1
|
Marin TL, Wilson CG, Ramirez ML, Sun W, Malhotra A, Gongol B. AMPK Phosphorylates LMX1b to Regulate a Brainstem Neurogenic Network Important for Control of Breathing in Neonatal Mice. Int J Mol Sci 2024; 26:213. [PMID: 39796072 PMCID: PMC11720625 DOI: 10.3390/ijms26010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Ventilatory drive is modulated by a variety of neurochemical inputs that converge on spatially oriented clusters of cells within the brainstem. This regulation is required to maintain energy homeostasis and is essential to sustain life across all mammalian organisms. Therefore, the anatomical orientation of these cellular clusters during development must have a defined mechanistic basis with redundant genomic variants. Failure to completely develop these features causes several conditions including apnea of prematurity (AOP) and sudden infant death syndrome (SIDS). AOP is associated with many adverse outcomes including increased risk of interventricular hemorrhage. However, there are no pharmacological interventions that reduce SIDS and AOP prevalence by promoting brainstem development. AMP-activated protein kinase (AMPK) is a kinase that regulates ventilatory control to maintain homeostasis. This study identifies a signaling axis in which the pharmacological activation of AMPK in vivo via metformin in brainstem ventilatory control centers results in the phosphorylation of LIM homeobox transcription factor 1-beta (Lmx1b), a key player in dorsal-ventral patterning during fetal development. The phosphorylation of Lmx1b transactivates a neurogenic interactome important for the development and regulation of ventilatory control centers. These findings highlight the potential for metformin in the treatment and prevention of AOP.
Collapse
Affiliation(s)
- Traci L. Marin
- Department of Respiratory Therapy, Victor Valley College, Victorville, CA 92395, USA
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Christopher G. Wilson
- Department of Basic Sciences, Division of Physiology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Miguel Lopez Ramirez
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Wei Sun
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- VA San Deigo Medical Center, San Diego, CA 92161, USA
| | - Atul Malhotra
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Brendan Gongol
- Department of Respiratory Therapy, Victor Valley College, Victorville, CA 92395, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92697, USA
| |
Collapse
|
2
|
Chen Y, Wang L, Guo F, Dai X, Zhang X. Epigenetic reprogramming during the maternal-to-zygotic transition. MedComm (Beijing) 2023; 4:e331. [PMID: 37547174 PMCID: PMC10397483 DOI: 10.1002/mco2.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
After fertilization, sperm and oocyte fused and gave rise to a zygote which is the beginning of a new life. Then the embryonic development is monitored and regulated precisely from the transition of oocyte to the embryo at the early stage of embryogenesis, and this process is termed maternal-to-zygotic transition (MZT). MZT involves two major events that are maternal components degradation and zygotic genome activation. The epigenetic reprogramming plays crucial roles in regulating the process of MZT and supervising the normal development of early development of embryos. In recent years, benefited from the rapid development of low-input epigenome profiling technologies, new epigenetic modifications are found to be reprogrammed dramatically and may play different roles during MZT whose dysregulation will cause an abnormal development of embryos even abortion at various stages. In this review, we summarized and discussed the important novel findings on epigenetic reprogramming and the underlying molecular mechanisms regulating MZT in mammalian embryos. Our work provided comprehensive and detailed references for the in deep understanding of epigenetic regulatory network in this key biological process and also shed light on the critical roles for epigenetic reprogramming on embryonic failure during artificial reproductive technology and nature fertilization.
