1
|
Crha R, Kozeleková A, Hofrová A, Iľkovičová L, Gašparik N, Kadeřávek P, Hritz J. Hiding in plain sight: Complex interaction patterns between Tau and 14-3-3ζ protein variants. Int J Biol Macromol 2024; 266:130802. [PMID: 38492709 DOI: 10.1016/j.ijbiomac.2024.130802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Tau protein is an intrinsically disordered protein that plays a key role in Alzheimer's disease (AD). In brains of AD patients, Tau occurs abnormally phosphorylated and aggregated in neurofibrillary tangles (NFTs). Together with Tau, 14-3-3 proteins - abundant cytosolic dimeric proteins - were found colocalized in the NFTs. However, so far, the molecular mechanism of the process leading to pathological changes in Tau structure as well as the direct involvement of 14-3-3 proteins are not well understood. Here, we aimed to reveal the effects of phosphorylation by protein kinase A (PKA) on Tau structural preferences and provide better insight into the interaction between Tau and 14-3-3 proteins. We also addressed the impact of monomerization-inducing phosphorylation of 14-3-3 at S58 on the binding to Tau protein. Using multidimensional nuclear magnetic resonance spectroscopy (NMR), chemical cross-linking analyzed by mass spectrometry (MS) and PAGE, we unveiled differences in their binding affinity, stoichiometry, and interfaces with single-residue resolution. We revealed that the interaction between 14-3-3 and Tau proteins is mediated not only via the 14-3-3 amphipathic binding grooves, but also via less specific interactions with 14-3-3 protein surface and, in the case of monomeric 14-3-3, also partially via the exposed dimeric interface. In addition, the hyperphosphorylation of Tau changes its affinity to 14-3-3 proteins. In conclusion, we propose quite complex interaction mode between the Tau and 14-3-3 proteins.
Collapse
Affiliation(s)
- Radek Crha
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Aneta Kozeleková
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Alena Hofrová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lucia Iľkovičová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Norbert Gašparik
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Kadeřávek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
2
|
Abdi G, Jain M, Patil N, Upadhyay B, Vyas N, Dwivedi M, Kaushal RS. 14-3-3 proteins-a moonlight protein complex with therapeutic potential in neurological disorder: in-depth review with Alzheimer's disease. Front Mol Biosci 2024; 11:1286536. [PMID: 38375509 PMCID: PMC10876095 DOI: 10.3389/fmolb.2024.1286536] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/05/2024] [Indexed: 02/21/2024] Open
Abstract
Alzheimer's disease (AD) affects millions of people worldwide and is a gradually worsening neurodegenerative condition. The accumulation of abnormal proteins, such as tau and beta-amyloid, in the brain is a hallmark of AD pathology. 14-3-3 proteins have been implicated in AD pathology in several ways. One proposed mechanism is that 14-3-3 proteins interact with tau protein and modulate its phosphorylation, aggregation, and toxicity. Tau is a protein associated with microtubules, playing a role in maintaining the structural integrity of neuronal cytoskeleton. However, in the context of Alzheimer's disease (AD), an abnormal increase in its phosphorylation occurs. This leads to the aggregation of tau into neurofibrillary tangles, which is a distinctive feature of this condition. Studies have shown that 14-3-3 proteins can bind to phosphorylated tau and regulate its function and stability. In addition, 14-3-3 proteins have been shown to interact with beta-amyloid (Aβ), the primary component of amyloid plaques in AD. 14-3-3 proteins can regulate the clearance of Aβ through the lysosomal degradation pathway by interacting with the lysosomal membrane protein LAMP2A. Dysfunction of lysosomal degradation pathway is thought to contribute to the accumulation of Aβ in the brain and the progression of AD. Furthermore, 14-3-3 proteins have been found to be downregulated in the brains of AD patients, suggesting that their dysregulation may contribute to AD pathology. For example, decreased levels of 14-3-3 proteins in cerebrospinal fluid have been suggested as a biomarker for AD. Overall, these findings suggest that 14-3-3 proteins may play an important role in AD pathology and may represent a potential therapeutic target for the disease. However, further research is needed to fully understand the mechanisms underlying the involvement of 14-3-3 proteins in AD and to explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Gholamareza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Mukul Jain
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Nil Patil
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Bindiya Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Nigam Vyas
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Biophysics and Structural Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Biophysics and Structural Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
3
|
Yang MH, Ho TC, Chang CC, Su YS, Yuan CH, Chuang KP, Tyan YC. Utilizing Proteomic Approaches to Uncover the Neuroprotective Effects of ACE Inhibitors: Implications for Alzheimer's Disease Treatment. Molecules 2023; 28:5938. [PMID: 37630190 PMCID: PMC10459293 DOI: 10.3390/molecules28165938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Two types of angiotensin-converting enzyme (ACE) inhibitors, lisinopril and benazepril HCl, were tested in neuroblastoma cells and found to upregulate low-density lipoprotein-receptor-related protein 1B (LRP1B) and 14-3-3 protein zeta/delta. Additionally, benazepril HCl was found to increase the expression of calreticulin. The upregulation of these proteins by ACE inhibitors may contribute to the amelioration of cognitive deficits in Alzheimer's disease/dementia, as well as the clinically observed deceleration of functional decline in Alzheimer's patients. This discovery suggests that the supplementation of ACE inhibitors may promote neuronal cell survival independently of their antihypertensive effect. Overall, these findings indicate that ACE inhibitors may be a promising avenue for developing effective treatments for Alzheimer's disease.
