent a mechanism underlying the pathophysiology of cognitive deficits in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Henrike Hartung
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Laboratory of Neurobiology, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Nicole Cichon
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Vito De Feo
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Laboratory of Neural Computation, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Stephanie Riemann
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Current address: German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Sandra Schildt
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christoph Lindemann
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Joseph A Gogos
- Department of Neuroscience, Columbia University, New York, NY 10032, USA.,Department of Physiology, Columbia University, New York, NY 10032, USA
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
19
|
Chinen Y, Nakamura S, Ganaha A, Hayashi S, Inazawa J, Yanagi K, Nakanishi K, Kaname T, Naritomi K. Mild prominence of the Sylvian fissure in a Bainbridge-Ropers syndrome patient with a novel frameshift variant in ASXL3. Clin Case Rep 2017; 6:330-336. [PMID: 29445472 PMCID: PMC5799615 DOI: 10.1002/ccr3.1361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/27/2017] [Accepted: 12/10/2017] [Indexed: 12/28/2022] Open
Abstract
A Japanese boy aged 7 years with Bainbridge‐Ropers syndrome (BRPS) had a prominent domed forehead without metric ridge, mild prominence of the Sylvian fissure with bitemporal hollowing, and a heterozygous de novo novel variant “p.P1010Lfs*14” in ASXL3 gene in addition to typical findings of BRPS.
Collapse
Affiliation(s)
- Yasutsugu Chinen
- Department of Pediatrics Faculty of Medicine University of the Ryukyus Nishihara Japan
| | - Sadao Nakamura
- Department of Pediatrics Faculty of Medicine University of the Ryukyus Nishihara Japan
| | - Akira Ganaha
- Department of Otorhinolaryngology, Head and Neck Surgery Faculty of Medicine University of the Ryukyus Nishihara Japan
| | - Shin Hayashi
- Department of Molecular Cytogenetics Medical Research Institute Tokyo Medical and Dental University Tokyo Japan.,Hard Tissue Genome Research Center Tokyo Medical and Dental University Tokyo Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics Medical Research Institute Tokyo Medical and Dental University Tokyo Japan.,Hard Tissue Genome Research Center Tokyo Medical and Dental University Tokyo Japan
| | - Kumiko Yanagi
- Department of Genome Medicine National Center for Child Health and Development Tokyo Japan
| | - Koichi Nakanishi
- Department of Pediatrics Faculty of Medicine University of the Ryukyus Nishihara Japan
| | - Tadashi Kaname
- Department of Genome Medicine National Center for Child Health and Development Tokyo Japan
| | - Kenji Naritomi
- Okinawa Nanbu Habilitation and Medical Center Naha Japan
| |
Collapse
|
20
|
Murphy LC, Millar JK. Regulation of mitochondrial dynamics by DISC1, a putative risk factor for major mental illness. Schizophr Res 2017; 187:55-61. [PMID: 28082141 DOI: 10.1016/j.schres.2016.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Mitochondria are dynamic organelles that are essential to power the process of neurotransmission. Neurons must therefore ensure that mitochondria maintain their functional integrity and are efficiently transported along the full extent of the axons and dendrites, from soma to synapses. Mitochondrial dynamics (trafficking, fission and fusion) co-ordinately regulate mitochondrial quality control and function. DISC1 is a component of the mitochondrial transport machinery and regulates mitochondrial dynamics. DISC1's role in this is adversely affected by sequence variants connected to brain structure/function and disease risk, and by mutant truncation. The DISC1 interactors NDE1 and GSK3β are also involved, indicating a convergence of putative risk factors for psychiatric illness upon mitochondrial dynamics.
Collapse
Affiliation(s)
- Laura C Murphy
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - J Kirsty Millar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
21
|
Kassan A, Egawa J, Zhang Z, Almenar-Queralt A, Nguyen QM, Lajevardi Y, Kim K, Posadas E, Jeste DV, Roth DM, Patel PM, Patel HH, Head BP. Caveolin-1 regulation of disrupted-in-schizophrenia-1 as a potential therapeutic target for schizophrenia. J Neurophysiol 2017; 117:436-444. [PMID: 27832597 PMCID: PMC5253400 DOI: 10.1152/jn.00481.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is a debilitating psychiatric disorder manifested in early adulthood. Disrupted-in-schizophrenia-1 (DISC1) is a susceptible gene for schizophrenia (Hodgkinson et al. 2004; Millar et al. 2000; St Clair et al. 1990) implicated in neuronal development, brain maturation, and neuroplasticity (Brandon and Sawa 2011; Chubb et al. 2008). Therefore, DISC1 is a promising candidate gene for schizophrenia, but the molecular mechanisms underlying its role in the pathogenesis of the disease are still poorly understood. Interestingly, caveolin-1 (Cav-1), a cholesterol binding and scaffolding protein, regulates neuronal signal transduction and promotes neuroplasticity. In this study we examined the role of Cav-1 in mediating DISC1 expression in neurons in vitro and the hippocampus in vivo. Overexpressing Cav-1 specifically in neurons using a neuron-specific synapsin promoter (SynCav1) increased expression of DISC1 and proteins involved in synaptic plasticity (PSD95, synaptobrevin, synaptophysin, neurexin, and syntaxin 1). Similarly, SynCav1-transfected differentiated human neurons derived from induced pluripotent stem cells (hiPSCs) exhibited increased expression of DISC1 and markers of synaptic plasticity. Conversely, hippocampi from Cav-1 knockout (KO) exhibited decreased expression of DISC1 and proteins involved in synaptic plasticity. Finally, SynCav1 delivery to the hippocampus of Cav-1 KO mice and Cav-1 KO neurons in culture restored expression of DISC1 and markers of synaptic plasticity. Furthermore, we found that Cav-1 coimmunoprecipitated with DISC1 in brain tissue. These findings suggest an important role by which neuron-targeted Cav-1 regulates DISC1 neurobiology with implications for synaptic plasticity. Therefore, SynCav1 might be a potential therapeutic target for restoring neuronal function in schizophrenia. NEW & NOTEWORTHY The present study is the first to demonstrate that caveolin-1 can regulate DISC1 expression in neuronal models. Furthermore, the findings are consistent across three separate neuronal models that include rodent neurons (in vitro and in vivo) and human differentiated neurons derived from induced pluripotent stem cells. These findings justify further investigation regarding the modulatory role by caveolin on synaptic function and as a potential therapeutic target for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Adam Kassan
