1
|
Takeda Y, Demura M, Yoneda T, Takeda Y. Epigenetic Regulation of the Renin-Angiotensin-Aldosterone System in Hypertension. Int J Mol Sci 2024; 25:8099. [PMID: 39125667 PMCID: PMC11312206 DOI: 10.3390/ijms25158099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Activation of the renin-angiotensin-aldosterone system (RAAS) plays an important pathophysiological role in hypertension. Increased mRNA levels of the angiotensinogen angiotensin-converting enzyme, angiotensin type 1 receptor gene, Agtr1a, and the aldosterone synthase gene, CYP11B2, have been reported in the heart, blood vessels, and kidneys in salt-sensitive hypertension. However, the mechanism of gene regulation in each component of the RAAS in cardiovascular and renal tissues is unclear. Epigenetic mechanisms, which are important for regulating gene expression, include DNA methylation, histone post-translational modifications, and microRNA (miRNA) regulation. A close association exists between low DNA methylation at CEBP-binding sites and increased AGT expression in visceral adipose tissue and the heart of salt-sensitive hypertensive rats. Several miRNAs influence AGT expression and are associated with cardiovascular diseases. Expression of both ACE and ACE2 genes is regulated by DNA methylation, histone modifications, and miRNAs. Expression of both angiotensinogen and CYP11B2 is reversibly regulated by epigenetic modifications and is related to salt-sensitive hypertension. The mineralocorticoid receptor (MR) exists in cardiovascular and renal tissues, in which many miRNAs influence expression and contribute to the pathogenesis of hypertension. Expression of the 11beta-hydroxysteroid dehydrogenase type 2 (HSD11B2) gene is also regulated by methylation and miRNAs. Epigenetic regulation of renal and vascular HSD11B2 is an important pathogenetic mechanism for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Yoshimichi Takeda
- Endocrinology and Metabolism, Saiseikai Kanazawa Hospital, Kanazawa 920-0353, Japan;
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan;
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan;
| | - Takashi Yoneda
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 921-8641, Japan;
- Department of Health Promotion of Medicine of the Future, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan
| | - Yoshiyu Takeda
- Department of Health Promotion of Medicine of the Future, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan
- Hypertension Center, Asanogawa General Hospital, Kanazawa 910-8621, Japan
| |
Collapse
|
2
|
MacKenzie SM, Birch LA, Lamprou S, Rezvanisanijouybari P, Fayad M, Zennaro MC, Davies E. MicroRNAs in aldosterone production and action. VITAMINS AND HORMONES 2023; 124:137-163. [PMID: 38408798 DOI: 10.1016/bs.vh.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Aldosterone is a cardiovascular hormone with a key role in blood pressure regulation, among other processes, mediated through its targeting of the mineralocorticoid receptor in the renal tubule and selected other tissues. Its secretion from the adrenal gland is a highly controlled process subject to regulatory influence from the renin-angiotensin system and the hypothalamic-pituitary-adrenal axis. MicroRNAs are small endogenous non-coding RNA molecules capable of regulating gene expression post-transcriptionally through stimulation of mRNA degradation or suppression of translation. Several studies have now identified that microRNA levels are changed in cases of aldosterone dysregulation and that microRNAs are capable of regulating the expression of various genes involved in aldosterone production and action. In this article we summarise the major studies concerning this topic. We also discuss the potential role for circulating microRNAs as diagnostic biomarkers for primary aldosteronism, a highly treatable form of secondary hypertension, which would be highly desirable given the current underdiagnosis of this condition.
Collapse
Affiliation(s)
- Scott M MacKenzie
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom.
| | - Lara A Birch
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Stelios Lamprou
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Parisa Rezvanisanijouybari
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - May Fayad
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom; Université Paris Cité, PARCC, INSERM, Paris, France
| | - Maria-Christina Zennaro
- Université Paris Cité, PARCC, INSERM, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Eleanor Davies
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Kodali M, Jankay T, Shetty AK, Reddy DS. Pathophysiological basis and promise of experimental therapies for Gulf War Illness, a chronic neuropsychiatric syndrome in veterans. Psychopharmacology (Berl) 2023; 240:673-697. [PMID: 36790443 DOI: 10.1007/s00213-023-06319-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
This article describes the pathophysiology and potential treatments for Gulf War Illness (GWI), which is a chronic neuropsychiatric illness linked to a combination of chemical exposures experienced by service personnel during the first Gulf War in 1991. However, there is currently no effective treatment for veterans with GWI. The article focuses on the current status and efficacy of existing therapeutic interventions in preclinical models of GWI, as well as potential perspectives of promising therapies. GWI stems from changes in brain and peripheral systems in veterans, leading to neurocognitive deficits, as well as physiological and psychological effects resulting from multifaceted changes such as neuroinflammation, oxidative stress, and neuronal damage. Aging not only renders veterans more susceptible to GWI symptoms, but also attenuates their immune capabilities and response to therapies. A variety of experimental models are being used to investigate the pathophysiology and develop therapies that have the ability to alleviate devastating symptoms. Over two dozen therapeutic interventions targeting neuroinflammation, mitochondrial dysfunction, neuronal injury, and neurogenesis are being tested, including agents such as curcumin, curcumin nanoparticles, monosodium luminol, melatonin, resveratrol, fluoxetine, rolipram, oleoylethanolamide, ketamine, levetiracetam, nicotinamide riboside, minocycline, pyridazine derivatives, and neurosteroids. Preclinical outcomes show that some agents have promise, including curcumin, resveratrol, and ketamine, which are being tested in clinical trials in GWI veterans. Neuroprotectants and other compounds such as monosodium luminol, melatonin, levetiracetam, oleoylethanolamide, and nicotinamide riboside appear promising for future clinical trials. Neurosteroids have been shown to have neuroprotective and disease-modifying properties, which makes them a promising medicine for GWI. Therefore, accelerated clinical studies are urgently needed to evaluate and launch an effective therapy for veterans displaying GWI.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University School of Medicine, College Station, TX, USA
| | - Tanvi Jankay
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University School of Medicine, College Station, TX, USA.,Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA. .,Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
4
|
Griesler B, Schuelke C, Uhlig C, Gadasheva Y, Grossmann C. Importance of Micromilieu for Pathophysiologic Mineralocorticoid Receptor Activity-When the Mineralocorticoid Receptor Resides in the Wrong Neighborhood. Int J Mol Sci 2022; 23:12592. [PMID: 36293446 PMCID: PMC9603863 DOI: 10.3390/ijms232012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The mineralocorticoid receptor (MR) is a member of the steroid receptor family and acts as a ligand-dependent transcription factor. In addition to its classical effects on water and electrolyte balance, its involvement in the pathogenesis of cardiovascular and renal diseases has been the subject of research for several years. The molecular basis of the latter has not been fully elucidated, but an isolated increase in the concentration of the MR ligand aldosterone or MR expression does not suffice to explain long-term pathologic actions of the receptor. Several studies suggest that MR activity and signal transduction are modulated by the surrounding microenvironment, which therefore plays an important role in MR pathophysiological effects. Local changes in micromilieu, including hypoxia, ischemia/reperfusion, inflammation, radical stress, and aberrant salt or glucose concentrations affect MR activation and therefore may influence the probability of unphysiological MR actions. The surrounding micromilieu may modulate genomic MR activity either by causing changes in MR expression or MR activity; for example, by inducing posttranslational modifications of the MR or novel interaction with coregulators, DNA-binding sites, or non-classical pathways. This should be considered when developing treatment options and strategies for prevention of MR-associated diseases.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
5
|
Kadkhoda S, Eslami S, Mahmud Hussen B, Ghafouri-Fard S. A review on the importance of miRNA-135 in human diseases. Front Genet 2022; 13:973585. [PMID: 36147505 PMCID: PMC9486161 DOI: 10.3389/fgene.2022.973585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-135 (miR-135) is a microRNA which is involved in the pathoetiology of several neoplastic and non-neoplastic conditions. Both tumor suppressor and oncogenic roles have been reported for this miRNA. Studies in prostate, renal, gallbladder and nasopharyngeal cancers as well as glioma have shown down-regulation of miR-135 in cancerous tissues compared with controls. These studies have also shown the impact of miR-135 down-regulation on enhancement of cell proliferation and aggressive behavior. Meanwhile, miR-135 has been shown to be up-regulated in bladder, oral, colorectal and liver cancers. Studies in breast, gastric, lung and pancreatic cancers as well as head and neck squamous cell carcinoma have reported dual roles for miR-135. Dysregulation of miR-135 has also been noted in various non-neoplastic conditions such as Alzheimer’s disease, atherosclerosis, depression, diabetes, Parkinson, pulmonary arterial hypertension, nephrotic syndrome, endometriosis, epilepsy and allergic conditions. In the current review, we summarize the role of miR-135 in the carcinogenesis as well as development of other disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
6
|
Igbekele AE, Jia G, Hill MA, Sowers JR, Jia G. Mineralocorticoid Receptor Activation in Vascular Insulin Resistance and Dysfunction. Int J Mol Sci 2022; 23:8954. [PMID: 36012219 PMCID: PMC9409140 DOI: 10.3390/ijms23168954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Systemic insulin resistance is characterized by reduced insulin metabolic signaling and glucose intolerance. Mineralocorticoid receptors (MRs), the principal receptors for the hormone aldosterone, play an important role in regulating renal sodium handling and blood pressure. Recent studies suggest that MRs also exist in tissues outside the kidney, including vascular endothelial cells, smooth muscle cells, fibroblasts, perivascular adipose tissue, and immune cells. Risk factors, including excessive salt intake/salt sensitivity, hypertension, and obesity, can lead to the activation of vascular MRs to promote inflammation, oxidative stress, remodeling, and fibrosis, as well as cardiovascular stiffening and microcirculatory impairment. These pathophysiological changes are associated with a diminished ability of insulin to initiate appropriate intracellular signaling events, resulting in a reduced glucose uptake within the microcirculation and related vascular insulin resistance. Therefore, the pharmacological inhibition of MR activation provides a potential therapeutic option for improving vascular function, glucose uptake, and vascular insulin sensitivity. This review highlights recent experimental and clinical data that support the contribution of abnormal MR activation to the development of vascular insulin resistance and dysfunction.