Collapse
Affiliation(s)
- Ming-Hui Yang
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tzu-Chuan Ho
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chin-Chuan Chang
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yuh-Shan Su
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Cheng-Hui Yuan
- Mass Spectrometry Laboratory, Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Kuo-Pin Chuang
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Companion Animal Research Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Betters RK, Luhmann E, Gottschalk AC, Xu Z, Shin MR, Ptak CP, Fiock KL, Radoshevich LC, Hefti MM. Characterization of the Tau Interactome in Human Brain Reveals Isoform-Dependent Interaction with 14-3-3 Family Proteins. eNeuro 2023; 10:ENEURO.0503-22.2023. [PMID: 36898832 PMCID: PMC10035768 DOI: 10.1523/eneuro.0503-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Despite exhibiting tau phosphorylation similar to Alzheimer's disease (AD), the human fetal brain is remarkably resilient to tau aggregation and toxicity. To identify potential mechanisms for this resilience, we used co-immunoprecipitation (co-IP) with mass spectrometry to characterize the tau interactome in human fetal, adult, and Alzheimer's disease brains. We found significant differences between the tau interactome in fetal and AD brain tissue, with little difference between adult and AD, although these findings are limited by the low throughput and small sample size of these experiments. Differentially interacting proteins were enriched for 14-3-3 domains, and we found that the 14-3-3-β, η, and γ isoforms interacted with phosphorylated tau in Alzheimer's disease but not the fetal brain. Since long isoform (4R) tau is only seen in the adult brain and this is one of the major differences between fetal and AD tau, we tested the ability of our strongest hit (14-3-3-β) to interact with 3R and 4R tau using co-immunoprecipitation, mass photometry, and nuclear magnetic resonance (NMR). We found that 14-3-3-β interacts preferentially with phosphorylated 4R tau, forming a complex consisting of two 14-3-3-β molecules to one tau. By NMR, we mapped 14-3-3 binding regions on tau that span the second microtubule binding repeat, which is unique to 4R tau. Our findings suggest that there are isoform-driven differences between the phospho-tau interactome in fetal and Alzheimer's disease brain, including differences in interaction with the critical 14-3-3 family of protein chaperones, which may explain, in part, the resilience of fetal brain to tau toxicity.
Collapse
Affiliation(s)
- Ryan K Betters
- Department of Pathology
- Interdisciplinary Neuroscience Graduate Program
| | | | | | - Zhen Xu
- Protein and Crystallography Facility
| | - Mallory R Shin
- Department of Pathology
- Interdisciplinary Neuroscience Graduate Program
| | | | | | | | - Marco M Hefti
- Department of Pathology
- Interdisciplinary Neuroscience Graduate Program
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
| |
Collapse
|
5
|
Lu Y. Early increase of cerebrospinal fluid 14-3-3ζ protein in the alzheimer's disease continuum. Front Aging Neurosci 2022; 14:941927. [PMID: 35966774 PMCID: PMC9372587 DOI: 10.3389/fnagi.2022.941927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe earlier research has shown that the 14-3-3ζ is increased in neurofibrillary tangles (NFTs) of human Alzheimer's disease (AD) brains and stimulates the tau phosphorylation. Cerebrospinal fluid (CSF) 14-3-3ζ along the AD continuum remains to be explored.MethodsWe analyzed 113 cognitive normal (CN) controls, 372 patients with mild cognitive impairment (MCI), and 225 patients with AD dementia from the Alzheimer's Disease Neuroimaging Initiative database. CSF 14-3-3ζ protein was measured by Mass Spectrometry.ResultsWe observed higher CSF 14-3-3ζ in the MCI group vs. the CN group and in the AD group vs. the MCI or CN group. The 14-3-3ζ was able to distinguish AD from CN and MCI. High 14-3-3ζ predicted conversion from MCI to AD. In CSF, phosphorylated tau at threonine 181 and total-tau were associated with 14-3-3ζ in MCI and AD groups, and beta-amyloid (Aβ) 42 correlated with 14-3-3ζ in the MCI group. Baseline high 14-3-3ζ was associated with cognitive decline, brain atrophy, glucose hypometabolism, and Aβ deposition in MCI and AD at baseline and follow-up.ConclusionOur findings revealed the potential diagnostic and prognostic utility of CSF 14-3-3ζ in the AD continuum. The 14-3-3ζ could be a promising therapeutic target for the intervention of AD.