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry and the Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, California
| | - Junji Egawa
- VA San Diego Healthcare System, San Diego, California
| | - Zheng Zhang
- VA San Diego Healthcare System, San Diego, California
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California; and
| | | | | | - Kaitlyn Kim
- VA San Diego Healthcare System, San Diego, California
| | | | - Dilip V Jeste
- Department of Psychiatry and the Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, California
| | - David M Roth
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Piyush M Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Hemal H Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Brian P Head
- Department of Anesthesiology, University of California San Diego, La Jolla, California;
- VA San Diego Healthcare System, San Diego, California
- Sanford Consortium for Regenerative Medicine, La Jolla, California
| |
Collapse
|
22
|
Neuregulin-1 Regulates Cortical Inhibitory Neuron Dendrite and Synapse Growth through DISC1. Neural Plast 2016; 2016:7694385. [PMID: 27847649 PMCID: PMC5099462 DOI: 10.1155/2016/7694385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/05/2016] [Accepted: 09/05/2016] [Indexed: 11/20/2022] Open
Abstract
Cortical inhibitory neurons play crucial roles in regulating excitatory synaptic networks and cognitive function and aberrant development of these cells have been linked to neurodevelopmental disorders. The secreted neurotrophic factor Neuregulin-1 (NRG1) and its receptor ErbB4 are established regulators of inhibitory neuron connectivity, but the developmental signalling mechanisms regulating this process remain poorly understood. Here, we provide evidence that NRG1-ErbB4 signalling functions through the multifunctional scaffold protein, Disrupted in Schizophrenia 1 (DISC1), to regulate the development of cortical inhibitory interneuron dendrite and synaptic growth. We found that NRG1 increases inhibitory neuron dendrite complexity and glutamatergic synapse formation onto inhibitory neurons and that this effect is blocked by expression of a dominant negative DISC1 mutant, or DISC1 knockdown. We also discovered that NRG1 treatment increases DISC1 expression and its localization to glutamatergic synapses being made onto cortical inhibitory neurons. Mechanistically, we determined that DISC1 binds ErbB4 within cortical inhibitory neurons. Collectively, these data suggest that a NRG1-ErbB4-DISC1 signalling pathway regulates the development of cortical inhibitory neuron dendrite and synaptic growth. Given that NRG1, ErbB4, and DISC1 are schizophrenia-linked genes, these findings shed light on how independent risk factors may signal in a common developmental pathway that contributes to neural connectivity defects and disease pathogenesis.
Collapse
|
23
|
Ishizuka K, Kimura H, Wang C, Xing J, Kushima I, Arioka Y, Oya-Ito T, Uno Y, Okada T, Mori D, Aleksic B, Ozaki N. Investigation of Rare Single-Nucleotide PCDH15 Variants in Schizophrenia and Autism Spectrum Disorders. PLoS One 2016; 11:e0153224. [PMID: 27058588 PMCID: PMC4825995 DOI: 10.1371/journal.pone.0153224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/25/2016] [Indexed: 11/18/2022] Open
Abstract
Both schizophrenia (SCZ) and autism spectrum disorders (ASD) are neuropsychiatric disorders with overlapping genetic etiology. Protocadherin 15 (PCDH15), which encodes a member of the cadherin super family that contributes to neural development and function, has been cited as a risk gene for neuropsychiatric disorders. Recently, rare variants of large effect have been paid attention to understand the etiopathology of these complex disorders. Thus, we evaluated the impacts of rare, single-nucleotide variants (SNVs) in PCDH15 on SCZ or ASD. First, we conducted coding exon-targeted resequencing of PCDH15 with next-generation sequencing technology in 562 Japanese patients (370 SCZ and 192 ASD) and detected 16 heterozygous SNVs. We then performed association analyses on 2,096 cases (1,714 SCZ and 382 ASD) and 1,917 controls with six novel variants of these 16 SNVs. Of these six variants, four (p.R219K, p.T281A, p.D642N, c.3010-1G>C) were ultra-rare variants (minor allele frequency < 0.0005) that may increase disease susceptibility. Finally, no statistically significant association between any of these rare, heterozygous PCDH15 point variants and SCZ or ASD was found. Our results suggest that a larger sample size of resequencing subjects is necessary to detect associations between rare PCDH15 variants and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Chenyao Wang
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jingrui Xing
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoko Oya-Ito
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- * E-mail:
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
24
|
Dachtler J, Elliott C, Rodgers RJ, Baillie GS, Clapcote SJ. Missense mutation in DISC1 C-terminal coiled-coil has GSK3β signaling and sex-dependent behavioral effects in mice. Sci Rep 2016; 6:18748. [PMID: 26728762 PMCID: PMC4700527 DOI: 10.1038/srep18748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/23/2015] [Indexed: 11/09/2022] Open
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and affective disorders. The full-length DISC1 protein consists of an N-terminal 'head' domain and a C-terminal tail domain that contains several predicted coiled-coils, structural motifs involved in protein-protein interactions. To probe the in vivo effects of missense mutation of DISC1's C-terminal tail, we tested mice carrying mutation D453G within a predicted α-helical coiled-coil region. We report that, relative to wild-type littermates, female DISC1(D453G) mice exhibited novelty-induced hyperlocomotion, an anxiogenic profile in the elevated plus-maze and open field tests, and reduced social exploration of unfamiliar mice. Male DISC1(D453G) mice displayed a deficit in passive avoidance, while neither males nor females exhibited any impairment in startle reactivity or prepulse inhibition. Whole brain homogenates showed normal levels of DISC1 protein, but decreased binding of DISC1 to GSK3β, decreased phospho-inhibition of GSK3β at serine 9, and decreased levels of β-catenin in DISC1(D453G) mice of either sex. Interrupted GSK3β signaling may thus be part of the mechanism underlying the behavioral phenotype associated with D453G, in common with the previously described N-terminal domain mutations Q31L and L100P in mice, and the schizophrenia risk-conferring variant R264Q in humans.