Collapse
Affiliation(s)
- Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| |
Collapse
|
3
|
Dynamic nucleosome organization after fertilization reveals regulatory factors for mouse zygotic genome activation. Cell Res 2022; 32:801-813. [PMID: 35428874 PMCID: PMC9437020 DOI: 10.1038/s41422-022-00652-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractChromatin remodeling is essential for epigenome reprogramming after fertilization. However, the underlying mechanisms of chromatin remodeling remain to be explored. Here, we investigated the dynamic changes in nucleosome occupancy and positioning in pronucleus-stage zygotes using ultra low-input MNase-seq. We observed distinct features of inheritance and reconstruction of nucleosome positioning in both paternal and maternal genomes. Genome-wide de novo nucleosome occupancy in the paternal genome was observed as early as 1 h after the injection of sperm into ooplasm. The nucleosome positioning pattern was continually rebuilt to form nucleosome-depleted regions (NDRs) at promoters and transcription factor (TF) binding sites with differential dynamics in paternal and maternal genomes. NDRs formed more quickly on the promoters of genes involved in zygotic genome activation (ZGA), and this formation is closely linked to histone acetylation, but not transcription elongation or DNA replication. Importantly, we found that NDR establishment on the binding motifs of specific TFs might be associated with their potential pioneer functions in ZGA. Further investigations suggested that the predicted factors MLX and RFX1 played important roles in regulating minor and major ZGA, respectively. Our data not only elucidate the nucleosome positioning dynamics in both male and female pronuclei following fertilization, but also provide an efficient method for identifying key transcription regulators during development.
Collapse
|
4
|
Laseca N, Molina A, Ramón M, Valera M, Azcona F, Encina A, Demyda-Peyrás S. Fine-Scale Analysis of Runs of Homozygosity Islands Affecting Fertility in Mares. Front Vet Sci 2022; 9:754028. [PMID: 35252415 PMCID: PMC8891756 DOI: 10.3389/fvets.2022.754028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The loss of genetic variability in livestock populations bred under strict selection processes is a growing concern, as it may lead to increased inbreeding values and lower fertility, as a consequence of the “inbreeding depression” effect. This is particularly important in horses, where inbreeding levels tend to rise as individuals become more and more closely related. In this study, we evaluated the effect of increased inbreeding levels on mare fertility by combining an SNP-based genomic approach using runs of homozygosity and the estimation of genetic breeding values for reproductive traits in a large population of Pura Raza Española mares. Our results showed a negative correlation between whole-genome homozygosity and fertility estimated breeding values (EBVs) at the genome level (ρ = −0.144). However, the analysis at chromosome level revealed a wide variability, with some chromosomes showing higher correlations than others. Interestingly, the correlation was stronger (−0.241) when we repeated the analysis in a reduced dataset including the 10% most and least fertile individuals, where the latter showed an increase in average inbreeding values (FROH) of around 30%. We also found 41 genomic regions (ROHi, runs of homozygosity islands) where homozygosity increased 100-fold, 13 of which were significantly associated with fertility after cross-validation. These regions encompassed 17 candidate genes previously related to oocyte and embryo development in several species. Overall, we demonstrated the relationship between increased homozygosis at the genomic level and fertility in mares. Our findings may help to deal with the occurrence of inbreeding depression, as well as further our understanding of the mechanisms underlying fertility in mares.
Collapse
Affiliation(s)
- Nora Laseca
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Molina
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Ramón
- Cersyra de Valdepeñas, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal Castilla La Mancha, Tomelloso, Spain
| | - Mercedes Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
| | - Florencia Azcona
- IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ana Encina
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
- Asociación Nacional de Criadores de Caballos de Pura Raza Española, Sevilla, Spain
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET LA PLATA), La Plata, Argentina
- *Correspondence: Sebastián Demyda-Peyrás
| |
Collapse
|
5
|
Issac J, Raveendran PS, Das AV. RFX1: a promising therapeutic arsenal against cancer. Cancer Cell Int 2021; 21:253. [PMID: 33964962 PMCID: PMC8106159 DOI: 10.1186/s12935-021-01952-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Regulatory factor X1 (RFX1) is an evolutionary conserved transcriptional factor that influences a wide range of cellular processes such as cell cycle, cell proliferation, differentiation, and apoptosis, by regulating a number of target genes that are involved in such processes. On a closer look, these target genes also play a key role in tumorigenesis and associated events. Such observations paved the way for further studies evaluating the role of RFX1 in cancer. These studies were indispensable due to the failure of conventional chemotherapeutic drugs to target key cellular hallmarks such as cancer stemness, cellular plasticity, enhanced drug efflux, de-regulated DNA repair machinery, and altered pathways evading apoptosis. In this review, we compile significant evidence for the tumor-suppressive activities of RFX1 while also analyzing its oncogenic potential in some cancers. RFX1 induction decreased cellular proliferation, modulated the immune system, induced apoptosis, reduced chemoresistance, and sensitized cancer stem cells for chemotherapy. Thus, our review discusses the pleiotropic function of RFX1 in multitudinous gene regulations, decisive protein–protein interactions, and also its role in regulating key cell signaling events in cancer. Elucidation of these regulatory mechanisms can be further utilized for RFX1 targeted therapy.
