1
|
‘t Hart DC, van der Vlag J, Nijenhuis T. A Putative Role for TRPC6 in Immune-Mediated Kidney Injury. Int J Mol Sci 2023; 24:16419. [PMID: 38003608 PMCID: PMC10671681 DOI: 10.3390/ijms242216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Excessive activation of the immune system is the cause of a wide variety of renal diseases. However, the pathogenic mechanisms underlying the aberrant activation of the immune system in the kidneys often remain unknown. TRPC6, a member of the Ca2+-permeant family of TRPC channels, is important in glomerular epithelial cells or podocytes for the process of glomerular filtration. In addition, TRPC6 plays a crucial role in the development of kidney injuries by inducing podocyte injury. However, an increasing number of studies suggest that TRPC6 is also responsible for tightly regulating the immune cell functions. It remains elusive whether the role of TRPC6 in the immune system and the pathogenesis of renal inflammation are intertwined. In this review, we present an overview of the current knowledge of how TRPC6 coordinates the immune cell functions and propose the hypothesis that TRPC6 might play a pivotal role in the development of kidney injury via its role in the immune system.
Collapse
|
2
|
Cyclic Hypoxia Induces Transcriptomic Changes in Mast Cells Leading to a Hyperresponsive Phenotype after FcεRI Cross-Linking. Cells 2022; 11:cells11142239. [PMID: 35883682 PMCID: PMC9319477 DOI: 10.3390/cells11142239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Mast cells (MCs) play important roles in tumor development, executing pro- or antitumoral functions depending on tumor type and tumor microenvironment (TME) conditions. Cyclic hypoxia (cyH) is a common feature of TME since tumor blood vessels fail to provide a continuous supply of oxygen to the tumor mass. Here, we hypothesized that the localization of MCs in cyH regions within solid tumors could modify their transcriptional profile and activation parameters. Using confocal microscopy, we found an important number of MCs in cyH zones of murine melanoma B16-F1 tumors. Applying microarray analysis to examine the transcriptome of murine bone-marrow-derived MCs (BMMCs) exposed to interleaved cycles of hypoxia and re-oxygenation, we identified altered expression of 2512 genes. Functional enrichment analysis revealed that the transcriptional signature of MCs exposed to cyH is associated with oxidative phosphorylation and the FcεRI signaling pathway. Interestingly, FcεRI-dependent degranulation, calcium mobilization, and PLC-γ activity, as well as Tnf-α, Il-4, and Il-2 gene expression after IgE/antigen challenge were increased in BMMCs exposed to cyH compared with those maintained in normoxia. Taken together, our findings indicate that cyH causes an important phenotypic change in MCs that should be considered in the design of inflammation-targeted therapies to control tumor growth.
Collapse
|
3
|
Dok-1 regulates mast cell degranulation negatively through inhibiting calcium-dependent F-actin disassembly. Clin Immunol 2022; 238:109008. [PMID: 35421591 DOI: 10.1016/j.clim.2022.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
In food allergies, antigen-induced aggregation of FcεRI on mast cells initiates highly ordered and sequential signaling events. Dok-1(downstream of tyrosine kinase 1), undergoes intense tyrosine phosphorylation upon FcεRI stimulation, which negatively regulates Ras/Erk signaling and the subsequent cytokine release, but it remains unclear whether Dok-1 regulates Fc-mediated degranulation. In this study, we investigated the role of Dok-1 in FcεRI-mediated degranulation. Dok-1 overexpressing RBL-2H3 cells were established. Degranulation, immunoprecipitation, co-immunoprecipitation, immunoblotting and flow cytometry assay were performed to explore the effects of Dok-1 and its underlying mechanisms. We found that, following FcεRI activation, Dok-1 was recruited to the plasma membrane, leading to tyrosine phosphorylation. Phosphorylated Dok-1 inhibits FcεRI-operated calcium influx, and negatively regulated degranulation by inhibiting calcium-dependent disassembly of actin filaments. Our data revealed that Dok-1 is a negative regulator of FcεRI-mediated mast cell degranulation. These findings contribute to the identification of therapeutic targets for food allergies.
Collapse
|
4
|
Cui H, Liu F, Fang Y, Wang T, Yuan B, Ma C. Neuronal FcεRIα directly mediates ocular itch via IgE-immune complex in a mouse model of allergic conjunctivitis. J Neuroinflammation 2022; 19:55. [PMID: 35197064 PMCID: PMC8867756 DOI: 10.1186/s12974-022-02417-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Background Classical understanding of allergic conjunctivitis (ACJ) suggests that ocular itch results from a mast cell-dependent inflammatory process. However, treatments that target inflammatory mediators or immune cells are often unsatisfying in relieving the stubborn itch symptom. This suggests that additional mechanisms are responsible for ocular itch in ACJ. In this study, we aim to determine the role of neuronal FcεRIa in allergic ocular itch. Methods Calcium imaging was applied to observe the effect of IgE-immune complex in trigeminal neurons. Genomic FcεRIa knockout mice and adeno-associated virus (AAV) mediated sensory neuron FcεRIa knockdown mice were used in conjunction with behavioral tests to determine ocular itch. In addition, immunohistochemistry, Western blot and quantitative RT-PCR were used for in vitro experiments. Results We found that FcεRIα was expressed in a subpopulation of conjunctiva sensory neurons. IgE-IC directly activated trigeminal neurons and evoked acute ocular itch without detectible conjunctival inflammation. These effects were attenuated in both a global FcεRIa-knockout mice and after sensory neuronal-specific FcεRIa-knockdown in the mouse trigeminal ganglion. In an ovalbumin (OVA) induced murine ACJ model, FcεRIα was found upregulated in conjunctiva-innervating CGRP+ sensory neurons. Sensory neuronal-specific knockdown of FcεRIa significantly alleviated ocular itch in the ACJ mice without affecting the immune cell infiltration and mast cell activation in conjunctiva. Although FcεRIα mRNA expression was not increased by IgE in dissociated trigeminal ganglion neurons, FcεRIα protein level was enhanced by IgE in a cycloheximide-resistance manner, with concordant enhancement of neuronal responses to IgE-IC. In addition, incremental sensitization gradually enhanced the expression of FcεRIα in small-sized trigeminal neurons and aggravated OVA induced ocular itch. Conclusions Our study demonstrates that FcεRIα in pruriceptive neurons directly mediates IgE-IC evoked itch and plays an important role in ocular itch in a mouse model of ACJ. These findings reveal another axis of neuroimmune interaction in allergic itch condition independent to the classical IgE-mast cell pathway, and might suggest novel therapeutic strategies for the treatment of pruritus in ACJ and other immune-related disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02417-x.