Collapse
Affiliation(s)
- Aderonke E. Igbekele
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - George Jia
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Michael A. Hill
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA
| | - James R. Sowers
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA
| | - Guanghong Jia
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
7
|
Vu TA, Lema I, Hani I, Cheval L, Atger-Lallier L, Souvannarath V, Perrot J, Souvanheuane M, Marie Y, Fabrega S, Blanchard A, Bouligand J, Kamenickỷ P, Crambert G, Martinerie L, Lombès M, Viengchareun S. miR-324-5p and miR-30c-2-3p Alter Renal Mineralocorticoid Receptor Signaling under Hypertonicity. Cells 2022; 11:cells11091377. [PMID: 35563683 PMCID: PMC9104010 DOI: 10.3390/cells11091377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
The Mineralocorticoid Receptor (MR) mediates the sodium-retaining action of aldosterone in the distal nephron, but mechanisms regulating MR expression are still poorly understood. We previously showed that RNA Binding Proteins (RBPs) regulate MR expression at the post-transcriptional level in response to variations of extracellular tonicity. Herein, we highlight a novel regulatory mechanism involving the recruitment of microRNAs (miRNAs) under hypertonicity. RT-qPCR validated miRNAs candidates identified by high throughput screening approaches and transfection of a luciferase reporter construct together with miRNAs Mimics or Inhibitors demonstrated their functional interaction with target transcripts. Overexpression strategies using Mimics or lentivirus revealed the impact on MR expression and signaling in renal KC3AC1 cells. miR-324-5p and miR-30c-2-3p expression are increased under hypertonicity in KC3AC1 cells. These miRNAs directly affect Nr3c2 (MR) transcript stability, act with Tis11b to destabilize MR transcript but also repress Elavl1 (HuR) transcript, which enhances MR expression and signaling. Overexpression of miR-324-5p and miR-30c-2-3p alter MR expression and signaling in KC3AC1 cells with blunted responses in terms of aldosterone-regulated genes expression. We also confirm that their expression is increased by hypertonicity in vivo in the kidneys of mice treated with furosemide. These findings may have major implications for the pathogenesis of renal dysfunctions, sodium retention, and mineralocorticoid resistance.
Collapse
Affiliation(s)
- Thi An Vu
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Ingrid Lema
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Imene Hani
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, 75006 Paris, France; (L.C.); (G.C.)
| | - Laura Atger-Lallier
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Vilayvane Souvannarath
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Julie Perrot
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Mélanie Souvanheuane
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Yannick Marie
- Plateforme de Genotypage Séquençage (iGenSeq), Institut du Cerveau et de la Moelle Epinière, Hôpital Sapêtrière, 75013 Paris, France;
| | - Sylvie Fabrega
- Plateforme Vecteurs Viraux et Transfert de Gènes, Structure Federative de Recherche Necker, UMS 24, UMS 3633, Faculté de Santé, Université Paris Cité, 75015 Paris, France;
| | - Anne Blanchard
- Inserm, Centre d’Investigations Cliniques 9201, 75015 Paris, France;
| | - Jérôme Bouligand
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, 94275 Le Kremlin-Bicêtre, France
| | - Peter Kamenickỷ
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
- Assistance Publique-Hopitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, 94275 Le Kremlin-Bicêtre, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, 75006 Paris, France; (L.C.); (G.C.)
| | - Laetitia Martinerie
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
- Assistance-Publique Hôpitaux de Paris, Hôpital Robert Debré, Service d’Endocrinologie Pédiatrique, Université Paris Cité, 75019 Paris, France
| | - Marc Lombès
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Say Viengchareun
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
- Correspondence:
| |
Collapse
|
8
|
Difference in miRNA Expression in Functioning and Silent Corticotroph Pituitary Adenomas Indicates the Role of miRNA in the Regulation of Corticosteroid Receptors. Int J Mol Sci 2022; 23:ijms23052867. [PMID: 35270010 PMCID: PMC8911444 DOI: 10.3390/ijms23052867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Corticotroph pituitary adenomas commonly cause Cushing’s disease (CD), but some of them are clinically silent. The reason why they do not cause endocrinological symptoms remains unclear. We used data from small RNA sequencing in adenomas causing CD (n = 28) and silent ones (n = 20) to explore the role of miRNA in hormone secretion and clinical status of the tumors. By comparing miRNA profiles, we identified 19 miRNAs differentially expressed in clinically functioning and silent corticotroph adenomas. The analysis of their putative target genes indicates a role of miRNAs in regulation of the corticosteroid receptors expression. Adenomas causing CD have higher expression of hsa-miR-124-3p and hsa-miR-135-5p and lower expression of their target genes NR3C1 and NR3C2. The role of hsa-miR-124-3p in the regulation of NR3C1 was further validated in vitro using AtT-20/D16v-F2 cells. The cells transfected with miR-124-3p mimics showed lower levels of glucocorticoid receptor expression than control cells while the interaction between miR-124-3p and NR3C1 3′ UTR was confirmed using luciferase reporter assay. The results indicate a relatively small difference in miRNA expression between clinically functioning and silent corticotroph pituitary adenomas. High expression of hsa-miR-124-3p in adenomas causing CD plays a role in the regulation of glucocorticoid receptor level and probably in reducing the effect of negative feedback mediated by corticosteroids.
Collapse
|
9
|
Perpetuo L, Ferreira R, Thongboonkerd V, Guedes S, Amado F, Vitorino R. Urinary exosomes: Diagnostic impact with a bioinformatic approach. Adv Clin Chem 2022; 111:69-99. [DOI: 10.1016/bs.acc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Improta-Caria AC, Aras MG, Nascimento L, De Sousa RAL, Aras-Júnior R, Souza BSDF. MicroRNAs Regulating Renin-Angiotensin-Aldosterone System, Sympathetic Nervous System and Left Ventricular Hypertrophy in Systemic Arterial Hypertension. Biomolecules 2021; 11:biom11121771. [PMID: 34944415 PMCID: PMC8698399 DOI: 10.3390/biom11121771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate gene and protein expression. MicroRNAs also regulate several cellular processes such as proliferation, differentiation, cell cycle, apoptosis, among others. In this context, they play important roles in the human body and in the pathogenesis of diseases such as cancer, diabetes, obesity and hypertension. In hypertension, microRNAs act on the renin-angiotensin-aldosterone system, sympathetic nervous system and left ventricular hypertrophy, however the signaling pathways that interact in these processes and are regulated by microRNAs inducing hypertension and the worsening of the disease still need to be elucidated. Thus, the aim of this review is to analyze the pattern of expression of microRNAs in these processes and the possible associated signaling pathways.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil;
- Department of Physical Education in Cardiology of the State of Bahia, Brazilian Society of Cardiology, Salvador 41170-130, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil
- Correspondence: (A.C.I.-C.); (B.S.d.F.S.)
| | - Marcela Gordilho Aras
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | - Luca Nascimento
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | | | - Roque Aras-Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil;
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 22281-100, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Correspondence: (A.C.I.-C.); (B.S.d.F.S.)
| |
Collapse
|
11
|
Ma W, Zhang X, Liu Y. miR-124 promotes apoptosis and inhibits the proliferation of vessel endothelial cells through P38/MAPK and PI3K/AKT pathways, making it a potential mechanism of vessel endothelial injury in acute myocardial infarction. Exp Ther Med 2021; 22:1383. [PMID: 34650631 PMCID: PMC8506947 DOI: 10.3892/etm.2021.10819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/11/2021] [Indexed: 11/26/2022] Open
Abstract
Due to its rapid onset and high rates of fatality, acute myocardial infarction (AMI) has long been one of the most fatal diseases among all types of heart diseases. Therefore, intensive research efforts have been focused on understanding AMI's potential pathogenesis to seek effective treatment options. In the present study, 20 peripheral blood samples were collected from patients with AMI, after which reverse transcription-quantitative PCR analysis revealed that microRNA (miR)-124 levels in the peripheral blood of patients with AMI was significantly elevated compared with that in the control group. In vitro, a model using pcDNA3.1-miR-124 transfected human umbilical vein endothelial cells (HUVECs) indicated that overexpression of miR-124 could significantly promote the apoptosis and suppress the proliferation of HUVECs using flow cytometry, TUNEL assay and Cell Counting Kit-8 assays. Based on the present findings, RNA samples of HUVECs overexpressing miR-124 was extracted and sequenced to explore the gene expression profile after miR-124 overexpression. Gene Set Enrichment Analysis (GSEA) analysis revealed that the downregulated genes were mainly enriched in signaling pathways, such as PI3K-AKT, whilst the upregulated genes were mainly enriched in metabolism-related signaling pathways, such as the metabolism of xenobiotics by cytochrome P450 pathway. Additionally, Rideogram software was used to determine the chromosomal localization of the differentially expressed genes. The results demonstrated that they were distributed on all chromosomes except for chromosome Y. In addition, characteristic profiles of the differentially expressed genes caused by miR-124 overexpression were analyzed using Connectivity Map. In total, two medicines, anisomycin and sanguinarine, which function as p38/MAPK signaling agonists that can inhibit angiogenesis, presented with the highest enrichment scores. Together with the GSEA results, which indicated that the differentially expressed genes were mainly enriched in the angiogenesis-inhibiting PI3K/AKT signaling pathway, the present study reported that high expression of miR-124 was negatively associated with patients with AMI, promoting the apoptosis and suppressing the proliferation of vessel endothelial cells.