Collapse
Affiliation(s)
- Joby Issac
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Pooja S Raveendran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Ani V Das
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
6
|
Lemeille S, Paschaki M, Baas D, Morlé L, Duteyrat JL, Ait-Lounis A, Barras E, Soulavie F, Jerber J, Thomas J, Zhang Y, Holtzman MJ, Kistler WS, Reith W, Durand B. Interplay of RFX transcription factors 1, 2 and 3 in motile ciliogenesis. Nucleic Acids Res 2020; 48:9019-9036. [PMID: 32725242 PMCID: PMC7498320 DOI: 10.1093/nar/gkaa625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cilia assembly is under strict transcriptional control during animal development. In vertebrates, a hierarchy of transcription factors (TFs) are involved in controlling the specification, differentiation and function of multiciliated epithelia. RFX TFs play key functions in the control of ciliogenesis in animals. Whereas only one RFX factor regulates ciliogenesis in C. elegans, several distinct RFX factors have been implicated in this process in vertebrates. However, a clear understanding of the specific and redundant functions of different RFX factors in ciliated cells remains lacking. Using RNA-seq and ChIP-seq approaches we identified genes regulated directly and indirectly by RFX1, RFX2 and RFX3 in mouse ependymal cells. We show that these three TFs have both redundant and specific functions in ependymal cells. Whereas RFX1, RFX2 and RFX3 occupy many shared genomic loci, only RFX2 and RFX3 play a prominent and redundant function in the control of motile ciliogenesis in mice. Our results provide a valuable list of candidate ciliary genes. They also reveal stunning differences between compensatory processes operating in vivo and ex vivo.
Collapse
Affiliation(s)
- Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Marie Paschaki
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Dominique Baas
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Laurette Morlé
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Jean-Luc Duteyrat
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Aouatef Ait-Lounis
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Emmanuèle Barras
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Fabien Soulavie
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Julie Jerber
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Joëlle Thomas
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Yong Zhang
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Holtzman
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - W Stephen Kistler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Bénédicte Durand
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| |
Collapse
|
7
|
Patir A, Fraser AM, Barnett MW, McTeir L, Rainger J, Davey MG, Freeman TC. The transcriptional signature associated with human motile cilia. Sci Rep 2020; 10:10814. [PMID: 32616903 PMCID: PMC7331728 DOI: 10.1038/s41598-020-66453-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Cilia are complex microtubule-based organelles essential to a range of processes associated with embryogenesis and tissue homeostasis. Mutations in components of these organelles or those involved in their assembly may result in a diverse set of diseases collectively known as ciliopathies. Accordingly, many cilia-associated proteins have been described, while those distinguishing cilia subtypes are poorly defined. Here we set out to define genes associated with motile cilia in humans based on their transcriptional signature. To define the signature, we performed network deconvolution of transcriptomics data derived from tissues possessing motile ciliated cell populations. For each tissue, genes coexpressed with the motile cilia-associated transcriptional factor, FOXJ1, were identified. The consensus across tissues provided a transcriptional signature of 248 genes. To validate these, we examined the literature, databases (CilDB, CentrosomeDB, CiliaCarta and SysCilia), single cell RNA-Seq data, and the localisation of mRNA and proteins in motile ciliated cells. In the case of six poorly characterised signature genes, we performed new localisation experiments on ARMC3, EFCAB6, FAM183A, MYCBPAP, RIBC2 and VWA3A. In summary, we report a set of motile cilia-associated genes that helps shape our understanding of these complex cellular organelles.
