1
|
Tran THM, Wang R, Kim H, Kim YJ. The anti-inflammation and skin-moisturizing effects of Boehmeria tricuspis-mediated biosynthesized gold nanoparticles in human keratinocytes. Front Pharmacol 2023; 14:1258057. [PMID: 37869754 PMCID: PMC10588637 DOI: 10.3389/fphar.2023.1258057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: Recently, nanotechnology has emerged as a potential technique for skin generation, which has several treatment advantages, such as decreased drug cytotoxicity and enhanced skin penetration. Boehmeria tricuspis (BT) belongs to the Urticaceae family and is rich in phenolic and flavonoid compounds. In this study, we biosynthesized gold nanoparticles (BT-AuNPs) using BT extract to explore their anti-inflammatory and skin-moisturizing properties in keratinocytes. Methods: Field-emission transmission electron microscopy, energydispersive X-ray spectrometry, dynamic light scattering, and Fourier-transforminfrared spectroscopy were used to examine the synthesized BT-AuNPs. qRT-PCR, western blot, and ELISA were applied for investigating the effect of BT-AuNPs on anti-inflammation and moisturizing activity in HaCaT cells. Results: At concentrations below 200 μg/mL, BT-AuNPs had no cytotoxic effect on keratinocytes. BT-AuNPs dramatically alleviated the expression and secretion of inflammatory chemokines/cytokine, such as IL-6, IL-8, TARC, CTACK, and RANTES in keratinocytes stimulated by tumor necrosis factor-α/interferon-γ (T + I). These anti-inflammatory properties of BT-AuNPs were regulated by inhibiting the NF-κB and MAPKs signaling pathways. Furthermore, BT-AuNPs greatly promoted hyaluronic acid (HA) production by enhancing the expression of hyaluronic acid synthase genes (HAS1, HAS2, and HAS3) and suppressing the expression of hyaluronidase genes (HYAL1 and HYAL2) in HaCaT cells. Discussion: These results suggest that BT-AuNPs can be used as a promising therapeutic alternative for treating skin inflammation. Our findings provide a potential platform for the use of BT-AuNPs as candidates for treating inflammatory skin diseases and promoting skin health.
Collapse
Affiliation(s)
- Thi Hoa My Tran
- Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Rongbo Wang
- Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung Ang University, Anseong, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
2
|
Wen C, Dechsupa N, Yu Z, Zhang X, Liang S, Lei X, Xu T, Gao X, Hu Q, Innuan P, Kantapan J, Lü M. Pentagalloyl Glucose: A Review of Anticancer Properties, Molecular Targets, Mechanisms of Action, Pharmacokinetics, and Safety Profile. Molecules 2023; 28:4856. [PMID: 37375411 DOI: 10.3390/molecules28124856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Pentagalloyl glucose (PGG) is a natural hydrolyzable gallotannin abundant in various plants and herbs. It has a broad range of biological activities, specifically anticancer activities, and numerous molecular targets. Despite multiple studies available on the pharmacological action of PGG, the molecular mechanisms underlying the anticancer effects of PGG are unclear. Here, we have critically reviewed the natural sources of PGG, its anticancer properties, and underlying mechanisms of action. We found that multiple natural sources of PGG are available, and the existing production technology is sufficient to produce large quantities of the required product. Three plants (or their parts) with maximum PGG content were Rhus chinensis Mill, Bouea macrophylla seed, and Mangifera indica kernel. PGG acts on multiple molecular targets and signaling pathways associated with the hallmarks of cancer to inhibit growth, angiogenesis, and metastasis of several cancers. Moreover, PGG can enhance the efficacy of chemotherapy and radiotherapy by modulating various cancer-associated pathways. Therefore, PGG can be used for treating different human cancers; nevertheless, the data on the pharmacokinetics and safety profile of PGG are limited, and further studies are essential to define the clinical use of PGG in cancer therapies.
Collapse
Affiliation(s)
- Chengli Wen
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou 646000, China
| | - Xu Zhang
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Sicheng Liang
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xianying Lei
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tao Xu
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaolan Gao
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qinxue Hu
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Phattarawadee Innuan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muhan Lü
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Hwang-Bo J, Veerappan K, Moon H, Lee TH, Lee KW, Park J, Chung H. Parnassin, a Novel Therapeutic Peptide, Alleviates Skin Lesions in a DNCB-Induced Atopic Dermatitis Mouse Model. Biomedicines 2023; 11:biomedicines11051389. [PMID: 37239060 DOI: 10.3390/biomedicines11051389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease which requires continuous treatment due to its relapsing nature. The current treatment includes steroids and nonsteroidal agents targeting inflammation but long-term administration causes various side effects such as skin atrophy, hirsutism, hypertension and diarrhea. Thus, there is an unmet need for safer and effective therapeutic agents in the treatment of AD. Peptides are small biomolecule drugs which are highly potent and remarkably have less side effects. Parnassin is a tetrapeptide with predicted anti-microbial activity curated from Parnassius bremeri transcriptome data. In this study, we confirmed the effect of parnassin on AD using a DNCB-induced AD mouse model and TNF-α/IFN-γ-stimulated HaCaT cells. In the AD mouse model, topical administration of parnassin improved skin lesions and symptoms in AD mice, such as epidermal thickening and mast cell infiltration, similar to the existing treatment, dexamethasone, and did not affect body weight, or the size and weight of spleen. In TNF-α/IFN-γ-stimulated HaCaT cells, parnassin inhibited the expression of Th2-type chemokine CCL17 and CCL22 genes by suppressing JAK2 and p38 MAPK signaling kinases and their downstream transcription factor STAT1. Parnassin also significantly reduced the gene expression of TSLP and IL-31, which are pruritus-inducing cytokines. These findings suggested that parnassin alleviates AD-like lesions via its immunomodulatory effects and can be used as a candidate drug for the prevention and treatment of AD because it is safer than existing treatments.
Collapse
Affiliation(s)
| | | | - Hyunhye Moon
- 3BIGS Co., Ltd., Hwaseong 18469, Republic of Korea
| | - Tae-Hoon Lee
- Department of Applied Chemistry, Kyung Hee University, Yongin 17410, Republic of Korea
| | - Kang-Woon Lee
- Holoce Ecosystem Conservation Research Institute, Hweongsung 25257, Republic of Korea
| | | | - Hoyong Chung
- 3BIGS Co., Ltd., Hwaseong 18469, Republic of Korea
| |
Collapse
|
4
|
Zhao C, Qian X, Qin M, Sun X, Yu Q, Liu J, Zhu Q, Wang A. Juglans mandshurica Maximowicz as a traditional medicine: review of its phytochemistry and pharmacological activity in East Asia. J Pharm Pharmacol 2023; 75:33-48. [PMID: 36029200 DOI: 10.1093/jpp/rgac064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/26/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES The conducted search reveals that Juglans mandshurica Maximowicz, called Manchuria walnuts, had many local uses that can be categorized into cancer, dermatosis and acesodyne. KEY FINDINGS Various metabolites including diarylheptanoids, naphthoquinones, and flavonoids (also their glycosides) were reported as bioactive metabolites. The isolated metabolites and extracts from J. mandshurica showed different biological activity including cytotoxicity, anti-inflammation, antimelanotic, anticomplement, anti-HIV, antimicrobial and anti-obesity activity. SUMMARY It is indicated that this review will add value to more scientific research on J. mandshurica and enhance the increased interest in the sustainable commercialization of J. mandshurica. It also leads to the validation of unverified ethnobotanical claims. Future studies on J. mandshurica would be focused to establish the links between the pharmacological activity, bioactive metabolites, and traditional uses.
Collapse
Affiliation(s)
- Chengye Zhao
- School of Pharmacy, Nantong University, Nantong, China
| | - Xunjia Qian
- School of Pharmacy, Nantong University, Nantong, China
| | - Minni Qin
- School of Pharmacy, Nantong University, Nantong, China
| | - Xinyang Sun
- School of Pharmacy, Nantong University, Nantong, China
| | - Qingqing Yu
- School of Pharmacy, Nantong University, Nantong, China
| | - Jianyu Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong, China
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
5
|
Laky K, Kinard JL, Li JM, Moore IN, Lack J, Fischer ER, Kabat J, Latanich R, Zachos NC, Limkar AR, Weissler KA, Thompson RW, Wynn TA, Dietz HC, Guerrerio AL, Frischmeyer-Guerrerio PA. Epithelial-intrinsic defects in TGFβR signaling drive local allergic inflammation manifesting as eosinophilic esophagitis. Sci Immunol 2023; 8:eabp9940. [PMID: 36608150 PMCID: PMC10106118 DOI: 10.1126/sciimmunol.abp9940] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Allergic diseases are a global health challenge. Individuals harboring loss-of-function variants in transforming growth factor-β receptor (TGFβR) genes have an increased prevalence of allergic disorders, including eosinophilic esophagitis. Allergic diseases typically localize to mucosal barriers, implicating epithelial dysfunction as a cardinal feature of allergic disease. Here, we describe an essential role for TGFβ in the control of tissue-specific immune homeostasis that provides mechanistic insight into these clinical associations. Mice expressing a TGFβR1 loss-of-function variant identified in atopic patients spontaneously develop disease that clinically, immunologically, histologically, and transcriptionally recapitulates eosinophilic esophagitis. In vivo and in vitro, TGFβR1 variant-expressing epithelial cells are hyperproliferative, fail to differentiate properly, and overexpress innate proinflammatory mediators, which persist in the absence of lymphocytes or external allergens. Together, our results support the concept that TGFβ plays a fundamental, nonredundant, epithelial cell-intrinsic role in controlling tissue-specific allergic inflammation that is independent of its role in adaptive immunity.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Kinard
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny Min Li
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Lack
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Elizabeth R Fischer
- Electron Microscopy Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel Latanich
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ajinkya R Limkar
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine A Weissler
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W Thompson
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony L Guerrerio
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Kirindage KGIS, Jayasinghe AMK, Han EJ, Jee Y, Kim HJ, Do SG, Fernando IPS, Ahn G. Fucosterol Isolated from Dietary Brown Alga Sargassum horneri Protects TNF-α/IFN-γ-Stimulated Human Dermal Fibroblasts via Regulating Nrf2/HO-1 and NF-κB/MAPK Pathways. Antioxidants (Basel) 2022; 11:antiox11081429. [PMID: 35892631 PMCID: PMC9394315 DOI: 10.3390/antiox11081429] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Sargassum horneri is a well-known edible brown alga that is widely abundant in the sea near China, Korea, and Japan and has a wide range of bioactive compounds. Fucosterol (FST), which is a renowned secondary metabolite in brown algae, was extracted from S. horneri to 70% ethanol, isolated via high-performance liquid chromatography (HPLC), followed by the immiscible liquid-liquid separation, and its structure was confirmed by NMR spectroscopy. The present study was undertaken to investigate the effects of FST against oxidative stress, inflammation, and its mechanism of action in tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated human dermal fibroblast (HDF). FST was biocompatible with HDF cells up to the 120 μM dosage. TNF-α/IFN-γ stimulation significantly decreased HDF viability by notably increasing reactive oxygen species (ROS) production. FST dose-dependently decreased the intracellular ROS production in HDFs. Western blot analysis confirmed a significant increment of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) involvement in FST-treated HDF cells. In addition, the downregulation of inflammatory mediators, molecules related to connective tissue degradation, and tissue inhibitors of metalloproteinases were identified. TNF-α/IFN-γ stimulation in HDF cells increased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) mediators, and its phosphorylation was reduced with the treatment of FST in a dose-dependent manner. Results obtained from western blot analysis of the NF-κB nuclear translocation were supported by immunocytochemistry results. Collectively, the outcomes suggested that FST significantly upregulates the Nrf2/HO-1 signaling and regulates NF-κB/MAPK signaling pathways to minimize the inflammatory responses in TNF-α/IFN-γ-stimulated HDF cells.