Collapse
|
6
|
Han Y, Ye H, Li P, Zeng Y, Yang J, Gao M, Su Z, Huang Y. In vitro characterization and molecular dynamics simulation reveal mechanism of 14-3-3ζ regulated phase separation of the tau protein. Int J Biol Macromol 2022; 208:1072-1081. [PMID: 35381286 DOI: 10.1016/j.ijbiomac.2022.03.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
As a major microtubule-associated protein, tau is involved in the assembly of microtubules in the central nervous system. However, under pathological conditions tau assembles into amyloid filaments. Liquid droplets formed by liquid-liquid phase separation (LLPS) are a recently identified assembly state of tau and may have a major effect on the physiological function of tau and the formation of tau aggregates. 14-3-3 proteins are ubiquitously expressed in various tissues and regulate a wide variety of biological processes. In this work, we demonstrate that 14-3-3ζ is recruited into tau droplets and regulates tau LLPS by in vitro assays. While the mobility of tau molecules inside the droplets is not affected in the presence of 14-3-3ζ, the amount and size of droplets can vary significantly. Mechanistic studies reveal that 14-3-3ζ regulates tau LLPS by electrostatic interactions and hydrophobic interactions with the proline-rich domain and the microtubule-binding domain of tau. Surprisingly, the disordered C-terminal tail rather than the amphipathic binding groove of 14-3-3ζ plays a key role. Our findings not only provide a novel dimension to understand the interactions between 14-3-3 proteins and tau, but also suggest that 14-3-3 proteins may play an important role in regulating the LLPS of their binding partners.
Collapse
Affiliation(s)
- Yue Han
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Haiqiong Ye
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Ping Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yifan Zeng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jing Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
7
|
Calabrese G, Molzahn C, Mayor T. Protein interaction networks in neurodegenerative diseases: from physiological function to aggregation. J Biol Chem 2022; 298:102062. [PMID: 35623389 PMCID: PMC9234719 DOI: 10.1016/j.jbc.2022.102062] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein–protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein–protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| | - Cristen Molzahn
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada
| | - Thibault Mayor
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| |
Collapse
|
8
|
Kitoka K, Skrabana R, Gasparik N, Hritz J, Jaudzems K. NMR Studies of Tau Protein in Tauopathies. Front Mol Biosci 2021; 8:761227. [PMID: 34859051 PMCID: PMC8632555 DOI: 10.3389/fmolb.2021.761227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Tauopathies, including Alzheimer's disease (AD), are the most troublesome of all age-related chronic conditions, as there are no well-established disease-modifying therapies for their prevention and treatment. Spatio-temporal distribution of tau protein pathology correlates with cognitive decline and severity of the disease, therefore, tau protein has become an appealing target for therapy. Current knowledge of the pathological effects and significance of specific species in the tau aggregation pathway is incomplete although more and more structural and mechanistic insights are being gained using biophysical techniques. Here, we review the application of NMR to structural studies of various tau forms that appear in its aggregation process, focusing on results obtained from solid-state NMR. Furthermore, we discuss implications from these studies and their prospective contribution to the development of new tauopathy therapies.
Collapse
Affiliation(s)
- Kristine Kitoka
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Norbert Gasparik
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristaps Jaudzems
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| |
Collapse
|
9
|
Navarro-Lobato I, Masmudi-Martín M, López-Aranda MF, Quiros-Ortega ME, Carretero-Rey M, Garcia-Garrido MF, Gallardo-Martínez C, Martín-Montañez E, Gaona-Romero C, Delgado G, Torres-Garcia L, Terrón-Melguizo J, Posadas S, Muñoz LR, Rios CV, Zoidakis J, Vlahou A, López JC, Khan ZU. RGS14414-Mediated Activation of the 14-3-3ζ in Rodent Perirhinal Cortex Induces Dendritic Arborization, an Increase in Spine Number, Long-Lasting Memory Enhancement, and the Prevention of Memory Deficits. Cereb Cortex 2021; 32:1894-1910. [PMID: 34519346 DOI: 10.1093/cercor/bhab322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The remedy of memory deficits has been inadequate, as all potential candidates studied thus far have shown limited to no effects and a search for an effective strategy is ongoing. Here, we show that an expression of RGS14414 in rat perirhinal cortex (PRh) produced long-lasting object recognition memory (ORM) enhancement and that this effect was mediated through the upregulation of 14-3-3ζ, which caused a boost in BDNF protein levels and increase in pyramidal neuron dendritic arborization and dendritic spine number. A knockdown of the 14-3-3ζ gene in rat or the deletion of the BDNF gene in mice caused complete loss in ORM enhancement and increase in BDNF protein levels and neuronal plasticity, indicating that 14-3-3ζ-BDNF pathway-mediated structural plasticity is an essential step in RGS14414-induced memory enhancement. We further observed that RGS14414 treatment was able to prevent deficits in recognition, spatial, and temporal memory, which are types of memory that are particularly affected in patients with memory dysfunctions, in rodent models of aging and Alzheimer's disease. These results suggest that 14-3-3ζ-BDNF pathway might play an important role in the maintenance of the synaptic structures in PRh that support memory functions and that RGS14414-mediated activation of this pathway could serve as a remedy to treat memory deficits.