Collapse
Affiliation(s)
- Anirudh Patir
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Amy M Fraser
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Mark W Barnett
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Lynn McTeir
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Joe Rainger
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Megan G Davey
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| |
Collapse
|
8
|
Shan W, Li J, Xu W, Li H, Zuo Z. Critical role of UQCRC1 in embryo survival, brain ischemic tolerance and normal cognition in mice. Cell Mol Life Sci 2019; 76:1381-1396. [PMID: 30666338 PMCID: PMC6421091 DOI: 10.1007/s00018-019-03007-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Ubiquinol cytochrome c reductase core protein I (UQCRC1) is a component of the complex III in the respiratory chain. Its biological functions are unknown. Here, we showed that knockout of UQCRC1 led to embryonic lethality. Disrupting one UQCRC1 allele in mice (heterozygous mice) of both sexes did not affect their growth but reduced UQCRC1 mRNA and protein in the brain. These mice had decreased complex III formation, complex III activity and ATP content in the brain at baseline. They developed worsened neurological outcome after brain ischemia/hypoxia or focal brain ischemia compared with wild-type mice. The ischemic cerebral cortex of the heterozygous mice had decreased mitochondrial membrane potential and ATP content as well as increased free radicals. Also, the heterozygous mice performed poorly in the Barnes maze and novel object recognition tests. Finally, UQCRC1 was expressed abundantly in neurons and astrocytes. These results suggest a critical role of UQCRC1 in embryo survival. UQCRC1 may also be important by forming the complex III to maintain normal brain ischemic tolerance, learning and memory.
Collapse
Affiliation(s)
- Weiran Shan
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA
| | - Jun Li
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA
| | - Wenhao Xu
- Genetically Engineered Murine Model Core, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA.
- Department of Neuroscience and Neurological Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Sugiaman-Trapman D, Vitezic M, Jouhilahti EM, Mathelier A, Lauter G, Misra S, Daub CO, Kere J, Swoboda P. Characterization of the human RFX transcription factor family by regulatory and target gene analysis. BMC Genomics 2018; 19:181. [PMID: 29510665 PMCID: PMC5838959 DOI: 10.1186/s12864-018-4564-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Evolutionarily conserved RFX transcription factors (TFs) regulate their target genes through a DNA sequence motif called the X-box. Thereby they regulate cellular specialization and terminal differentiation. Here, we provide a comprehensive analysis of all the eight human RFX genes (RFX1-8), their spatial and temporal expression profiles, potential upstream regulators and target genes. RESULTS We extracted all known human RFX1-8 gene expression profiles from the FANTOM5 database derived from transcription start site (TSS) activity as captured by Cap Analysis of Gene Expression (CAGE) technology. RFX genes are broadly (RFX1-3, RFX5, RFX7) and specifically (RFX4, RFX6) expressed in different cell types, with high expression in four organ systems: immune system, gastrointestinal tract, reproductive system and nervous system. Tissue type specific expression profiles link defined RFX family members with the target gene batteries they regulate. We experimentally confirmed novel TSS locations and characterized the previously undescribed RFX8 to be lowly expressed. RFX tissue and cell type specificity arises mainly from differences in TSS architecture. RFX transcript isoforms lacking a DNA binding domain (DBD) open up new possibilities for combinatorial target gene regulation. Our results favor a new grouping of the RFX family based on protein domain composition. We uncovered and experimentally confirmed the TFs SP2 and ESR1 as upstream regulators of specific RFX genes. Using TF binding profiles from the JASPAR database, we determined relevant patterns of X-box motif positioning with respect to gene TSS locations of human RFX target genes. CONCLUSIONS The wealth of data we provide will serve as the basis for precisely determining the roles RFX TFs play in human development and disease.