Collapse
Affiliation(s)
| | | | - Eui-Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (K.G.I.S.K.); (A.M.K.J.); (E.-J.H.)
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Hyun-Jin Kim
- Research and Development Center, Naturetch Co., Ltd., Cheonnam-si 31257, Korea; (H.-J.K.); (S.G.D.)
| | - Sun Gil Do
- Research and Development Center, Naturetch Co., Ltd., Cheonnam-si 31257, Korea; (H.-J.K.); (S.G.D.)
| | | | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (K.G.I.S.K.); (A.M.K.J.); (E.-J.H.)
- Correspondence: (I.P.S.F.); (G.A.)
| |
Collapse
|
7
|
Song HK, Park SH, Kim HJ, Jang S, Kim T. Spatholobus suberectus Dunn Water Extract Ameliorates Atopic Dermatitis–Like Symptoms by Suppressing Proinflammatory Chemokine Production In Vivo and In Vitro. Front Pharmacol 2022; 13:919230. [PMID: 35795574 PMCID: PMC9251377 DOI: 10.3389/fphar.2022.919230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
S. patholobus suberectus Dunn, a traditional Chinese herbal medicine, has various pharmacological activities, such as anti-inflammatory properties. However, to the best of our knowledge, its therapeutic effect on atopic dermatitis (AD) has not been investigated. In this study, we explored the effect of S. suberectus Dunn water extract (SSWex) on AD in vivo and in vitro. In Dermatophagoides farina extract (DfE)–treated NC/Nga mice, the oral administration of SSWex alleviated AD-like symptoms, such as ear thickness, dermatitis score, epidermal thickness, immune cell infiltration, and levels of AD-related serum parameters (immunoglobulin E, histamine, and proinflammatory chemokines). In HaCaT cells, the production of proinflammatory chemokines induced by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) was inhibited by SSWex pretreatment. SSWex treatment inhibited the phosphorylation of mitogen-activated protein kinase and activation and translocation of transcriptional factors, such as signal transducer and activator of transcription 1 and nuclear factor kappa B in IFN-γ/TNF-α–stimulated HaCaT cells. These results indicate that SSWex may be developed as an efficient therapeutic agent for AD.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sun Haeng Park
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Hye Jin Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Seol Jang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Taesoo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- *Correspondence: Taesoo Kim,
| |
Collapse
|
8
|
Ha Y, Lee WH, Kim JK, Jeon HK, Lee J, Kim YJ. Polyopes affinis Suppressed IFN-γ- and TNF-α-Induced Inflammation in Human Keratinocytes via Down-Regulation of the NF-κB and STAT1 Pathways. Molecules 2022; 27:molecules27061836. [PMID: 35335198 PMCID: PMC8954520 DOI: 10.3390/molecules27061836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Polyopes affinis is a red algal species commonly found on the South coast and near Jeju Island, Korea. This study aimed to determine whether P. affinis extracts can inhibit the pathogenesis of T-helper-2 (Th2)-mediated inflammation in a human keratinocyte cell line of atopic dermatitis (AD). Cells were incubated with 10 ng/mL of interferon gamma (IFN-γ) and 10 ng/mL of tumor necrosis factor-alpha (TNF-α) at various concentrations of PAB (10, 30, and 60 µg/mL) and PAA (100, 500, and 1000 µg/mL) extracts. A gene-ontology (GO)-enrichment analysis revealed that PAB significantly enriched the genes associated with biological processes such as cell adhesion, immune response, inflammation, and chemokine-mediated pathways. PAB suppressed the expression of the secretory proteins and mRNAs that are associated with the thymus and the production of activation-regulated chemokines (TARC/CCL17) and macrophage-derived chemokines (MDC/CCL22). The effect of the extract on mitogen-activated protein kinases (MAPKs) was related to its inhibition of TARC/CCL17 and MDC/CCL22 production by blocking NF-κB and STAT1 activation. These results suggest that seaweed extract may improve AD by regulating pro-inflammatory chemokines. In conclusion, we first confirmed the existence of phloroglucinol, a polyphenol formed from a precursor called phlorotannin, which is present in PAB, and this result proved the possibility of PAB being used as a treatment for AD.
Collapse
Affiliation(s)
- Yuna Ha
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.K.K.)
| | - Won-Hwi Lee
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.K.K.)
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
| | - Jang Kyun Kim
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.K.K.)
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
| | - Hee-Kyung Jeon
- Advanced Energy Materials and Components R&D Group, Korea Institute of Industrial Technology, Busan 46938, Korea;
| | - Jongsung Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi Do, Korea
- Correspondence: (J.L.); (Y.-J.K.); Tel.: +82-32-835-8861 (Y.-J.K.)
| | - Youn-Jung Kim
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.K.K.)
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
- Correspondence: (J.L.); (Y.-J.K.); Tel.: +82-32-835-8861 (Y.-J.K.)
| |
Collapse
|
9
|
Feng G, Bajpai G, Ma P, Koenig A, Bredemeyer A, Lokshina I, Lai L, Förster I, Leuschner F, Kreisel D, Lavine KJ. CCL17 Aggravates Myocardial Injury by Suppressing Recruitment of Regulatory T Cells. Circulation 2022; 145:765-782. [PMID: 35113652 PMCID: PMC8957788 DOI: 10.1161/circulationaha.121.055888] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent studies have established that CCR2 (C-C chemokine receptor type 2) marks proinflammatory subsets of monocytes, macrophages, and dendritic cells that contribute to adverse left ventricle (LV) remodeling and heart failure progression. Elucidation of the effector mechanisms that mediate adverse effects of CCR2+ monocytes, macrophages, and dendritic cells will yield important insights into therapeutic strategies to suppress myocardial inflammation. METHODS We used mouse models of reperfused myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation to investigate CCL17 (C-C chemokine ligand 17). We used Ccl17 knockout mice, flow cytometry, RNA sequencing, biochemical assays, cell trafficking studies, and in vivo cell depletion to identify the cell types that generate CCL17, define signaling pathways that controlled its expression, delineate the functional importance of CCL17 in adverse LV remodeling and heart failure progression, and determine the mechanistic basis by which CCL17 exerts its effects. RESULTS We demonstrated that CCL17 is expressed in CCR2+ macrophages and cluster of differentiation 11b+ conventional dendritic cells after myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation. We clarified the transcriptional signature of CCL17+ macrophages and dendritic cells and identified granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling as a key regulator of CCL17 expression through cooperative activation of STAT5 (signal transducer and activator of transcription 5) and canonical NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) signaling. Ccl17 deletion resulted in reduced LV remodeling, decreased myocardial fibrosis and cardiomyocyte hypertrophy, and improved LV systolic function after myocardial infarction and angiotensin II and phenylephrine infusion. We observed increased abundance of regulatory T cells (Tregs) in the myocardium of injured Ccl17 knockout mice. CCL17 inhibited Treg recruitment through biased activation of CCR4. CCL17 activated Gq signaling and CCL22 (C-C chemokine ligand 22) activated both Gq and ARRB (β-arrestin) signaling downstream of CCR4. CCL17 competitively inhibited CCL22 stimulated ARRB signaling and Treg migration. We provide evidence that Tregs mediated the protective effects of Ccl17 deletion on myocardial inflammation and adverse LV remodeling. CONCLUSIONS These findings identify CCL17 as a proinflammatory mediator of CCR2+ macrophages and dendritic cells and suggest that inhibition of CCL17 may serve as an effective strategy to promote Treg recruitment and suppress myocardial inflammation.
Collapse
Affiliation(s)
- Guoshuai Feng
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Geetika Bajpai
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Pan Ma
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Andrew Koenig
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Andrea Bredemeyer
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Inessa Lokshina
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Lulu Lai
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | | | - Florian Leuschner
- LIMES Institute, University of Bonn, Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany (F.L.)
| | - Daniel Kreisel
- Department of Surgery, Washington University, Saint Louis, Missouri, USA (D.K.)
- Department of Pathology and Immunology, Washington University, Saint Louis, Missouri, USA (D.K., K.L.)
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
- Department of Pathology and Immunology, Washington University, Saint Louis, Missouri, USA (D.K., K.L.)
- Department of Developmental Biology, Washington University, Saint Louis, Missouri, USA (K.L.)
| |
Collapse
|
10
|
Ha S, Vetrivel P, Kim S, Bhosale P, Kim H, Pak J, Heo J, Kim Y, Kim G. Inhibitory effect of membrane‑free stem cell components derived from adipose tissues on skin inflammation in keratinocytes. Mol Med Rep 2022; 25:125. [DOI: 10.3892/mmr.2022.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/24/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sang Ha
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52828, Republic of Korea
| | - Preethi Vetrivel
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52828, Republic of Korea
| | - Seong Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52828, Republic of Korea
| | - Pritam Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52828, Republic of Korea
| | - Hun Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52828, Republic of Korea
| | - Jung Pak
- T‑Stem Co., Ltd., Changwon, Gyeongsangnam‑do 51573, Republic of Korea
| | - Jeong Heo
- Biological Resources Research Group, Bioenvironmental Science and Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Gyeongsangnam‑do 52834, Republic of Korea
| | - Young Kim
- T‑Stem Co., Ltd., Changwon, Gyeongsangnam‑do 51573, Republic of Korea
| | - Gon Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52828, Republic of Korea
| |
Collapse
|
11
|
Phull AR, Ahmed M, Park HJ. Cordyceps militaris as a Bio Functional Food Source: Pharmacological Potential, Anti-Inflammatory Actions and Related Molecular Mechanisms. Microorganisms 2022; 10:405. [PMID: 35208860 PMCID: PMC8875674 DOI: 10.3390/microorganisms10020405] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Cordyceps militaris (C. militaris) is a medicinal mushroom possessing a variety of biofunctionalities. It has several biologically important components such as polysaccharides and others. The diverse pharmacological potential of C. militaris has generated interest in reviewing the current scientific literature, with a particular focus on prevention and associated molecular mechanisms in inflammatory diseases. Due to rising global demand, research on C. militaris has continued to increase in recent years. C. militaris has shown the potential for inhibiting inflammation-related events, both in in vivo and in vitro experiments. Inflammation is a multifaceted biological process that contributes to the development and severity of diseases, including cancer, colitis, and allergies. These functions make C. militaris a suitable functional food for inhibiting inflammatory responses such as the regulation of proinflammatory cytokines. Therefore, on the basis of existing information, the current study provides insights towards the understanding of anti-inflammatory activity-related mechanisms. This article presents a foundation for clinical use, and analyzes the roadmap for future studies concerning the medical use of C. militaris and its constituents in the next generation of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
12
|
Jayasinghe AMK, Kirindage KGIS, Fernando IPS, Han EJ, Oh GW, Jung WK, Ahn G. Fucoidan Isolated from Sargassum confusum Suppresses Inflammatory Responses and Oxidative Stress in TNF-α/IFN-γ- Stimulated HaCaT Keratinocytes by Activating Nrf2/HO-1 Signaling Pathway. Mar Drugs 2022; 20:117. [PMID: 35200646 PMCID: PMC8880602 DOI: 10.3390/md20020117] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Recent studies have revealed that marine brown seaweeds contain numerous bioactive compounds which exhibit various bioactivities. The present study investigated the effect of low molecular weight fucoidan (SCF) isolated from Sargassum confusum, a brown alga, on inflammatory responses and oxidative stress in HaCaT keratinocytes stimulated by tumor necrosis factor (TNF)-α/interferon (IFN)-γ. SCF significantly increased the cell viability while decreasing the intracellular reactive oxygen species (ROS) production in TNF-α/IFN-γ-stimulated HaCaT keratinocytes. In addition, SCF effectively reduced inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-8, IL-13, TNF-α, and IFN-γ) and chemokines (Eotaxin, macrophage-derived chemokine (MDC), regulated on activation, normal T cell expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC)) expression, by down-regulating the expression of epithelial and epidermal innate cytokines (IL-25, IL-33, and thymic stromal lymphopoietin (TSLP)). Furthermore, SCF suppressed the activation of TNF-α/IFN-γ-stimulated mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways, while activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. The cytoprotective effect of SCF against TNF-α/IFN-γ stimulation was considerably reduced upon inhibition of HO-1 activity by ZnPP. Overall, these results suggest that SCF effectively suppressed inflammatory responses and oxidative stress in TNF-α/IFN-γ-stimulated HaCaT keratinocytes via activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
| | | | | | - Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (A.M.K.J.); (K.G.I.S.K.); (E.J.H.)