Collapse
Affiliation(s)
- Weimin Ma
- Department of Critical Care Medicine, Weihai Central Hospital, Weihai, Shandong 264200, P.R. China
| | - Xin Zhang
- Department of Pediatrics, Weihai Central Hospital, Weihai, Shandong 264200, P.R. China
| | - Yang Liu
- Department of Critical Care Medicine, Weihai Central Hospital, Weihai, Shandong 264200, P.R. China
| |
Collapse
|
12
|
Zeng W, Tomlinson B. Temporal haemodynamic changes after bisoprolol treatment in patients with uncontrolled hypertension. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:923. [PMID: 34350238 PMCID: PMC8263854 DOI: 10.21037/atm-21-1796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/18/2021] [Indexed: 11/06/2022]
Abstract
Background Anti-hypertensive drugs are widely used to control blood pressure, yet their effects on haemodynamics, especially in Chinese populations, and the potential for non-invasive methods to monitor these changes, are poorly understood. This study aimed to determine the early and late effects of bisoprolol treatment on blood pressure, cardiac output (CO), stroke volume (SV), heart rate (HR), systematic vascular resistance (SVR), and inotropy measured in Chinese patients with hypertension. Methods Twelve Chinese subjects (median age: 55 years, interquartile range: 52-58 years; 33% male) with uncontrolled hypertension were recruited at the Prince of Wales Hospital in Hong Kong and haemodynamic measurements were assessed using a non-invasive Ultrasonic Cardiac Output Monitor (USCOM). Seven hourly measurements were taken before and after bisoprolol 2.5 mg on day 1 (T0 to T6), and in nine patients this was repeated six weeks later (TF0 to TF6). Any BP change of 5 mmHg was considered clinically significant and P<0.05 was considered statistically significant. Results On day 1 (N=12), there was a significant drop in median CO [4.9 (4.7-5.6) vs. 3.8 (3.3-4.7) L/m2, P<0.0001] associated with a compensatory increase in SVR [1,698.1 (1,584.6-1,894.3) vs. 2,222.6 (1,777.4-2,712.5) d·s·cm-5, P<0.0001] at T2. The median dBP {92 [87-95] vs. 86 [79-89] mmHg, P=0.0002} and MAP {110 [104-114] vs. 104 [101-109] mmHg, P=0.038} reduced significantly 6 hours after bisoprolol treatment. Except for HR, all other measured haemodynamics returned to baseline at T6. On week 6 (N=9), SVR was generally reduced, but major parallel swings in CO and SVR were still evident. All patients showed a trend to lower blood pressure, SVR, and inotropy (P<0.05), but HR, SV, and CO returned to baseline values after 6 weeks treatment (P>0.05). Conclusions The acute haemodynamic changes between 6 hours of the first dose and the dose after 6 weeks of bisoprolol treatment are similar. Long-term therapy can effectively reduce blood pressure by reducing SVR.
Collapse
Affiliation(s)
- Weiwei Zeng
- Department of Pharmacy, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China.,Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| |
Collapse
|
13
|
Abstract
The Wingless/INT (WNT) signaling network has roles in renal cancer development. It was shown that the tumor-suppressor microRNA-124 (miR-124) is associated with the Wnt pathway. Thus, we aimed to measure miR-124 expression levels to evaluate whether it is a prognostic marker or a potential treatment strategy. Thirty tumor and 30 surrounding healthy kidney tissues from the same subjects diagnosed with renal cell carcinoma (RCC), were included in the study. The expression levels of miR-124 were measured with real-time polymerase chain reaction (qPCR) and determined by the 2–ΔΔCT method. The Statistical Package for Social Science (SPSS) version 22 program was used for statistical analyses and a p value of 0.05 was considered to be statistically significant. The expression levels of miR-124 was found to be about 3-fold lower in tumors than in healthy tissues (p 0.001) and decreased expression levels correlated with tumor stage, tumor diameter, body mass index (BMI) and neutrophil values (p 0.05). Our results showed that miR-124 expression levels are associated with RCC. MicroRNA-124 may be assessed as a biomarker in prognosis and the restoration of miR-124 expression might be effective in the treatment of RCC.
Collapse
|
14
|
Butterworth MB. Non-coding RNAs and the mineralocorticoid receptor in the kidney. Mol Cell Endocrinol 2021; 521:111115. [PMID: 33301840 PMCID: PMC7796954 DOI: 10.1016/j.mce.2020.111115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
The final steps in the Renin-Angiotensin-Aldosterone signaling System (RAAS) involve binding of the corticosteroid hormone, aldosterone to its mineralocorticoid receptor (MR). The bound MR interacts with response elements to induce or repress the transcription of aldosterone-regulated genes. Along with the classic genomic targets of aldosterone that alter mRNA and protein expression, aldosterone also regulates the expression of non-coding RNAs (ncRNAs). Short ncRNAs termed microRNAs (miRs) have been shown to play a role in transducing aldosterone's actions via MR signaling. The role of miRs in homeostatic regulation of aldosterone signaling, and the potential for aldosterone-regulated miRs to act as feedback regulators of MR have been recently reported. In this review, the role of miRs in RAAS signaling and feedback regulation of MR in kidney epithelial cells will be discussed.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Liu Y, Han M, Yang J, Xu Q, Xu L, Ren Y, Xiang C, Liu Z, Zhang Y. Primary Generalized Glucocorticoid Hypersensitivity Treated with Mifepristone: A Case Report. Int J Gen Med 2020; 13:825-831. [PMID: 33116774 PMCID: PMC7568610 DOI: 10.2147/ijgm.s273969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/17/2020] [Indexed: 11/23/2022] Open
Abstract
Here, we report a case of a patient with symptoms of Cushing syndrome, who is diagnosed with primary generalized glucocorticoid hypersensitivity in the end. The patient’s relevant laboratory tests and imaging examinations are described. Mifepristone, a glucocorticoid receptor antagonist, was prescribed and its therapeutic effect on the patient’s electrolyte level, lipid metabolism, and bone metabolism was observed during the treatment. The endocrine assessment indicated normal pituitary-adrenal axis regulation function but reduced cortisol secretion. Quantitative reverse transcription-polymerase chain reaction indicated reduced mRNA level of mineralocorticoid receptor gene. Pituitary magnetic resonance imaging showed normal pituitary anatomy, while adrenal computed tomography scan showed bilateral adrenal atrophy and increased content of visceral and abdominal subcutaneous fat. Moreover, chromosome examination revealed a normal 46, XY chromosome. In this case, mifepristone was administered to treat primary generalized glucocorticoid hypersensitivity. To the best of our knowledge, there are a few reports on mifepristone-treated primary generalized glucocorticoid hypersensitivity. In the one-year follow-up visits, the evaluated results of electrolyte level, lipid metabolism, and bone metabolism indicated that the patient’s symptoms resulting from cortisol hypersensitivity were relieved progressively.
Collapse
Affiliation(s)
- Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 03000, China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 03000, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan 03000, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 03000, China
| | - Qishan Xu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 03000, China
| | - Linxi Xu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 03000, China
| | - Yi Ren
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 03000, China
| | - Chenyu Xiang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 03000, China
| | - Zi'ang Liu
- First Clinical Medical College, Shanxi Medical University, Taiyuan 03000, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 03000 China
| |
Collapse
|
16
|
Emerging role of microRNAs in ischemic stroke with comorbidities. Exp Neurol 2020; 331:113382. [DOI: 10.1016/j.expneurol.2020.113382] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
|
17
|
Hu R, Li X, Peng C, Gao R, Ma L, Hu J, Luo T, Qing H, Wang Y, Ge Q, Wang Z, Wu C, Xiao X, Yang J, Young MJ, Li Q, Yang S. miR-196b-5p-enriched extracellular vesicles from tubular epithelial cells mediated aldosterone-induced renal fibrosis in mice with diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001101. [PMID: 32727744 PMCID: PMC7394302 DOI: 10.1136/bmjdrc-2019-001101] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Aldosterone is a mediator of progressive renal disease, but the mechanisms for aldosterone-mediated renal impairment in mice with diabetes are not fully defined. METHODS Aldosterone and/or mineralocorticoid receptor antagonist eplerenone were used to treat the db/db mice with diabetes. Proximal tubule epithelial cells (PTECs) and fibroblasts were cultured. Blood and kidney samples from patients with diabetes with or without diabetic kidney disease (DKD) were used to verify the findings from animals and cultured cells. RESULTS We found that aldosterone promoted proteinuria and tubulointerstitial extracellular matrix (ECM) accumulation in db/db mice with diabetes while eplerenone mitigated the adverse effect of aldosterone. However, coculture of PTECs and fibroblasts found that when PTECs-derived extracellular vesicles (EVs) were taken up by fibroblasts, ECM production increased remarkably. Moreover, C57BL/6 mice injected with EVs from renal cortex of aldosterone-treated db/db mice showed increased ECM accumulation. Function of the ingredients of PTECs-derived EVs were analyzed, and RNAs were identified to be responsible for the EVs-induced fibroblast dysfunction. Furthermore, microRNA (miRNA) array analysis revealed that miR-196b-5p was the most remarkably increased miRNA in PTECs-derived EVs with aldosterone stimulation. Overexpression of miR-196b-5p in fibroblasts increased ECM production, accompanied by inhibition of the SOCS2 expression and enhanced STAT3 phosphorylation. In addition, plasma levels of miR-196b-5p was higher in patients with DKD as compared with patients without DKD and miR-196b-5p levels positively correlated with the albuminuria concentration. In kidney specimens from patients with diabetes, expression of miR-196b-5p, located mainly in PTECs, increased in patients with DKD as compared with the non-DKD. CONCLUSION This study demonstrates the involvement of miR-196b-5p-EVs pathway as a novel mechanism in aldosterone-induced renal fibrosis in diabetes. EVs rich in miR-196b-5p mediate the crosstalk between PTECs and fibroblast during the development of renal fibrosis, which might be associated with STAT3/SOCO2 signaling pathway.
Collapse
Affiliation(s)
- Renzhi Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruifei Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Linqiang Ma
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinbo Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Qing
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Ge
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihong Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaodong Wu
- Nutrition & Food Sciences, Texas A&M University, College Station, Texas, USA
| | - Xiaoqiu Xiao
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shumin Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Vasu MM, Sumitha PS, Rahna P, Thanseem I, Anitha A. microRNAs in Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4368-4378. [PMID: 31692427 DOI: 10.2174/1381612825666191105120901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Efforts to unravel the extensive impact of the non-coding elements of the human genome on cell homeostasis and pathological processes have gained momentum over the last couple of decades. miRNAs refer to short, often 18-25 nucleotides long, non-coding RNA molecules which can regulate gene expression. Each miRNA can regulate several mRNAs. METHODS This article reviews the literature on the roles of miRNAs in autism. RESULTS Considering the fact that ~ 1% of the human DNA encodes different families of miRNAs, their overall impact as critical regulators of gene expression in the mammalian brain should be immense. Though the autism spectrum disorders (ASDs) are predominantly genetic in nature and several candidate genes are already identified, the highly heterogeneous and multifactorial nature of the disorder makes it difficult to identify common genetic risk factors. Several studies have suggested that the environmental factors may interact with the genetic factors to increase the risk. miRNAs could possibly be one of those factors which explain this link between genetics and the environment. CONCLUSION In the present review, we have summarized our current knowledge on miRNAs and their complex roles in ASD, and also on their therapeutic applications.