Collapse
Affiliation(s)
- Huan Cui
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fan Liu
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yehong Fang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yuan
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China. .,National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
5
|
Mast Cells Modulate the Immune Response and Redox Status of the Gastrointestinal Tract in Induced Venom Pathogenesis. Inflammation 2021; 45:509-527. [PMID: 34608585 DOI: 10.1007/s10753-021-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
The pathogenesis of Androctonus autralis hector (Aah) scorpion venom involved cellular and molecular mechanisms resulting in multi-organ dysfunction. However, little is reported about the effects of venom on the gastrointestinal axis. Mast cells (MCs) are known to play a crucial role in modulating immune response of the gut. This study aims to investigate the involvement of this cell type in venom-induced gastric and intestinal disorders in a time course (3 and 24h). The obtained results revealed that Aah scorpion venom induced inflammatory cell infiltration as shown by the increase of the myeloperoxidase and eosinophil peroxidase activities. Overexpression of the c-kit receptor (CD117) severely imbalanced the redox status with depletion of antioxidant systemic accompanied by gastrointestinal tissue damage. Moreover, an increased level of lactate dehydrogenase in the serum was correlated with tissue injuries. Pharmacological inhibition of MCs targeting tyrosine kinase (TK) reduces the generation of reactive oxygen species and normalizes catalase, and gluthation S-transferase activities to their physiological levels. In addition, histopathological alterations were restored after pretreatment with c-kit receptor inhibitor associated with a considerable reduction of MC density. Interestingly, obtained results indicate that MCs might be involved in gastric modulation and intestinal inflammation through c-kit signaling following sub-cutaneous Aah venom injection.
Collapse
|
6
|
Bacsa B, Graziani A, Krivic D, Wiedner P, Malli R, Rauter T, Tiapko O, Groschner K. Pharmaco-Optogenetic Targeting of TRPC Activity Allows for Precise Control Over Mast Cell NFAT Signaling. Front Immunol 2021; 11:613194. [PMID: 33391284 PMCID: PMC7775509 DOI: 10.3389/fimmu.2020.613194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
Canonical transient receptor potential (TRPC) channels are considered as elements of the immune cell Ca2+ handling machinery. We therefore hypothesized that TRPC photopharmacology may enable uniquely specific modulation of immune responses. Utilizing a recently established TRPC3/6/7 selective, photochromic benzimidazole agonist OptoBI-1, we set out to test this concept for mast cell NFAT signaling. RBL-2H3 mast cells were found to express TRPC3 and TRPC7 mRNA but lacked appreciable Ca2+/NFAT signaling in response to OptoBI-1 photocycling. Genetic modification of the cells by introduction of single recombinant TRPC isoforms revealed that exclusively TRPC6 expression generated OptoBI-1 sensitivity suitable for opto-chemical control of NFAT1 activity. Expression of any of three benzimidazole-sensitive TRPC isoforms (TRPC3/6/7) reconstituted plasma membrane TRPC conductances in RBL cells, and expression of TRPC6 or TRPC7 enabled light-mediated generation of temporally defined Ca2+ signaling patterns. Nonetheless, only cells overexpressing TRPC6 retained essentially low basal levels of NFAT activity and displayed rapid and efficient NFAT nuclear translocation upon OptoBI-1 photocycling. Hence, genetic modification of the mast cells' TRPC expression pattern by the introduction of TRPC6 enables highly specific opto-chemical control over Ca2+ transcription coupling in these immune cells.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Gottfried-Schatz-Research-Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Annarita Graziani
- Gottfried-Schatz-Research-Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Denis Krivic
- Gottfried-Schatz-Research-Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Patrick Wiedner
- Gottfried-Schatz-Research-Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Gottfried-Schatz-Research-Center-Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Thomas Rauter
- Gottfried-Schatz-Research-Center-Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Oleksandra Tiapko
- Gottfried-Schatz-Research-Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Klaus Groschner
- Gottfried-Schatz-Research-Center-Biophysics, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Nugrahini AD, Ishida M, Nakagawa T, Nishi K, Sugahara T. Anti-degranulation activity of caffeine: In vitro and in vivo study. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
8
|
Cruz SL, Sánchez-Miranda E, Castillo-Arellano JI, Cervantes-Villagrana RD, Ibarra-Sánchez A, González-Espinosa C. Anandamide inhibits FcεRI-dependent degranulation and cytokine synthesis in mast cells through CB 2 and GPR55 receptor activation. Possible involvement of CB 2-GPR55 heteromers. Int Immunopharmacol 2018; 64:298-307. [PMID: 30243065 DOI: 10.1016/j.intimp.2018.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022]
Abstract
Activation of high affinity receptor for IgE (FcεRI) by IgE/antigen complexes in mast cells (MCs) leads to the release of preformed pro-inflammatory mediators stored in granules by a Ca2+-dependent process known as anaphylactic degranulation. Degranulation inhibition has been proposed as a strategy to control allergies and chronic inflammation conditions. Cannabinoids are important inhibitors of inflammatory reactions but their effects on IgE/Ag-mediated MCs responses are not well described. In this study, we analyzed the effect of the endocannabinoid anandamide (AEA), the selective CB2 receptor agonist HU308, and the GPR55 receptor agonist lysophosphatidylinositol (LPI) on FcεRI-induced activation in murine bone marrow-derived mast cells (BMMCs). Our results show that AEA, HU380 and LPI inhibited FcεRI-induced degranulation in a concentration-dependent manner. This effect was mediated by CB2 and GPR55 receptor activation through a mechanism insensitive to pertussis toxin. Degranulation inhibition was prevented by CB2 and GPR55 antagonism, but not by CB1 receptor blockage. AEA also inhibited calcium-dependent cytokine mRNA synthesis induced by FcεRI crosslinking, without affecting early phosphorylation events. In addition, AEA, HU308 and LPI inhibited intracellular Ca2+ rise in response to IgE/Ag. CB2 and GPR55 receptor antagonism could not prevent the inhibition produced by AEA and HU308, but partially blocked the one caused by LPI. These results indicate that AEA inhibits IgE/Ag-induced degranulation through a mechanism that includes the participation of CB2 and GPR55 receptors acting in close crosstalk, and show that CB2-GPR55 heteromers are important negative regulators of FcεRI-induced responses in MCs.
Collapse
Affiliation(s)
- Silvia L Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico.
| | - Elizabeth Sánchez-Miranda
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico; Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Xochimilco, Mexico City, Mexico
| | - Jorge Ivan Castillo-Arellano
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico
| | - Rodolfo Daniel Cervantes-Villagrana
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico.
| |
Collapse
|
9
|
Ball DH, Al-Riyami L, Harnett W, Harnett MM. IL-33/ST2 signalling and crosstalk with FcεRI and TLR4 is targeted by the parasitic worm product, ES-62. Sci Rep 2018. [PMID: 29540770 PMCID: PMC5852134 DOI: 10.1038/s41598-018-22716-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ES-62 is a secreted parasitic worm-derived immunomodulator that exhibits therapeutic potential in allergy by downregulating aberrant MyD88 signalling to normalise the inflammatory phenotype and mast cell responses. IL-33 plays an important role in driving mast cell responses and promoting type-2 allergic inflammation, particularly with respect to asthma, via MyD88-integrated crosstalk amongst the IL-33 receptor (ST2), TLR4 and FcεRI. We have now investigated whether ES-62 targets this pathogenic network by subverting ST2-signalling, specifically by characterising how the functional outcomes of crosstalk amongst ST2, TLR4 and FcεRI are modulated by the worm product in wild type and ST2-deficient mast cells. This analysis showed that whilst ES-62 inhibits IL-33/ST2 signalling, the precise functional modulation observed varies with receptor usage and/or mast cell phenotype. Thus, whilst ES-62’s harnessing of the capacity of ST2 to sequester MyD88 appears sufficient to mediate its inhibitory effects in peritoneal-derived serosal mast cells, downregulation of MyD88 expression appears to be required to dampen the higher levels of cytokine production typically released by bone marrow-derived mucosal mast cells.