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Gun-Woo Oh
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513, Korea;
| | - Won-Kyo Jung
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513, Korea;
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (A.M.K.J.); (K.G.I.S.K.); (E.J.H.)
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
| |
Collapse
|
13
|
Kim EY, Hong S, Kim JH, Kim M, Lee Y, Sohn Y, Jung HS. Effects of chloroform fraction of Fritillariae Thunbergii Bulbus on atopic symptoms in a DNCB-induced atopic dermatitis-like skin lesion model and in vitro models. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114453. [PMID: 34314806 DOI: 10.1016/j.jep.2021.114453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fritillariae thunbergii Bulbus (FT), knowns as "Jeolpaemo ()" in Korean traditional medicine, is a perennial plant belonging to the Liliaceae family and has been used to treat symptoms such as cough, sputum formation, and purulent pneumonia. Owing to its effects of lowering heat, removing sputum, and reducing swelling, the plant has also been used as an external prescription medicine to treat inflammation. AIM OF THE STUDY To analyze the anti-inflammatory effects of FT-ethanol extract (FT-Et) and FT-chloroform fraction extract (FT-Cl) on 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD) in vivo and in vitro. MATERIALS AND METHODS The effect of FT-Et and FT-Cl on AD was observed using an AD-like skin lesion model induced by DNCB in vivo. HaCaT and RBL2H3 cells were used to determine the effects of FT-Et and FT-Cl in vitro. After inducing AD-like skin lesions in vivo, FT was topically applied to the skin lesion for 35 days. Epidermal thickness, dermal thickness, scratching behavior, infiltration of inflammatory cells, and expression of skin barrier proteins were measured. TARC, MDC, and IL-4 levels were analyzed using ELISA in HaCaT cells. Beta-hexosaminidase and IL-4 levels were measured in RBL2H3 cells. The expression of filaggrin (FLG), loricrin (LOR), involucrin (INV), and aquaporin-3(AQP-3) was measured by PCR. Phosphorylation of MAPKs was analyzed using Western blot technique. RESULTS FT-Cl significantly reduced ear swelling, scratching behavior, SCORAD index, epidermal thickness, infiltration of inflammatory cells, and loss of skin barrier proteins. FT-Et inhibited the infiltration of mast cells and CD8+ cells and decreased the loss of skin barrier proteins. In TNF-α/IFN-γ-stimulated HaCaT cells, FT-Cl inhibited TRAC, MDC, and IL-4 expression and upregulated the expression of FLG, INV, and AQP-3, whereas FT-Et inhibited the expression of TRAC and MDC and increased the expression of FLG, INV, and AQP-3 at high concentrations. In RBL2H3, FT-Cl downregulated β-hexosaminidase and IL-4 expression. In addition, FT-Cl inhibited the phosphorylation of ERK and p-38 in HaCaT and RBL2H3 cells. CONCLUSIONS Collectively, FT-Cl showed better effect than FT-Et in vivo and in vitro. These results suggest that a specific component present in FT-Cl acted against AD. Future research should focus on the analysis of components contained in FT-Cl and the anti-inflammatory effects of the active ingredient.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Sooyeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Yujin Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
14
|
Fermented Platycodon grandiflorum extract alleviates TNF-α/IFN-γ-induced inflammatory response in HaCaT cells and modulates immune balance on 1-chloro-2,4-dinitrobenzene-induced atopic dermatitis in NC/Nga mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
15
|
Min SY, Park CH, Yu HW, Park YJ. Anti-Inflammatory and Anti-Allergic Effects of Saponarin and Its Impact on Signaling Pathways of RAW 264.7, RBL-2H3, and HaCaT Cells. Int J Mol Sci 2021; 22:ijms22168431. [PMID: 34445132 PMCID: PMC8395081 DOI: 10.3390/ijms22168431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Saponarin{5-hydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-7-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one}, a flavone found in young green barley leaves, is known to possess antioxidant, antidiabetic, and hepatoprotective effects. In the present study, the anti-inflammatory, anti-allergic, and skin-protective effects of saponarin were investigated to evaluate its usefulness as a functional ingredient in cosmetics. In lipopolysaccharide-induced RAW264.7 (murine macrophage) cells, saponarin (80 μM) significantly inhibited cytokine expression, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, inducible nitric oxide synthase, and cyclooxygenase (COX)-2. Saponarin (80 μM) also inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 involved in the mitogen-activated protein kinase signaling pathway in RAW264.7 cells. Saponarin (40 μM) significantly inhibited β-hexosaminidase degranulation as well as the phosphorylation of signaling effectors (Syk, phospholipase Cγ1, ERK, JNK, and p38) and the expression of inflammatory mediators (tumor necrosis factor [TNF]-α, IL-4, IL-5, IL-6, IL-13, COX-2, and FcεRIα/γ) in DNP-IgE- and DNP-BSA-stimulated RBL-2H3 (rat basophilic leukemia) cells. In addition, saponarin (100 μM) significantly inhibited the expression of macrophage-derived chemokine, thymus and activation-regulated chemokine, IL-33, thymic stromal lymphopoietin, and the phosphorylation of signaling molecules (ERK, p38 and signal transducer and activator of transcription 1 [STAT1]) in TNF-α- and interferon (IFN)-γ-stimulated HaCaT (human immortalized keratinocyte) cells. Saponarin (100 μM) also significantly induced the expression of hyaluronan synthase-3, aquaporin 3, and cathelicidin antimicrobial peptide (LL-37) in HaCaT cells, which play an important role as skin barriers. Saponarin remarkably inhibited the essential factors involved in the inflammatory and allergic responses of RAW264.7, RBL-2H3, and HaCaT cells, and induced the expression of factors that function as physical and chemical skin barriers in HaCaT cells. Therefore, saponarin could potentially be used to prevent and relieve immune-related skin diseases, including atopic dermatitis.
Collapse
|
16
|
Skullcapflavone II Suppresses TNF-α/IFN-γ-Induced TARC, MDC, and CTSS Production in HaCaT Cells. Int J Mol Sci 2021; 22:ijms22126428. [PMID: 34208434 PMCID: PMC8233710 DOI: 10.3390/ijms22126428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, has been reported to have anti-inflammatory properties. However, its therapeutic potential for skin inflammatory diseases and its mechanism are unknown. Therefore, this study aimed to investigate the effect of SFII on TNF-α/IFN-γ-induced atopic dermatitis (AD)-associated cytokines, such as thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC). Co-stimulation with TNF-α/IFN-γ in HaCaT cells is a well-established model for induction of pro-inflammatory cytokines. We treated cells with SFII prior to TNF-α/IFN-γ-stimulation and confirmed that it significantly inhibited TARC and MDC expression at the mRNA and protein levels. Additionally, SFII also inhibited the expression of cathepsin S (CTSS), which is associated with itching in patients with AD. Using specific inhibitors, we demonstrated that STAT1, NF-κB, and p38 MAPK mediate TNF-α/IFN-γ-induced TARC and MDC, as well as CTSS expression. Finally, we confirmed that SFII significantly suppressed TNF-α/IFN-γ-induced phosphorylation of STAT1, NF-κB, and p38 MAPK. Taken together, our study indicates that SFII inhibits TNF-α/IFN-γ-induced TARC, MDC, and CTSS expression by regulating STAT1, NF-κB, and p38 MAPK signaling pathways.
Collapse
|
17
|
Dash R, Mitra S, Ali MC, Oktaviani DF, Hannan MA, Choi SM, Moon IS. Phytosterols: Targeting Neuroinflammation in Neurodegeneration. Curr Pharm Des 2021; 27:383-401. [PMID: 32600224 DOI: 10.2174/1381612826666200628022812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Plant-derived sterols, phytosterols, are well known for their cholesterol-lowering activity in serum and their anti-inflammatory activities. Recently, phytosterols have received considerable attention due to their beneficial effects on various non-communicable diseases, and recommended use as daily dietary components. The signaling pathways mediated in the brain by phytosterols have been evaluated, but little is known about their effects on neuroinflammation, and no clinical studies have been undertaken on phytosterols of interest. In this review, we discuss the beneficial roles of phytosterols, including their attenuating effects on inflammation, blood cholesterol levels, and hallmarks of the disease, and their regulatory effects on neuroinflammatory disease pathways. Despite recent advancements made in phytosterol pharmacology, some critical questions remain unanswered. Therefore, we have tried to highlight the potential of phytosterols as viable therapeutics against neuroinflammation and to direct future research with respect to clinical applications.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma Bio-display, Kwangwoon University, Seoul-01897, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju-38066, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
18
|
Luan F, Wang Z, Yang Y, Ji Y, Lv H, Han K, Liu D, Shang X, He X, Zeng N. Juglans mandshurica Maxim.: A Review of Its Traditional Usages, Phytochemical Constituents, and Pharmacological Properties. Front Pharmacol 2021; 11:569800. [PMID: 33551795 PMCID: PMC7858255 DOI: 10.3389/fphar.2020.569800] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
Juglans mandshurica Maxim., also known as “Manchurian walnut” (Chinese) and “Onigurumi” (Japanese), is a medicinal plant widely distributed in Western and Central Asia, especially in China. It has been traditionally used to treat cancer, gastric ulcers, diarrhea, dysentery, dermatosis, uterine prolapse, and leukopenia. To date, more than 400 constituents including quinones (e.g. naphthoquinones, anthraquinones, naphthalenones, tetralones), phenolics, flavonoids, triterpenoids, coumarins, lignans, phenylpropanoids, diarylheptanoids, and steroids, were isolated and structurally identified from different plant parts of J. mandshurica. Among them, quinones, phenolics, triterpenoids, and diarylheptanoids, as the major bioactive substances, have been extensively studied and displayed significant bioactivity. Previous studies have demonstrated that J. mandshurica and a few of its active components exhibit a wide range of pharmacologically important properties, such as antitumor, immunomodulatory, anti-inflammatory, neuroprotective, anti-diabetic, antiviral, antimicrobial, and anti-melanogenesis activities. However, many investigations on biological activities were mainly based on crude extracts of this plant, and the major bioactive ingredients responsible for these bioactivities have not been well identified. Further in vitro and in vivo studies on the mechanisms of action of the pure bioactive compounds, and more elaborate toxicity studies as well as clinical studies are needed to ensure safety and effectiveness of the plant for human use. Taken together, the present review will provide some specific useful suggestions guide to further investigations and applications of this plant in the preparation of medicines and functional foods.