Collapse
Affiliation(s)
- Mahesh Mundalil Vasu
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Puthiripadath S Sumitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Parakkal Rahna
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| |
Collapse
|
19
|
Menikdiwela KR, Ramalingam L, Abbas MM, Bensmail H, Scoggin S, Kalupahana NS, Palat A, Gunaratne P, Moustaid-Moussa N. Role of microRNA 690 in Mediating Angiotensin II Effects on Inflammation and Endoplasmic Reticulum Stress. Cells 2020; 9:cells9061327. [PMID: 32466437 PMCID: PMC7348980 DOI: 10.3390/cells9061327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022] Open
Abstract
Overactivation of the renin–angiotensin system (RAS) during obesity disrupts adipocyte metabolic homeostasis and induces endoplasmic reticulum (ER) stress and inflammation; however, underlying mechanisms are not well known. We propose that overexpression of angiotensinogen (Agt), the precursor protein of RAS in adipose tissue or treatment of adipocytes with Angiotensin II (Ang II), RAS bioactive hormone, alters specific microRNAs (miRNA), that target ER stress and inflammation leading to adipocyte dysfunction. Epididymal white adipose tissue (WAT) from B6 wild type (Wt) and transgenic male mice overexpressing Agt (Agt-Tg) in adipose tissue and adipocytes treated with Ang II were used. Small RNA sequencing and microarray in WAT identified differentially expressed miRNAs and genes, out of which miR-690 and mitogen-activated protein kinase kinase 3 (MAP2K3) were validated as significantly up- and down-regulated, respectively, in Agt-Tg, and in Ang II-treated adipocytes compared to respective controls. Additionally, the direct regulatory role of miR-690 on MAP2K3 was confirmed using mimic, inhibitors and dual-luciferase reporter assay. Downstream protein targets of MAP2K3 which include p38, NF-κB, IL-6 and CHOP were all reduced. These results indicate a critical post-transcriptional role for miR-690 in inflammation and ER stress. In conclusion, miR-690 plays a protective function and could be a useful target to reduce obesity.
Collapse
Affiliation(s)
- Kalhara R. Menikdiwela
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.R.M.); (L.R.); (S.S.); (N.S.K.)
| | - Latha Ramalingam
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.R.M.); (L.R.); (S.S.); (N.S.K.)
| | - Mostafa M. Abbas
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha 34110, Qatar; (M.M.A.); (H.B.)
- Department of Imaging Science and Innovation, Geisinger Health System, Danville, PA 17822, USA
| | - Halima Bensmail
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha 34110, Qatar; (M.M.A.); (H.B.)
| | - Shane Scoggin
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.R.M.); (L.R.); (S.S.); (N.S.K.)
| | - Nishan S. Kalupahana
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.R.M.); (L.R.); (S.S.); (N.S.K.)
- Department of Physiology, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Asha Palat
- Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (A.P.); (P.G.)
| | - Preethi Gunaratne
- Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (A.P.); (P.G.)
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.R.M.); (L.R.); (S.S.); (N.S.K.)
- Correspondence: ; Tel.: +806-834-7946
| |
Collapse
|
20
|
Shi J, Ren Y, Liu Y, Cheng Y, Liu Y. Circulating miR-3135b and miR-107 are potential biomarkers for severe hypertension. J Hum Hypertens 2020; 35:343-350. [PMID: 32327699 DOI: 10.1038/s41371-020-0338-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
Hypertension is a disease relating to multiple etiological factors. However, the molecular mechanisms of severe hypertension remain unclear. Whole-body circulatory dysregulation has been found to contribute to hypertension, documenting that circulating molecules are focused as pathological molecules implicated in hypertension. Circulating microRNAs (miRNAs) have been identified as important molecular biomarkers for hypertension. We screened and analyzed miRNAs differentially expressed in plasma in patients with severe hypertension and healthy controls using microarray profiling (six patients and six healthy controls for screening) and RT-qPCR (33 patients and 33 healthy controls for validation). We identified that miR-3135b and miR-107 are the differentially expressed miRNAs between severe hypertension and healthy controls, and the target genes independently regulated by the two miRNAs are remarkably different. MiR-3135b and miR-107 are potential biomarkers for severe hypertension.
Collapse
Affiliation(s)
- Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Yaxuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Yunkai Liu
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yi Cheng
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China.
| |
Collapse
|
21
|
Luo L, Wang Y, Hu P, Wu J. Long Non-Coding RNA Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Promotes Hypertension by Modulating the Hsa-miR-124-3p/Nuclear Receptor Subfamily 3, Group C, Member 2 (NR3C2) and Hsa-miR-135a-5p/NR3C2 Axis. Med Sci Monit 2020; 26:e920478. [PMID: 32222724 PMCID: PMC7139186 DOI: 10.12659/msm.920478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background This study was designed to investigate the role of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the proliferation as well as apoptosis of human umbilical vein endothelial cells (HUVECs), to offer a basis for therapy of hypertension. Material/Methods The lncRNA MALAT1 expression, hsa-miR-124-3p, hsa-miR-135a-5p, hsa-miR-135b-5p, and hsa-miR-455-5p in plasma were measured from 230 patients with hypertension and 230 non-hypertensive controls. The mechanism for lncRNA MALAT1 modulating the proliferation and apoptosis of HUVECs was explored by cell transfection, Cell Counting Kit-8 (CCK-8), quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and dual-luciferase reporter assays. Results The expression of hsa-miR-124-3p and hsa-miR-135a-5p was reduced and the expression of lncRNA MALAT1 was increased in the plasma of hypertensive patients. Moreover, the plasma levels of hsa-miR-124-3p and hsa-miR-135a-5p of hypertensive patients were negatively correlated with lncRNA MALAT1 (r=−0.64, −0.72; P<0.01, P<0.01, respectively). The level of nuclear receptor subfamily 3, group C, member 2 (NR3C2) protein was negatively correlated with hsa-miR-124-3p and hsa-miR-135a-5p (r=−0.74, −0.84; P<0.01, P<0.01, respectively). The proliferation of HUVECs was inhibited after the inhibition of MALAT. Additionally, after knocking down MALAT, the levels of hsa-miR-124-3p and hsa-miR-135a-5p in HUVECs were markedly increased, while the expression level of NR3C2 protein was decreased. The apoptotic rate of HUVECs after the transfection of MALAT1 small interfering RNA (si-MALAT1) (3.64±0.21%) was significantly reduced compared to that of transfected si-MALAT1 no template control (NC) (3.76±0.19%) and the control group (10.51±1.24%). Conclusions LncRNA MALAT1 regulates proliferation and apoptosis of HUVECs through the hsa-miR-124-3p/NR3C2 and/or hsa-miR-135a-5p/NR3C2 axis.
Collapse
Affiliation(s)
- Liju Luo
- Department of Geratology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Yu Wang
- Department of Cardiology, The Affiliated Yueqing Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Jiale Wu
- Department of Geratology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
22
|
Ng HM, Ho JCH, Nong W, Hui JHL, Lai KP, Wong CKC. Genome-wide analysis of MicroRNA-messenger RNA interactome in ex-vivo gill filaments, Anguilla japonica. BMC Genomics 2020; 21:208. [PMID: 32131732 PMCID: PMC7057501 DOI: 10.1186/s12864-020-6630-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
Background Gills of euryhaline fishes possess great physiological and structural plasticity to adapt to large changes in external osmolality and to participate in ion uptake/excretion, which is essential for the re-establishment of fluid and electrolyte homeostasis. The osmoregulatory plasticity of gills provides an excellent model to study the role of microRNAs (miRs) in adaptive osmotic responses. The present study is to characterize an ex-vivo gill filament culture and using omics approach, to decipher the interaction between tonicity-responsive miRs and gene targets, in orchestrating the osmotic stress-induced responses. Results Ex-vivo gill filament culture was exposed to Leibovitz’s L-15 medium (300 mOsmol l− 1) or the medium with an adjusted osmolality of 600 mOsmol l− 1 for 4, 8 and 24 h. Hypertonic responsive genes, including osmotic stress transcriptional factor, Na+/Cl−-taurine transporter, Na+/H+ exchange regulatory cofactor, cystic fibrosis transmembrane regulator, inward rectifying K+ channel, Na+/K+-ATPase, and calcium-transporting ATPase were significantly upregulated, while the hypo-osmotic gene, V-type proton ATPase was downregulated. The data illustrated that the ex-vivo gill filament culture exhibited distinctive responses to hyperosmotic challenge. In the hyperosmotic treatment, four key factors (i.e. drosha RNase III endonuclease, exportin-5, dicer ribonuclease III and argonaute-2) involved in miR biogenesis were dysregulated (P < 0.05). Transcriptome and miR-sequencing of gill filament samples at 4 and 8 h were conducted and two downregulated miRs, miR-29b-3p and miR-200b-3p were identified. An inhibition of miR-29b-3p and miR-200b-3p in primary gill cell culture led to an upregulation of 100 and 93 gene transcripts, respectively. Commonly upregulated gene transcripts from the hyperosmotic experiments and miR-inhibition studies, were overlaid, in which two miR-29b-3p target-genes [Krueppel-like factor 4 (klf4), Homeobox protein Meis2] and one miR-200b-3p target-gene (slc17a5) were identified. Integrated miR-mRNA-omics analysis revealed the specific binding of miR-29b-3p on Klf4 and miR-200b-3p on slc17a5. The target-genes are known to regulate differentiation of gill ionocytes and cellular osmolality. Conclusions In this study, we have characterized the hypo-osmoregulatory responses and unraveled the modulation of miR-biogenesis factors/the dysregulation of miRs, using ex-vivo gill filament culture. MicroRNA-messenger RNA interactome analysis of miR-29b-3p and miR-200b-3p revealed the gene targets are essential for osmotic stress responses.