Collapse
Affiliation(s)
- Dimity H Ball
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, Scotland
| | - Lamyaa Al-Riyami
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, Scotland
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, Scotland
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, Scotland.
| |
Collapse
|
10
|
Ramírez-Valadez KA, Vázquez-Victorio G, Macías-Silva M, González-Espinosa C. Fyn kinase mediates cortical actin ring depolymerization required for mast cell migration in response to TGF-β in mice. Eur J Immunol 2017; 47:1305-1316. [PMID: 28586109 DOI: 10.1002/eji.201646876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/13/2017] [Accepted: 06/03/2017] [Indexed: 12/31/2022]
Abstract
Transforming growth factor-β (TGF-β) is a potent mast cell (MC) chemoattractant able to modulate local inflammatory reactions. The molecular mechanism leading to TGF-β-directed MC migration is not fully described. Here we analyzed the role of the Src family protein kinase Fyn on the main TGF-β-induced cytoskeletal changes leading to MC migration. Utilizing bone marrow-derived mast cells (BMMCs) from WT and Fyn-deficient mice we found that BMMC migration to TGF-β was impaired in the absence of the kinase. TGF-β caused depolymerization of the cortical actin ring and changes on the phosphorylation of cofilin, LIMK and CAMKII only in WT cells. Defective cofilin activation and phosphorylation of regulatory proteins was detected in Fyn-deficient BMMCs and this finding correlated with a lower activity of the catalytic subunit of the phosphatase PP2A. Diminished TGF-β-induced chemotaxis of Fyn-deficient cells was also observed in an in vivo model of MC migration (bleomycin-induced scleroderma). Our results show that Fyn kinase is an important positive effector of TGF-β-induced chemotaxis through the control of PP2A activity and this is relevant to pathological processes that are related to TGF-β-dependent mast cell migration.
Collapse
Affiliation(s)
- Karla A Ramírez-Valadez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, México
| | - Genaro Vázquez-Victorio
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | | |
Collapse
|
11
|
Chelombitko MA, Fedorov AV, Ilyinskaya OP, Zinovkin RA, Chernyak BV. Role of Reactive Oxygen Species in Mast Cell Degranulation. BIOCHEMISTRY. BIOKHIMIIA 2016; 81:1564-1577. [PMID: 28259134 DOI: 10.1134/s000629791612018x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Mast cells are a heterogeneous multifunctional cellular population that promotes connective tissue homeostasis by slow release of biologically active substances, affecting primarily the permeability of vessels and vascular tone, maintenance of electrolyte and water balance, and composition of the extracellular matrix. Along with this, they can rapidly release inflammatory mediators and chemotactic factors that ensure the mobilization of effector innate immune cells to fight against a variety of pathogens. Furthermore, they play a key role in initiation of allergic reactions. Aggregation of high affinity receptors to IgE (FcεRI) results in rapid degranulation and release of inflammatory mediators. It is known that reactive oxygen species (ROS) participate in intracellular signaling and, in particular, stimulate production of several proinflammatory cytokines that regulate the innate immune response. In this review, we focus on known molecular mechanisms of FcεRI-dependent activation of mast cells and discuss the role of ROS in the regulation of this pathway.
Collapse
Affiliation(s)
- M A Chelombitko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
12
|
Sharkia I, Hadad Erlich T, Landolina N, Assayag M, Motzik A, Rachmin I, Kay G, Porat Z, Tshori S, Berkman N, Levi-Schaffer F, Razin E. Pyruvate dehydrogenase has a major role in mast cell function, and its activity is regulated by mitochondrial microphthalmia transcription factor. J Allergy Clin Immunol 2016; 140:204-214.e8. [PMID: 27871875 DOI: 10.1016/j.jaci.2016.09.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/31/2016] [Accepted: 09/10/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND We have recently observed that oxidative phosphorylation-mediated ATP production is essential for mast cell function. Pyruvate dehydrogenase (PDH) is the main regulator of the Krebs cycle and is located upstream of the electron transport chain. However, the role of PDH in mast cell function has not been described. Microphthalmia transcription factor (MITF) regulates the development, number, and function of mast cells. Localization of MITF to the mitochondria and its interaction with mitochondrial proteins has not been explored. OBJECTIVE We sought to explore the role played by PDH in mast cell exocytosis and to determine whether MITF is localized in the mitochondria and involved in regulation of PDH activity. METHODS Experiments were performed in vitro by using human and mouse mast cells, as well as rat basophil leukemia cells, and in vivo in mice. The effect of PDH inhibition on mast cell function was examined. PDH interaction with MITF was measured before and after immunologic activation. Furthermore, mitochondrial localization of MITF and its effect on PDH activity were determined. RESULTS PDH is essential for immunologically mediated degranulation of mast cells. After activation, PDH is serine dephosphorylated. In addition, for the first time, we show that MITF is partially located in the mitochondria and interacts with PDH. This interaction is dependent on the phosphorylation state of PDH. Furthermore, mitochondrial MITF regulates PDH activity. CONCLUSION The association of mitochondrial MITF with PDH emerges as an important regulator of mast cell function. Our findings indicate that PDH could arise as a new target for the manipulation of allergic diseases.
Collapse
Affiliation(s)
- Israa Sharkia
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Hadad Erlich
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miri Assayag
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alex Motzik
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbal Rachmin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Biological Services Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sagi Tshori
- Department of Nuclear Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Neville Berkman
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
13
|
Anguita E, Villalobo A. Src-family tyrosine kinases and the Ca 2+ signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:915-932. [PMID: 27818271 DOI: 10.1016/j.bbamcr.2016.10.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023]
Abstract
In this review, we shall describe the rich crosstalk between non-receptor Src-family kinases (SFKs) and the Ca2+ transient generated in activated cells by a variety of extracellular and intracellular stimuli, resulting in diverse signaling events. The exchange of information between SFKs and Ca2+ is reciprocal, as it flows in both directions. These kinases are main actors in pathways leading to the generation of the Ca2+ signal, and reciprocally, the Ca2+ signal modulates SFKs activity and functions. We will cover how SFKs participate in the generation of the cytosolic Ca2+ rise upon activation of a series of receptors and the mechanism of clearance of this Ca2+ signal. The role of SFKs modulating Ca2+-translocating channels participating in these events will be amply discussed. Finally, the role of the Ca2+ sensor protein calmodulin on the activity of c-Src, and potentially on other SFKs, will be outlined as well. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Estefanía Anguita
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
14
|
Fyn kinase genetic ablation causes structural abnormalities in mature retina and defective Müller cell function. Mol Cell Neurosci 2016; 72:91-100. [DOI: 10.1016/j.mcn.2016.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/24/2022] Open
|
15
|
Draber P, Halova I, Polakovicova I, Kawakami T. Signal transduction and chemotaxis in mast cells. Eur J Pharmacol 2015; 778:11-23. [PMID: 25941081 DOI: 10.1016/j.ejphar.2015.02.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
Mast cells play crucial roles in both innate and adaptive arms of the immune system. Along with basophils, mast cells are essential effector cells for allergic inflammation that causes asthma, allergic rhinitis, food allergy and atopic dermatitis. Mast cells are usually increased in inflammatory sites of allergy and, upon activation, release various chemical, lipid, peptide and protein mediators of allergic reactions. Since antigen/immunoglobulin E (IgE)-mediated activation of these cells is a central event to trigger allergic reactions, innumerable studies have been conducted on how these cells are activated through cross-linking of the high-affinity IgE receptor (FcεRI). Development of mature mast cells from their progenitor cells is under the influence of several growth factors, of which the stem cell factor (SCF) seems to be the most important. Therefore, how SCF induces mast cell development and activation via its receptor, KIT, has been studied extensively, including a cross-talk between KIT and FcεRI signaling pathways. Although our understanding of the signaling mechanisms of the FcεRI and KIT pathways is far from complete, pharmaceutical applications of the knowledge about these pathways are underway. This review will focus on recent progresses in FcεRI and KIT signaling and chemotaxis.