Collapse
Affiliation(s)
- Fei Luan
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Clinical Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi'an, China
| | - Ziyan Wang
- Department of Clinical Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi'an, China
| | - Yan Yang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yafei Ji
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haizhen Lv
- Department of Clinical Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi'an, China
| | - Keqing Han
- Department of Clinical Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi'an, China
| | - Daoheng Liu
- Department of Clinical Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi'an, China
| | - Xiaofei Shang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Nan Zeng
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Piao S, Qi Y, Jin M, Diao S, Zhou W, Sun J, Jin X, Li G. Two new quinones and six additional metabolites with potential anti-inflammatory activities from the roots of Juglans mandshurica. Nat Prod Res 2021; 36:3396-3403. [PMID: 33397154 DOI: 10.1080/14786419.2020.1862831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two new quinones, 4-(5-hydroxy-1,4-dioxo-1,4-dihydronaphtha-len-3-ylamino)-butyric acid methyl ester (compound 1) and 1,3-dimethoxycarbonyl-8-hydroxy-9,10-anthraquinone (2), and six known compounds (3-8) were isolated from the roots of Juglans mandshurica Maxim., a member of the Juglandaceae family. The chemical structures of the compounds were elucidated by nuclear magnetic resonance spectroscopy and compared with data from the literature. The isolated compounds were evaluated for their ability to inhibit the production of nitric oxide, tumour necrosis factor-α, and interleukin-6 by the mouse macrophage RAW 264.7 cell line after lipopolysaccharide stimulation in vitro. We found that compounds 1-4 exhibited potent anti-inflammatory effects, as indicated by suppression of lipopolysaccharide-stimulated nitric oxide and cytokine production with 50% inhibitory concentrations between 20.09 μM and 27.63 μM. These results identify two novel quinones from J. mandshurica with potential utility as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Shengjun Piao
- Yanbian University Hospital, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, P.R. China
| | - Yanqiu Qi
- Yanbian University Hospital, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, P.R. China
| | - Mei Jin
- Yanbian University Hospital, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, P.R. China
| | - Shengbao Diao
- Yanbian University Hospital, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, P.R. China
| | - Wei Zhou
- Yanbian University Hospital, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, P.R. China
| | - Jinfeng Sun
- Yanbian University Hospital, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, P.R. China
| | - Xinglin Jin
- Yanbian University Hospital, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, P.R. China
| | - Gao Li
- Yanbian University Hospital, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, P.R. China
| |
Collapse
|
20
|
Hong S, Lee B, Kim JH, Kim EY, Kim M, Kwon B, Cho HR, Sohn Y, Jung HS. Solanum nigrum Linne improves DNCB‑induced atopic dermatitis‑like skin disease in BALB/c mice. Mol Med Rep 2020; 22:2878-2886. [PMID: 32945415 PMCID: PMC7453610 DOI: 10.3892/mmr.2020.11381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the effects of Solanum nigrum Linne (SNL) in a model of 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD) and in TNF-α/IFN-γ-stimulated HaCaT cells. AD is a chronic inflammatory skin disease and is characterized by erythema, edema, increased pruritus and eczema. Steroids are most commonly used for anti-inflammatory therapy; however, their long-term use is limited due to side-effects, such as osteoporosis, brittle skin, muscle weaknesses and diabetes. Therefore, patients with AD require alternative treatment strategies. In previous studies, SNL has been reported to be effective against oxidants and cancer. However, to the best of our knowledge, the effects of SNL on AD have not yet been investigated. The present study examined the effects of SNL ethanol extract on a model of DNCB induced AD and on TNF-α/IFN-γ-stimulated HaCaT cells. The skin tissue was sectioned to measure the thicknesses of the epidermis and dermis, as well as the numbers of eosinophils, mast cells and CD8 infiltration by H&E, toluidine blue, Masson's trichrome and IHC staining. ELISA was performed using serum to measure IgE levels. The present study also examined the expression of various inflammatory cytokines, MAPK and NF-κB in TNF-α/IFN-γ-stimulated HaCaT cells. SNL significantly reduced the levels of cytokines released from HaCaT cells stimulated with TNF-α/IFN-γ. SNL also significantly reduced the levels of p-p38 at 30 min and significantly reduced the activation of NF-κB in a time course experiment. In addition, SNL significantly reduced the level of serum IgE and dermal thickness and the infiltration of mast cells and CD8 in the BALB/c mouse model of DNCB-induced AD. The results of the current study suggest that SNL exerts a suppressive effect on pro-inflammatory cytokines in vitro and in vivo through the regulation of the immune system.
Collapse
Affiliation(s)
- Sooyeon Hong
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Bina Lee
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Jae-Hyun Kim
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Eun-Young Kim
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Minsun Kim
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Boguen Kwon
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Hye-Rin Cho
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Youngjoo Sohn
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| | - Hyuk-Sang Jung
- epartment of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02‑447, Republic of Korea
| |
Collapse
|
21
|
Ha Y, Lee WH, Jeong J, Park M, Ko JY, Kwon OW, Lee J, Kim YJ. Pyropia yezoensis Extract Suppresses IFN-Gamma- and TNF-Alpha-Induced Proinflammatory Chemokine Production in HaCaT Cells via the Down-Regulation of NF-κB. Nutrients 2020; 12:nu12051238. [PMID: 32349358 PMCID: PMC7285056 DOI: 10.3390/nu12051238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pyropia yezoensis, a red alga, is popular and harvested a lot in East Asia and is famous for its medicinal properties attributable to its bioactive compounds including amino acids (porphyra-334 and shinorine, etc.), polysaccharides, phytosterols, and pigments, but its anti-inflammatory effect and mechanism of anti-atopic dermatitis (AD) have not been elucidated. In this study, we investigate the anti-AD effect of P. yezoensis extract (PYE) on mRNA and protein levels of the pro-inflammatory chemokines, thymus, and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), in human HaCaT keratinocyte cells treated to interferon (IFN)-γ or tumor necrosis factor (TNF)-α (10 ng/mL each). The effect of the PYE on extracellular signal-regulated kinase (ERK) and other mitogen-activated protein kinases (MAPKs) was related to its suppression of TARC and MDC production by blocking NF-κB activation in HaCaT cells. Furthermore, astaxanthin and xanthophyll from P. yezoensis were identified as anti-AD candidate compounds. These results suggest that the PYE may improve AD and contained two carotenoids by regulating pro-inflammatory chemokines.
Collapse
Affiliation(s)
- Yuna Ha
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
| | - Won-Hwi Lee
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
| | - JaeWoo Jeong
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
| | - Mira Park
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Ju-Young Ko
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Oh Wook Kwon
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Jongsung Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 164-19, Gyunggi Do, Korea
- Correspondence: (J.L); (Y.-J.K.); Tel.: +82-32-835-8861 (Y.-J.K.)
| | - Youn-Jung Kim
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
- Correspondence: (J.L); (Y.-J.K.); Tel.: +82-32-835-8861 (Y.-J.K.)
| |
Collapse
|
22
|
Cho SH, Kim HS, Lee W, Han EJ, Kim SY, Fernando IPS, Ahn G, Kim KN. Eckol from Ecklonia cava ameliorates TNF-α/IFN-γ-induced inflammatory responses via regulating MAPKs and NF-κB signaling pathway in HaCaT cells. Int Immunopharmacol 2020; 82:106146. [PMID: 32088638 DOI: 10.1016/j.intimp.2019.106146] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
We investigated the protective effect of the bioactive compound eckol on inflammatory-related skin lesions in vitro. HaCaT cells were stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mixture, and treated with various concentration of eckol (25, 50, and 100 µg/ml). The expression of pro-inflammatory cytokines and chemokines were analyzed by enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR), respectively. Mitogen-activated protein kinase (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways regulate immune and inflammation responses. Phosphorylation of MAPKs and NF-κB, indicating activation of respective signaling pathways, was examined by western blot analysis. Treatment of TNF-α and IFN-γ promoted the mRNA expression and production of pro-inflammatory cytokines and chemokines in HaCaT cells. However, eckol significantly suppressed the these mediators. Furthermore, activation of TNF-α/IFN-γ-induced MAPKs and NF-κB signaling pathway was inhibited by eckol treatment. Eckol also hampered the TNF-α/IFN-γ-mediated nuclear translocation of NF-κB p65 in HaCaT cells. Taken together, our findings demonstrate that eckol shows effective protective activity against TNF-α/IFN-γ-induced skin inflammation.
Collapse
Affiliation(s)
- Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon, Republic of Korea
| | - WonWoo Lee
- Frechwater Biosources Utilization Bureau, Bioresources Industrialization Support Division, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea
| | - Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59629, Republic of Korea
| | - Seo-Young Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea
| | - I P Shanura Fernando
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59629, Republic of Korea
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59629, Republic of Korea; Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59629, Republic of Korea.
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea.
| |
Collapse
|
23
|
Kim KH, Shim JS, Kim HJ, Son ED. Penta-O-galloyl-β-D-glucose from Paeonia lactiflora Pall. root extract enhances the expression of skin barrier genes via EGR3. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112337. [PMID: 31655148 DOI: 10.1016/j.jep.2019.112337] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/10/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLIGICAL RELEVANCE Paeonia lactiflora Pall. has long been used to treat inflammatory skin diseases, such as psoriasis. AIM OF THE STUDY The skin acts as a barrier and provides protection against various stresses by expressing skin barrier genes during keratinocyte differentiation. However, the effect of Paeonia lactiflora Pall. root extract on the expression of skin barrier genes has not been investigated. Here, we aimed to show that treatment of keratinocytes with Paeonia lactiflora Pall. root can upregulate genes related to keratinocyte differentiation. MATERIALS AND METHODS To determine the effect Paeonia lactiflora Pall. root extract, RNA-Seq, gene ontology, and gene set enrichment analysis were performed. Reverse transcriptase quantitative polymerase chain reaction analysis was performed to confirm the increased expression of skin barrier genes. RESULTS Treatment with Paeonia lactiflora Pall. root enhanced the expression of skin barrier genes, including the filaggrin, loricrin, and involucrin. Moreover, we found that penta-O-galloyl-β-D-glucose (PGG), one of the ingredients in Paeonia lactiflora Pall. root, enhanced the expression of skin barrier genes, by upregulating the expression of the transcription factor EGR3. CONCLUSIONS PGG and Paeonia lactiflora Pall. root extract have therapeutic potential for the treatment of diseases related to skin barrier disruption and can be used in cosmetics to enhance skin barrier function.
Collapse
Affiliation(s)
- Kyu-Han Kim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 446-729, South Korea.
| | - Jin Sup Shim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 446-729, South Korea
| | - Hyoung-June Kim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 446-729, South Korea
| | - Eui Dong Son
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 446-729, South Korea
| |
Collapse
|
24
|
Hou DD, Zhang W, Gao YL, Sun YZ, Wang HX, Qi RQ, Chen HD, Gao XH. Anti-inflammatory effects of quercetin in a mouse model of MC903-induced atopic dermatitis. Int Immunopharmacol 2019; 74:105676. [DOI: 10.1016/j.intimp.2019.105676] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 01/30/2023]
|
25
|
Pashirzad M, Shafiee M, Avan A, Ryzhikov M, Fiuji H, Bahreyni A, Khazaei M, Soleimanpour S, Hassanian SM. Therapeutic potency of crocin in the treatment of inflammatory diseases: Current status and perspective. J Cell Physiol 2019; 234:14601-14611. [PMID: 30673132 DOI: 10.1002/jcp.28177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Crocin is the major component of saffron, which is used in phytomedicine for the treatment of several diseases including diabetes, fatty liver, depression, menstruation disorders, and, of special interest in this review, inflammatory diseases. Promising selective anti-inflammatory properties of this pharmacological active component have been observed in several studies. Saffron has been shown to exert anti-inflammatory properties against several inflammatory diseases and can be used as a novel therapeutic agent for the treatment of inflammatory diseases either alone or in combination with other standard anti-inflammatory agents. This review summarizes the protective role of saffron and its pharmacologically active constituents in the pathogenesis of inflammatory diseases including digestive diseases, dermatitis, asthma, atherosclerosis, and neurodegenerative diseases for a better understanding and hence a better management of these diseases.
