1
|
The Cellular Choreography of Osteoblast Angiotropism in Bone Development and Homeostasis. Int J Mol Sci 2021; 22:ijms22147253. [PMID: 34298886 PMCID: PMC8305002 DOI: 10.3390/ijms22147253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Interaction between endothelial cells and osteoblasts is essential for bone development and homeostasis. This process is mediated in large part by osteoblast angiotropism, the migration of osteoblasts alongside blood vessels, which is crucial for the homing of osteoblasts to sites of bone formation during embryogenesis and in mature bones during remodeling and repair. Specialized bone endothelial cells that form "type H" capillaries have emerged as key interaction partners of osteoblasts, regulating osteoblast differentiation and maturation and ensuring their migration towards newly forming trabecular bone areas. Recent revolutions in high-resolution imaging methodologies for bone as well as single cell and RNA sequencing technologies have enabled the identification of some of the signaling pathways and molecular interactions that underpin this regulatory relationship. Similarly, the intercellular cross talk between endothelial cells and entombed osteocytes that is essential for bone formation, repair, and maintenance are beginning to be uncovered. This is a relatively new area of research that has, until recently, been hampered by a lack of appropriate analysis tools. Now that these tools are available, greater understanding of the molecular relationships between these key cell types is expected to facilitate identification of new drug targets for diseases of bone formation and remodeling.
Collapse
|
2
|
Lim KE, Bullock WA, Horan DJ, Williams BO, Warman ML, Robling AG. Co-deletion of Lrp5 and Lrp6 in the skeleton severely diminishes bone gain from sclerostin antibody administration. Bone 2021; 143:115708. [PMID: 33164872 PMCID: PMC7770084 DOI: 10.1016/j.bone.2020.115708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 01/14/2023]
Abstract
The cysteine knot protein sclerostin is an osteocyte-derived secreted inhibitor of the Wnt co-receptors LRP5 and LRP6. LRP5 plays a dominant role in bone homeostasis, but we previously reported that Sost/sclerostin suppression significantly increased osteogenesis regardless of Lrp5 presence or absence. Those observations suggested that the bone forming effects of sclerostin inhibition can occur through Lrp6 (when Lrp5 is suppressed), or through other yet undiscovered mechanisms independent of Lrp5/6. To distinguish between these two possibilities, we generated mice with compound deletion of Lrp5 and Lrp6 selectively in bone, and treated them with sclerostin monoclonal antibody (Scl-mAb). All mice were homozygous flox for both Lrp5 and Lrp6 (Lrp5f/f; Lrp6f/f), and varied only in whether or not they carried the Dmp1-Cre transgene. Positive (Cre+) and negative (Cre-) mice were injected with Scl-mAb or vehicle from 4.5 to 14 weeks of age. Vehicle-treated Cre+ mice exhibited significantly reduced skeletal properties compared to vehicle-treated Cre- mice, as assessed by DXA, μCT, pQCT, and histology, indicating that Lrp5/6 deletions were effective and efficient. Scl-mAb treatment improved nearly every bone-related parameter among Cre- mice, but the same treatment in Cre+ mice resulted in little to no improvement in skeletal properties. For the few endpoints where Cre+ mice responded to Scl-mAb, it is likely that antibody-induced promotion of Wnt signaling occurred in cell types earlier in the mesenchymal/osteoblast differentiation pathway than the Dmp1-expressing stage. This latter conclusion was supported by changes in some histomorphometric parameters. In conclusion, unlike with the deletion of Lrp5 alone, the bone-selective late-stage co-deletion of Lrp5 and Lrp6 significantly impairs or completely nullifies the osteogenic action of Scl-mAb, and highlights a major role for both Lrp5 and Lrp6 in the mechanism of action for the bone-building effects of sclerostin antibody.