Collapse
Affiliation(s)
- Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic.
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Iva Polakovicova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, USA; Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan
| |
Collapse
|
16
|
Qu L. Neuronal Fc gamma receptor I as a novel mediator for IgG immune complex-induced peripheral sensitization. Neural Regen Res 2015; 7:2075-9. [PMID: 25624839 PMCID: PMC4296428 DOI: 10.3969/j.issn.1673-5374.2012.26.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/30/2012] [Indexed: 12/23/2022] Open
Abstract
Chronic pain often accompanies immune-related diseases with an elevated level of IgG immune complex (IgG-IC) in the serum and/or the affected tissues though the underlying mechanisms are largely unknown. Fc gamma receptors (FcγRs), known as the receptors for the Fc domain of immunoglobulin G (IgG), are typically expressed on immune cells. A general consensus is that the activation of FcγRs by IgG-IC in such immune cells induces the release of proinflammatory cytokines from the immune cells, which may contribute to the IgG-IC-mediated peripheral sensitization. In addition to the immune cells, recent studies have revealed that FcγRI, but not FcγRII and FcγRIII, is also expressed in a subpopulation of primary sensory neurons. Moreover, IgG-IC directly excites the primary sensory neurons through neuronal FcγRI. These findings indicate that neuronal FcγRI provides a novel direct linkage between immunoglobulin and primary sensory neurons, which may be a novel target for the treatment of pain in the immune-related disorders. In this review, we summarize the expression pattern, functions, and the associated cellular signaling of FcγRs in the primary sensory neurons.
Collapse
Affiliation(s)
- Lintao Qu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
17
|
Abkhezr M, Dryer SE. Angiotensin II and canonical transient receptor potential-6 activation stimulate release of a signal transducer and activator of transcription 3-activating factor from mouse podocytes. Mol Pharmacol 2014; 86:150-8. [PMID: 24850910 DOI: 10.1124/mol.114.092536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Previous studies have shown that the transcription factor signal transducer and activator of transcription-3 (STAT3) in podocytes plays an important role in progression of HIV nephropathy and in collapsing forms of glomerulonephritis. Here, we have observed that application of 100 nM angiotensin II (Ang II) to cultured podocytes for 6-24 hours causes a marked increase in the phosphorylation of STAT3 on tyrosine Y705 but has no effect on phosphorylation at serine S727. By contrast, Ang II treatment of short periods (20-60 minutes) caused a small but consistent suppression of tyrosine phosphylation of STAT3. A similar biphasic effect was seen after treatment with the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG), an agent that causes activation of Ca(2+)-permeable canonical transient receptor potential-6 (TRPC6) channels in podocytes. The stimulatory effects of Ang II on STAT3 phosphorylation were abolished by small-interfering RNA knockdown of TRPC6 and also by inhibitors of the Ca(2+)-dependent downstream enzymes calcineurin and Ca(2+)-calmodulin-dependent protein kinase II. The stimulatory effects of Ang II appear to be mediated by secretion and accumulation of an unknown factor into the surrounding medium, as they are no longer detected when medium is replaced every 2 hours even if Ang II is continuously present. By contrast, the inhibitory effect of Ang II on STAT3 phosphorylation persists with frequent medium changes. Experiments with neutralizing and inhibitory antibodies suggest that the STAT3 stimulatory factor secreted from podocytes is not interleukin-6, but also suggest that this factor exerts its actions through a receptor system that requires glycoprotein 130.
Collapse
Affiliation(s)
- Mousa Abkhezr
- Department of Biology and Biochemistry, University of Houston (M.A., S.E.D.), and Division of Nephrology, Baylor College of Medicine (S.E.D.), Houston, Texas
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston (M.A., S.E.D.), and Division of Nephrology, Baylor College of Medicine (S.E.D.), Houston, Texas
| |
Collapse
|
18
|
Cell-based immunological assay: complementary applications in evaluating the allergenicity of foods with FAO/WHO guidelines. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Lamraoui A, Adi-Bessalem S, Laraba-Djebari F. Modulation of Tissue Inflammatory Response by Histamine Receptors in Scorpion Envenomation Pathogenesis: Involvement of H4 Receptor. Inflammation 2014; 37:1689-704. [DOI: 10.1007/s10753-014-9898-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Yang B, Li J, Liu X, Ma L, Deng L, Liu J, Liu Z, Ji Q. Herbal Formula-3 inhibits food allergy in rats by stabilizing mast cells through modulating calcium mobilization. Int Immunopharmacol 2013; 17:576-84. [DOI: 10.1016/j.intimp.2013.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/13/2013] [Accepted: 06/09/2013] [Indexed: 01/27/2023]
|
21
|
Yang B, Yang C, Wang P, Li J, Huang H, Ji Q, Liu J, Liu Z. Food allergen--induced mast cell degranulation is dependent on PI3K-mediated reactive oxygen species production and upregulation of store-operated calcium channel subunits. Scand J Immunol 2013; 78:35-43. [PMID: 23672459 DOI: 10.1111/sji.12062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 04/08/2013] [Indexed: 12/18/2022]
Abstract
The importance of Ca(2+) influx via store-operated calcium channels (SOCs) leading to mast cell degranulation is well known in allergic disease. However, the underlying mechanisms are not fully understood. With food-allergic rat model, the morphology of degranulated mast cell was analysed by toluidine blue stain and electron microscope. Ca(2+) influx via SOCs was checked by Ca(2+) imaging confocal microscope. Furthermore, the mRNA and protein expression of SOCs subunits were investigated using qPCR and Western blot. We found that ovalbumin (OVA) challenge significantly increased the levels of Th2 cytokines and OVA-specific IgE in allergic animals. Parallel to mast cell activation, the levels of histamine in serum and supernatant of rat peritoneal lavage solution were remarkably increased after OVA treatment. Moreover, the Ca(2+) entry through SOCs evoked by thapsigargin was increased in OVA-challenged group. The mRNA and protein expressions of SOC subunits, stromal interaction molecule 1 (STIM1) and Orail (calcium-release-activated calcium channel protein 1), were dramatically elevated under food-allergic condition. Administration of Ebselen, a scavenger of reactive oxygen species (ROS), significantly attenuated OVA sensitization-induced intracellular Ca(2+) rise and upregulation of SOCs subunit expressions. Intriguingly, pretreatment with PI3K-specific inhibitor (Wortmannin) partially abolished the production of ROS and subsequent elevation of SOCs activity and their subunit expressions. Taken together, these results imply that enhancement of SOC-mediated Ca(2+) influx induces mast cell activation, contributing to the pathogenesis of OVA-stimulated food allergy. PI3K-dependent ROS generation involves in modulating the activity of SOCs by increasing the expressions of their subunit.