Collapse
Affiliation(s)
- Mehran Pashirzad
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Shafiee
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, Missouri
| | - Hamid Fiuji
- Department of Biochemistry, Payame-Noor University, Mashhad, Iran
| | - Amirhossein Bahreyni
- Department of Clinical Biochemistry and Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Yin J, Kim HH, Hwang IH, Kim DH, Lee MW. Anti-Inflammatory Effects of Phenolic Compounds Isolated from Quercus Mongolica Fisch. ex Ledeb. on UVB-Irradiated Human Skin Cells. Molecules 2019; 24:molecules24173094. [PMID: 31454971 PMCID: PMC6749265 DOI: 10.3390/molecules24173094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Quercus mongolica Fisch. ex Ledeb. (QM) has been used as an oriental traditional medicine to relieve hemorrhoids, fever, and enteritis. We screened the inhibitory activities of the extracts and compounds (1–6) isolated from QM on the production of inflammatory cytokines and chemokines to evaluate their anti-inflammatory activities. Further, we evaluated the expression levels of cytokines, chemokines, and immune factors on pedunculagin (PC, 1), which was selected from isolated compounds (1–6) because of its potential anti-inflammation effect. Additionally, we evaluated whether the inflammation mitigation effects of PC (1) following UVB exposure in keratinocytes occurred because of nuclear factor (NF)-κB and signal transducer and activator of transcription (STAT)/Janus kinase (JAK) activation. PC (1) remarkably suppressed interleukin (IL)-6, IL-10, IL-13, and monocyte chemoattractant protein-1 (MCP-1) mRNA expression and reduced the mRNA expression level of Cyclooxygenase-2 (COX-2) and also reduced the phosphorylation of p38 mitogen-activated protein kinases (p38), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) in a concentration-dependent manner.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pharmacognosy and Natural product-derived Medicine, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Han Hyuk Kim
- Department of Pharmacognosy and Natural product-derived Medicine, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - In Hyeok Hwang
- Department of Pharmacognosy and Natural product-derived Medicine, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Dong Hee Kim
- R&D Department Applied Product Development Team, Traditional Korean Medicine Technology Division, 94, Hwarang-ro(Gapje-dong), Gyeongsan-si, Gyeongsangbuk-do 38540, Korea
| | - Min Won Lee
- Department of Pharmacognosy and Natural product-derived Medicine, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
27
|
Kang NJ, Han SC, Yoon SH, Sim JY, Maeng YH, Kang HK, Yoo ES. Cinnamomum camphora Leaves Alleviate Allergic Skin Inflammatory Responses In Vitro and In Vivo. Toxicol Res 2019; 35:279-285. [PMID: 31341557 PMCID: PMC6629446 DOI: 10.5487/tr.2019.35.3.279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 11/23/2022] Open
Abstract
In this study, we investigated the therapeutic potential of Cinnamomum camphora leaves on allergic skin inflammation such as atopic dermatitis. We evaluated the effects of C. camphora leaves on human adult low-calcium high-temperature keratinocytes and atopic dermatitis mice. C. camphora leaves inhibited Macrophage-derived chemokine (an inflammatory chemokine) production in interferon-γ (10 ng/mL) stimulated Human adult low-calcium high-temperature keratinocytes in a dose dependent manner. C. camphora leaves suppressed the phosphorylation of janus kinase signal transducer and activator of transcription 1. C. camphora leaves also suppressed the phosphorylation of extracellular signal-regulated kinase 1/2, a central signaling molecule in the inflammation process. These results suggest that C. camphora leaves exhibits anti-inflammatory effect via the phosphorylation of signal transducer and activator of transcription 1 and extracellular signal-regulated kinase 1/2. To study the advanced effects of C. camphora leaves on atopic dermatitis, we induced experimental atopic dermatitis in mice by applying 2,4-dinitrochlorobenzene. The group treated with C. camphora leaves (100 mg/kg) showed remarkable improvement of atopic dermatitis symptoms: reduced serum immunoglobulin E levels, smaller lymph nodes with reduced thickness and length, decreased ear edema, and reduced levels of inflammatory cell infiltration in the ears. Interestingly, the effects of C. camphora leaves on atopic dermatitis symptoms were stronger than those of hydrocort cream, a positive control. Taken together, C. camphora leaves showed alleviating effects on the inflammatory chemokine production in vitro and atopic dermatitis symptoms in vivo. These results suggest that C. camphora leaves help in the treatment of allergic inflammation such as atopic dermatitis.
Collapse
Affiliation(s)
- Na-Jin Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Sang-Chul Han
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Seok-Hyun Yoon
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Jae-Yeop Sim
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Young Hee Maeng
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Hee-Kyoung Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| | - Eun-Sook Yoo
- Department of Medicine, School of Medicine, Jeju National University, Jeju, Korea
| |
Collapse
|
28
|
|
29
|
Jin SE, Ha H, Shin HK, Seo CS. Anti-Allergic and Anti-Inflammatory Effects of Kuwanon G and Morusin on MC/9 Mast Cells and HaCaT Keratinocytes. Molecules 2019; 24:molecules24020265. [PMID: 30642008 PMCID: PMC6359505 DOI: 10.3390/molecules24020265] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/24/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease. The use of immunomodulatory corticosteroids in AD treatment causes adverse side effects. Therefore, novel natural anti-inflammatory therapeutics are needed. The aim of the present study was to investigate the anti-allergic and anti-inflammatory activities of kuwanon G and morusin. To investigate the effect of kuwanon G and morusin on skin inflammation, enzyme-linked immunosorbent assays (ELISA) to quantitate secreted (RANTES/CCL5), thymus- and activation-regulated chemokine (TARC/CCL17), and macrophage-derived chemokine (MDC/CCL22) were performed, followed by Western blotting to measure the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and nuclear transcription factor-κB (NF-κB) p65 in tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ)-stimulated HaCaT keratinocytes. In order to evaluate the anti-allergic effects, ELISA to quantify histamine and leukotriene C4 (LTC4) production and Western blotting to measure 5-lipoxygenase (5-LO) activation were performed using PMA and A23187-stimulated MC/9 mast cells. Kuwanon G reduced the release of RANTES/CCL5, TARC/CCL17, and MDC/CCL22 via down-regulation of STAT1 and NF-κB p65 signaling in TNF-α and IFN-γ-stimulated HaCaT keratinocytes. Kuwanon G also inhibited histamine production and 5-LO activation in PMA and A23187-stimulated MC/9 mast cells. Morusin inhibited RANTES/CCL5 and TARC/CCL17 secretion via the suppression of STAT1 and NF-κB p65 phosphorylation in TNF-α and IFN-γ-stimulated HaCaT keratinocytes, and the release of histamine and LTC4 by suppressing 5-LO activation in PMA and A23187-stimulated MC/9 mast cells. Kuwanon G and morusin are potential anti-inflammatory mediators for the treatment of allergic and inflammatory skin diseases such as AD.
Collapse
Affiliation(s)
- Seong Eun Jin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Hyekyung Ha
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Hyeun-Kyoo Shin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| |
Collapse
|
30
|
An H, Kim J, Kim W, Gwon M, Gu HM, Jeon MJ, Han S, Pak SC, Lee C, Park IS, Park K. Therapeutic effects of bee venom and its major component, melittin, on atopic dermatitis in vivo and in vitro. Br J Pharmacol 2018; 175:4310-4324. [PMID: 30187459 PMCID: PMC6240132 DOI: 10.1111/bph.14487] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Atopic dermatitis (AD) is a multifactorial skin condition with complex interactions of innate and adaptive immune responses. There are several existing therapies for AD, including topical glucocorticosteroids, emollients, phototherapies, calcineurin inhibitors and immunosuppressants, such as cyclosporine A. Although these therapies reduce inflammation, they also cause serious side effects. Therefore, it is necessary to develop new therapeutic approaches for AD treatment without side effects. There are several studies on natural materials or toxins, such as herbs, ginseng extract and snake venom, for AD treatment. However, treatment of AD with bee venom and its major component, melittin has rarely been studied. EXPERIMENTAL APPROACH Effects of bee venom and melittin were studied in a model of AD in vivo induced by 1-chloro-2,4-dinitrobenzene (DNCB) in female Balb/c mice and in cultures of human keratinocytes, stimulated by TNF-α/IFN-γ. The potential pharmacological effects of bee venom and melittin on these in vivo and in vitro AD-like skin disease models were studied. KEY RESULTS Bee venom and melittin exhibited potent anti-atopic activities, shown by decreased AD-like skin lesions, induced by DNCB in mice. In vitro studies using TNF-α/IFN-γ-stimulated human keratinocytes showed that bee venom and melittin inhibited the increased expression of chemokines, such as CCL17 and CCL22, and pro-inflammatory cytokines, including IL-1β, IL-6 and IFN-γ, through the blockade of the NF-κB and STAT signalling pathways. CONCLUSIONS AND IMPLICATIONS Our results suggest that bee venom and melittin would be suitable for epicutaneous application, as topical administration is often appropriate for the treatment of AD.
Collapse
Affiliation(s)
- Hyun‐Jin An
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| | - Jung‐Yeon Kim
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| | - Woon‐Hae Kim
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| | - Mi‐Gyeong Gwon
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| | - Hye Min Gu
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| | - Min Ji Jeon
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| | - Sang‐Mi Han
- Department of Agricultural BiologyNational Academy of Agricultural ScienceJeonju‐siKorea
| | - Sok Cheon Pak
- School of Biomedical SciencesCharles Sturt UniversityBathurstNSWAustralia
| | - Chong‐Kee Lee
- Department of Immunology, College of MedicineCatholic University of DaeguDaeguKorea
| | - In Sook Park
- Department of Oral and Maxillofacial Surgery, Department of Dentistry, College of MedicineCatholic University of DaeguDaeguKorea
| | - Kwan‐Kyu Park
- Department of Pathology, College of MedicineCatholic University of DaeguDaeguKorea
| |
Collapse
|
31
|
Abstract
Allergic contact dermatitis (ACD) is a common skin disease that results in significant cost and morbidity. Despite its high prevalence, therapeutic options are limited. Allergic contact dermatitis is regulated primarily by T cells within the adaptive immune system, but also by natural killer and innate lymphoid cells within the innate immune system. The chemokine receptor system, consisting of chemokine peptides and chemokine G protein-coupled receptors, is a critical regulator of inflammatory processes such as ACD. Specific chemokine signaling pathways are selectively up-regulated in ACD, most prominently CXCR3 and its endogenous chemokines CXCL9, CXCL10, and CXCL11. Recent research demonstrates that these 3 chemokines are not redundant and indeed activate distinct intracellular signaling profiles such as those activated by heterotrimeric G proteins and β-arrestin adapter proteins. Such differential signaling provides an attractive therapeutic target for novel therapies for ACD and other inflammatory diseases.
Collapse
|
32
|
Kim YA, Kim DH, Park CB, Park TS, Park BJ. Anti-Inflammatory and Skin-Moisturizing Effects of a Flavonoid Glycoside Extracted from the Aquatic Plant Nymphoides indica in Human Keratinocytes. Molecules 2018; 23:molecules23092342. [PMID: 30216992 PMCID: PMC6225133 DOI: 10.3390/molecules23092342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 01/12/2023] Open
Abstract
Nymphoides indica, an aquatic plant, is used as folk medicine in some countries. Our previous study demonstrated that the methanol extract of N. indica inhibited the activity of tyrosinases, tyrosine related protein (TRP)1 and TRP2, and microphthalmia-associated transcription factor, as well as the activity of protein kinase A, by effectively inhibiting cyclic adenosine monophosphate. Although the biological activities of N. indica extract have been reported, there are no reports on the skin bioactivity of the main compound(s) on human keratinocytes. This study investigated the anti-inflammatory and moisturizing effects of quercetin 3,7-dimethyl ether 4′-glucoside (QDG) isolated from N. indica. In brief, ultraviolet B irradiated keratinocytes were pretreated with different concentrations of QDG, and the effects of QDG on various inflammatory markers were determined. QDG significantly inhibited inflammation-related cytokines and chemokines and enhanced the activation of skin barrier factors. Additionally, QDG also attenuated phosphorylation inhibition of the upstream cytokines and nuclear factor-κB expression. These results suggest that QDG isolated from N. indica may serve as a potential source of bioactive substances for chronic inflammatory skin diseases.