Collapse
Affiliation(s)
- Hoi Man Ng
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong
| | - Jeff Cheuk Hin Ho
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, HKSAR, Hong Kong
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, HKSAR, Hong Kong
| | - Keng Po Lai
- Guanxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, People's Republic of China.
| | - Chris Kong Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong.
| |
Collapse
|
23
|
Atrooz F, Liu H, Salim S. Stress, psychiatric disorders, molecular targets, and more. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:77-105. [PMID: 31601407 DOI: 10.1016/bs.pmbts.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mental health is central to normal health outcomes. A widely accepted theory is that chronic persistent stress during adulthood as well as during early life triggers onset of neuropsychiatric ailments. However, questions related to how that occurs, and why are some individuals resistant to stress while others are not, remain unanswered. An integrated, multisystemic stress response involving neuroinflammatory, neuroendocrine, epigenetic and metabolic cascades have been suggested to have causative links. Several theories have been proposed over the years to conceptualize this link including the cytokine hypothesis, the endocrine hypothesis, the oxidative stress hypothesis and the oxido-neuroinflammation hypothesis. The data discussed in this review describes potential biochemical basis of the link between stress, and stress-induced neuronal, behavioral and emotional deficits, providing insights into potentially novel drug targets.
Collapse
Affiliation(s)
- Fatin Atrooz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Hesong Liu
- Baylor College of Medicine, Houston, TX, United States
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The review describes studies investigating the role of microRNAs in the signaling pathway of the mineralocorticoid hormone, aldosterone. RECENT FINDINGS Emerging evidence indicates that aldosterone alters the expression of microRNAs in target tissues thereby modulating the expression of key regulatory proteins. SUMMARY The mineralocorticoid hormone aldosterone is released by the adrenal glands in a homeostatic mechanism to regulate blood volume. The long-term renal action of aldosterone is to increase the retrieval of sodium from filtered plasma to restore blood pressure. Emerging evidence indicates aldosterone may alter noncoding RNAs (ncRNAs) to integrate this hormonal response in target tissue. Expression of the best characterized small ncRNAs, microRNAs, is regulated by aldosterone stimulation. MicroRNAs modulate protein expression at all steps in the renin-angiotensin-aldosterone-signaling (RAAS) system. In addition to acting as a rheostat to fine-tune protein levels in aldosterone-responsive cells, there is evidence that microRNAs down-regulate components of the signaling cascade as a feedback mechanism. The role of microRNAs is, therefore, as signal integrator, and damper in aldosterone signaling, which has implications in understating the RAAS system from both a physiological and pathophysiological perspective. Recent evidence for microRNA's role in RAAS signaling will be discussed.
Collapse
|
25
|
Arif M, Sadayappan S, Becker RC, Martin LJ, Urbina EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 2019; 42:1099-1113. [PMID: 30867575 DOI: 10.1038/s41440-019-0248-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Essential hypertension (EH) is a multifactorial disease of the cardiovascular system that is influenced by the interplay of genetic, epigenetic, and environmental factors. The molecular dynamics underlying EH etiopathogenesis is unknown; however, earlier studies have revealed EH-associated genetic variants. Nevertheless, this finding alone is not sufficient to explain the variability in blood pressure, suggesting that other risk factors are involved, such as epigenetic modifications. Therefore, this review highlights the potential contribution of well-defined epigenetic mechanisms in EH, specifically, DNA methylation, post-translational histone modifications, and microRNAs. We further emphasize global and gene-specific DNA methylation as one of the most well-studied hallmarks among all epigenetic modifications in EH. In addition, post-translational histone modifications, such as methylation, acetylation, and phosphorylation, are described as important epigenetic markers associated with EH. Finally, we discuss microRNAs that affect blood pressure by regulating master genes such as those implicated in the renin-angiotensin-aldosterone system. These epigenetic modifications, which appear to contribute to various cardiovascular diseases, including EH, may be a promising research area for the development of novel future strategies for EH prevention and therapeutics.
Collapse
Affiliation(s)
- Mohammed Arif
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA.,Division of Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Richard C Becker
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Elaine M Urbina
- Division of Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
26
|
Qu Y, Zhang Y, Wu J, Jie L, Deng J, Zhao D, Yu Q. Retracted
: Downregulated microRNA‐135a ameliorates rheumatoid arthritis by inactivation of the phosphatidylinositol 3‐kinase/AKT signaling pathway via phosphatidylinositol 3‐kinase regulatory subunit 2. J Cell Physiol 2019; 234:17663-17676. [DOI: 10.1002/jcp.28390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yuan Qu
- Department of Rheumatology and Clinical Immunology Zhujiang Hospital of Southern Medical University Guangzhou China
| | - Yu‐Ping Zhang
- Department of Rheumatology and Clinical Immunology Zhujiang Hospital of Southern Medical University Guangzhou China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology Zhujiang Hospital of Southern Medical University Guangzhou China
| | - Li‐Gang Jie
- Department of Rheumatology and Clinical Immunology Zhujiang Hospital of Southern Medical University Guangzhou China
| | - Jia‐Xin Deng
- Department of Rheumatology and Clinical Immunology Zhujiang Hospital of Southern Medical University Guangzhou China
| | - Dong‐Bao Zhao
- Department of Rheumatology and Immunology Changhai Hospital, Second Military Medical University Shanghai China
| | - Qing‐Hong Yu
- Department of Rheumatology and Clinical Immunology Zhujiang Hospital of Southern Medical University Guangzhou China
| |
Collapse
|
27
|
Abstract
The mineralocorticoid hormone aldosterone is released by the adrenal glands in a homeostatic mechanism to regulate blood volume. Several cues elicit aldosterone release, and the long-term action of the hormone is to restore blood pressure and/or increase the retrieval of sodium from filtered plasma in the kidney. While the signaling cascade that results in aldosterone release is well studied, the impact of this hormone on tissues and cells in various organ systems is pleotropic. Emerging evidence indicates aldosterone may alter non-coding RNAs (ncRNAs) to integrate the hormonal response, and these ncRNAs may contribute to the heterogeneity of signaling outcomes in aldosterone target tissues. The best studied of the ncRNAs in aldosterone action are the small ncRNAs, microRNAs. MicroRNA expression is regulated by aldosterone stimulation, and microRNAs are able to modulate protein expression at all steps in the renin-angiotensin-aldosterone-signaling system. The discovery and synthesis of microRNAs will be briefly covered followed by a discussion of the reciprocal role of aldosterone/microRNA regulation, including misregulation of microRNA signaling in aldosterone-linked disease states.
Collapse
|
28
|
Inhibition of microRNA-124-3p as a novel therapeutic strategy for the treatment of Gulf War Illness: Evaluation in a rat model. Neurotoxicology 2018; 71:16-30. [PMID: 30503814 DOI: 10.1016/j.neuro.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022]
Abstract
Gulf War Illness (GWI) is a chronic, multisymptom illness that continues to affect up to 30% of veterans deployed to the Persian Gulf during the 1990-1991 Gulf War. After nearly 30 years, useful treatments for GWI are lacking and underlying cellular and molecular mechanisms involved in its pathobiology remain poorly understood, although exposures to pyridostigmine bromide (PB) and pesticides are consistently identified to be among the strongest risk factors. Alleviation of the broad range of symptoms manifested in GWI, which involve the central nervous system, the neuroendocrine system, and the immune system likely requires therapies that are able to activate and inactivate a large set of orchestrated genes. Previous work in our laboratory using an established rat model of GWI identified persistent elevation of microRNA-124-3p (miR-124) levels in the hippocampus whose numerous gene targets are involved in cognition-associated pathways and neuroendocrine function. This study aimed to investigate the broad effects of miR-124 inhibition in the brain 9 months after completion of a 28-day exposure regimen of PB, DEET (N,N-diethyl-3-methylbenzamide), permethrin, and mild stress by profiling the hippocampal expression of genes known to play a critical role in synaptic plasticity, glucocorticoid signaling, and neurogenesis. We determined that intracerebroventricular infusion of a miR-124 antisense oligonucleotide (miR-124 inhibitor; 0.05-0.5 nmol/day/28 days), but not a negative control oligonucleotide, into the lateral ventricle of the brain caused increased protein expression of multiple validated miR-124 targets and increased expression of downstream target genes important for cognition and neuroendocrine signaling in the hippocampus. Off-target cardiotoxic effects were revealed in GWI rats receiving 0.1 nmol/day as indicated by the detection in plasma of 5 highly elevated protein cardiac injury markers and 6 upregulated cardiac-enriched miRNAs in plasma exosomes determined by next-generation sequencing. Results from this study suggest that in vivo inhibition of miR-124 function in the hippocampus is a promising, novel therapeutic approach to improve cognition and neuroendocrine dysfunction in GWI. Additional preclinical studies in animal models to assess feasibility and safety by developing a practical, noninvasive drug delivery system to the brain and exploring potential adverse toxicologic effects of miR-124 inhibition are warranted.