Collapse
Affiliation(s)
- B Yang
- State key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shen Zhen University, Shen Zhen, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bali A, Gupta S, Singh N, Jaggi AS. Implicating the role of plasma membrane localized calcium channels and exchangers in stress-induced deleterious effects. Eur J Pharmacol 2013; 714:229-38. [DOI: 10.1016/j.ejphar.2013.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/16/2013] [Accepted: 06/08/2013] [Indexed: 10/26/2022]
|
23
|
Yang B, Li JJ, Cao JJ, Yang CB, Liu J, Ji QM, Liu ZG. Polydatin attenuated food allergy via store-operated calcium channels in mast cell. World J Gastroenterol 2013; 19:3980-3989. [PMID: 23840142 PMCID: PMC3703184 DOI: 10.3748/wjg.v19.i25.3980] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/10/2013] [Accepted: 05/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of polydatin (PD), a resveratrol glucoside, on mast cell degranulation and anti-allergic activity.
METHODS: After the rats were orally sensitized with ovalbumin (OVA) for 48 d and underwent PD treatment for 4 d, all the rats were stimulated by 100 mg/mL OVA for 24 h and then sacrificed for the following experiments. The small intestines from all the groups were prepared for morphology examination by hematoxylin and eosin staining. We also used a smooth muscle organ bath to evaluate the motility of the small intestines. The OVA-specific immunoglobulin E (IgE) production and interleukin-4 (IL-4) levels in serum or supernatant of intestinal mucosa homogenates were analyzed by enzyme-linked immunosorbent assay (ELISA). Using toluidine blue stain, the activation and degranulation of isolated rat peritoneal mast cells (RPMCs) were analyzed. Release of histamine from RPMCs was measured by ELISA, and regulation of PD on intracellular Ca2+ mobilization was investigated by probing intracellular Ca2+ with fluo-4 fluorescent dye, with the signal recorded and analyzed.
RESULTS: We found that intragastric treatment with PD significantly reduced loss of mucosal barrier integrity in the small intestine. However, OVA-sensitization caused significant hyperactivity in the small intestine of allergic rats, which was attenuated by PD administration by 42% (1.26 ± 0.13 g vs OVA 2.18 ± 0.21 g, P < 0.01). PD therapy also inhibited IgE production (3.95 ± 0.53 ng/mL vs OVA 4.53 ± 0.52 ng/mL, P < 0.05) by suppressing the secretion of Th2-type cytokine, IL-4, by 34% (38.58 ± 4.41 pg/mL vs OVA 58.15 ± 6.24 pg/mL, P < 0.01). The ratio of degranulated mast cells, as indicated by vehicles (at least five) around the cells, dramatically increased in the OVA group by 5.5 fold (63.50% ± 15.51% vs phosphate-buffered saline 11.15% ± 8.26%, P < 0.001) and fell by 65% after PD treatment (21.95% ± 4.37% vs OVA 63.50% ± 15.51%, P < 0.001). PD mediated attenuation of mast cell degranulation was further confirmed by decreased histamine levels in both serum (5.98 ± 0.17 vs OVA 6.67 ± 0.12, P < 0.05) and intestinal mucosa homogenates (5.83 ± 0.91 vs OVA 7.35 ± 0.97, P < 0.05). Furthermore, we demonstrated that administration with PD significantly decreased mast cell degranulation due to reduced Ca2+ influx through store-operated calcium channels (SOCs) (2.35 ± 0.39 vs OVA 3.51 ± 0.38, P < 0.01).
CONCLUSION: Taken together, our data indicate that PD stabilizes mast cells by suppressing intracellular Ca2+ mobilization, mainly through inhibiting Ca2+ entry via SOCs, thus exerting a protective role against OVA-sensitized food allergy.
Collapse
|
24
|
Medic N, Desai A, Olivera A, Abramowitz J, Birnbaumer L, Beaven MA, Gilfillan AM, Metcalfe DD. Knockout of the Trpc1 gene reveals that TRPC1 can promote recovery from anaphylaxis by negatively regulating mast cell TNF-α production. Cell Calcium 2013; 53:315-26. [PMID: 23489970 DOI: 10.1016/j.ceca.2013.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/10/2013] [Accepted: 02/07/2013] [Indexed: 11/28/2022]
Abstract
Antigen-mediated mast cell (MC) degranulation is the critical early event in the induction of allergic reactions. Transient receptor potential channels (TRPC), particularly TRPC1, are thought to contribute to such MC activation. To explore the contribution of TRPC1 in MC-driven allergic reactions, we examined antigen-mediated anaphylaxis in Trpc1⁻/⁻ and WT mice, and TRPC1 involvement in the activation of MCs derived from the bone marrow (BMMCs) of these mice. In vivo, we observed a similar induction of passive systemic anaphylaxis in the Trpc1⁻/⁻ mice compared to WT controls. Nevertheless, there was delayed recovery from this response in Trpc1⁻/⁻ mice. Furthermore, contrary to expectations, Trpc1⁻/⁻ BMMCs responded to antigen with enhanced calcium signaling but with little defect in degranulation or associated signaling. In contrast, antigen-mediated production of TNF-α, and other cytokines, was enhanced in the Trpc1⁻/⁻ BMMCs, as were calcium-dependent events required for these responses. Additionally, circulating levels of TNF-α in response to antigen were preferentially elevated in the Trpc1⁻/⁻ mice, and administration of an anti-TNF-α antibody blocked the delay in recovery from anaphylaxis in these mice. These data thus provide evidence that, in this model, TRPC1 promotes recovery from the anaphylactic response by repressing antigen-mediated TNF-α release from MCs.