Collapse
Affiliation(s)
- Kyung-Eun Lim
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Whitney A Bullock
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel J Horan
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bart O Williams
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Matthew L Warman
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA; Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Shalash MAM, Rohoma KH, Kandil NS, Abdel Mohsen MA, Taha AAF. Serum sclerostin level and its relation to subclinical atherosclerosis in subjects with type 2 diabetes. J Diabetes Complications 2019; 33:592-597. [PMID: 31129005 DOI: 10.1016/j.jdiacomp.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/18/2019] [Accepted: 04/21/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Sclerostin, a Wnt-signalling inhibitor, is an established negative regulator of bone formation. However, data regarding its potential importance in vascular disease are less clear. Common carotid artery media thickness (CIMT) assessment and plaque identification using ultrasound imaging are well-recognized tools for identifying and monitoring atherosclerosis. The aim of the present study is to examine the relationship between serum sclerostin and subclinical atherosclerosis (as evidenced by CIMT). METHODS This cross-sectional study included 50 subjects with T2DM and 20 subjects as a control group. Multivariable linear regression models were used to assess the association of sclerostin with subclinical atherosclerosis. RESULTS Serum sclerostin levels in T2DM patients were significantly higher compared to the control group (167.16 ± 63.60 versus 85.98 ± 23.74 pg/ml, P < 0.0001). A concentration of ≥162.5 pg/ml showed a sensitivity of 90% and a specificity of 86.67% to detect an increased risk of subclinical atherosclerosis. Univariate analysis revealed a significant positive correlation between serum sclerostin and CIMT (r = 0.635, P < 0.001). Sclerostin concentrations remained independently associated with CIMT (β = 63.188 [6.919-119.456], P = 0.017) after adjusting for age and gender. CONCLUSION Our data suggest a positive correlation between serum sclerostin level and subclinical atherosclerosis in subjects with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Magui Abdel Moneim Shalash
- Department of Internal Medicine (Unit of Diabetes and Metabolism), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kamel Hemida Rohoma
- Department of Internal Medicine (Unit of Diabetes and Metabolism), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Noha Said Kandil
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Aya Abdul Fattah Taha
- Department of Internal Medicine (Unit of Diabetes and Metabolism), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Zhao G, Huang BL, Rigueur D, Wang W, Bhoot C, Charles KR, Baek J, Mohan S, Jiang J, Lyons KM. CYR61/CCN1 Regulates Sclerostin Levels and Bone Maintenance. J Bone Miner Res 2018; 33:1076-1089. [PMID: 29351359 PMCID: PMC6002906 DOI: 10.1002/jbmr.3394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/19/2022]
Abstract
CYR61/CCN1 is a matricellular protein that resides in the extracellular matrix, but serves regulatory rather than structural roles. CYR61/CCN1 is found in mineralized tissues and has been shown to influence bone healing in vivo and osteogenic differentiation in vitro. In this study we generated Cyr61 bone-specific knockout mice to examine the physiological role of CYR61/CCN1 in bone development and maintenance in vivo. Extensive analysis of Cyr61 conditional knockout mice showed a significant decrease in both trabecular and cortical bone mass as compared to WT littermates. Our data suggest that CYR61/CCN1 exerts its effects on mature osteoblast/osteocyte function to modulate bone mass. Specifically, changes were observed in osteocyte/osteoblast expression of RankL, VegfA, and Sost. The increase in RankL expression was correlated with a significant increase in osteoclast number; decreased VegfA expression was correlated with a significant decrease in bone vasculature; increased Sost expression was associated with decreased Wnt signaling, as revealed by decreased Axin2 expression and increased adiposity in the bone marrow. Although the decreased number of vascular elements in bone likely contributes to the low bone mass phenotype in Cyr61 conditional knockout mice, this cannot explain the observed increase in osteoclasts and the decrease in Wnt signaling. We conducted in vitro assays using UMR-106 osteosarcoma cells to explore the role CYR61/CCN1 plays in modulating Sost mRNA and protein expression in osteocytes and osteoblasts. Overexpression of CYR61/CCN1 can suppress Sost expression in both control and Cyr61 knockout cells, and blocking Sost with siRNA can rescue Wnt responsiveness in Cyr61 knockout cells in vitro. Overall, our data suggest that CYR61/CCN1 modulates mature osteoblast and osteocyte function to regulate bone mass through angiogenic effects as well as by modulating Wnt signaling, at least in part through the Wnt antagonist Sost. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Gexin Zhao
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bau-Lin Huang