Collapse
Affiliation(s)
- You Ah Kim
- Skin Science Research Institute, Kolmar Korea Co., Ltd., Chungcheongbukdo 28116, Korea.
| | - Dong Hee Kim
- Traditional Korean Medicine Technology Division, National Development Institute of Korean Medicine, Gyeongsangbuk-do 38540, Korea.
| | - Chae Bin Park
- Skin Science Research Institute, Kolmar Korea Co., Ltd., Chungcheongbukdo 28116, Korea.
| | - Tae Soon Park
- Traditional Korean Medicine Technology Division, National Development Institute of Korean Medicine, Gyeongsangbuk-do 38540, Korea.
| | - Byoung Jun Park
- Skin Science Research Institute, Kolmar Korea Co., Ltd., Chungcheongbukdo 28116, Korea.
| |
Collapse
|
33
|
Jung TD, Choi SI, Choi SH, Cho BY, Sim WS, Xionggao H, Lee SJ, Park SJ, Kim DB, Kim YC, Lee JH, Lee OH. Changes in the Anti-Allergic Activities of Sesame by Bioconversion. Nutrients 2018; 10:E210. [PMID: 29443928 PMCID: PMC5852786 DOI: 10.3390/nu10020210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/02/2023] Open
Abstract
Sesame is an important oilseed crop, which has been used as a traditional health food to ameliorate the prevention of various diseases. We evaluated the changes in the anti-allergic activities of sesame by bioconversion. SDS-PAGE of non-fermented sesame proteins showed major allergen bands, while that of fermented sesame showed only a few protein bands. Additionally, we investigated the effectiveness of fermented sesame by bioconversion in tumor necrosis factor-α (TNF-α)- and interferon-γ (IFN-γ)-induced HaCaT cells. In HaCaT cells, fermented sesame inhibited the mRNA expression of interleukin-6 (IL-6) and interleukin-1β (IL-1β), thymus and macrophage-derived chemokine (MDC/CCL22), activation-regulated chemokine (TARC/CCL17), and intercellular adhesion molecule-1 (ICAM-1). Moreover, fermented sesame inhibited the activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 1 (STAT1). Fermented sesame exerts anti-allergic effects by suppressing the expression of chemokines and cytokines via blockade of NF-κB and STAT1 activation.
Collapse
MESH Headings
- Agaricales
- Allergens/adverse effects
- Allergens/analysis
- Allergens/metabolism
- Cell Line
- Chemokines/antagonists & inhibitors
- Chemokines/genetics
- Chemokines/metabolism
- Crops, Agricultural/adverse effects
- Crops, Agricultural/chemistry
- Crops, Agricultural/growth & development
- Crops, Agricultural/microbiology
- Cytokines/antagonists & inhibitors
- Cytokines/genetics
- Cytokines/metabolism
- Dermatitis, Atopic/etiology
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/prevention & control
- Fermentation
- Fermented Foods/adverse effects
- Fermented Foods/analysis
- Fermented Foods/microbiology
- Food Handling
- Food Hypersensitivity/etiology
- Food Hypersensitivity/immunology
- Food Hypersensitivity/prevention & control
- Fruiting Bodies, Fungal
- Gene Expression Regulation, Neoplastic
- Humans
- Keratinocytes/immunology
- Keratinocytes/metabolism
- Plant Proteins, Dietary/adverse effects
- Plant Proteins, Dietary/analysis
- Plant Proteins, Dietary/metabolism
- Republic of Korea
- Seeds/adverse effects
- Seeds/chemistry
- Seeds/growth & development
- Seeds/microbiology
- Sesamum/adverse effects
- Sesamum/chemistry
- Sesamum/growth & development
- Sesamum/microbiology
- Shiitake Mushrooms/isolation & purification
- Shiitake Mushrooms/metabolism
Collapse
Affiliation(s)
- Tae-Dong Jung
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Sun-Il Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Seung-Hyun Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Bong-Yeon Cho
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Wan-Sup Sim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Han- Xionggao
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Sang Jong Lee
- STR Biotech Company, LTD., Chuncheon 24232, Korea; or l (S.J.L.); (S.J.P.)
| | - Seon Ju Park
- STR Biotech Company, LTD., Chuncheon 24232, Korea; or l (S.J.L.); (S.J.P.)
| | - Dan-Bi Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Young-Cheul Kim
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Jin-Ha Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| |
Collapse
|
34
|
Diao S, Jin M, Sun J, Zhou Y, Ye C, Jin Y, Zhou W, Li G. A new diarylheptanoid and a new diarylheptanoid glycoside isolated from the roots of Juglans mandshurica and their anti-inflammatory activities. Nat Prod Res 2017; 33:701-707. [PMID: 29202597 DOI: 10.1080/14786419.2017.1408100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new diarylheptanoid, (2S,3S,5S)-2,3,5-trihydroxy-1,7-bis(4-hydroxy- 3-methoxyphenyl)heptane (1), and a new diarylheptanoid glycoside, (2S,3S,5S)-2,3-dihydroxy-5-O-β-d-xylopyranosyl-7-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)heptane (2), together with three known compounds, rhoiptelol C (3), rhoiptelol B (4) and 3',4″-epoxy-2-O-β-d-glucopyanosyl-1-(4-hydroxyphenyl)- 7-(3-methoxyphenyl)heptan-3-one (5) were isolated from the roots of Juglans mandshurica (Juglandaceae). The structures of compounds 1 and 2 were identified based on HR-ESI-MS, 1D and 2D NMR spectroscopic methods. Compounds 1-5 were assayed for their inhibitory effects on the production of NO, TNF-α and IL-6 in LPS-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Shengbao Diao
- a Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education , Yanbian University College of Pharmacy , Yanji , P.R. China
| | - Mei Jin
- a Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education , Yanbian University College of Pharmacy , Yanji , P.R. China.,b Department of Pharmacy , Postdoctoral Research Station, Yanbian University Hospital , Yanji , P.R. China
| | - Jinfeng Sun
- a Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education , Yanbian University College of Pharmacy , Yanji , P.R. China
| | - Yi Zhou
- a Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education , Yanbian University College of Pharmacy , Yanji , P.R. China
| | - Chao Ye
- a Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education , Yanbian University College of Pharmacy , Yanji , P.R. China
| | - Yong Jin
- a Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education , Yanbian University College of Pharmacy , Yanji , P.R. China
| | - Wei Zhou
- a Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education , Yanbian University College of Pharmacy , Yanji , P.R. China
| | - Gao Li
- a Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education , Yanbian University College of Pharmacy , Yanji , P.R. China
| |
Collapse
|
35
|
Hakuta A, Yamaguchi Y, Okawa T, Yamamoto S, Sakai Y, Aihara M. Anti-inflammatory effect of collagen tripeptide in atopic dermatitis. J Dermatol Sci 2017; 88:357-364. [PMID: 29017796 DOI: 10.1016/j.jdermsci.2017.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/11/2017] [Accepted: 09/01/2017] [Indexed: 01/27/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic, pruritic inflammatory skin disease in which type 2 allergic inflammation plays an important role. Collagen tripeptide (CTP) is a functional collagen fraction with a high content of Gly-X-Y tripeptides. OBJECTIVE To examine the effect of CTP on inflammation in AD. METHODS Levels of inflammatory cytokines and chemokines, such as thymus- and activation-regulated chemokine (TARC), macrophage-derived chemokine, and thymic stromal lymphopoietin (TSLP), were examined in human keratinocytes supplemented with or without CTP under AD-like inflammation. To evaluate the functional effect of CTP, a migration assay was performed using the supernatants of cultured keratinocytes treated with CTP. The signaling pathway for CTP inhibitory activity was also determined. Additionally, we conducted a clinical trial with seventeen AD patients who were assigned randomly to receive daily for 12 weeks either 3.9g of a CTP product or normal collagen peptides (CP). The eruption area, severity scoring of atopic dermatitis (SCORAD), skin hydration, transepidermal water loss (TEWL), and itching score were evaluated. The levels of TARC, serum IgE, lactate dehydrogenase, and eosinophil counts at week 12 were also compared with those at the start of administration. RESULTS In human keratinocytes, TARC and TSLP mRNA and protein levels were inhibited significantly by CTP treatment under AD-like inflammation. Supernatants obtained from CTP-treated keratinocytes inhibited cell migration. STAT1 phosphorylation was significantly decreased by CTP in a dose-dependent manner. In the clinical trial, 13 patients (7 for CTP, 6 for CP) completed the study. The eruption area, SCORAD, and TEWL at week 12 were reduced significantly compared with the initial values in the CTP but not CP group. A significant reduction in the serum TARC level was observed only in the CTP group at week 12. Other blood parameters were not improved in either group. CONCLUSION CTP may have therapeutic benefit for AD by inhibiting type 2-skewed allergic inflammation.
Collapse
Affiliation(s)
- Amiko Hakuta
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.
| | - Tomoko Okawa
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Shoko Yamamoto
- Central Research Institute, Jellice Co., Ltd., Miyagi, Japan
| | - Yasuo Sakai
- Central Research Institute, Jellice Co., Ltd., Miyagi, Japan
| | - Michiko Aihara
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
36
|
Yang Z, Zeng B, Wang C, Wang H, Huang P, Pan Y. MicroRNA-124 alleviates chronic skin inflammation in atopic eczema via suppressing innate immune responses in keratinocytes. Cell Immunol 2017; 319:53-60. [PMID: 28847568 DOI: 10.1016/j.cellimm.2017.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/03/2017] [Accepted: 08/20/2017] [Indexed: 01/19/2023]
Abstract
Chronic skin inflammation in atopic eczema is associated with elevated expression of proinflammatory genes and activation of innate immune responses in keratinocytes. MicroRNAs (miRNAs) are short, single-stranded RNA molecules that silence genes via the degradation of target mRNAs or inhibition of translation. Recent studies have demonstrated that miR-124 is associated with regulation of inflammation factors in several diseases. The aim of this study was to investigate the role of miR-124 in skin inflammation of atopic eczema. We showed that miR-124 expression is decreased in chronic lesional skin of patients with atopic eczema, and could be strongly inhibited by IFN-γ and TNF-α. Through Western blot, real-time PCR and luciferase assays, we revealed that miR-124 inhibited the expression of p65, a member of NF-κB family which can regulate many factors involved in the immune response and inflammatory reactions, through direct targeting. Further, upon IFN-γ or TNF-α stimulation, IL8, CCL5 and CCL8 showed to be significantly upregulated by IFN-γ or TNF-α, downregulated by miR-124; the promotive effect of IFN-γ and TNF-α could be partially reversed by miR-124. The levels of IL8, CCL5 and CCL8 could be significantly downregulated by p65 knockdown, upregulated by miR-124 inhibition; the suppressive effect of p65 knockdown could be partially reversed by miR-124. Moreover, contrary to miR-124, p65, IL8, CCL5 and CCL8 mRNA expression was upregulated in chronic lesional skin of patients with atopic eczema, and all inversely correlated with miR-124. Taken together, our data demonstrate that miR-124 controls NF-κB-dependent inflammatory responses in keratinocytes and chronic skin inflammation in atopic eczema; rescuing miR-124 expression presents a promising strategy for atopic eczema treatment.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| | - Bijun Zeng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China.
| | - Chang Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| | - Haizhen Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| | - Pan Huang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| | - Yi Pan
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410005, China
| |
Collapse
|
37
|
Zhou YY, Liu QY, Yang BY, Jiang YQ, Liu YX, Wang Y, Guo S, Kuang H. Two new cytotoxic glycosides isolated from the green walnut husks of Juglans mandshurica Maxim. Nat Prod Res 2017; 31:1237-1244. [PMID: 28209093 DOI: 10.1080/14786419.2016.1233412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/16/2016] [Indexed: 10/20/2022]
Abstract
Two new glycosides including an alcohol glycoside and a phenolic glycoside: hexyl-1-O-α-d-arabinofuranosyl-(1 → 6)-β-d-glucopyranoside (1), 4-hydroxypropiophenone-4-O-β-d-glucopyranosyl(1 → 6)-β-d-glucopyranoside(2), along with six known naphthalenyl glucosides (3-8) were isolated from green walnut husks of Juglans mandshurica, and their structures were elucidated on the basis of spectroscopic studies. All compounds were evaluated for their inhibitory effects on tumour cells (BGC-823, HepG-2, MCF-7). The results showed that new compounds 1 and 2 had superior inhibitory activity in comparison with other naphthalenyl glucosides.