Collapse
Affiliation(s)
- Nevenka Medic
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kinsey WH. Intersecting roles of protein tyrosine kinase and calcium signaling during fertilization. Cell Calcium 2012. [PMID: 23201334 DOI: 10.1016/j.ceca.2012.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The oocyte is a highly specialized cell that must respond to fertilization with a preprogrammed series of signal transduction events that establish a block to polyspermy, trigger resumption of the cell cycle and execution of a developmental program. The fertilization-induced calcium transient is a key signal that initiates the process of oocyte activation and studies over the last several years have examined the signaling pathways that act upstream and downstream of this calcium transient. Protein tyrosine kinase signaling was found to be an important component of the upstream pathways that stimulated calcium release at fertilization in oocytes from animals that fertilize externally, but a similar pathway has not been found in mammals which fertilize internally. The following review will examine the diversity of signaling in oocytes from marine invertebrates, amphibians, fish and mammals in an attempt to understand the basis for the observed differences. In addition to the pathways upstream of the fertilization-induced calcium transient, recent studies are beginning to unravel the role of protein tyrosine kinase signaling downstream of the calcium transient. The PYK2 kinase was found to respond to fertilization in the zebrafish system and seems to represent a novel component of the response of the oocyte to fertilization. The potential impact of impaired PTK signaling in oocyte quality will also be discussed.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
26
|
Staser K, Shew MA, Michels EG, Mwanthi MM, Yang FC, Clapp DW, Park SJ. A Pak1-PP2A-ERM signaling axis mediates F-actin rearrangement and degranulation in mast cells. Exp Hematol 2012; 41:56-66.e2. [PMID: 23063725 DOI: 10.1016/j.exphem.2012.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 01/12/2023]
Abstract
Mast cells coordinate allergy and allergic asthma and are crucial cellular targets in therapeutic approaches to inflammatory disease. Allergens cross-link immunoglobulin E bound at high-affinity receptors on the mast cell's surface, causing release of preformed cytoplasmic granules containing inflammatory molecules, including histamine, a principal effector of fatal septic shock. Both p21 activated kinase 1 (Pak1) and protein phosphatase 2A (PP2A) modulate mast cell degranulation, but the molecular mechanisms underpinning these observations and their potential interactions in common or disparate pathways are unknown. In this study, we use genetic and other approaches to show that Pak1's kinase-dependent interaction with PP2A potentiates PP2A's subunit assembly and activation. PP2A then dephosphorylates threonine 567 of Ezrin/Radixin/Moesin (ERM) molecules that have been shown to couple F-actin to the plasma membrane in other cell systems. In our study, the activity of this Pak1-PP2A-ERM axis correlates with impaired systemic histamine release in Pak1(-/-) mice and defective F-actin rearrangement and impaired degranulation in Ezrin disrupted (Mx1Cre(+)Ezrin(flox/flox)) primary mast cells. This heretofore unknown mechanism of mast cell degranulation provides novel therapeutic targets in allergy and asthma and may inform studies of kinase regulation of cytoskeletal dynamics in other cell lineages.
Collapse
Affiliation(s)
- Karl Staser
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Transient receptor potential canonical 3 (TRPC3) is required for IgG immune complex-induced excitation of the rat dorsal root ganglion neurons. J Neurosci 2012; 32:9554-62. [PMID: 22787041 DOI: 10.1523/jneurosci.6355-11.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic pain may accompany immune-related disorders with an elevated level of serum IgG immune complex (IgG-IC), but the underlying mechanisms are obscure. We previously demonstrated that IgG-IC directly excited a subpopulation of dorsal root ganglion (DRG) neurons through the neuronal Fc-gamma receptor I (FcγRI). This might be a mechanism linking IgG-IC to pain and hyperalgesia. The purpose of this study was to investigate the signaling pathways and transduction channels activated downstream of IgG-IC and FcγRI. In whole-cell recordings, IgG-IC induced a nonselective cation current (I(IC)) in the rat DRG neurons, carried by Ca(2+) and Na(+). The I(IC) was potentiated or attenuated by, respectively, lowering or increasing the intracellular Ca(2+) buffering capacity, suggesting that this current was regulated by intracellular calcium. Single-cell RT-PCR revealed that transient receptor potential canonical 3 (TRPC3) mRNA was always coexpressed with FcγRI mRNA in the same DRG neuron. Moreover, ruthenium red (a general TRP channel blocker), BTP2 (a general TRPC channel inhibitor), and pyrazole-3 (a selective TRPC3 blocker) each potently inhibited the I(IC). Specific knockdown of TRPC3 using small interfering RNA attenuated the IgG-IC-induced Ca(2+) response and the I(IC). Additionally, the I(IC) was blocked by the tyrosine kinase Syk inhibitor OXSI-2, the phospholipase C (PLC) inhibitor neomycin, and either the inositol triphosphate (IP(3)) receptor antagonist 2-aminoethyldiphenylborinate or heparin. These results indicated that the activation of neuronal FcγRI triggers TRPC channels through the Syk-PLC-IP(3) pathway and that TRPC3 is a key molecular target for the excitatory effect of IgG-IC on DRG neurons.
Collapse
|
28
|
Delprato A. Topological and functional properties of the small GTPases protein interaction network. PLoS One 2012; 7:e44882. [PMID: 23028658 PMCID: PMC3441499 DOI: 10.1371/journal.pone.0044882] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/15/2012] [Indexed: 12/31/2022] Open
Abstract
Small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran) regulate key cellular processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. A great deal of experimental evidence supports the existence of signaling cascades and feedback loops within and among the small GTPase subfamilies suggesting that these proteins function in a coordinated and cooperative manner. The interplay occurs largely through association with bi-partite regulatory and effector proteins but can also occur through the active form of the small GTPases themselves. In order to understand the connectivity of the small GTPases signaling routes, a systems-level approach that analyzes data describing direct and indirect interactions was used to construct the small GTPases protein interaction network. The data were curated from the Search Tool for the Retrieval of Interacting Genes (STRING) database and include only experimentally validated interactions. The network method enables the conceptualization of the overall structure as well as the underlying organization of the protein-protein interactions. The interaction network described here is comprised of 778 nodes and 1943 edges and has a scale-free topology. Rac1, Cdc42, RhoA, and HRas are identified as the hubs. Ten sub-network motifs are also identified in this study with themes in apoptosis, cell growth/proliferation, vesicle traffic, cell adhesion/junction dynamics, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase response, transcription regulation, receptor-mediated endocytosis, gene silencing, and growth factor signaling. Bottleneck proteins that bridge signaling paths and proteins that overlap in multiple small GTPase networks are described along with the functional annotation of all proteins in the network.
Collapse
Affiliation(s)
- Anna Delprato
- BioScience Project, Wakefield, Massachusetts, United States of America.
| |
Collapse
|
29
|
Freichel M, Almering J, Tsvilovskyy V. The Role of TRP Proteins in Mast Cells. Front Immunol 2012; 3:150. [PMID: 22701456 PMCID: PMC3372879 DOI: 10.3389/fimmu.2012.00150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/22/2012] [Indexed: 01/16/2023] Open
Abstract
Transient receptor potential (TRP) proteins form cation channels that are regulated through strikingly diverse mechanisms including multiple cell surface receptors, changes in temperature, in pH and osmolarity, in cytosolic free Ca(2+) concentration ([Ca(2+)](i)), and by phosphoinositides which makes them polymodal sensors for fine tuning of many cellular and systemic processes in the body. The 28 TRP proteins identified in mammals are classified into six subfamilies: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. When activated, they contribute to cell depolarization and Ca(2+) entry. In mast cells, the increase of [Ca(2+)](i) is fundamental for their biological activity, and several entry pathways for Ca(2+) and other cations were described including Ca(2+) release activated Ca(2+) (CRAC) channels. Like in other non-excitable cells, TRP channels could directly contribute to Ca(2+) influx via the plasma membrane as constituents of Ca(2+) conducting channel complexes or indirectly by shifting the membrane potential and regulation of the driving force for Ca(2+) entry through independent Ca(2+) entry channels. Here, we summarize the current knowledge about the expression of individual Trp genes with the majority of the 28 members being yet identified in different mast cell models, and we highlight mechanisms how they can regulate mast cell functions. Since specific agonists or blockers are still lacking for most members of the TRP family, studies to unravel their function and activation mode still rely on experiments using genetic approaches and transgenic animals. RNAi approaches suggest a functional role for TRPC1, TRPC5, and TRPM7 in mast cell derived cell lines or primary mast cells, and studies using Trp gene knock-out mice reveal a critical role for TRPM4 in mast cell activation and for mast cell mediated cutaneous anaphylaxis, whereas a direct role of cold- and menthol-activated TRPM8 channels seems to be unlikely for the development of cold urticaria at least in mice.