Collapse
Affiliation(s)
- Irene Navarro-Lobato
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Mariam Masmudi-Martín
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Manuel F López-Aranda
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - María E Quiros-Ortega
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Marta Carretero-Rey
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - María F Garcia-Garrido
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Carmen Gallardo-Martínez
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Elisa Martín-Montañez
- Department of Pharmacology, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Celia Gaona-Romero
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Gloria Delgado
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Laura Torres-Garcia
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Javier Terrón-Melguizo
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Sinforiano Posadas
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Lourdes Rodríguez Muñoz
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Carlos Vivar Rios
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain
| | - Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Juan C López
- Animal Behavior and Neuroscience Lab., Department of Experimental Psychology, Faculty of Psychology, University of Seville, Seville 41018, Spain
| | - Zafar U Khan
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga 29010, Spain.,Department of Medicine, Faculty of Medicine, University of Malaga, Malaga 29010, Spain.,CIBERNED, Institute of Health Carlos III, Madrid 28031, Spain
| |
Collapse
|
10
|
Neves JF, Petrvalská O, Bosica F, Cantrelle FX, Merzougui H, O'Mahony G, Hanoulle X, Obšil T, Landrieu I. Phosphorylated full-length Tau interacts with 14-3-3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14-3-3 dimer. FEBS J 2020; 288:1918-1934. [PMID: 32979285 DOI: 10.1111/febs.15574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/07/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
Protein-protein interactions (PPIs) remain poorly explored targets for the treatment of Alzheimer's disease. The interaction of 14-3-3 proteins with Tau was shown to be linked to Tau pathology. This PPI is therefore seen as a potential target for Alzheimer's disease. When Tau is phosphorylated by PKA (Tau-PKA), several phosphorylation sites are generated, including two known 14-3-3 binding sites, surrounding the phosphorylated serines 214 and 324 of Tau. The crystal structures of 14-3-3 in complex with peptides surrounding these Tau phosphosites show that both these motifs are anchored in the amphipathic binding groove of 14-3-3. However, in the absence of structural data with the full-length Tau protein, the stoichiometry of the complex or the interface and affinity of the partners is still unclear. In this work, we addressed these points, using a broad range of biophysical techniques. The interaction of the long and disordered Tau-PKA protein with 14-3-3σ is restricted to two short sequences, containing phosphorylated serines, which bind in the amphipathic binding groove of 14-3-3σ. Phosphorylation of Tau is fundamental for the formation of this stable complex, and the affinity of the Tau-PKA/14-3-3σ interaction is in the 1-10 micromolar range. Each monomer of the 14-3-3σ dimer binds one of two different phosphorylated peptides of Tau-PKA, suggesting a 14-3-3/Tau-PKA stoichiometry of 2 : 1, confirmed by analytical ultracentrifugation. These results contribute to a better understanding of this PPI and provide useful insights for drug discovery projects aiming at the modulation of this interaction.
Collapse
Affiliation(s)
- João Filipe Neves
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Olivia Petrvalská
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Francesco Bosica
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - François-Xavier Cantrelle
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Hamida Merzougui
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Gavin O'Mahony
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xavier Hanoulle
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Tomáš Obšil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| |
Collapse
|
11
|
Gu Q, Cuevas E, Raymick J, Kanungo J, Sarkar S. Downregulation of 14-3-3 Proteins in Alzheimer’s Disease. Mol Neurobiol 2019; 57:32-40. [DOI: 10.1007/s12035-019-01754-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/03/2023]
|
12
|
Ojelade SA, Lee TV, Giagtzoglou N, Yu L, Ugur B, Li Y, Duraine L, Zuo Z, Petyuk V, De Jager PL, Bennett DA, Arenkiel BR, Bellen HJ, Shulman JM. cindr, the Drosophila Homolog of the CD2AP Alzheimer's Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis. Cell Rep 2019; 28:1799-1813.e5. [PMID: 31412248 PMCID: PMC6703184 DOI: 10.1016/j.celrep.2019.07.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
The Alzheimer's disease (AD) susceptibility gene, CD2-associated protein (CD2AP), encodes an actin binding adaptor protein, but its function in the nervous system is largely unknown. Loss of the Drosophila ortholog cindr enhances neurotoxicity of human Tau, which forms neurofibrillary tangle pathology in AD. We show that Cindr is expressed in neurons and present at synaptic terminals. cindr mutants show impairments in synapse maturation and both synaptic vesicle recycling and release. Cindr associates and genetically interacts with 14-3-3ζ, regulates the ubiquitin-proteasome system, and affects turnover of Synapsin and the plasma membrane calcium ATPase (PMCA). Loss of cindr elevates PMCA levels and reduces cytosolic calcium. Studies of Cd2ap null mice support a conserved role in synaptic proteostasis, and CD2AP protein levels are inversely related to Synapsin abundance in human postmortem brains. Our results reveal CD2AP neuronal requirements with relevance to AD susceptibility, including for proteostasis, calcium handling, and synaptic structure and function.