Collapse
Affiliation(s)
- Yuan-Yuan Zhou
- a College of Pharmacy , Heilongjiang University of Chinese Medicine , Harbin , P.R. China
| | - Quan-Yu Liu
- b Quality Testing Branch , Veterinary Drug and Feed Supervision Institute of Heilongjiang Province , Harbin , P.R. China
| | - Bing-You Yang
- a College of Pharmacy , Heilongjiang University of Chinese Medicine , Harbin , P.R. China
| | - Yan-Qiu Jiang
- a College of Pharmacy , Heilongjiang University of Chinese Medicine , Harbin , P.R. China
| | - Yu-Xin Liu
- a College of Pharmacy , Heilongjiang University of Chinese Medicine , Harbin , P.R. China
| | - Ying Wang
- a College of Pharmacy , Heilongjiang University of Chinese Medicine , Harbin , P.R. China
| | - Shuang Guo
- a College of Pharmacy , Heilongjiang University of Chinese Medicine , Harbin , P.R. China
| | - Haixue Kuang
- a College of Pharmacy , Heilongjiang University of Chinese Medicine , Harbin , P.R. China
| |
Collapse
|
38
|
Oh CT, Jang YJ, Kwon TR, Im S, Kim SR, Seok J, Kim GY, Kim YH, Mun SK, Kim BJ. Effect of isosecotanapartholide isolated from Artemisia princeps Pampanini on IL‑33 production and STAT‑1 activation in HaCaT keratinocytes. Mol Med Rep 2017; 15:2681-2688. [PMID: 28447741 DOI: 10.3892/mmr.2017.6306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/20/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the anti‑inflammatory effect and mechanism of action of isosecotanapartholide (ISTP), isolated from Artemisia princeps Pampanini extract (APE). The effects of ISTP and APE on the proliferation of human keratinocytes following stimulation by tumor necrosis factor‑α/interferon‑γ were assessed. ISTP and APE downregulated the expression levels of signal transducer and activator of transcription‑1 (STAT‑1), and reduced interleukin‑33 (IL‑33) production. ISTP and APE inhibited the mRNA expression levels of thymus and activation‑regulated chemokine (TARC/CCL17) in a dose‑dependent manner. Western blot analysis demonstrated that ISTP and APE dose‑dependently inhibited protein expression levels of intercellular adhesion molecule‑1 and phosphorylation of STAT‑1. The results of the present study indicate that ISTP may inhibit TARC/CCL17 production in human epidermal keratinocytes via the STAT‑1 signaling pathway and may be associated with the inhibition of IL‑33 production. The current study indicated that ISTP is an active component in APE and may be a potential therapeutic agent for the treatment of inflammatory skin disorders.
Collapse
Affiliation(s)
- Chang Taek Oh
- Department of Dermatology, Chung‑Ang University College of Medicine, Seoul 156‑755, Republic of Korea
| | - Yu-Jin Jang
- Department of Dermatology, Chung‑Ang University College of Medicine, Seoul 156‑755, Republic of Korea
| | - Tae-Rin Kwon
- Department of Dermatology, Chung‑Ang University College of Medicine, Seoul 156‑755, Republic of Korea
| | - Songi Im
- Department of Dermatology, Chung‑Ang University College of Medicine, Seoul 156‑755, Republic of Korea
| | - Soon Re Kim
- Department of Dermatology, Chung‑Ang University College of Medicine, Seoul 156‑755, Republic of Korea
| | - Joon Seok
- Department of Dermatology, Chung‑Ang University College of Medicine, Seoul 156‑755, Republic of Korea
| | - Gun-Yong Kim
- Department of Biotechnology R&D, SK Bioland Corporation, Cheongju, North Chungcheong ASI/KR/KS001, Republic of Korea
| | - Young-Heui Kim
- Department of Biotechnology R&D, SK Bioland Corporation, Cheongju, North Chungcheong ASI/KR/KS001, Republic of Korea
| | - Seog Kyun Mun
- Department of Otolaryngology Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 156‑755, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung‑Ang University College of Medicine, Seoul 156‑755, Republic of Korea
| |
Collapse
|
39
|
Lim SJ, Kim M, Randy A, Nam EJ, Nho CW. Effects of Hovenia dulcis Thunb. extract and methyl vanillate on atopic dermatitis-like skin lesions and TNF-α/IFN-γ-induced chemokines production in HaCaT cells. ACTA ACUST UNITED AC 2016; 68:1465-1479. [PMID: 27696405 DOI: 10.1111/jphp.12640] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Here, we hypothesized that Hovenia dulcis branch extract (HDB) and its active constituents ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis (AD)-like skin lesions by modulating the T helper Th1/Th2 balance in NC/Nga mice and TNF-α- and IFN-γ-induced production of thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) in HaCaT cells. METHODS HaCaT cells were stimulated by TNF-α/IFN-γ in the presence of HDB and its constituents. TARC and MDC were measured by ELISA and RT-PCR. For the in-vivo study, oral feeding of HDB was performed for 5 weeks with 2,4-dinitrochlorobenzene (DNCB) treatment every other day. The efficacy of HDB on parameters of DNCB-induced AD was evaluated morphologically, physiologically and immunologically. KEY FINDINGS In-vitro studies showed that HDB and its constituents suppressed TNF-α/IFN-γ-induced production of TARC and MDC in HaCaT cells by inhibiting MAPK signalling. In-vivo studies showed that HDB regulated immunoglobulin (Ig) E and immunoglobulin G2a (IgG2a) levels in serum and the expression of mRNA for Th1- and Th2-related mediators in skin lesions. Histopathological analyses revealed reduced epidermal thickness and reduced infiltration of skin lesions by inflammatory cells. CONCLUSION These results suggest that HDB inhibits AD-like skin diseases by regulating Th1 and Th2 responses in NC/Nga mice and in HaCaT cells.
Collapse
Affiliation(s)
- Sue Ji Lim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Korea.,Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology, Gangneung, Korea
| | - Myungsuk Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Korea.,Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology, Gangneung, Korea
| | - Ahmad Randy
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Korea.,Department of Biological Chemistry, Korea University of Science and Technology, Daejeon, Korea
| | - Eui Jeong Nam
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Korea.,Department of Biological Chemistry, Korea University of Science and Technology, Daejeon, Korea
| | - Chu Won Nho
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Korea. .,Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology, Gangneung, Korea.
| |
Collapse
|
40
|
Two new quinones from the roots of Juglans mandshurica. Arch Pharm Res 2016; 39:1237-41. [DOI: 10.1007/s12272-016-0781-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
|
41
|
Ginsenoside Rg5:Rk1 attenuates TNF-α/IFN-γ-induced production of thymus- and activation-regulated chemokine (TARC/CCL17) and LPS-induced NO production via downregulation of NF-κB/p38 MAPK/STAT1 signaling in human keratinocytes and macrophages. In Vitro Cell Dev Biol Anim 2015; 52:287-295. [DOI: 10.1007/s11626-015-9983-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/23/2015] [Indexed: 01/21/2023]
|
42
|
Jeong SJ, Lim HS, Seo CS, Jin SE, Yoo SR, Lee N, Shin HK. Anti-inflammatory actions of herbal formula Gyejibokryeong-hwan regulated by inhibiting chemokine production and STAT1 activation in HaCaT cells. Biol Pharm Bull 2015; 38:425-34. [PMID: 25757924 DOI: 10.1248/bpb.b14-00660] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gyejibokryeong-hwan (GJBRH; Keishi-bukuryo-gan in Japan and Guizhi Fuling Wan in China) is a traditional herbal formula comprising five medicinal herbs and is used to treat climacteric syndrome. GJBRH has been shown to exhibit biological activity against diabetes, diabetic nephropathy, atherosclerosis, ischemia, and cancer. However, there is no scientific evidence of its activities against skin inflammation, including atopic dermatitis. We used the HaCaT human keratinocyte cell line to investigate the effects of GJBRH on skin inflammation. No significant cytotoxicity was observed in cells treated with GJBRH up to a concentration of 1000 µg/mL. Exposure to the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) significantly increased HaCaT cell production of the following chemokines: macrophage-derived chemokine (MDC)/CCL22; regulated on activation, normal T-cell expressed and secreted (RANTES)/CCL5; and interleukin-8 (IL-8). In contrast, GJBRH significantly reduced the production of MDC, RANTES, and IL-8 compared with control cells simulated with TNF-α and IFN-γ. Consistently, GJBRH suppressed the mRNA expression of MDC, RANTES, and IL-8 in TNF-α and IFN-γ-treated cells. Treatment with GJBRH markedly inhibited phosphorylation of signal transducer and activator of transcription 1 (STAT1) in HaCaT cells stimulated with TNF-α and IFN-γ. Our findings indicate that GJBRH impairs TNF-α and IFN-γ-mediated inflammatory chemokine production and STAT1 phosphorylation in keratinocytes. We suggest that GJBRH may be a potent therapeutic agent for inflammatory skin disorders.
Collapse
Affiliation(s)
- Soo-Jin Jeong
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine
| | | | | | | | | | | | | |
Collapse
|
43
|
Lim HS, Yeji K, Seo CS, Yoo SR, Jin SE, Shin HK, Jeong SJ. Chungsimyeonja-eum inhibits inflammatory responses in RAW 264.7 macrophages and HaCaT keratinocytes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:371. [PMID: 26474855 PMCID: PMC4609053 DOI: 10.1186/s12906-015-0902-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/07/2015] [Indexed: 12/03/2022]
Abstract
Background Chungsimyeonja-eum (CSYJE) is an herbal prescription used in traditional Oriental medicine for treating cerebral infarction by reducing ischemic damage. However, the effects of CSYJE on inflammation have not been verified scientifically. Methods Anti-inflammatory effects of CSYJE was investigated to dertermine the inhibitory effects of CSYJE against inflammation using RAW 264.7 mouse macrophages and HaCaT human keratinocytes. To measure the effects of CSYJE on inflammatory mediators and cytokines/chemokines, we used the following methods: cell viability assay, enzyme-linked immunosorbent assay (ELISA), western blotting, immunocytochemistry. RAW 264.7 cells were pretreated with CSYJE (250, 500, or 1000 μg/mL) for 4 h and treated with lipopolysaccharide (LPS) for additional 20 h. HaCaT cells were stimulated with tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) (TI), and CSYJE (125, 250, or 500 μg/mL) for 24 h. Results CSYJE suppressed the production of nitric oxide (NO, IC50 1000 μg/mL), prostaglandin E2 (PGE2, IC50 = 12.1 μg/mL), and interleukin (IL)-6 (IC50 = 248 μg/mL) in LPS-stimulated RAW 264.7 cells. CSYJE suppressed the effects of TI on the production of thymus and activation-regulated chemokine (TARC, IC50 = 330.2 μg/mL), macrophage-derived chemokine (MDC/CCL22, IC50 = 52.5 μg/mL), regulated on activation, normal T-cell expressed and secreted (RANTES/CCL5, IC50 = 372.9 μg/mL), and IL-8 (IC50 = 345.1 μg/mL) in HaCaT cells. CSYJE inhibited TI-stimulated STAT1 phosphorylation in a dose-dependent manner and nuclear translocation at 500 μg/mL in HaCaT cells. Conclusion Our results suggest a possible therapeutic application of CSYJE for treating inflammatory diseases.