Collapse
|
29
|
Affiliation(s)
- Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Pedro A. Jose
- Division of Renal Disease & Hypertension, Departments of Medicine and Pharmacology/Physiology.The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
30
|
Zhang W, Wu M, Chong QY, Zhang M, Zhang X, Hu L, Zhong Y, Qian P, Kong X, Tan S, Li G, Ding K, Lobie PE, Zhu T. Loss of Estrogen-Regulated MIR135A1 at 3p21.1 Promotes Tamoxifen Resistance in Breast Cancer. Cancer Res 2018; 78:4915-4928. [PMID: 29945962 DOI: 10.1158/0008-5472.can-18-0069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/11/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022]
Abstract
The dysregulation of miRNAs has been increasingly recognized as a critical mediator of cancer development and progression. Here, we show that frequent deletion of the MIR135A1 locus is associated with poor prognosis in primary breast cancer. Forced expression of miR-135a decreased breast cancer progression, while inhibition of miR-135a with a specific miRNA sponge elicited opposing effects, suggestive of a tumor suppressive role of miR-135a in breast cancer. Estrogen receptor alpha (ERα) bound the promoter of MIR135A1 for its transcriptional activation, whereas tamoxifen treatment inhibited expression of miR-135a in ERα+ breast cancer cells. miR-135a directly targeted ESR1, ESRRA, and NCOA1, forming a negative feedback loop to inhibit ERα signaling. This regulatory feedback between miR-135a and ERα demonstrated that miR-135a regulated the response to tamoxifen. The tamoxifen-mediated decrease in miR-135a expression increased the expression of miR-135a targets to reduce tamoxifen sensitivity. Consistently, miR-135a expression was downregulated in ERα+ breast cancer cells with acquired tamoxifen resistance, while forced expression of miR-135a partially resensitized these cells to tamoxifen. Tamoxifen resistance mediated by the loss of miR-135a was shown to be partially dependent on the activation of the ERK1/2 and AKT pathways by miR-135a-targeted genes. Taken together, these results indicate that deletion of the MIR135A1 locus and decreased miR-135a expression promote ERα+ breast cancer progression and tamoxifen resistance.Significance: Loss of miR-135a in breast cancer disrupts an estrogen receptor-induced negative feedback loop, perpetuating disease progression and resistance to therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/17/4915/F1.large.jpg Cancer Res; 78(17); 4915-28. ©2018 AACR.
Collapse
Affiliation(s)
- Weijie Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingming Wu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Min Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lan Hu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanghao Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences and Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangjun Kong
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Sheng Tan
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Gaopeng Li
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Keshuo Ding
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore.
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
31
|
Jia G, Aroor AR, Hill MA, Sowers JR. Role of Renin-Angiotensin-Aldosterone System Activation in Promoting Cardiovascular Fibrosis and Stiffness. Hypertension 2018; 72:537-548. [PMID: 29987104 PMCID: PMC6202147 DOI: 10.1161/hypertensionaha.118.11065] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA
| | - Annayya R. Aroor
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA
| | - Michael A. Hill
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - James R. Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
- Research Service, Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA
| |
Collapse
|
32
|
Dobrynina LA, Zabitova MR, Kalashnikova LA, Gnedovskaya EV, Piradov MA. Hypertension and Cerebral Microangiopathy (Cerebral Small Vessel Disease): Genetic and Epigenetic Aspects of Their Relationship. Acta Naturae 2018; 10:4-15. [PMID: 30116610 PMCID: PMC6087821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 10/27/2022] Open
Abstract
Hypertension (HT) and its cerebral complications are extremely vexing medical and social problems. Despite the obvious association between hypertension and the clinical and neuroimaging features of cerebral microangiopathy (CMA) (also known as cerebral small vessel disease), the causal links between them remain ambiguous. Besides, antihypertensive therapy as the only way to manage these patients does not always prevent brain damage. Knowledge about the key factors and mechanisms involved in HT and CMA development is important for predicting the risk of cerebral complications and developing new approaches to their prevention and treatment. At present, genome-wide association studies and other approaches are used to investigate the common hereditary mechanisms of HT and CMA development, which will explain a large number of CMA cases not associated with hypertension, lack of a correlation between HT severity and the degree of cerebral injury, and failure of antihypertensive therapy to prevent CMA progression. Epigenetic markers likely play a modulating role in the development of these diseases.
Collapse
Affiliation(s)
- L. A. Dobrynina
- Research center of neurology, Volokolamskoe Shosse 80, Moscow, 125367, Russia
| | - M. R. Zabitova
- Research center of neurology, Volokolamskoe Shosse 80, Moscow, 125367, Russia
| | - L. A. Kalashnikova
- Research center of neurology, Volokolamskoe Shosse 80, Moscow, 125367, Russia
| | - E. V. Gnedovskaya
- Research center of neurology, Volokolamskoe Shosse 80, Moscow, 125367, Russia
| | - M. A. Piradov
- Research center of neurology, Volokolamskoe Shosse 80, Moscow, 125367, Russia
| |
Collapse
|
33
|
|
34
|
Liu J, Liu J, Shen F, Qin Z, Jiang M, Zhu J, Wang Z, Zhou J, Fu Y, Chen X, Huang C, Xiao W, Zheng C, Wang Y. Systems pharmacology analysis of synergy of TCM: an example using saffron formula. Sci Rep 2018; 8:380. [PMID: 29321678 PMCID: PMC5762866 DOI: 10.1038/s41598-017-18764-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/17/2017] [Indexed: 01/13/2023] Open
Abstract
Traditional Chinese medicine (TCM) follows the principle of formulae, in which the pharmacological activity of a single herb can be enhanced or potentiated by addition of other herbs. Nevertheless, the involved synergy mechanisms in formulae remain unknown. Here, a systems-based method is proposed and applied to three representative Chinese medicines in compound saffron formula (CSF): two animal spices (Moschus, Beaver Castoreum), and one herb Crocus sativus which exert synergistic effects for cardiovascular diseases (CVDs). From the formula, 42 ingredients and 66 corresponding targets are acquired based on the ADME evaluation and target fishing model. The network relationships between the compounds and targets are assembled with CVDs pathways to elucidate the synergistic therapeutic effects between the spices and the herbs. The results show that different compounds of the three medicines show similar curative activity in CVDs. Additionally, the active compounds from them shared CVDs-relevant targets (multiple compounds-one target), or functional diversity targets but with clinical relevance (multiple compounds-multiple targets-one disease). Moreover, the targets of them are largely enriched in the same CVDs pathways (multiple targets-one pathway). These results elucidate why animal spices and herbs can have pharmacologically synergistic effects on CVDs, which provides a new way for drug discovery.
Collapse
Affiliation(s)
- Jianling Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jingjing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Fengxia Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Zonghui Qin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Meng Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China
| | - Jun Zhou
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China
| | - Yingxue Fu
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Xuetong Chen
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Chao Huang
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China.
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
35
|
Dick A, Provencal N. Central Neuroepigenetic Regulation of the Hypothalamic–Pituitary–Adrenal Axis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:105-127. [DOI: 10.1016/bs.pmbts.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Decoding resistant hypertension signalling pathways. Clin Sci (Lond) 2017; 131:2813-2834. [PMID: 29184046 DOI: 10.1042/cs20171398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
Abstract
Resistant hypertension (RH) is a clinical condition in which the hypertensive patient has become resistant to drug therapy and is often associated with increased cardiovascular morbidity and mortality. Several signalling pathways have been studied and related to the development and progression of RH: modulation of sympathetic activity by leptin and aldosterone, primary aldosteronism, arterial stiffness, endothelial dysfunction and variations in the renin-angiotensin-aldosterone system (RAAS). miRNAs comprise a family of small non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. miRNAs are involved in the development of both cardiovascular damage and hypertension. Little is known of the molecular mechanisms that lead to development and progression of this condition. This review aims to cover the potential roles of miRNAs in the mechanisms associated with the development and consequences of RH, and explore the current state of the art of diagnostic and therapeutic tools based on miRNA approaches.
Collapse
|
37
|
Lykoudi A, Kolialexi A, Lambrou GI, Braoudaki M, Siristatidis C, Papaioanou GK, Tzetis M, Mavrou A, Papantoniou N. Dysregulated placental microRNAs in Early and Late onset Preeclampsia. Placenta 2017; 61:24-32. [PMID: 29277268 DOI: 10.1016/j.placenta.2017.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
INTRODUCTION To determine the miRNA expression profile in placentas complicated by Preeclampsia (PE) and compare it to uncomplicated pregnancies. METHODS Sixteen placentas from women with PE, [11 with early onset PE (EOPE) and 5 with late onset PE (LOPE)], as well as 8 placentas from uncomplicated pregnancies were analyzed using miRNA microarrays. For statistical analyses the MATLAB® simulation environment was applied. The over-expression of miR-518a-5p was verified using Quantitative Real-Time Polymerase Chain Reaction. RESULTS Forty four miRNAs were found dysregulated in PE complicated placentas. Statistical analysis revealed that miR-431, miR-518a-5p and miR-124* were over-expressed in EOPE complicated placentas as compared to controls, whereas miR-544 and miR-3942 were down-regulated in EOPE. When comparing the miRNA expression profile in cases with PE and PE-growth restricted fetuses (FGR), miR-431 and miR-518a-5p were found over-expressed in pregnancies complicated by FGR. DISCUSSION Since specific miRNAs can differentiate EOPE and LOPE from uncomplicated placentas, they may be considered as putative PE-specific biomarkers. MiR-518a-5p emerged as a potential diagnostic indicator for EOPE cases as well as for PE-FGR complicated placentas, indicating a potential link to the severity of the disease.
Collapse
Affiliation(s)
- Alexandra Lykoudi
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece; Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Aggeliki Kolialexi
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece; Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Thivon & Levadeias, 11527, Athens, Greece
| | - Maria Braoudaki
- Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece; School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| | - Charalampos Siristatidis
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George Konstantinos Papaioanou
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Tzetis
- Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ariadni Mavrou
- Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolas Papantoniou
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
38
|
Dirven BCJ, Homberg JR, Kozicz T, Henckens MJAG. Epigenetic programming of the neuroendocrine stress response by adult life stress. J Mol Endocrinol 2017; 59:R11-R31. [PMID: 28400482 DOI: 10.1530/jme-17-0019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is critically involved in the neuroendocrine regulation of stress adaptation, and the restoration of homeostasis following stress exposure. Dysregulation of this axis is associated with stress-related pathologies like major depressive disorder, post-traumatic stress disorder, panic disorder and chronic anxiety. It has long been understood that stress during early life can have a significant lasting influence on the development of the neuroendocrine system and its neural regulators, partially by modifying epigenetic regulation of gene expression, with implications for health and well-being in later life. Evidence is accumulating that epigenetic plasticity also extends to adulthood, proposing it as a mechanism by which psychological trauma later in life can long-lastingly affect HPA axis function, brain plasticity, neuronal function and behavioural adaptation to neuropsychological stress. Further corroborating this claim is the phenomenon that these epigenetic changes correlate with the behavioural consequences of trauma exposure. Thereby, epigenetic modifications provide a putative molecular mechanism by which the behavioural phenotype and transcriptional/translational potential of genes involved in HPA axis regulation can change drastically in response to environmental challenges, and appear an important target for treatment of stress-related disorders. However, improved insight is required to increase their therapeutic (drug) potential. Here, we provide an overview of the growing body of literature describing the epigenetic modulation of the (primarily neuroendocrine) stress response as a consequence of adult life stress and interpret the implications for, and the challenges involved in applying this knowledge to, the identification and treatment of stress-related psychiatric disorders.