Collapse
Affiliation(s)
- Shamsideen A Ojelade
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nikolaos Giagtzoglou
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Berrak Ugur
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yarong Li
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lita Duraine
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vlad Petyuk
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute, Columbia University Medical Center, New York, NY 10032, USA; Cell Circuits Program, Broad Institute, Cambridge, MA 02142, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Benjamin R Arenkiel
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
13
|
14-3-3/Tau Interaction and Tau Amyloidogenesis. J Mol Neurosci 2019; 68:620-630. [PMID: 31062171 DOI: 10.1007/s12031-019-01325-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/22/2019] [Indexed: 01/02/2023]
Abstract
The major function of microtubule-associated protein tau is to promote microtubule assembly in the central nervous system. However, aggregation of abnormally phosphorylated tau is a hallmark of tauopathies. Although the molecular mechanisms of conformational transitions and assembling of tau molecules into amyloid fibril remain largely unknown, several factors have been shown to promote tau aggregation, including mutations, polyanions, phosphorylation, and interactions with other proteins. 14-3-3 proteins are a family of highly conserved, multifunctional proteins that are mainly expressed in the central nervous system. Being a scaffolding protein, 14-3-3 proteins interact with tau and regulate tau phosphorylation by bridging tau with various protein kinases. 14-3-3 proteins also directly regulate tau aggregation via specific and non-specific interactions with tau. In this review, we summarize recent advances in characterization of tau conformation and tau/14-3-3 interaction. We discuss the connection between 14-3-3 binding and tau aggregation with a special emphasis on the regulatory role of 14-3-3 on tau conformation.
Collapse
|
14
|
Papanikolopoulou K, Grammenoudi S, Samiotaki M, Skoulakis EMC. Differential effects of 14-3-3 dimers on Tau phosphorylation, stability and toxicity in vivo. Hum Mol Genet 2019; 27:2244-2261. [PMID: 29659825 DOI: 10.1093/hmg/ddy129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative dementias collectively known as Tauopathies involve aberrant phosphorylation and aggregation of the neuronal protein Tau. The largely neuronal 14-3-3 proteins are also elevated in the central nervous system (CNS) and cerebrospinal fluid of Tauopathy patients, suggesting functional linkage. We use the simplicity and genetic facility of the Drosophila system to investigate in vivo whether 14-3-3s are causal or synergistic with Tau accumulation in precipitating pathogenesis. Proteomic, biochemical and genetic evidence demonstrate that both Drosophila 14-3-3 proteins interact with human wild-type and mutant Tau on multiple sites irrespective of their phosphorylation state. 14-3-3 dimers regulate steady-state phosphorylation of both wild-type and the R406W mutant Tau, but they are not essential for toxicity of either variant. Moreover, 14-3-3 elevation itself is not pathogenic, but recruitment of dimers on accumulating wild-type Tau increases its steady-state levels ostensibly by occluding access to proteases in a phosphorylation-dependent manner. In contrast, the R406W mutant, which lacks a putative 14-3-3 binding site, responds differentially to elevation of each 14-3-3 isoform. Although excess 14-3-3ζ stabilizes the mutant protein, elevated D14-3-3ɛ has a destabilizing effect probably because of altered 14-3-3 dimer composition. Our collective data demonstrate the complexity of 14-3-3/Tau interactions in vivo and suggest that 14-3-3 attenuation is not appropriate ameliorative treatment of Tauopathies. Finally, we suggest that 'bystander' 14-3-3s are recruited by accumulating Tau with the consequences depending on the composition of available dimers within particular neurons and the Tau variant.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Sofia Grammenoudi
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Martina Samiotaki
- Proteomics Facility, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| |
Collapse
|
15
|
Living in Promiscuity: The Multiple Partners of Alpha-Synuclein at the Synapse in Physiology and Pathology. Int J Mol Sci 2019; 20:ijms20010141. [PMID: 30609739 PMCID: PMC6337145 DOI: 10.3390/ijms20010141] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Alpha-synuclein (α-syn) is a small protein that, in neurons, localizes predominantly to presynaptic terminals. Due to elevated conformational plasticity, which can be affected by environmental factors, in addition to undergoing disorder-to-order transition upon interaction with different interactants, α-syn is counted among the intrinsically disordered proteins (IDPs) family. As with many other IDPs, α-syn is considered a hub protein. This function is particularly relevant at synaptic sites, where α-syn is abundant and interacts with many partners, such as monoamine transporters, cytoskeletal components, lipid membranes, chaperones and synaptic vesicles (SV)-associated proteins. These protein–protein and protein–lipid membrane interactions are crucial for synaptic functional homeostasis, and alterations in α-syn can cause disruption of this complex network, and thus a failure of the synaptic machinery. Alterations of the synaptic environment or post-translational modification of α-syn can induce its misfolding, resulting in the formation of oligomers or fibrillary aggregates. These α-syn species are thought to play a pathological role in neurodegenerative disorders with α-syn deposits such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are referred to as synucleinopathies. Here, we aim at revising the complex and promiscuous role of α-syn at synaptic terminals in order to decipher whether α-syn molecular interactants may influence its conformational state, contributing to its aggregation, or whether they are just affected by it.