Collapse
Affiliation(s)
- James Dachtler
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Christina Elliott
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - R John Rodgers
- Institute of Psychological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
25
|
Basmanav FB, Forstner AJ, Fier H, Herms S, Meier S, Degenhardt F, Hoffmann P, Barth S, Fricker N, Strohmaier J, Witt SH, Ludwig M, Schmael C, Moebus S, Maier W, Mössner R, Rujescu D, Rietschel M, Lange C, Nöthen MM, Cichon S. Investigation of the role of TCF4 rare sequence variants in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:354-62. [PMID: 26010163 DOI: 10.1002/ajmg.b.32318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
Transcription factor 4 (TCF4) is one of the most robust of all reported schizophrenia risk loci and is supported by several genetic and functional lines of evidence. While numerous studies have implicated common genetic variation at TCF4 in schizophrenia risk, the role of rare, small-sized variants at this locus-such as single nucleotide variants and short indels which are below the resolution of chip-based arrays requires further exploration. The aim of the present study was to investigate the association between rare TCF4 sequence variants and schizophrenia. Exon-targeted resequencing was performed in 190 German schizophrenia patients. Six rare variants at the coding exons and flanking sequences of the TCF4 gene were identified, including two missense variants and one splice site variant. These six variants were then pooled with nine additional rare variants identified in 379 European participants of the 1000 Genomes Project, and all 15 variants were genotyped in an independent German sample (n = 1,808 patients; n = 2,261 controls). These data were then analyzed using six statistical methods developed for the association analysis of rare variants. No significant association (P < 0.05) was found. However, the results from our association and power analyses suggest that further research into the possible involvement of rare TCF4 sequence variants in schizophrenia risk is warranted by the assessment of larger cohorts with higher statistical power to identify rare variant associations.
Collapse
Affiliation(s)
- F Buket Basmanav
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Heide Fier
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Department of Genomic Mathematics, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sandra Meier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,National Center for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich, Germany
| | - Sandra Barth
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Nadine Fricker
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Christine Schmael
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Susanne Moebus
- Centre of Urban Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Essen, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Rainald Mössner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.,Department of Psychiatry, University of Tübingen
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Christoph Lange
- Department of Genomic Mathematics, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich, Germany
| |
Collapse
|
26
|
Samsom JN, Wong AHC. Schizophrenia and Depression Co-Morbidity: What We have Learned from Animal Models. Front Psychiatry 2015; 6:13. [PMID: 25762938 PMCID: PMC4332163 DOI: 10.3389/fpsyt.2015.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/24/2015] [Indexed: 12/15/2022] Open
Abstract
Patients with schizophrenia are at an increased risk for the development of depression. Overlap in the symptoms and genetic risk factors between the two disorders suggests a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. Understanding these shared mechanisms will be important in informing the development of new treatments. Rodent models are powerful tools for understanding gene function as it relates to behavior. Examining rodent models relevant to both schizophrenia and depression reveals a number of common mechanisms. Current models which demonstrate endophenotypes of both schizophrenia and depression are reviewed here, including models of CUB and SUSHI multiple domains 1, PDZ and LIM domain 5, glutamate Delta 1 receptor, diabetic db/db mice, neuropeptide Y, disrupted in schizophrenia 1, and its interacting partners, reelin, maternal immune activation, and social isolation. Neurotransmission, brain connectivity, the immune system, the environment, and metabolism emerge as potential common mechanisms linking these models and potentially explaining comorbid depression in schizophrenia.
Collapse
Affiliation(s)
- James N Samsom
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| | - Albert H C Wong
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada ; Department of Psychiatry, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
27
|
Risk genes for schizophrenia: Translational opportunities for drug discovery. Pharmacol Ther 2014; 143:34-50. [DOI: 10.1016/j.pharmthera.2014.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 12/11/2022]
|
28
|
Thomson PA, Parla JS, McRae AF, Kramer M, Ramakrishnan K, Yao J, Soares DC, McCarthy S, Morris SW, Cardone L, Cass S, Ghiban E, Hennah W, Evans KL, Rebolini D, Millar JK, Harris SE, Starr JM, MacIntyre DJ, Generation Scotland 7, McIntosh AM, Watson JD, Deary IJ, Visscher PM, Blackwood DH, McCombie WR, Porteous DJ. 708 Common and 2010 rare DISC1 locus variants identified in 1542 subjects: analysis for association with psychiatric disorder and cognitive traits. Mol Psychiatry 2014; 19:668-75. [PMID: 23732877 PMCID: PMC4031635 DOI: 10.1038/mp.2013.68] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 12/16/2022]
Abstract
A balanced t(1;11) translocation that transects the Disrupted in schizophrenia 1 (DISC1) gene shows genome-wide significant linkage for schizophrenia and recurrent major depressive disorder (rMDD) in a single large Scottish family, but genome-wide and exome sequencing-based association studies have not supported a role for DISC1 in psychiatric illness. To explore DISC1 in more detail, we sequenced 528 kb of the DISC1 locus in 653 cases and 889 controls. We report 2718 validated single-nucleotide polymorphisms (SNPs) of which 2010 have a minor allele frequency of <1%. Only 38% of these variants are reported in the 1000 Genomes Project European subset. This suggests that many DISC1 SNPs remain undiscovered and are essentially private. Rare coding variants identified exclusively in patients were found in likely functional protein domains. Significant region-wide association was observed between rs16856199 and rMDD (P=0.026, unadjusted P=6.3 × 10(-5), OR=3.48). This was not replicated in additional recurrent major depression samples (replication P=0.11). Combined analysis of both the original and replication set supported the original association (P=0.0058, OR=1.46). Evidence for segregation of this variant with disease in families was limited to those of rMDD individuals referred from primary care. Burden analysis for coding and non-coding variants gave nominal associations with diagnosis and measures of mood and cognition. Together, these observations are likely to generalise to other candidate genes for major mental illness and may thus provide guidelines for the design of future studies.