Collapse
Affiliation(s)
| | - Morana Vitezic
- Department of Biology, Bioinformatics Centre, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eeva-Mari Jouhilahti
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anthony Mathelier
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL partnership, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Sougat Misra
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Basic and Medical Biosciences, King's College London, London, UK
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
10
|
Wang B, Qi T, Chen SQ, Ye L, Huang ZS, Li H. RFX1 maintains testis cord integrity by regulating the expression of Itga6 in male mouse embryos. Mol Reprod Dev 2016; 83:606-14. [PMID: 27228460 DOI: 10.1002/mrd.22660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/21/2016] [Indexed: 01/13/2023]
Abstract
Formation and maintenance of testis cords during embryogenesis are essential for establishing testicular structure and function in adults. At least five genes (Wt1, Dhh, Sox8/Sox9, and Dax1) appear to be required for the maintenance of testis cord integrity in mice. Here, we report that RFX1 is specifically expressed in fetal Sertoli cells. Mouse embryos conditionally deficient in Rfx1 (Rfx1(flox/flox) , Amh-Cre) possessed disrupted testis cords, as the basal lamina lining was fragmented or completely absent in some areas of the testes. Spermatogenesis was blocked, leading to complete infertility. Expression of integrin alpha-6 was significantly decreased in Rfx1-deficient testes compared to control testes; indeed, luciferase and chromatin immunoprecipitation assays indicated that RFX1 directly activates transcription of Itga6 (the gene coding for integrin alpha-6). Taken together, RFX1 transcriptionally targets Itga6 in Sertoli cells, thereby, helping maintain the integrity of the basal lamina during testis cord development. Mol. Reprod. Dev. 83: 606-614, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bo Wang
- Department of Infertility and Sexual Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, China
| | - Tao Qi
- Department of Infertility and Sexual Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, China
| | - Shi-Qin Chen
- Assisted Reproductive Center, General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Lei Ye
- Department of Infertility and Sexual Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, China
| | - Zhan-Sen Huang
- Department of Infertility and Sexual Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, China
| | - Hao Li
- Department of Infertility and Sexual Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, China
| |
Collapse
|
11
|
Wu Y, Hu X, Li Z, Wang M, Li S, Wang X, Lin X, Liao S, Zhang Z, Feng X, Wang S, Cui X, Wang Y, Gao F, Hess RA, Han C. Transcription Factor RFX2 Is a Key Regulator of Mouse Spermiogenesis. Sci Rep 2016; 6:20435. [PMID: 26853561 PMCID: PMC4745085 DOI: 10.1038/srep20435] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022] Open
Abstract
The regulatory factor X (RFX) family of transcription factors is crucial for ciliogenesis throughout evolution. In mice, Rfx1-4 are highly expressed in the testis where flagellated sperm are produced, but the functions of these factors in spermatogenesis remain unknown. Here, we report the production and characterization of the Rfx2 knockout mice. The male knockout mice were sterile due to the arrest of spermatogenesis at an early round spermatid step. The Rfx2-null round spermatids detached from the seminiferous tubules, forming large multinucleated giant cells that underwent apoptosis. In the mutants, formation of the flagellum was inhibited at its earliest stage. RNA-seq analysis identified a large number of cilia-related genes and testis-specific genes that were regulated by RFX2. Many of these genes were direct targets of RFX2, as revealed by chromatin immunoprecipitation-PCR assays. These findings indicate that RFX2 is a key regulator of the post-meiotic development of mouse spermatogenic cells.
Collapse
Affiliation(s)
- Yujian Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangjing Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sisi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuxia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shangying Liao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuqiang Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xue Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Si Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rex A Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802-6199, USA
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
12
|
Abstract
Lineage tracing studies have revealed that transcription factors play a cardinal role in pancreatic development, differentiation and function. Three transitions define pancreatic organogenesis, differentiation and maturation. In the primary transition, when pancreatic organogenesis is initiated, there is active proliferation of pancreatic progenitor cells. During the secondary transition, defined by differentiation, there is growth, branching, differentiation and pancreatic cell lineage allocation. The tertiary transition is characterized by differentiated pancreatic cells that undergo further remodeling, including apoptosis, replication and neogenesis thereby establishing a mature organ. Transcription factors function at multiple levels and may regulate one another and auto-regulate. The interaction between extrinsic signals from non-pancreatic tissues and intrinsic transcription factors form a complex gene regulatory network ultimately culminating in the different cell lineages and tissue types in the developing pancreas. Mutations in these transcription factors clinically manifest as subtypes of diabetes mellitus. Current treatment for diabetes is not curative and thus, developmental biologists and stem cell researchers are utilizing knowledge of normal pancreatic development to explore novel therapeutic alternatives. This review summarizes current knowledge of transcription factors involved in pancreatic development and β-cell differentiation in rodents.