Collapse
|
16
|
Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction. PLoS One 2017; 12:e0178933. [PMID: 28575131 PMCID: PMC5456370 DOI: 10.1371/journal.pone.0178933] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/22/2017] [Indexed: 11/19/2022] Open
Abstract
Abundant regulatory 14-3-3 proteins have an extremely wide interactome and coordinate multiple cellular events via interaction with specifically phosphorylated partner proteins. Notwithstanding the key role of 14-3-3/phosphotarget interactions in many physiological and pathological processes, they are dramatically underexplored. Here, we focused on the 14-3-3 interaction with human Tau protein associated with the development of several neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Among many known phosphorylation sites within Tau, protein kinase A (PKA) phosphorylates several key residues of Tau and induces its tight interaction with 14-3-3 proteins. However, the stoichiometry and mechanism of 14-3-3 interaction with phosphorylated Tau (pTau) are not clearly elucidated. In this work, we describe a simple bacterial co-expression system aimed to facilitate biochemical and structural studies on the 14-3-3/pTau interaction. We show that dual co-expression of human fetal Tau with PKA in Escherichia coli results in multisite Tau phosphorylation including also naturally occurring sites which were not previously considered in the context of 14-3-3 binding. Tau protein co-expressed with PKA displays tight functional interaction with 14-3-3 isoforms of a different type. Upon triple co-expression with 14-3-3 and PKA, Tau protein could be co-purified with 14-3-3 and demonstrates complex which is similar to that formed in vitro between individual 14-3-3 and pTau obtained from dual co-expression. Although used in this study for the specific case of the previously known 14-3-3/pTau interaction, our co-expression system may be useful to study of other selected 14-3-3/phosphotarget interactions and for validations of 14-3-3 complexes identified by other methods.
Collapse
|
17
|
Sluchanko NN, Gusev NB. Moonlighting chaperone‐like activity of the universal regulatory 14‐3‐3 proteins. FEBS J 2017; 284:1279-1295. [DOI: 10.1111/febs.13986] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/20/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Nikolai N. Sluchanko
- Laboratory of Structural Biochemistry of Proteins A. N. Bach Institute of Biochemistry Federal Research Center of Biotechnology of the Russian Academy of Sciences Moscow Russia
| | - Nikolai B. Gusev
- Department of Biochemistry School of Biology Moscow State University Russia
| |
Collapse
|
18
|
Lucke-Wold BP, Turner RC, Logsdon AF, Bailes JE, Huber JD, Rosen CL. Linking traumatic brain injury to chronic traumatic encephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development. J Neurotrauma 2014; 31:1129-1138. [PMID: 24499307 PMCID: PMC4089022 DOI: 10.1089/neu.2013.3303] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Significant attention has recently been drawn to the potential link between head trauma and the development of neurodegenerative disease, namely chronic traumatic encephalopathy (CTE). The acute neurotrauma associated with sports-related concussions in athletes and blast-induced traumatic brain injury in soldiers elevates the risk for future development of chronic neurodegenerative diseases such as CTE. CTE is a progressive disease distinguished by characteristic tau neurofibrillary tangles (NFTs) and, occasionally, transactive response DNA binding protein 43 (TDP43) oligomers, both of which have a predilection for perivascular and subcortical areas near reactive astrocytes and microglia. The disease is currently only diagnosed postmortem by neuropathological identification of NFTs. A recent workshop sponsored by National Institute of Neurological Disorders and Stroke emphasized the need for premortem diagnosis, to better understand disease pathophysiology and to develop targeted treatments. In order to accomplish this objective, it is necessary to discover the mechanistic link between acute neurotrauma and the development of chronic neurodegenerative and neuropsychiatric disorders such as CTE. In this review, we briefly summarize what is currently known about CTE development and pathophysiology, and subsequently discuss injury-induced pathways that warrant further investigation. Understanding the mechanistic link between acute brain injury and chronic neurodegeneration will facilitate the development of appropriate diagnostic and therapeutic options for CTE and other related disorders.