Collapse
Affiliation(s)
- P A Thomson
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - J S Parla
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - A F McRae
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - M Kramer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - K Ramakrishnan
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - J Yao
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - D C Soares
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - S McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S W Morris
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - L Cardone
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Cass
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - E Ghiban
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - W Hennah
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
| | - K L Evans
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - D Rebolini
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J K Millar
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - S E Harris
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - J M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - D J MacIntyre
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Generation Scotland7
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh and Glasgow, UK
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J D Watson
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - P M Visscher
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - D H Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - W R McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - D J Porteous
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| |
Collapse
|
29
|
Ritchie DJ, Clapcote SJ. Disc1 deletion is present in Swiss-derived inbred mouse strains: implications for transgenic studies of learning and memory. Lab Anim 2014; 47:162-7. [PMID: 23563120 DOI: 10.1177/0023677213478299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inbred mouse strains are widely used for genetic studies because of the isogenicity within a strain or F1 hybrid and the genetic heterogeneity between inbred strains. In the process of modifying Disc1 in the mouse genome, a 25-bp deletion was discovered in exon 6 of the gene in the 129S6/SvEvTac inbred strain, and subsequently in 16 other inbred strains in the category known as ‘Castle’s mice’. The deletion (Disc1del ) induces a frame shift that introduces a premature termination codon, which has been shown to confer an impairment in working memory. To extend knowledge of the distribution of Disc1del among the various inbred strains of laboratory mouse, we investigated whether Disc1del is present in the categories known as ‘Swiss mice’ and ‘strains derived from China and Japan’. We found that the FVB/NJ, SJL/J and SWR/J strains in the ‘Swiss mice’ category and DDY/JclSidSeyFrkJ in the ‘China and Japan’ category are homozygous for the Disc1del allele, while ICR/HaJ in the ‘Swiss mice’ category is homozygous for wild-type Disc1. Since the Disc1del -positive strains FVB and SJL are commonly used for the generation of transgenic mice, and thus contribute to the genetic background of multiple transgenic lines, our results may allow scientists to avoid the potential confounding effects of the Disc1del allele in transgenic studies of learning and memory.
Collapse
Affiliation(s)
- D J Ritchie
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
30
|
Ogawa F, Malavasi EL, Crummie DK, Eykelenboom JE, Soares DC, Mackie S, Porteous DJ, Millar JK. DISC1 complexes with TRAK1 and Miro1 to modulate anterograde axonal mitochondrial trafficking. Hum Mol Genet 2014; 23:906-19. [PMID: 24092329 PMCID: PMC3900104 DOI: 10.1093/hmg/ddt485] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/25/2013] [Indexed: 12/12/2022] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1) is a candidate risk factor for schizophrenia, bipolar disorder and severe recurrent depression. Here, we demonstrate that DISC1 associates robustly with trafficking-protein-Kinesin-binding-1 which is, in turn, known to interact with the outer mitochondrial membrane proteins Miro1/2, linking mitochondria to the kinesin motor for microtubule-based subcellular trafficking. DISC1 also associates with Miro1 and is thus a component of functional mitochondrial transport complexes. Consistent with these observations, in neuronal axons DISC1 promotes specifically anterograde mitochondrial transport. DISC1 thus participates directly in mitochondrial trafficking, which is essential for neural development and neurotransmission. Any factor affecting mitochondrial DISC1 function is hence likely to have deleterious consequences for the brain, potentially contributing to increased risk of psychiatric illness. Intriguingly, therefore, a rare putatively causal human DISC1 sequence variant, 37W, impairs the ability of DISC1 to promote anterograde mitochondrial transport. This is likely related to a number of mitochondrial abnormalities induced by expression of DISC1-37W, which redistributes mitochondrial DISC1 and enhances kinesin mitochondrial association, while also altering protein interactions within the mitochondrial transport complex.
Collapse
Affiliation(s)
- Fumiaki Ogawa
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Elise L.V. Malavasi
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Darragh K. Crummie
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Jennifer E. Eykelenboom
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
- Now at Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Dinesh C. Soares
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Shaun Mackie
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - David J. Porteous
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - J. Kirsty Millar
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| |
Collapse
|
31
|
Hattori T, Shimizu S, Koyama Y, Emoto H, Matsumoto Y, Kumamoto N, Yamada K, Takamura H, Matsuzaki S, Katayama T, Tohyama M, Ito A. DISC1 (disrupted-in-schizophrenia-1) regulates differentiation of oligodendrocytes. PLoS One 2014; 9:e88506. [PMID: 24516667 PMCID: PMC3917910 DOI: 10.1371/journal.pone.0088506] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 01/08/2014] [Indexed: 02/05/2023] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a gene disrupted by a translocation, t(1;11) (q42.1;q14.3), that segregates with major psychiatric disorders, including schizophrenia, recurrent major depression and bipolar affective disorder, in a Scottish family. Here we report that mammalian DISC1 endogenously expressed in oligodendroglial lineage cells negatively regulates differentiation of oligodendrocyte precursor cells into oligodendrocytes. DISC1 expression was detected in oligodendrocytes of the mouse corpus callosum at P14 and P70. DISC1 mRNA was expressed in primary cultured rat cortical oligodendrocyte precursor cells and decreased when oligodendrocyte precursor cells were induced to differentiate by PDGF deprivation. Immunocytochemical analysis showed that overexpressed DISC1 was localized in the cell bodies and processes of oligodendrocyte precursor cells and oligodendrocytes. We show that expression of the myelin related markers, CNPase and MBP, as well as the number of cells with a matured oligodendrocyte morphology, were decreased following full length DISC1 overexpression. Conversely, both expression of CNPase and the number of oligodendrocytes with a mature morphology were increased following knockdown of endogenous DISC1 by RNA interference. Overexpression of a truncated form of DISC1 also resulted in an increase in expression of myelin related proteins and the number of mature oligodendrocytes, potentially acting via a dominant negative mechanism. We also identified involvement of Sox10 and Nkx2.2 in the DISC1 regulatory pathway of oligodendrocyte differentiation, both well-known transcription factors involved in the regulation of myelin genes.
Collapse
Affiliation(s)
- Tsuyoshi Hattori
- Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Sayama, Osaka, Japan
| | - Yoshihisa Koyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hisayo Emoto
- Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co, Ltd, Suita, Osaka, Japan
| | - Yuji Matsumoto
- Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co, Ltd, Suita, Osaka, Japan
| | - Natsuko Kumamoto
- Department of Neurobiology and Anatomy, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kohei Yamada
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Hironori Takamura
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Taiichi Katayama
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Masaya Tohyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Sayama, Osaka, Japan
| | - Akira Ito
- Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
32
|
DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan. Mol Psychiatry 2014; 19:141-3. [PMID: 24457522 PMCID: PMC4238281 DOI: 10.1038/mp.2013.160] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Ratta-apha W, Hishimoto A, Mouri K, Shiroiwa K, Sasada T, Yoshida M, Okazaki S, Supriyanto I, Asano M, Ueno Y, Shirakawa O, Sora I. Haplotype analysis of the DISC1 Ser704Cys variant in Japanese suicide completers. Psychiatry Res 2014; 215:249-51. [PMID: 24289909 DOI: 10.1016/j.psychres.2013.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 11/30/2022]
Abstract
The present study investigated the genetic association of the disrupted-in-schizophrenia 1 (DISC1) gene with suicide using 398 Japanese completed suicides and 511 healthy controls. The functional Ser704Cys variant of DISC1 was nominally associated with completed suicide. Enhanced evidence of association was observed in a multi-marker sliding window haplotype analysis (the lowest p=0.002). These findings warrant further studies with a larger sample size to confirm the association of DISC1 with suicide.