Collapse
MESH Headings
- Animals
- Anxiety/genetics
- Anxiety/metabolism
- Anxiety/physiopathology
- Brain/metabolism
- Brain/physiopathology
- DNA Methylation
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/physiopathology
- Epigenesis, Genetic
- Histones/genetics
- Histones/metabolism
- Homeostasis
- Humans
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiopathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neurons/metabolism
- Neurons/pathology
- Neurotransmitter Agents/metabolism
- Pituitary-Adrenal System/metabolism
- Pituitary-Adrenal System/physiopathology
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- B C J Dirven
- Department of AnatomyDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J R Homberg
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - T Kozicz
- Department of AnatomyDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - M J A G Henckens
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Bruckmueller H, Martin P, Kähler M, Haenisch S, Ostrowski M, Drozdzik M, Siegmund W, Cascorbi I, Oswald S. Clinically Relevant Multidrug Transporters Are Regulated by microRNAs along the Human Intestine. Mol Pharm 2017; 14:2245-2253. [DOI: 10.1021/acs.molpharmaceut.7b00076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Henrike Bruckmueller
- Institute
of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Paul Martin
- Institute
of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Meike Kähler
- Institute
of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Sierk Haenisch
- Institute
of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Marek Ostrowski
- Department
of General and Transplantation Surgery, Pomeranian Medical University, Szczecin 70-001, Poland
| | - Marek Drozdzik
- Department
of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin 70-001, Poland
| | - Werner Siegmund
- Center
of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, University Medicine, Greifswald 17489, Germany
| | - Ingolf Cascorbi
- Institute
of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Stefan Oswald
- Center
of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, University Medicine, Greifswald 17489, Germany
| |
Collapse
|
40
|
Rajagopalan S, Alaiti MA, Broadwater K, Goud A, Gaztanaga J, Connelly K, Fares A, Shirazian S, Kreatsoulas C, Farkouh M, Dobre M, Fink JC, Weir MR. Design of the Magnetic Resonance Imaging Evaluation of Mineralocorticoid Receptor Antagonism in Diabetic Atherosclerosis (MAGMA) Trial. Clin Cardiol 2017; 40:633-640. [PMID: 28555959 DOI: 10.1002/clc.22718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022] Open
Abstract
Mineralocorticoid receptor (MR) activation plays an essential role in promoting inflammation, fibrosis, and target organ damage. Currently, no studies are investigating MR antagonism in patients with type 2 diabetes mellitus (T2DM) with chronic kidney disease, at high risk for cardiovascular complications, who are otherwise not candidates for MR antagonism by virtue of heart failure. Further, there is limited information on candidate therapies that may demonstrate differential benefit from this therapy. We hypothesized that MR antagonism may provide additional protection from atherosclerosis progression in higher-risk patients who otherwise may not be candidates for such a therapeutic approach. In this double-blind, randomized, placebo-controlled trial, subjects with T2DM with chronic kidney disease (≥ stage 3) will be randomized in a 1:1 manner to placebo or spironolactone (12.5 mg with eventual escalation to 25 mg daily over a 4-week period). The co-primary efficacy endpoint will be percentage change in total atheroma volume in thoracic aorta and left ventricular mass at 52 weeks in patients treated with spironolactone vs placebo. Secondary outcomes include 24-hour mean systolic blood pressure, central aortic blood pressure, and insulin resistance (HOMA-IR) at 6 weeks. A novel measure in the study will be changes in candidate miRNAs that regulate expression of NR3C2 (MR gene) as well as measuring monocyte/macrophage polarization in response to therapy with spironolactone. We envision that our strategy of simultaneously probing the effects of a drug combined with analysis of mechanisms of action and predictive response will likely provide key information with which to design event-based trials.
Collapse
Affiliation(s)
- Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Harrington Heart and Vascular Institute, University Hospitals, Cleveland Medical Center, Ohio.,University of Maryland School of Medicine, Baltimore
| | - M Amer Alaiti
- Division of Cardiovascular Medicine, Harrington Heart and Vascular Institute, University Hospitals, Cleveland Medical Center, Ohio
| | | | - Aditya Goud
- Division of Cardiovascular Medicine, Harrington Heart and Vascular Institute, University Hospitals, Cleveland Medical Center, Ohio
| | - Juan Gaztanaga
- Division of Internal Medicine, Department of Cardiology, NYU Winthrop Hospital, Mineola, New York
| | - Kim Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Anas Fares
- Division of Cardiovascular Medicine, Harrington Heart and Vascular Institute, University Hospitals, Cleveland Medical Center, Ohio
| | - Shayan Shirazian
- Division of Nephrology and Hypertension, Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, New York
| | | | - Michael Farkouh
- Department of Cardiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Mirela Dobre
- Division of Nephrology, University Hospitals, Cleveland Medical Center, Ohio
| | | | | |
Collapse
|
41
|
Wang S, Tang L, Zhou Q, Lu D, Duan W, Chen C, Huang L, Tan Y. miR-185/P2Y6Axis Inhibits Angiotensin II-Induced Human Aortic Vascular Smooth Muscle Cell Proliferation. DNA Cell Biol 2017; 36:377-385. [DOI: 10.1089/dna.2016.3605] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Shunmin Wang
- The Graduate Institute, Hunan University of Chinese Medicine, Changsha City, China
- Department of Cardiovascular, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Lujun Tang
- The Graduate Institute, Hunan University of Chinese Medicine, Changsha City, China
| | - Qian Zhou
- The Graduate Institute, Hunan University of Chinese Medicine, Changsha City, China
| | - Duomei Lu
- The Graduate Institute, Hunan University of Chinese Medicine, Changsha City, China
| | - Wulei Duan
- The Graduate Institute, Hunan University of Chinese Medicine, Changsha City, China
| | - Cheng Chen
- The Graduate Institute, Hunan University of Chinese Medicine, Changsha City, China
| | - Lu Huang
- Department of Cardiovascular, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yuansheng Tan
- Department of Cardiovascular, First College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Cardiovascular, College of Integrated Traditional Chinese and Western Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
42
|
Liu X, Edinger RS, Klemens CA, Phua YL, Bodnar AJ, LaFramboise WA, Ho J, Butterworth MB. A MicroRNA Cluster miR-23-24-27 Is Upregulated by Aldosterone in the Distal Kidney Nephron Where it Alters Sodium Transport. J Cell Physiol 2017; 232:1306-1317. [PMID: 27636893 DOI: 10.1002/jcp.25599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023]
Abstract
The epithelial sodium channel (ENaC) is expressed in the epithelial cells of the distal convoluted tubules, connecting tubules, and cortical collecting duct (CCD) in the kidney nephron. Under the regulation of the steroid hormone aldosterone, ENaC is a major determinant of sodium (Na+ ) and water balance. The ability of aldosterone to regulate microRNAs (miRs) in the kidney has recently been realized, but the role of miRs in Na+ regulation has not been well established. Here we demonstrate that expression of a miR cluster mmu-miR-23-24-27, is upregulated in the CCD by aldosterone stimulation both in vitro and in vivo. Increasing the expression of these miRs increased Na+ transport in the absence of aldosterone stimulation. Potential miR targets were evaluated and miR-27a/b was verified to bind to the 3'-untranslated region of intersectin-2, a multi-domain protein expressed in the distal kidney nephron and involved in the regulation of membrane trafficking. Expression of Itsn2 mRNA and protein was decreased after aldosterone stimulation. Depletion of Itsn2 expression, mimicking aldosterone regulation, increased ENaC-mediated Na+ transport, while Itsn2 overexpression reduced ENaC's function. These findings reinforce a role for miRs in aldosterone regulation of Na+ transport, and implicate miR-27 in aldosterone's action via a novel target. J. Cell. Physiol. 232: 1306-1317, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoning Liu
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert S Edinger
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christine A Klemens
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yu L Phua
- Division of Nephrology in the Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew J Bodnar
- Division of Nephrology in the Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - William A LaFramboise
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Division of Nephrology in the Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael B Butterworth
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Role of mineralocorticoid receptor activation in cardiac diastolic dysfunction. Biochim Biophys Acta Mol Basis Dis 2016; 1863:2012-2018. [PMID: 27989961 DOI: 10.1016/j.bbadis.2016.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/29/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023]
Abstract
The prevalence of cardiac diastolic dysfunction and heart failure with preserved ejection, a major cause of morbidity and mortality in the western world, is increasing due, in part, to increases in obesity and type 2 diabetes. Characteristics of cardiac diastolic dysfunction include increased myocardial stiffness and impaired left ventricular (LV) relaxation that is characterized by prolonged isovolumic LV relaxation and slow LV filling. Obesity, insulin resistance and type 2 diabetes, especially in females promote activation of mineralocorticoid receptor (MR) signaling with resultant increases in oxidative stress, maladaptive immune responses, inflammation, and impairment of coronary blood flow and cardiac interstitial fibrosis. This review highlights findings from the recent surge in cardiac diastolic dysfunction research. To this end it highlights our contemporary understanding of molecular mechanisms of MR regulation by genetic, epigenetic and posttranslational modifications and resultant cardiac diastolic dysfunction associated with insulin resistance, obesity and type 2 diabetes. This review also explores potential preventative and therapeutic strategies directed in the prevention of cardiac diastolic dysfunction and heart failure with preserved ejection. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure edited by Dr. Jun Ren & Yingmei Zhang.