Collapse
Affiliation(s)
- Brandon Peter Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ryan Coddington Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Aric Flint Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Julian Edwin Bailes
- Department of Neurosurgery, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Jason Delwyn Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Charles Lee Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
19
|
Qureshi HY, Li T, MacDonald R, Cho CM, Leclerc N, Paudel HK. Interaction of 14-3-3ζ with microtubule-associated protein tau within Alzheimer's disease neurofibrillary tangles. Biochemistry 2013; 52:6445-55. [PMID: 23962087 DOI: 10.1021/bi400442d] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of abnormal, straight filaments and paired helical filaments (PHFs) that are coated with amorphous aggregates. When PHFs are treated with alkali, they untwist and form filaments with a ribbonlike morphology. Tau protein is the major component of all of these ultrastructures. 14-3-3ζ is present in NFTs and is significantly upregulated in AD brain. The molecular basis of the association of 14-3-3ζ within NFTs and the pathological significance of its association are not known. In this study, we have found that 14-3-3ζ is copurified and co-immunoprecipitates with tau from NFTs of AD brain extract. In vitro, tau binds to both phosphorylated and nonphosphorylated tau. When incubated with 14-3-3ζ, tau forms amorphous aggregates, single-stranded, straight filaments, ribbonlike filaments, and PHF-like filaments, all of which resemble the corresponding ultrastructures found in AD brain. Immuno-electron microscopy determined that both tau and 14-3-3ζ are present in these ultrastructures and that they are formed in an incubation time-dependent manner. Amorphous aggregates are formed first. As the incubation time increases, the size of amorphous aggregates increases and they are incorporated into single-stranded filaments. Single-stranded filaments laterally associate to form double-stranded, ribbonlike, and PHF-like filaments. Both tau and phosphorylated tau aggregate in a similar manner when they are incubated with 14-3-3ζ. Our data suggest that 14-3-3ζ has a role in the fibrillization of tau in AD brain, and that tau phosphorylation does not affect 14-3-3ζ-induced tau aggregation.
Collapse
Affiliation(s)
- Hamid Y Qureshi
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital , 3755 Côte-Sainte-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | |
Collapse
|
20
|
Hashiguchi M, Hashiguchi T. Kinase–Kinase Interaction and Modulation of Tau Phosphorylation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:121-60. [DOI: 10.1016/b978-0-12-405210-9.00004-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Umahara T, Uchihara T, Iwamoto T. Structure-oriented review of 14-3-3 protein isoforms in geriatric neuroscience. Geriatr Gerontol Int 2012; 12:586-99. [PMID: 22672672 DOI: 10.1111/j.1447-0594.2012.00860.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the possible relevance of 14-3-3 proteins in geriatric neuroscience. 14-3-3 proteins are mainly localized in the synapses and neuronal cytoplasm. These proteins regulate intracellular signal cascades for differentiation, development, growth, apoptosis and survival. Seven isoforms have so far been identified in mammals. The binding motifs and potential functions of 14-3-3 proteins are now recognized to have a wide range of functional relevance. First, we provide a brief summary of the molecular structure and multiple functions of 14-3-3 proteins. Second, we review the involvement of 14-3-3 proteins in common diseases of geriatric neurology, such as Alzheimer's disease and tauopathies, Parkinson's disease and α-synucleinopathies, Huntington's disease and polyglutamine diseases, Creutzfeldt-Jakob disease and prion diseases, cerebral infarction, and atherosclerosis. Finally, we discuss the immunohistochemical localization of 14-3-3 proteins and its isoforms during the postnatal development of rat brains as a basis for understanding adult neurogenesis. The elucidation of the isoform-dependent functions of 14-3-3 proteins with regard to brain development might be promising for the future development of novel therapeutic interventions for common diseases of geriatric neurology.
Collapse
Affiliation(s)
- Takahiko Umahara
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | | | | |
Collapse
|
22
|
Abstract
Tauopathies are age-related neurodegenerative diseases that are characterized by the presence of aggregates of abnormally phosphorylated tau. As tau was originally discovered as a microtubule-associated protein, it has been hypothesized that neurodegeneration results from a loss of the ability of tau to associate with microtubules. However, tau has been found to have other functions aside from the promotion and stabilization of microtubule assembly. It is conceivable that such functions may be affected by the abnormal phosphorylation of tau and might have consequences for neuronal function or viability. This chapter provides an overview of tau structure, functions, and its involvement in neurodegenerative diseases.