Collapse
Affiliation(s)
- Woraphat Ratta-apha
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Kentaro Mouri
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyoichi Shiroiwa
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toru Sasada
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masakuni Yoshida
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Irwan Supriyanto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Migiwa Asano
- Department of Legal Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasuhiro Ueno
- Department of Legal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Osamu Shirakawa
- Department of Neuropsychiatry, Kinki University School of Medicine, Osaka, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
34
|
Roussos P, Haroutunian V. Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities. Front Cell Neurosci 2014; 8:5. [PMID: 24478629 PMCID: PMC3896818 DOI: 10.3389/fncel.2014.00005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022] Open
Abstract
Given that the genetic risk for schizophrenia is highly polygenic and the effect sizes, even for rare or de novo events, are modest at best, it has been suggested that multiple biological pathways are likely to be involved in the etiopathogenesis of the disease. Most efforts in understanding the cellular basis of schizophrenia have followed a “neuron-centric” approach, focusing on alterations in neurotransmitter systems and synapse cytoarchitecture. However, multiple lines of evidence coming from genetics and systems biology approaches suggest that apart from neurons, oligodendrocytes and potentially other glia are affected from schizophrenia risk loci. Neurobiological abnormalities linked with genetic association signal could identify abnormalities that are more likely to be primary, versus environmentally induced changes or downstream events. Here, we summarize genetic data that support the involvement of oligodendrocytes in schizophrenia, providing additional evidence for a causal role with the disease. Given the undeniable evidence of both neuronal and glial abnormalities in schizophrenia, we propose a neuro-glial model that invokes abnormalities at the node of Ranvier as a functional unit in the etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Panos Roussos
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Vahram Haroutunian
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
35
|
MESH Headings
- Causality
- Chromosome Breakpoints
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/ultrastructure
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- Conduct Disorder/genetics
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Humans
- Lod Score
- Mental Disorders/genetics
- Mood Disorders/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Pedigree
- Phenotype
- RNA, Long Noncoding/genetics
- Risk Factors
- Schizophrenia/genetics
- Terminology as Topic
- Translocation, Genetic
Collapse
Affiliation(s)
- P F Sullivan
- Departments of Genetics and Psychiatry, Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
36
|
Ratta-Apha W, Hishimoto A, Mouri K, Shiroiwa K, Sasada T, Yoshida M, Supriyanto I, Ueno Y, Asano M, Shirakawa O, Togashi H, Takai Y, Sora I. Association analysis of the DISC1 gene with schizophrenia in the Japanese population and DISC1 immunoreactivity in the postmortem brain. Neurosci Res 2013; 77:222-7. [PMID: 24013095 DOI: 10.1016/j.neures.2013.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/24/2013] [Accepted: 08/26/2013] [Indexed: 12/11/2022]
Abstract
The Disrupted-in-Schizophrenia 1 (DISC1) gene plays a role in the regulation of neural development. Previous evidence from genetic association and biological studies implicates the DISC1 gene as having a role in the pathophysiology of schizophrenia. In the present study, we explored the association between DISC1 missense mutation rs821616 (Ser704Cys) single nucleotide polymorphism (SNP) and four other SNPs (rs1772702, rs1754603, rs821621, rs821624) in the related haplotype block and schizophrenia in the Japanese population. We could not find a significant association of selected SNPs with schizophrenia after correction for multiple testing. We performed a meta-analysis of the Ser704Cys variant in schizophrenia using data from the present study and five previous Japanese population studies, and found no association with schizophrenia. We also examined DISC1 immunoreactivity in postmortem prefrontal cortex specimens of schizophrenia patients compared to control samples. The immunoreactivity revealed a significant decrease of DISC1 protein expression in the schizophrenia samples after ruling out potential confounding factors. However, the Ser704Cys variant did not show effects on DISC1 immunoreactivity. These results provide evidence that this functional genetic variation of DISC1 do not underlie the pathophysiology of schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Woraphat Ratta-Apha
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Koyama Y, Hattori T, Shimizu S, Taniguchi M, Yamada K, Takamura H, Kumamoto N, Matsuzaki S, Ito A, Katayama T, Tohyama M. DBZ (DISC1-binding zinc finger protein)-deficient mice display abnormalities in basket cells in the somatosensory cortices. J Chem Neuroanat 2013; 53:1-10. [PMID: 23912123 DOI: 10.1016/j.jchemneu.2013.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
Disrupted-in-schizophrenia 1 (DISC1)-binding zinc finger protein (DBZ) is a DISC1-interacting molecule and the interaction between DBZ and DISC1 is involved in neurite outgrowth in vitro. DBZ is highly expressed in brain, especially in the cortex. However, the physiological roles of DBZ in vivo have not been clarified. Here, we show that development of basket cells, a morphologically defined class of parvalbumin (PV)-containing interneurons, is disturbed in DBZ knockout (KO) mice. DBZ mRNA was highly expressed in the ventral area of the subventricular zone of the medial ganglionic eminence, where PV-containing cortical interneurons were generated, at embryonic 14.5 days (E14.5). Although the expression level for PV and the number of PV-containing interneurons were not altered in the cortices of DBZ KO mice, basket cells were less branched and had shorter processes in the somatosensory cortices of DBZ KO mice compared with those in the cortices of WT mice. Furthermore, in the somatosensory cortices of DBZ KO mice, the level of mRNAs for the gamma-aminobutyric acid-synthesizing enzymes GAD67 was decreased. These findings show that DBZ is involved in the morphogenesis of basket cells.