Collapse
Affiliation(s)
- Reshmi Dassaye
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Strini Naidoo
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Marlon E Cerf
- b Diabetes Discovery Platform, South African Medical Research Council , Cape Town , South Africa
| |
Collapse
|
13
|
Kistler WS, Baas D, Lemeille S, Paschaki M, Seguin-Estevez Q, Barras E, Ma W, Duteyrat JL, Morlé L, Durand B, Reith W. RFX2 Is a Major Transcriptional Regulator of Spermiogenesis. PLoS Genet 2015; 11:e1005368. [PMID: 26162102 PMCID: PMC4498915 DOI: 10.1371/journal.pgen.1005368] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/17/2015] [Indexed: 11/21/2022] Open
Abstract
Spermatogenesis consists broadly of three phases: proliferation of diploid germ cells, meiosis, and finally extensive differentiation of the haploid cells into effective delivery vehicles for the paternal genome. Despite detailed characterization of many haploid developmental steps leading to sperm, only fragmentary information exists on the control of gene expression underlying these processes. Here we report that the RFX2 transcription factor is a master regulator of genes required for the haploid phase. A targeted mutation of Rfx2 was created in mice. Rfx2-/- mice are perfectly viable but show complete male sterility. Spermatogenesis appears to progress unperturbed through meiosis. However, haploid cells undergo a complete arrest in spermatid development just prior to spermatid elongation. Arrested cells show altered Golgi apparatus organization, leading to a deficit in the generation of a spreading acrosomal cap from proacrosomal vesicles. Arrested cells ultimately merge to form giant multinucleated cells released to the epididymis. Spermatids also completely fail to form the flagellar axoneme. RNA-Seq analysis and ChIP-Seq analysis identified 139 genes directly controlled by RFX2 during spermiogenesis. Gene ontology analysis revealed that genes required for cilium function are specifically enriched in down- and upregulated genes showing that RFX2 allows precise temporal expression of ciliary genes. Several genes required for cell adhesion and cytoskeleton remodeling are also downregulated. Comparison of RFX2-regulated genes with those controlled by other major transcriptional regulators of spermiogenesis showed that each controls independent gene sets. Altogether, these observations show that RFX2 plays a major and specific function in spermiogenesis. Failure of spermatogenesis, which is presumed to often result from genetic defects, is a common cause of male sterility. Although numerous genes associated with defects in male spermatogenesis have been identified, numerous cases of genetic male infertility remain unelucidated. We report here that the transcription factor RFX2 is a master regulator of gene expression programs required for progression through the haploid phase of spermatogenesis. Male RFX2-deficient mice are completely sterile. Spermatogenesis progresses through meiosis, but haploid cells undergo a complete block in development just prior to spermatid elongation. Gene expression profiling and ChIP-Seq analysis revealed that RFX2 controls key pathways implicated in cilium/flagellum formation, as well as genes implicated in microtubule and vesicle associated transport. The set of genes activated by RFX2 in spermatids exhibits virtually no overlap with those controlled by other known transcriptional regulators of spermiogenesis, establishing RFX2 as an essential new player in this developmental process. RFX2-deficient mice should therefore represent a valuable new model for deciphering the regulatory networks that direct sperm formation, and thereby contribute to the identification of causes of human male infertility.