Collapse
|
44
|
Park JH, Kim MS, Jeong GS, Yoon J. Xanthii fructus extract inhibits TNF-α/IFN-γ-induced Th2-chemokines production via blockade of NF-κB, STAT1 and p38-MAPK activation in human epidermal keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2015; 171:85-93. [PMID: 26051830 DOI: 10.1016/j.jep.2015.05.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/18/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xanthii fructus (XF) is an herb widely used in medicine for the treatment of a variety of inflammatory pathologies. Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). However, the anti-inflammatory mechanisms of XF have not been elucidated in tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated HaCaT cells. The purpose of this study was to investigate the effect of XF on TNF-α/IFN-γ-induced production of TARC/CCL17 and MDC/CCL22 in HaCaT cells. MATERIALS AND METHODS HaCaT cells were stimulated by TNF-α/IFN-γ in the presence of XF. TRAC/CCL17 and MDC/CCL22 productions were monitored by ELISA on the cell culture supernatant and by RT-PCR on total RNA extract. We use immunoblotting to analyze the effect of XF on activation of the NF-κB, STAT1 and MAPK pathways. RESULTS Ethanol extract of XF (EXF) inhibited mRNA expression and production of TARC/CCL17 and MDC/CCL22 induced by TNF-α/IFN-γ in a dose-dependent manner. It also significantly inhibited TNF-α/IFN-γ-induced activation of NF-κB, STAT1 and p38-MAPK. Furthermore, we observed that p38-MAPK contributes to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 production by blocking NF-κB and STAT1 activation in HaCaT cells. CONCLUSIONS These results demonstrate that developing therapeutic applications XF for the prevention of inflammatory skin diseases are feasible.
Collapse
Affiliation(s)
- Ji-Hyun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea
| | - Myeong-Sin Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea.
| | - Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea.
| |
Collapse
|
45
|
Inhibitory effect of 5,6-dihydroergosteol-glucoside on atopic dermatitis-like skin lesions via suppression of NF-κB and STAT activation. J Dermatol Sci 2015; 79:252-61. [PMID: 26100037 DOI: 10.1016/j.jdermsci.2015.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a Th2-type disease. Keratinocytes, a major type in the skin, produce Th2 chemokines such as thymus and activation-regulated chemokine (TARC)/CCL17 and macrophage-derived chemokine (MDC)/CCL22, which play pivotal roles in the development of Th2-dominant inflammatory skin diseases. Recently, it was reported that 5,6-dihydroergosterol-glucoside (DHE-Glc) was synthesized and exhibited strong anti-inflammatory activity. OBJECTIVE We aimed to investigate the effects of DHE-Glc, a synthetic molecule derived from ergosterol, on AD-like skin lesions induced by 2,4-dinitrochlorobenzene (DNCB) in mice and to elucidate the effects of DHE-Glc on TNF-α/IFN-γ-induced production of CCL17 and CCL22 in human keratinocytes (HaCaTs) and DNCB induced skin inflammation mice model. METHOD Mice were sensitized and challenged on the skin of their backs with DNCB. At 30-60 days after sensitization, mice were treated with cutaneous administration of DHE-Glc by skin smear. HaCaT cells were used to evaluate the effects of DHE-Glc on production of CCL17 and CCL22 and investigate mechanisms of action by RT-PCR, ELISA, Western blot, and reporter assays. RESULT Topical administration of DHE-Glc attenuated AD-like skin inflammatory symptoms. DHE-Glc decreased infiltration of epidermal eosinophils and mast cells, and reduced levels of IgE, histamine, and mRNA expression and protein levels of CCL17/CCL22 in the plasma of DNCB-treated animals. In addition, DHE-Glc suppressed TNF-α/IFN-γ-induced expression of the Th2 chemokines CCL17 and CCL22 by inhibiting NF-κB and STAT activation in TNF-α/IFN-γ-induced HaCaT cells. CONCLUSION DHE-Glc improved AD-like skin inflammatory symptoms on the backs of DNCB-induced mice, partly by suppressing production of Th2 chemokines, CCL17 and CCL22 in inflamed skin. Therefore, DHE-Glc is a potential therapeutic agent for skin inflammatory diseases such as AD.
Collapse
|
46
|
Kang NJ, Koo DH, Kang GJ, Han SC, Lee BW, Koh YS, Hyun JW, Lee NH, Ko MH, Kang HK, Yoo ES. Dieckol, a Component of Ecklonia cava, Suppresses the Production of MDC/CCL22 via Down-Regulating STAT1 Pathway in Interferon-γ Stimulated HaCaT Human Keratinocytes. Biomol Ther (Seoul) 2015; 23:238-44. [PMID: 25995822 PMCID: PMC4428716 DOI: 10.4062/biomolther.2014.141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/31/2015] [Accepted: 02/26/2015] [Indexed: 11/16/2022] Open
Abstract
Macrophage-derived chemokine, C-C motif chemokine 22 (MDC/CCL22), is one of the inflammatory chemokines that controls the movement of monocytes, monocyte-derived dendritic cells, and natural killer cells. Serum and skin MDC/CCL22 levels are elevated in atopic dermatitis, which suggests that the chemokines produced from keratinocytes are responsible for attracting inflammatory lymphocytes to the skin. A major signaling pathway in the interferon-γ (IFN-γ)-stimulated inflammation response involves the signal transducers and activators of transcription 1 (STAT1). In the present study, we investigated the anti-inflammatory effect of dieckol and its possible action mechanisms in the category of skin inflammation including atopic dermatitis. Dieckol inhibited MDC/CCL22 production induced by IFN-γ (10 ng/mL) in a dose dependent manner. Dieckol (5 and 10 μM) suppressed the phosphorylation and the nuclear translocation of STAT1. These results suggest that dieckol exhibits anti-inflammatory effect via the down-regulation of STAT1 activation.
Collapse
Affiliation(s)
- Na-Jin Kang
- Departments of Biomedicine & Drug Development
| | | | | | | | | | - Young-Sang Koh
- Departments of Biomedicine & Drug Development ; Medicine, School of Medicine
| | - Jin-Won Hyun
- Departments of Biomedicine & Drug Development ; Medicine, School of Medicine
| | - Nam-Ho Lee
- Chemistry, College of Natural Science, Jeju National University, Jeju 690-756
| | - Mi-Hee Ko
- Jeju Biodiversity Research Institute, JejuTechnopark, Jeju 699-943, Republic of Korea
| | - Hee-Kyoung Kang
- Departments of Biomedicine & Drug Development ; Medicine, School of Medicine
| | - Eun-Sook Yoo
- Departments of Biomedicine & Drug Development ; Medicine, School of Medicine
| |
Collapse
|
47
|
Traditional Herbal Formula Banhasasim-tang Exerts Anti-Inflammatory Effects in RAW 264.7 Macrophages and HaCaT Keratinocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:728380. [PMID: 25838833 PMCID: PMC4369961 DOI: 10.1155/2015/728380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 12/13/2022]
Abstract
Banhasasim-tang (BHSST) is a Korean traditional herbal formula comprising eight medicinal herbs. The aim of the present study was to investigate the anti-inflammatory effect of BHSST using macrophage and keratinocyte cell lines. First, we evaluated the effects of BHSST on inflammatory mediator and cytokine production in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. BHSST markedly inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2), and interleukin- (IL-) 6. BHSST significantly suppressed the protein expression of toll-like receptor 4 (TLR4) and phosphorylated nuclear factor-kappa B (NF-κB) p65 in RAW 264.7 cells. Second, we examined whether BHSST influences the production of chemokines and STAT1 phosphorylation in tumor necrosis factor-α/interferon-γ TI-stimulated HaCaT keratinocytes. BHSST significantly suppressed the production of RANTES/CCL5, TARC/CCL17, MDC/CCL22, and IL-8 in TI-stimulated HaCaT cells. BHSST also suppressed TI-induced phosphorylation of STAT1 in HaCaT cells. These results suggest that BHSST may be useful as an anti-inflammatory agent, especially for inflammatory skin diseases.
Collapse
|
48
|
Jeong SJ, Lim HS, Seo CS, Kim JH, Jin SE, Yoo SR, Shin HK. Traditional herbal formula Jakyakgamcho-tang (Paeonia lactiflora and Glycyrrhiza uralensis) impairs inflammatory chemokine production by inhibiting activation of STAT1 and NF-κB in HaCaT cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:326-32. [PMID: 25765840 DOI: 10.1016/j.phymed.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/28/2014] [Accepted: 12/14/2014] [Indexed: 05/08/2023]
Abstract
A traditional herbal formula Jakyakgamcho-tang (JYGCT; Paeonia lactiflora and Glycyrrhiza uralensis) has been used for treatment of backache, muscle pain, acute abdominal pain, neuralgia, bronchial asthma, and painful peripheral neuropathy in Oriental medicine. We report on our experiments using the HaCaT human keratinocyte cell line showing that a traditional herbal formula JYGCT has inhibitory effects on inflammatory responses in skin. Stimulation with tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) caused a significant increase in the production of the following chemokines: thymus- and activation-regulated chemokine (TARC)/CCL17; macrophage-derived chemokine (MDC)/CCL22; regulated on activation, normal T-cell expressed and secreted (RANTES)/CCL5; and interleukin-8 (IL-8) in HaCaT cells. By contrast, treatment with JYGCT extract significantly reduced the production of TARC, MDC, RANTES, and IL-8, but caused no cytotoxicity, compared with TNF-α and IFN-γ-treated control cells. Consistently, JYGCT extract downregulated the mRNA expression of TARC, MDC, RANTES, and IL-8 induced by TNF-α and IFN-γ in a dose-dependent manner. In addition, TNF-α and IFN-γ markedly increased the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and the nuclear translocation of nuclear factor kappa B (NF-κB) in HaCaT cells. By contrast, TNF-α and IFN-γ-induced activation of STAT1 and NF-κB activation was inhibited by JYGCT treatment in a dose-dependent manner. Our data indicate that JYGCT attenuates TNF-α and IFN-γ-mediated chemokine production by targeting the STAT1 and NF-κB signalling in keratinocytes. Our findings suggest that JYGCT has potential as a therapeutic drug candidate for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Soo-Jin Jeong
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Hye-Sun Lim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea; Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Chungcheongbuk-do 361-951, Republic of Korea
| | - Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Jung-Hoon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea; Division of Pharmacology, Pusan National University School of Korean Medicine, Yangsan City, Gyeongnam 626-870, Republic of Korea
| | - Seong-Eun Jin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Sae-Rom Yoo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Hyeun-Kyoo Shin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea.
| |
Collapse
|
49
|
Jin M, Diao S, Zhang C, Cao S, Sun J, Li R, Jiang Z, Zheng M, Son JK, Li G. Two new diarylheptanoids isolated from the roots ofJuglans mandshurica. Nat Prod Res 2015; 29:1839-44. [DOI: 10.1080/14786419.2015.1009063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Chemical constituents from the leaves of Juglans mandshurica. Arch Pharm Res 2014; 38:480-4. [DOI: 10.1007/s12272-014-0398-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
|