Collapse
Affiliation(s)
- Marc Freichel
- Pharmakologisches Institut, Universität HeidelbergHeidelberg, Germany
| | - Julia Almering
- Pharmakologisches Institut, Universität HeidelbergHeidelberg, Germany
| | | |
Collapse
|
30
|
Yang C, Mo X, Lv J, Liu X, Yuan M, Dong M, Li L, Luo X, Fan X, Jin Z, Liu Z, Liu J. Lipopolysaccharide enhances FcεRI-mediated mast cell degranulation by increasing Ca2+ entry through store-operated Ca2+ channels: implications for lipopolysaccharide exacerbating allergic asthma. Exp Physiol 2012; 97:1315-27. [PMID: 22581748 DOI: 10.1113/expphysiol.2012.065854] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipopolysaccharide (LPS) can exacerbate asthma; however, the mechanisms are not fully understood. This study investigated the effect of LPS on antigen-stimulated mast cell degranulation and the underlying mechanisms. We found that LPS enhanced degranulation in RBL-2H3 cells and mouse peritoneal mast cells upon FcεRI activation, in a dose- and time-dependent manner. Parallel to the alteration of degranulation, LPS increased FcεRI-activated Ca(2+) mobilization, as well as Ca(2+) entry through store-operated calcium channels (SOCs) evoked by thapsigargin. Blocking Ca(2+) entry through SOCs completely abolished LPS enhancement of mast cell degranulation. Consistent with functional alteration of SOCs, LPS increased mRNA and protein levels of Orai1 and STIM1, two major subunits of SOCs, in a time-dependent manner. In addition, LPS increased the mRNA level of Toll-like receptor 4 (TLR4) in a time-dependent manner. Blocking TLR4 with Cli-095 inhibited LPS, increasing transcription and expression of SOC subunits. Concomitantly, the effect of LPS enhancement of Ca(2+) mobilization and mast cell degranulation was largely reduced by Cli-095. Administration of LPS (1 μg) in vivo aggravated airway hyperreactivity and inflammatory reactions in allergic asthmatic mice. Histamine levels in serum and bronchoalveolar lavage fluid were increased by LPS treatment. In addition, Ca(2+) mobilization was enhanced in peritoneal mast cells isolated from LPS-treated asthmatic mice. Taken together, these results imply that LPS enhances mast cell degranulation, which potentially contributes to LPS exacerbating allergic asthma. Lipopolysaccharide increases Ca(2+) entry through SOCs by upregulating transcription and expression of SOC subunits, mainly through interacting with TLR4 in mast cells, resulting in enhancement of mast cell degranulation upon antigen stimulation.
Collapse
Affiliation(s)
- Chengbin Yang
- State Key Laboratory of Respiratory Disease for Allergy, Shengzhen University, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Inoue T, Suzuki Y, Ra C. Epigallocatechin-3-gallate induces cytokine production in mast cells by stimulating an extracellular superoxide-mediated calcium influx. Biochem Pharmacol 2011; 82:1930-9. [PMID: 21945989 DOI: 10.1016/j.bcp.2011.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 11/28/2022]
Abstract
The green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) has various biological activities, including anti-inflammatory, anti-neoplastic, anti- and pro-apoptotic, and neuroprotective effects. Although these are often associated with increased intracellular reactive oxygen species (ROS) and Ca(2+) levels, their involvement in biological effects is poorly understood. Here we report that EGCG induces cytokine production in mast cells via Ca(2+) influx and ROS generation. EGCG at concentrations of ≥50 μM induced interleukin-13 and tumor necrosis factor-α production in RBL-2H3 and bone marrow-derived mast cells. The effects were dependent on extracellular Ca(2+), and EGCG induced Ca(2+) release from intracellular stores and Ca(2+) influx. Ca(2+) influx was suppressed by 2-aminoethoxydiphenyl borate, an inhibitor of store-operated Ca(2+) (SOC) channels, including Ca(2+) release-activated Ca(2+) channels and transient receptor potential canonical channels. EGCG failed to induce Ca(2+) influx through SOC channels. EGCG-activated Ca(2+) channels were genetically and pharmacologically distinct from Ca(v)1.2 L-type Ca(2+) channels, another route of Ca(2+) influx into mast cells. EGCG evoked release of superoxide (O(2)(·-)) into the extracellular space. Exogenous superoxide dismutase, but not catalase, inhibited EGCG-evoked Ca(2+) influx and cytokine production, indicating that extracellular O(2)(·-) regulates these events. EGCG can serve as a powerful tool for studying O(2)(·-)-regulated Ca(2+) channels, which may be selectively involved in the regulation of cytokine production but have yet to be elucidated.
Collapse
Affiliation(s)
- Toshio Inoue
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | | | | |
Collapse
|
32
|
Lee JH, Kim JW, Kim DK, Kim HS, Park HJ, Park DK, Kim AR, Kim B, Beaven MA, Park KL, Kim YM, Choi WS. The Src family kinase Fgr is critical for activation of mast cells and IgE-mediated anaphylaxis in mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:1807-15. [PMID: 21746961 DOI: 10.4049/jimmunol.1100296] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mast cells are critical for various allergic disorders. Mast cells express Src family kinases, which relay positive and negative regulatory signals by Ag. Lyn, for example, initiates activating signaling events, but it also induces inhibitory signals. Fyn and Hck are reported to be positive regulators, but little is known about the roles of other Src kinases, including Fgr, in mast cells. In this study, we define the role of Fgr. Endogenous Fgr associates with FcεRI and promotes phosphorylation of Syk, Syk substrates, which include linkers for activation of T cells, SLP76, and Gab2, and downstream targets such as Akt and the MAPKs in Ag-stimulated mast cells. As a consequence, Fgr positively regulates degranulation, production of eicosanoids, and cytokines. Fgr and Fyn appeared to act in concert, as phosphorylation of Syk and degranulation are enhanced by overexpression of Fgr and further augmented by overexpression of Fyn but are suppressed by overexpression of Lyn. Moreover, knockdown of Fgr by small interfering RNAs (siRNAs) further suppressed degranulation in Fyn-deficient bone marrow-derived mast cells. Overexpression of Fyn or Fgr restored phosphorylation of Syk and partially restored degranulation in Fyn-deficient cells. Additionally, knockdown of Fgr by siRNAs inhibited association of Syk with FcεRIγ as well as the tyrosine phosphorylation of FcεRIγ. Of note, the injection of Fgr siRNAs diminished the protein level of Fgr in mice and simultaneously inhibited IgE-mediated anaphylaxis. In conclusion, Fgr positively regulates mast cell through activation of Syk. These findings help clarify the interplay among Src family kinases and identify Fgr as a potential therapeutic target for allergic diseases.