Collapse
Affiliation(s)
- W. Stephen Kistler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail: (WSK); (BD)
| | - Dominique Baas
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Marie Paschaki
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Queralt Seguin-Estevez
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Emmanuèle Barras
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Wenli Ma
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jean-Luc Duteyrat
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Laurette Morlé
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, Villeurbanne, Lyon, France
- * E-mail: (WSK); (BD)
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| |
Collapse
|
14
|
Bianchi MG, Bardelli D, Chiu M, Bussolati O. Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cell Mol Life Sci 2014; 71:2001-15. [PMID: 24162932 PMCID: PMC11113519 DOI: 10.1007/s00018-013-1484-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
Abstract
Excitatory amino acid transporters (EAATs) are high-affinity Na(+)-dependent carriers of major importance in maintaining glutamate homeostasis in the central nervous system. EAAT3, the human counterpart of the rodent excitatory amino acid carrier 1 (EAAC1), is encoded by the SLC1A1 gene. EAAT3/EAAC1 is ubiquitously expressed in the brain, mostly in neurons but also in other cell types, such as oligodendrocyte precursors. While most of the glutamate released in the synapses is taken up by the "glial-type" EAATs, EAAT2 (GLT-1 in rodents) and EAAT1 (GLAST), the functional role of EAAT3/EAAC1 is related to the subtle regulation of glutamatergic transmission. Moreover, because it can also transport cysteine, EAAT3/EAAC1 is believed to be important for the synthesis of intracellular glutathione and subsequent protection from oxidative stress. In contrast to other EAATs, EAAT3/EAAC1 is mostly intracellular, and several mechanisms have been described for the rapid regulation of the membrane trafficking of the transporter. Moreover, the carrier interacts with several proteins, and this interaction modulates transport activity. Much less is known about the slow regulatory mechanisms acting on the expression of the transporter, although several recent reports have identified changes in EAAT3/EAAC1 protein level and activity related to modulation of its expression at the gene level. Moreover, EAAT3/EAAC1 expression is altered in pathological conditions, such as hypoxia/ischemia, multiple sclerosis, schizophrenia, and epilepsy. This review summarizes these results and provides an overall picture of changes in EAAT3/EAAC1 expression in health and disease.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
- Unit of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Donatella Bardelli
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Martina Chiu
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Ovidio Bussolati
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| |
Collapse
|
15
|
Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014; 141:1427-41. [DOI: 10.1242/dev.074666] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cilia play many essential roles in fluid transport and cellular locomotion, and as sensory hubs for a variety of signal transduction pathways. Despite having a conserved basic morphology, cilia vary extensively in their shapes and sizes, ultrastructural details, numbers per cell, motility patterns and sensory capabilities. Emerging evidence indicates that this diversity, which is intimately linked to the different functions that cilia perform, is in large part programmed at the transcriptional level. Here, we review our understanding of the transcriptional control of ciliary biogenesis, highlighting the activities of FOXJ1 and the RFX family of transcriptional regulators. In addition, we examine how a number of signaling pathways, and lineage and cell fate determinants can induce and modulate ciliogenic programs to bring about the differentiation of distinct cilia types.
Collapse
Affiliation(s)
- Semil P. Choksi
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Gilbert Lauter
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
16
|
Hsu YC, Liao WC, Kao CY, Chiu IM. Regulation of FGF1 gene promoter through transcription factor RFX1. J Biol Chem 2010; 285:13885-95. [PMID: 20189986 PMCID: PMC2859551 DOI: 10.1074/jbc.m109.081463] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/20/2010] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 1 (FGF1) has been suggested to have an important role in cell growth, proliferation, and neurogenesis. Human FGF1 gene 1B promoter (-540 to +31)-driven green fluorescence (F1BGFP) has been shown to monitor endogenous FGF1 expression. F1BGFP could also be used to isolate neural stem/progenitor cells from embryonic, neonatal, and adult mouse brains or to isolate glioblastoma stem cells (GBM-SCs) from human glioblastoma tissues. Here, we present evidence that transcription factor RFX1 could bind the 18-bp cis-elements (-484 to -467) of the F1B promoter, modulate F1BGFP expression and endogenous FGF1 expression, and further regulate the maintenance of GBM-SCs. These observations were substantiated by using yeast one-hybrid assay, electrophoretic mobility shift assay, chromatin immunoprecipitation assay, gain- and loss-of-function assays, and neurosphere assays. Overexpression of RFX1 was shown to down-regulate FGF-1B mRNA expression and neurosphere formation in human glioblastoma cells, whereas RNA interference knockdown of RFX1 demonstrated the opposite effects. Our findings provide insight into FGF1 gene regulation and suggest that the roles of FGF1 and RFX1 in the maintenance of GBM-SCs. RFX1 may negatively regulate the self-renewal of GBM-SCs through modulating FGF-1B and FGF1 expression levels by binding the 18-bp cis-elements of the F1B promoter.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- From the Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Wei-Chih Liao
- From the Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- the Graduate Program of Biotechnology in Medicine, Institute of Biotechnology, and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Yu Kao
- From the Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- the Graduate Program of Biotechnology in Medicine, Institute of Biotechnology, and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ing-Ming Chiu
- From the Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- the Graduate Program of Biotechnology in Medicine, Institute of Biotechnology, and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- the Department of Internal Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, and
- the Department of Life Sciences, National Chung Hsing University, Taichung 250, Taiwan
| |
Collapse
|