Collapse
|
23
|
Sluchanko NN, Gusev NB. 14-3-3 proteins and regulation of cytoskeleton. BIOCHEMISTRY (MOSCOW) 2011; 75:1528-46. [PMID: 21417993 DOI: 10.1134/s0006297910130031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proteins of the 14-3-3 family are universal adapters participating in multiple processes running in the cell. We describe the structure, isoform composition, and distribution of 14-3-3 proteins in different tissues. Different elements of 14-3-3 structure important for dimer formation and recognition of protein targets are analyzed in detail. Special attention is paid to analysis of posttranslational modifications playing important roles in regulation of 14-3-3 function. The data of the literature concerning participation of 14-3-3 in regulation of intercellular contacts and different elements of cytoskeleton formed by microfilaments are analyzed. We also describe participation of 14-3-3 in regulation of small G-proteins and protein kinases important for proper functioning of cytoskeleton. The data on the interaction of 14-3-3 with different components of microtubules are presented, and the probable role of 14-3-3 in developing of certain neurodegenerative diseases is discussed. The data of the literature concerning the role of 14-3-3 in formation and normal functioning of intermediate filaments are also reviewed. It is concluded that due to its adapter properties 14-3-3 plays an important role in cytoskeleton regulation. The cytoskeletal proteins that are abundant in the cell might compete with the other protein targets of 14-3-3 and therefore can indirectly regulate many intracellular processes that are dependent on 14-3-3.
Collapse
Affiliation(s)
- N N Sluchanko
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Russia
| | | |
Collapse
|
24
|
14-3-3 proteins in neurodegeneration. Semin Cell Dev Biol 2011; 22:696-704. [PMID: 21920445 DOI: 10.1016/j.semcdb.2011.08.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/11/2011] [Indexed: 11/23/2022]
Abstract
Among the first reported functions of 14-3-3 proteins was the regulation of tyrosine hydroxylase (TH) activity suggesting a possible involvement of 14-3-3 proteins in Parkinson's disease. Since then the relevance of 14-3-3 proteins in the pathogenesis of chronic as well as acute neurodegenerative diseases, including Alzheimer's disease, polyglutamine diseases, amyotrophic lateral sclerosis and stroke has been recognized. The reported function of 14-3-3 proteins in this context are as diverse as the mechanism involved in neurodegeneration, reaching from basal cellular processes like apoptosis, over involvement in features common to many neurodegenerative diseases, like protein stabilization and aggregation, to very specific processes responsible for the selective vulnerability of cellular populations in single neurodegenerative diseases. Here, we review what is currently known of the function of 14-3-3 proteins in nervous tissue focussing on the properties of 14-3-3 proteins important in neurodegenerative disease pathogenesis.
Collapse
|
25
|
Sluchanko NN, Sudnitsyna MV, Chernik IS, Seit-Nebi AS, Gusev NB. Phosphomimicking mutations of human 14-3-3ζ affect its interaction with tau protein and small heat shock protein HspB6. Arch Biochem Biophys 2011; 506:24-34. [DOI: 10.1016/j.abb.2010.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 01/20/2023]
|
26
|
Mondragón-Rodríguez S, Basurto-Islas G, Lee HG, Perry G, Zhu X, Castellani RJ, Smith MA. Causes versus effects: the increasing complexities of Alzheimer's disease pathogenesis. Expert Rev Neurother 2010; 10:683-91. [PMID: 20420489 PMCID: PMC2922904 DOI: 10.1586/ern.10.27] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amyloid plaques and neurofibrillary tangles are the hallmarks of Alzheimer's disease and have been the focus of disease etiology and pathogenesis. However, in the larger picture of a complex disease, the precise etiology of the lesions per se, as well as the clinical disease, remain to be defined. In this regard, to date no single process has been identified as a useful target and treatment efforts have shown no meaningful progress. Therefore, alternative ideas that may lead to new and effective treatment options are much needed.
Collapse
Affiliation(s)
| | | | - Hyoung-gon Lee
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - George Perry
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
- College of Sciences, University of Texas at San Antonio, TX, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | - Mark A Smith
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| |
Collapse
|
27
|
Sluchanko NN, Seit-Nebi AS, Gusev NB. Phosphorylation of more than one site is required for tight interaction of human tau protein with 14-3-3zeta. FEBS Lett 2009; 583:2739-42. [PMID: 19647741 DOI: 10.1016/j.febslet.2009.07.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/07/2009] [Accepted: 07/24/2009] [Indexed: 02/05/2023]
Abstract
Serine residues phosphorylated by protein kinase A (PKA) in the shortest isoform of human tau protein (tau3) were sequentially replaced by alanine and interaction of phosphorylated tau3 and its mutants with 14-3-3 was investigated. Mutation S156A slightly decreased interaction of phosphorylated tau3 with 14-3-3. Double mutations S156A/S267A and especially S156A/S235A, strongly inhibited interaction of phosphorylated tau3 with 14-3-3. Thus, two sites located in the Pro-rich region and in the pseudo repeats of tau3 are involved in phosphorylation-dependent interaction of tau3 with 14-3-3. The state of tau3 phosphorylation affects the mode of 14-3-3 binding and by this means might modify tau filament formation.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | |
Collapse
|
28
|
Abstract
In this short review, I will focus on how a unique tau gene may produce many tau isoforms through alternative splicing and how the phosphorylation of these isoforms by different kinases may affect their activity and behaviour. Indeed, each of the different tau isoforms may play a distinct role under both physiological and pathological conditions. Thus, I will discuss whether a tau code exists that might explain the involvement of different tau isoforms in different cellular functions.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|