Collapse
Affiliation(s)
- Jun Ho Lee
- Institute of Biomedical Sciences and Technology, College of Medicine, Konkuk University, Chungju 380-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hayama K, Suzuki Y, Inoue T, Ochiai T, Terui T, Ra C. Gold activates mast cells via calcium influx through multiple H2O2-sensitive pathways including L-type calcium channels. Free Radic Biol Med 2011; 50:1417-28. [PMID: 21376117 DOI: 10.1016/j.freeradbiomed.2011.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 11/23/2022]
Abstract
Heavy metals, including gold, induce severe contact hypersensitivity and autoimmune disorders, which develop through an initial Th2-independent process followed by a Th2-dependent process. It has been shown that mast cell activation plays a role in the Th2-independent process and that gold stimulates histamine release in vitro. However, the mechanisms of the gold-induced mast cell activation remain largely unclear. Here we report that gold directly activates mast cells in a Ca2+-dependent manner. HAuCl4 [Au(III)] at nontoxic concentrations (≤50 μM) induced substantial degranulation and leukotriene C4 secretion in an extracellular Ca2+-dependent manner. Au(III) induced a robust Ca2+ influx but not Ca2+ mobilization from internal stores. Au(III) also stimulated intracellular production of reactive oxygen species, including H2O2, and blockade of the production abolished the mediator release and Ca2+ influx. Au(III) induced Ca2+ influx through multiple store-independent Ca2+ channels, including Cav1.2 L-type Ca2+ channels (LTCCs) and 2-aminoethoxydiphenyl borate (2-APB)-sensitive Ca2+ channels. The 2-APB-sensitive channel seemed to mediate Au(III)-induced degranulation. Our results indicate that gold stimulates Ca2+ influx and mediator release in mast cells through multiple H2O2-sensitive Ca2+ channels including LTCCs and 2-APB-sensitive Ca2+ channels. These findings provide insight into the roles of these Ca2+ channels in the Th2-independent process of gold-induced immunological disorders.
Collapse
Affiliation(s)
- Koremasa Hayama
- Division of Molecular Cell Immunology and Allergology, Graduate School of Medical Science, Nihon University, and Department of Dermatology, Nihon University Surugadai Hospital, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Mast cell CRAC channel as a novel therapeutic target in allergy. Curr Opin Allergy Clin Immunol 2011; 11:33-8. [PMID: 21150433 DOI: 10.1097/aci.0b013e32834232b0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW This review describes recent advances in our understanding of a major Ca-entry pathway, the Ca release-activated Ca (CRAC) channel, that is central to mast cell activation. RECENT FINDINGS Animals in which the genes encoding the CRAC channel have been deleted have severely compromised mast cell function and reduced allergic responses. These functional consequences reflect the ability of CRAC channels to activate a range of spatially and temporally distinct responses in mast cells, which contribute to both rapid and slow phases of an allergic response. In addition, the cells can sustain their own activation through positive feedback cycles that involve CRAC channels. Drugs that inhibit CRAC channels are proving effective in treatment of allergic responses both in vitro and in animal models of asthma. SUMMARY CRAC channels comprise a new therapeutic target for combating allergies including asthma.
Collapse
|
35
|
Tshori S, Razin E. Editorial: Mast cell degranulation and calcium entry-the Fyn-calcium store connection. J Leukoc Biol 2010; 88:837-8. [DOI: 10.1189/jlb.0610365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Bousquet SM, Monet M, Boulay G. Protein kinase C-dependent phosphorylation of transient receptor potential canonical 6 (TRPC6) on serine 448 causes channel inhibition. J Biol Chem 2010; 285:40534-43. [PMID: 20961851 DOI: 10.1074/jbc.m110.160051] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
TRPC6 is a cation channel in the plasma membrane that plays a role in Ca(2+) entry following the stimulation of a G(q)-protein coupled or tyrosine kinase receptor. A dysregulation of TRPC6 activity causes abnormal proliferation of smooth muscle cells and glomerulosclerosis. In the present study, we investigated the regulation of TRPC6 activity by protein kinase C (PKC). We showed that inhibiting PKC with GF1 or activating it with phorbol 12-myristate 13-acetate potentiated and inhibited agonist-induced Ca(2+) entry, respectively, into cells expressing TRPC6. Similar results were obtained when TRPC6 was directly activated with 1-oleyl-2-acetyl-sn-glycerol. Activation of the cells with carbachol increased the phosphorylation of TRPC6, an effect that was prevented by the inhibition of PKC. The target residue of PKC was identified by an alanine screen of all canonical PKC sites on TRPC6. Unexpectedly, all the mutants, including TRPC6(S768A) (a residue previously proposed to be a target for PKC), displayed PKC-dependent inhibition of channel activity. Phosphorylation prediction software suggested that Ser(448), in a non-canonical PKC consensus sequence, was a potential target for PKCδ. Ba(2+) and Ca(2+) entry experiments revealed that GF1 did not potentiate TRPC6(S448A) activity. Moreover, activation of PKC did not enhance the phosphorylation state of TRPC6(S448A). Using A7r5 vascular smooth muscle cells, which endogenously express TRPC6, we observed that a novel PKC isoform is involved in the inhibition of the vasopressin-induced Ca(2+) entry. Furthermore, knocking down PKCδ in A7r5 cells potentiated vasopressin-induced Ca(2+) entry. In summary, we provide evidence that PKCδ exerts a negative feedback effect on TRPC6 through the phosphorylation of Ser(448).
Collapse
Affiliation(s)
- Simon M Bousquet
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | |
Collapse
|
37
|
Suzuki R, Liu X, Olivera A, Aguiniga L, Yamashita Y, Blank U, Ambudkar I, Rivera J. Loss of TRPC1-mediated Ca2+ influx contributes to impaired degranulation in Fyn-deficient mouse bone marrow-derived mast cells. J Leukoc Biol 2010; 88:863-75. [PMID: 20571036 DOI: 10.1189/jlb.0510253] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
MC degranulation requires the influx of calcium from the extracellular environment. Orai1/STIM1 is essential to MC SOCE, as shown in rat peritoneal MCs, the rat MC lines (RBL-2H3), or in Orai1 null embryo liver-derived, cultured MCs. However, minimal information exists about the role of other calcium channels expressed on these cells. Here, we demonstrate that the nonselective TRPC1 participates in FcεRI-mediated calcium entry in mouse BMMCs. We found that Fyn null MCs, which have an impaired degranulation response, expressed reduced levels of TRPC1, had normal depletion of intracellular calcium stores but an impaired calcium influx, and failed to depolymerize cortical F-actin (a key step for granule-plasma membrane fusion). Partial RNAi silencing of TRPC1 expression in WT MCs (to the level of Fyn null MCs) mimicked the Fyn null defect in calcium influx, cortical F-actin depolymerization, and MC degranulation. Ectopic expression of Fyn or TRPC1 in Fyn null MCs restored calcium responses and cortical F-actin depolymerization and increased MC degranulation. Together with our findings that expression of Orai1 is not altered in Fyn null MCs, our findings suggest that TRPC1 participates in calcium influx and other key events required for MC degranulation. This demonstrates that in addition to a role described previously for Orai1 in promoting MC degranulation, nonselective cation channels participate in promoting the exocytotic response.
Collapse
Affiliation(s)
- Ryo Suzuki
- National Institutes of Health, Bethesda, MD 20892-1930, USA
| | | | | | | | | | | | | | | |
Collapse
|