Collapse
|
44
|
Doura MB, Unterwald EM. MicroRNAs Modulate Interactions between Stress and Risk for Cocaine Addiction. Front Cell Neurosci 2016; 10:125. [PMID: 27303265 PMCID: PMC4880569 DOI: 10.3389/fncel.2016.00125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/29/2016] [Indexed: 12/17/2022] Open
Abstract
Exposure to stress increases vulnerability to drug abuse, as well as relapse liability in addicted individuals. Chronic drug use alters stress response in a manner that increases drug seeking behaviors and relapse. Drug exposure and withdrawal have been shown to alter stress responses, and corticosteroid mediators of stress have been shown to impact addiction-related brain function and drug-seeking behavior. Despite the documented interplay between stress and substance abuse, the mechanisms by which stress exposure and drug seeking interact remain largely unknown. Recent studies indicate that microRNAs (miRNA) play a significant role in stress modulation as well as addiction-related processes including neurogenesis, synapse development, plasticity, drug acquisition, withdrawal and relapse. MiRNAs are short non-coding RNAs that function as bidirectional epigenetic modulators of gene expression through imperfect sequence targeted degradation and/or translational repression of mRNAs. They serve as dynamic regulators of CNS physiology and pathophysiology, and facilitate rapid and long-lasting changes to complex systems and behaviors. MiRNAs function in glucocorticoid signaling and the mesolimbic dopamine reward system, as well as mood disorders related to drug withdrawal. The literature suggests miRNAs play a pivotal role in the interaction between exposures to stress, addiction-related processes, and negative affective states resulting from extended drug withdrawal. This manuscript reviews recent evidence for the role of miRNAs in the modulation of stress and cocaine responses, and discusses potential mediation of the interaction of these systems by miRNAs. Uncovering the mechanism behind the association of stress and drug taking has the potential to impact the treatment of drug abuse and prevention of relapse. Further comprehension of these complex interactions may provide promising new targets for the treatment of drug addiction.
Collapse
Affiliation(s)
- Menahem B Doura
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, USA
| |
Collapse
|
45
|
Samanta S, Balasubramanian S, Rajasingh S, Patel U, Dhanasekaran A, Dawn B, Rajasingh J. MicroRNA: A new therapeutic strategy for cardiovascular diseases. Trends Cardiovasc Med 2016; 26:407-19. [PMID: 27013138 DOI: 10.1016/j.tcm.2016.02.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/17/2016] [Indexed: 12/21/2022]
Abstract
Myocardial infarction, atherosclerosis, and hypertension are the most common heart-related diseases that affect both the heart and the blood vessels. Multiple independent risk factors have been shown to be responsible for cardiovascular diseases. The combination of a healthy diet, exercise, and smoking cessation keeps these risk factors in check and helps maintain homeostasis. The dynamic monolayer endothelial cell integrity and cell-cell communication are the fundamental mechanisms in maintaining homeostasis. Recently, it has been revealed that small noncoding RNAs (ncRNAs) play a critical role in regulation of genes involved in either posttranscriptional or pretranslational modifications. They also control diverse biological functions like development, differentiation, growth, and metabolism. Among ncRNAs, the short interfering RNAs (siRNAs), and microRNAs (miRNAs) have been extensively studied, but their specific functions remain largely unknown. In recent years, miRNAs are efficiently studied as one of the important candidates for involvement in most biological processes and have been implicated in many human diseases. Thus, the identification and the respective targets of miRNAs may provide novel molecular insight and new therapeutic strategies to treat diseases. This review summarizes the recent developments and insight on the role of miRNAs in cardiovascular disease prognosis, diagnostic and clinical applications.
Collapse
Affiliation(s)
- Saheli Samanta
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS
| | - Sathyamoorthy Balasubramanian
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS; Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Sheeja Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS
| | - Urmi Patel
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS
| | | | - Buddhadeb Dawn
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS
| | - Johnson Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS.
| |
Collapse
|
46
|
Chandrasekaran S, Bonchev D. Network analysis of human post-mortem microarrays reveals novel genes, microRNAs, and mechanistic scenarios of potential importance in fighting huntington's disease. Comput Struct Biotechnol J 2016; 14:117-130. [PMID: 27924190 PMCID: PMC5128196 DOI: 10.1016/j.csbj.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease is a progressive neurodegenerative disorder characterized by motor disturbances, cognitive decline, and neuropsychiatric symptoms. In this study, we utilized network-based analysis in an attempt to explore and understand the underlying molecular mechanism and to identify critical molecular players of this disease condition. Using human post-mortem microarrays from three brain regions (cerebellum, frontal cortex and caudate nucleus) we selected in a four-step procedure a seed set of highly modulated genes. Several protein-protein interaction networks, as well as microRNA-mRNA networks were constructed for these gene sets with the Elsevier Pathway Studio software and its associated ResNet database. We applied a gene prioritizing procedure based on vital network topological measures, such as high node connectivity and centrality. Adding to these criteria the guilt-by-association rule and exploring their innate biomolecular functions, we propose 19 novel genes from the analyzed microarrays, from which CEBPA, CDK1, CX3CL1, EGR1, E2F1, ERBB2, LRP1, HSP90AA1 and ZNF148 might be of particular interest for experimental validation. A possibility is discussed for dual-level gene regulation by both transcription factors and microRNAs in Huntington's disease mechanism. We propose several possible scenarios for experimental studies initiated via the extra-cellular ligands TGFB1, FGF2 and TNF aiming at restoring the cellular homeostasis in Huntington's disease.
Collapse
Affiliation(s)
- Sreedevi Chandrasekaran
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
47
|
|
48
|
Systems-Pharmacology Dissection of Traditional Chinese Medicine Compound Saffron Formula Reveals Multi-scale Treatment Strategy for Cardiovascular Diseases. Sci Rep 2016; 6:19809. [PMID: 26813334 PMCID: PMC4728400 DOI: 10.1038/srep19809] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/14/2015] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been regarding as “the world’s first killer” of human beings in recent years owing to the striking morbidity and mortality, the involved molecular mechanisms are extremely complex and remain unclear. Traditional Chinese medicine (TCM) adheres to the aim of combating complex diseases from an integrative and holistic point of view, which has shown effectiveness in CVDs therapy. However, system-level understanding of such a mechanism of multi-scale treatment strategy for CVDs is still difficult. Here, we developed a system pharmacology approach with the purpose of revealing the underlying molecular mechanisms exemplified by a famous compound saffron formula (CSF) in treating CVDs. First, by systems ADME analysis combined with drug targeting process, 103 potential active components and their corresponding 219 direct targets were retrieved and some key interactions were further experimentally validated. Based on this, the network relationships among active components, targets and diseases were further built to uncover the pharmacological actions of the drug. Finally, a “CVDs pathway” consisted of several regulatory modules was incorporated to dissect the therapeutic effects of CSF in different pathological features-relevant biological processes. All this demonstrates CSF has multi-scale curative activity in regulating CVD-related biological processes, which provides a new potential way for modern medicine in the treatment of complex diseases.
Collapse
|
49
|
Bretschneider M, Busch B, Mueller D, Nolze A, Schreier B, Gekle M, Grossmann C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells. FASEB J 2016; 30:1610-22. [PMID: 26728178 DOI: 10.1096/fj.15-271254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022]
Abstract
Inappropriately activated mineralocorticoid receptor (MR) is a risk factor for vascular remodeling with unclear molecular mechanism. Recent findings suggest that post-transcriptional regulation by micro-RNAs (miRs) may be involved. Our aim was to search for MR-dependent miRs in vascular smooth muscle cells (VSMCs) and to explore the underlying molecular mechanism and the pathologic relevance. We detected that aldosteroneviathe MR reduces miR-29bin vivoin murine aorta and in human primary and cultured VSMCs (ED50= 0.07 nM) but not in endothelial cells [quantitative PCR (qPCR), luciferase assays]. This effect was mediated by an increased decay of miR-29b in the cytoplasm with unchanged miR-29 family member or primary-miR levels. Decreased miR-29b led to an increase in extracellular matrix measured by ELISA and qPCR and enhanced VSMC migration in single cell-tracking experiments. Additionally, cell proliferation and the apoptosis/necrosis ratio (caspase/lactate dehydrogenase assay) was modulated by miR-29b. Enhanced VSMC migration by aldosterone required miR-29b regulation. Control experiments were performed with scrambled RNA and empty plasmids, by comparing aldosterone-stimulated with vehicle-incubated cells. Overall, our findings provide novel insights into the molecular mechanism of aldosterone-mediated vascular pathogenesis by identifying miR-29b as a pathophysiologic relevant target of activated MR in VSMCs and by highlighting the importance of miR processing for miR regulation.-Bretschneider, M., Busch, B., Mueller, D., Nolze, A., Schreier, B., Gekle, M., Grossmann, C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Maria Bretschneider
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Bianca Busch
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniel Mueller
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Nolze
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barbara Schreier
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Grossmann
- *Julius Bernstein Institute of Physiology and Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
50
|
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev 2016; 68:49-75. [PMID: 26668301 DOI: 10.1124/pr.115.011106] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its ligand aldosterone are the principal modulators of hormone-regulated renal sodium reabsorption. In addition to the kidney, there are several other cells and organs expressing MR, in which its activation mediates pathologic changes, indicating potential therapeutic applications of pharmacological MR antagonism. Steroidal MR antagonists have been used for decades to fight hypertension and more recently heart failure. New therapeutic indications are now arising, and nonsteroidal MR antagonists are currently under development. This review is focused on nonclassic MR targets in cardiac, vascular, renal, metabolic, ocular, and cutaneous diseases. The MR, associated with other risk factors, is involved in organ fibrosis, inflammation, oxidative stress, and aging; for example, in the kidney and heart MR mediates hormonal tissue-specific ion channel regulation. Genetic and epigenetic modifications of MR expression/activity that have been documented in hypertension may also present significant risk factors in other diseases and be susceptible to MR antagonism. Excess mineralocorticoid signaling, mediated by aldosterone or glucocorticoids binding, now appears deleterious in the progression of pathologies that may lead to end-stage organ failure and could therefore benefit from the repositioning of pharmacological MR antagonists.
Collapse
Affiliation(s)
- F Jaisser
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| | - N Farman
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| |
Collapse
|