Collapse
Affiliation(s)
- Yoshihisa Koyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Duff BJ, Macritchie KAN, Moorhead TWJ, Lawrie SM, Blackwood DHR. Human brain imaging studies of DISC1 in schizophrenia, bipolar disorder and depression: a systematic review. Schizophr Res 2013; 147:1-13. [PMID: 23602339 DOI: 10.1016/j.schres.2013.03.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 03/08/2013] [Accepted: 03/15/2013] [Indexed: 02/06/2023]
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a well researched candidate gene for schizophrenia and affective disorders with a range of functions relating to neurodevelopment. Several human brain imaging studies investigating correlations between common and rare variants in DISC1 and brain structure and function have shown conflicting results. A meta-analysis of case/control data showed no association between schizophrenia and any common SNP in DISC1. Therefore it is timely to review the literature to plan the direction of future studies. Twenty-two human brain imaging studies have examined the influence of DISC1 variants in health, schizophrenia, bipolar disorder or depression. The most studied common SNPs are Ser704Cys (rs821616) and Leu607Phe (rs6675281). Some imaging-genomic studies report effects on frontal, temporal and hippocampal structural indices in health and illness and a volumetric longitudinal study supports a putative role for these common SNPs in neurodevelopment. Callosal agenesis is described in association with rare deletions at 1q42 which include DISC1 and rare sequence variants at DISC1 itself. DISC1 interactions with translin-associated factor X (TRAX) and neuregulin have been shown to influence several regional volumes. In the first study involving neonates, a role for Ser704Cys (rs821616) has been highlighted in prenatal brain development with large clusters of reduced grey matter reported in the frontal lobes. Functional MRI studies examining associations between Ser704Cys (rs821616) and Leu607Phe (rs6675281) with prefrontal and hippocampal activation have also given inconsistent results. Prefrontal function was reported to be associated with interaction between DISC1 and CITRON (CIT) in health. Preliminary magnetic resonance spectroscopy and diffusion tensor data support the influence of Ser704Cys (rs821616) status on grey and white matter integrity. The glutamate system remains uninvestigated. Associations between rare sequence variants and structural changes in brain regions including the corpus callosum and effects of gene-gene interactions on brain structure and function are promising areas for future study.
Collapse
Affiliation(s)
- Barbara J Duff
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom.
| | - Karine A N Macritchie
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - Thomas W J Moorhead
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - Stephen M Lawrie
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| | - Douglas H R Blackwood
- University of Edinburgh, Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
| |
Collapse
|
39
|
Ozomaro U, Wahlestedt C, Nemeroff CB. Personalized medicine in psychiatry: problems and promises. BMC Med 2013; 11:132. [PMID: 23680237 PMCID: PMC3668172 DOI: 10.1186/1741-7015-11-132] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/19/2013] [Indexed: 01/29/2023] Open
Abstract
The central theme of personalized medicine is the premise that an individual's unique physiologic characteristics play a significant role in both disease vulnerability and in response to specific therapies. The major goals of personalized medicine are therefore to predict an individual's susceptibility to developing an illness, achieve accurate diagnosis, and optimize the most efficient and favorable response to treatment. The goal of achieving personalized medicine in psychiatry is a laudable one, because its attainment should be associated with a marked reduction in morbidity and mortality. In this review, we summarize an illustrative selection of studies that are laying the foundation towards personalizing medicine in major depressive disorder, bipolar disorder, and schizophrenia. In addition, we present emerging applications that are likely to advance personalized medicine in psychiatry, with an emphasis on novel biomarkers and neuroimaging.
Collapse
Affiliation(s)
- Uzoezi Ozomaro
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
- Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Charles B Nemeroff
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
- Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
40
|
Crowley JJ, Hilliard CE, Kim Y, Morgan MB, Lewis LR, Muzny DM, Hawes AC, Sabo A, Wheeler DA, Lieberman JA, Sullivan PF, Gibbs RA. Deep resequencing and association analysis of schizophrenia candidate genes. Mol Psychiatry 2013; 18:138-40. [PMID: 22472875 PMCID: PMC3577417 DOI: 10.1038/mp.2012.28] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Thomson PA, Malavasi ELV, Grünewald E, Soares DC, Borkowska M, Millar JK. DISC1 genetics, biology and psychiatric illness. FRONTIERS IN BIOLOGY 2013; 8:1-31. [PMID: 23550053 PMCID: PMC3580875 DOI: 10.1007/s11515-012-1254-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.
Collapse
Affiliation(s)
- Pippa A Thomson
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
42
|
Eykelenboom JE, Briggs GJ, Bradshaw NJ, Soares DC, Ogawa F, Christie S, Malavasi EL, Makedonopoulou P, Mackie S, Malloy MP, Wear MA, Blackburn EA, Bramham J, McIntosh AM, Blackwood DH, Muir WJ, Porteous DJ, Millar JK. A t(1;11) translocation linked to schizophrenia and affective disorders gives rise to aberrant chimeric DISC1 transcripts that encode structurally altered, deleterious mitochondrial proteins. Hum Mol Genet 2012; 21:3374-86. [PMID: 22547224 PMCID: PMC3392113 DOI: 10.1093/hmg/dds169] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/24/2012] [Indexed: 02/03/2023] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a risk factor for psychiatric illness through its disruption by a balanced chromosomal translocation, t(1;11)(q42.1;q14.3), that co-segregates with schizophrenia, bipolar disorder and depression. We previously reported that the translocation reduces DISC1 expression, consistent with a haploinsufficiency disease model. Here we report that, in lymphoblastoid cell lines, the translocation additionally results in the production of abnormal transcripts due to the fusion of DISC1 with a disrupted gene on chromosome 11 (DISC1FP1/Boymaw). These chimeric transcripts encode abnormal proteins, designated CP1, CP60 and CP69, consisting of DISC1 amino acids 1-597 plus 1, 60 or 69 amino acids, respectively. The novel 69 amino acids in CP69 induce increased α-helical content and formation of large stable protein assemblies. The same is predicted for CP60. Both CP60 and CP69 exhibit profoundly altered functional properties within cell lines and neurons. Both are predominantly targeted to mitochondria, where they induce clustering and loss of membrane potential, indicative of severe mitochondrial dysfunction. There is currently no access to neural material from translocation carriers to confirm these findings, but there is no reason to suppose that these chimeric transcripts will not also be expressed in the brain. There is thus potential for the production of abnormal chimeric proteins in the brains of translocation carriers, although at substantially lower levels than for native DISC1. The mechanism by which inheritance of the translocation increases risk of psychiatric illness may therefore involve both DISC1 haploinsufficiency and mitochondrial deficiency due to the effects of abnormal chimeric protein expression. GenBank accession numbers: DISC1FP1 (EU302123), Boymaw (GU134617), der 11 chimeric transcript DISC1FP1 exon 2 to DISC1 exon 9 (JQ650115), der 1 chimeric transcript DISC1 exon 4 to DISC1FP1 exon 4 (JQ650116), der 1 chimeric transcript DISC1 exon 6 to DISC1FP1 exon 3a (JQ650117).
Collapse
Affiliation(s)
- Jennifer E. Eykelenboom
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Gareth J. Briggs
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Nicholas J. Bradshaw
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Dinesh C. Soares
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Fumiaki Ogawa
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Sheila Christie
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Elise L.V. Malavasi
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Paraskevi Makedonopoulou
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Shaun Mackie
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Mary P. Malloy
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Martin A. Wear
- Institute of Structural and Molecular Biology, Centre for Translational and Chemical Biology, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK and
| | - Elizabeth A. Blackburn
- Institute of Structural and Molecular Biology, Centre for Translational and Chemical Biology, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK and
| | - Janice Bramham
- Institute of Structural and Molecular Biology, Centre for Translational and Chemical Biology, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK and
| | - Andrew M. McIntosh
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
- University Department of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Douglas H. Blackwood
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
- University Department of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Walter J. Muir
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
- University Department of Psychiatry, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - David J. Porteous
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - J. Kirsty Millar
- Medical Genetics Section, University of Edinburgh Centre for Molecular Medicine, Medical Research Council Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
43
|
Gender-specific association of TSNAX/DISC1 locus for schizophrenia and bipolar affective disorder in South Indian population. J Hum Genet 2012; 57:523-30. [PMID: 22673686 DOI: 10.1038/jhg.2012.62] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Genetic association studies have implicated the TSNAX/DISC1 (disrupted in schizophrenia 1) in schizophrenia (SCZ), bipolar affective disorder (BPAD) and major depression. This study was performed to assess the possible involvement of TSNAX/DISC1 locus in the aetiology of BPAD and SCZ in the Southern Indian population. We genotyped seven single nucleotide polymorphism (SNPs) from TSNAX/DISC1 region in 1252 individuals (419 BPAD patients, 408 SCZ patients and 425 controls). Binary logistic regression revealed a nominal association for rs821616 in DISC1 for BPAD and also combined cases of BPAD or SCZ, but after correcting for multiple testing, these results were non-significant. However, significant association was observed with BPAD, as well as combined cases of BPAD or SCZ, within the female subjects for the rs766288 after applying false discovery rate corrections at the 0.05 level. Two-locus analysis showed C-C (rs766288-rs2812393) as a risk combination in BPAD, and G-T (rs2812393-rs821616) as a protective combination in SCZ and combined cases of BPAD or SCZ. Female-specific associations were observed for rs766288-rs2812393, rs766288-rs821616 and rs8212393-rs821616 in two-locus analysis. Our results provide further evidence for sex-dependent effects of the TSNAX/DISC1 locus in the aetiology of SCZ and BPAD.
Collapse
|
44
|
Mathieson I, Munafò MR, Flint J. Meta-analysis indicates that common variants at the DISC1 locus are not associated with schizophrenia. Mol Psychiatry 2012; 17:634-41. [PMID: 21483435 PMCID: PMC3359642 DOI: 10.1038/mp.2011.41] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 12/12/2022]
Abstract
Several polymorphisms in the Disrupted-in-Schizophrenia-1 (DISC1) gene are reported to be associated with schizophrenia. However, to date, there has been little effort to evaluate the evidence for association systematically. We carried out an imputation-driven meta-analysis, the most comprehensive to date, using data collected from 10 candidate gene studies and three genome-wide association studies containing a total of 11 626 cases and 15 237 controls. We tested 1241 single-nucleotide polymorphisms in total, and estimated that our power to detect an effect from a variant with minor allele frequency >5% was 99% for an odds ratio of 1.5 and 51% for an odds ratio of 1.1. We find no evidence that common variants at the DISC1 locus are associated with schizophrenia.
Collapse
Affiliation(s)
- I Mathieson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M R Munafò
- School of Experimental Psychology, University of Bristol, Bristol, UK
| | - J Flint
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Solomon BD, Hadley DW, Pineda-Alvarez DE, Kamat A, Teer JK, Cherukuri PF, Hansen NF, Cruz P, Young AC, Berkman BE, Chandrasekharappa SC, Mullikin JC, Mullikin JC. Incidental medical information in whole-exome sequencing. Pediatrics 2012; 129:e1605-11. [PMID: 22585771 PMCID: PMC3362899 DOI: 10.1542/peds.2011-0080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genomic technologies, such as whole-exome sequencing, are a powerful tool in genetic research. Such testing yields a great deal of incidental medical information, or medical information not related to the primary research target. We describe the management of incidental medical information derived from whole-exome sequencing in the research context. We performed whole-exome sequencing on a monozygotic twin pair in which only 1 child was affected with congenital anomalies and applied an institutional review board-approved algorithm to determine what genetic information would be returned. Whole-exome sequencing identified 79525 genetic variants in the twins. Here, we focus on novel variants. After filtering artifacts and excluding known single nucleotide polymorphisms and variants not predicted to be pathogenic, the twins had 32 novel variants in 32 genes that were felt to be likely to be associated with human disease. Eighteen of these novel variants were associated with recessive disease and 18 were associated with dominantly manifesting conditions (variants in some genes were potentially associated with both recessive and dominant conditions), but only 1 variant ultimately met our institutional review board-approved criteria for return of information to the research participants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Benjamin E. Berkman
- Department of Bioethics, Clinical Center, and Office of the Clinical Director, and
| | - Settara C. Chandrasekharappa
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
46
|
Malavasi ELV, Ogawa F, Porteous DJ, Millar JK. DISC1 variants 37W and 607F disrupt its nuclear targeting and regulatory role in ATF4-mediated transcription. Hum Mol Genet 2012; 21:2779-92. [PMID: 22422769 PMCID: PMC3363331 DOI: 10.1093/hmg/dds106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1), a strong genetic candidate for psychiatric illness, encodes a multicompartmentalized molecular scaffold that regulates interacting proteins with key roles in neurodevelopment and plasticity. Missense DISC1 variants are associated with the risk of mental illness and with brain abnormalities in healthy carriers, but the underlying mechanisms are unclear. We examined the effect of rare and common DISC1 amino acid substitutions on subcellular targeting. We report that both the rare putatively causal variant 37W and the common variant 607F independently disrupt DISC1 nuclear targeting in a dominant-negative fashion, predicting that DISC1 nuclear expression is impaired in 37W and 607F carriers. In the nucleus, DISC1 interacts with the transcription factor Activating Transcription Factor 4 (ATF4), which is involved in the regulation of cellular stress responses, emotional behaviour and memory consolidation. At basal cAMP levels, wild-type DISC1 inhibits the transcriptional activity of ATF4, an effect that is weakened by both 37W and 607F independently, most likely as a consequence of their defective nuclear targeting. The common variant 607F additionally reduces DISC1/ATF4 interaction, which likely contributes to its weakened inhibitory effect. We also demonstrate that DISC1 modulates transcriptional responses to endoplasmic reticulum stress, and that this modulatory effect is ablated by 37W and 607F. By showing that DISC1 amino acid substitutions associated with psychiatric illness affect its regulatory function in ATF4-mediated transcription, our study highlights a potential mechanism by which these variants may impact on transcriptional events mediating cognition, emotional reactivity and stress responses, all processes of direct relevance to psychiatric illness.
Collapse
Affiliation(s)
- Elise L V Malavasi
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
47
|
Bradshaw NJ, Porteous DJ. DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 2012; 62:1230-41. [PMID: 21195721 PMCID: PMC3275753 DOI: 10.1016/j.neuropharm.2010.12.027] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/17/2010] [Accepted: 12/22/2010] [Indexed: 12/18/2022]
Abstract
In the decade since Disrupted in Schizophrenia 1 (DISC1) was first identified it has become one of the most convincing risk genes for major mental illness. As a multi-functional scaffold protein, DISC1 has multiple identified protein interaction partners that highlight pathologically relevant molecular pathways with potential for pharmaceutical intervention. Amongst these are proteins involved in neuronal migration (e.g. APP, Dixdc1, LIS1, NDE1, NDEL1), neural progenitor proliferation (GSK3β), neurosignalling (Girdin, GSK3β, PDE4) and synaptic function (Kal7, TNIK). Furthermore, emerging evidence of genetic association (NDEL1, PCM1, PDE4B) and copy number variation (NDE1) implicate several DISC1-binding partners as risk factors for schizophrenia in their own right. Thus, a picture begins to emerge of DISC1 as a key hub for multiple critical developmental pathways within the brain, disruption of which can lead to a variety of psychiatric illness phenotypes.
Collapse
Key Words
- disc1
- schizophrenia
- neurodevelopment
- signalling
- synapse
- association studies
- app, amyloid precursor protein
- atf4, activating transcription factor 4
- bace1, β-site app-cleaving enzyme-1
- bbs4, bardet–biedl syndrome 4
- cep290, centrosomal protein 290 kda
- cnv, copy number variation
- cre, camp response element
- dbz, disc1-binding zinc finger
- disc1, disrupted in schizophrenia 1
- dixdc1, dishevelled-axin domain containing-1
- fez1, fasciculation and elongation protein zeta 1
- glur, glutamate receptor
- gsk3β, glycogen synthase kinase 3β
- kal7, kalirin-7
- lef/tcf, lymphoid enhancer factor/t cell factor
- lis1, lissencephaly 1
- mtor, mammalian target of rapamycin
- nde1, nuclear distribution factor e homologue 1 or nuclear distribution element 1
- ndel1, nde-like 1
- nrg, neuregulin
- pacap, pituitary adenylate cyclase-activating polypeptide
- pcm1, pericentriolar material 1
- pcnt, pericentrin
- pde4, phosphodiesterase 4
- pi3 k, phosphatidylinositiol 3-kinase
- psd, post-synaptic density
- rac1, ras-related c3 botulinum toxin substrate 1
- tnik, traf2 and nck interacting kinase
Collapse
Affiliation(s)
- Nicholas J. Bradshaw
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, Midlothian EH4 2XU, UK
| | | |
Collapse
|
48
|
Yin DM, Chen YJ, Sathyamurthy A, Xiong WC, Mei L. Synaptic dysfunction in schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:493-516. [PMID: 22351070 DOI: 10.1007/978-3-7091-0932-8_22] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia alters basic brain processes of perception, emotion, and judgment to cause hallucinations, delusions, thought disorder, and cognitive deficits. Unlike neurodegeneration diseases that have irreversible neuronal degeneration and death, schizophrenia lacks agreeable pathological hallmarks, which makes it one of the least understood psychiatric disorders. With identification of schizophrenia susceptibility genes, recent studies have begun to shed light on underlying pathological mechanisms. Schizophrenia is believed to result from problems during neural development that lead to improper function of synaptic transmission and plasticity, and in agreement, many of the susceptibility genes encode proteins critical for neural development. Some, however, are also expressed at high levels in adult brain. Here, we will review evidence for altered neurotransmission at glutamatergic, GABAergic, dopaminergic, and cholinergic synapses in schizophrenia and discuss roles of susceptibility genes in neural development as well as in synaptic plasticity and how their malfunction may contribute to pathogenic mechanisms of schizophrenia. We propose that mouse models with precise temporal and spatial control of mutation or overexpression would be useful to delineate schizophrenia pathogenic mechanisms.
Collapse
Affiliation(s)
- Dong-Min Yin
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
49
|
Kamiya A, Sedlak TW, Pletnikov MV. DISC1 Pathway in Brain Development: Exploring Therapeutic Targets for Major Psychiatric Disorders. Front Psychiatry 2012; 3:25. [PMID: 22461775 PMCID: PMC3310233 DOI: 10.3389/fpsyt.2012.00025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 03/06/2012] [Indexed: 01/30/2023] Open
Abstract
Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward to our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of disrupted in schizophrenia 1 (DISC1), a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions.
Collapse
Affiliation(s)
- Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | | | | |
Collapse
|
50
|
Brandon NJ, Sawa A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12:707-22. [PMID: 22095064 DOI: 10.1038/nrn3120] [Citation(s) in RCA: 337] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in our understanding of the underlying genetic architecture of psychiatric disorders has blown away the diagnostic boundaries that are defined by currently used diagnostic manuals. The disrupted in schizophrenia 1 (DISC1) gene was originally discovered at the breakpoint of an inherited chromosomal translocation, which segregates with major mental illnesses. In addition, many biological studies have indicated a role for DISC1 in early neurodevelopment and synaptic regulation. Given that DISC1 is thought to drive a range of endophenotypes that underlie major mental conditions, elucidating the biology of DISC1 may enable the construction of new diagnostic categories for mental illnesses with a more meaningful biological foundation.
Collapse
|