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Diana Rigueur
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Weiguang Wang
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chimay Bhoot
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kemberly R Charles
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jongseung Baek
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jie Jiang
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Hemophilia Treatment Center, Orthopaedic Institute for Children, Los Angeles, CA, USA
| | - Karen M Lyons
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Oranger A, Brunetti G, Colaianni G, Tamma R, Carbone C, Lippo L, Mori G, Pignataro P, Cirulli N, Zerlotin R, Moretti B, Notarnicola A, Ribatti D, Grano M, Colucci S. Sclerostin stimulates angiogenesis in human endothelial cells. Bone 2017; 101:26-36. [PMID: 28267633 DOI: 10.1016/j.bone.2017.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/24/2022]
Abstract
Sclerostin, negative regulator of bone formation, has been originally known as an osteocyte product. Recently, it has been also detected in hypertrophic chondrocytes, distinctive cells of avascular cartilage which is invaded by capillaries and then replaced by vascularized bone. Thus, we hypothesized that sclerostin, in addition to its role already known, may exert an angiogenic activity. We first proved that sclerostin increased the proliferation of human umbilical vein endothelial cells (HUVECs), and next, by using the chicken chorioallantoic membrane (CAM) in vivo assay, we demonstrated that it exerts an angiogenic activity similar to that of vascular endothelial growth factor (VEGF). This last finding was reinforced by several in vitro approaches. Indeed, we showed that sclerostin induced the formation of a network of anastomosing tubules, a significant increase in the percentage of tubule number, total tubule length and number of junctions, as well as the ability of sclerostin-stimulated HUVECs to organize capillary-like structures and closed-meshes similar to VEGF. The angiogenic response elicited by the protein may be due to the binding to its receptor, LRP6, which is highly expressed at mRNA and protein levels by sclerostin treated HUVECs and through the production of two well-known pro-angiogenic cytokines, VEGF and placental growth factor (PlGF). Finally, we demonstrated that sclerostin was also responsible for the recruitment of osteoclasts and their circulating monocyte progenitors. Overall, these findings showed for the first time the new angiogenic in vitro role of sclerostin which could be also considered as a novel molecule in angiogenesis-osteogenesis coupling.
Collapse
Affiliation(s)
- Angela Oranger
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Graziana Colaianni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Claudia Carbone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Luciana Lippo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paolo Pignataro
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Nunzio Cirulli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Roberta Zerlotin
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Biagio Moretti
- Orthopaedics Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Faculty of Medicine and Surgery, University of Bari, General Hospital, Bari, Italy
| | - Angela Notarnicola
- Orthopaedics Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Faculty of Medicine and Surgery, University of Bari, General Hospital, Bari, Italy
| | - Domenico Ribatti
- National Cancer Institute "Giovanni Paolo II", Bari, Italy; Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari Medical School, Bari, Italy
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy.
| |
Collapse
|
6
|
Thouverey C, Caverzasio J. Sclerostin inhibits osteoblast differentiation without affecting BMP2/SMAD1/5 or Wnt3a/β-catenin signaling but through activation of platelet-derived growth factor receptor signaling in vitro. BONEKEY REPORTS 2015; 4:757. [PMID: 26587226 DOI: 10.1038/bonekey.2015.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/29/2015] [Indexed: 01/18/2023]
Abstract
Sclerostin inhibits bone formation mostly by antagonizing LRP5/6, thus inhibiting Wnt signaling. However, experiments with genetically modified mouse models suggest that a significant part of sclerostin-mediated inhibition of bone formation is due to interactions with other binding partners. The objective of the present work was to identify signaling pathways affected by sclerostin in relation with its inhibitory action on osteogenic differentiation of C3H10T1/2 cells, MC3T3-E1 cells and primary osteoblasts. Sclerostin inhibited BMP2-induced osteoblast differentiation without altering SMAD1/5 phosphorylation and transcriptional activity. Moreover, sclerostin prevented Wnt3a-mediated osteoblastogenesis without affecting LRP5/6 phosphorylation or β-catenin transcriptional activity. In addition, sclerostin inhibited mineralization promoted by GSK3 inhibition, which mimics canonical Wnt signaling without activation of LRP5/6, suggesting that sclerostin can prevent osteoblast differentiation without antagonizing LRP5/6. Finally, we found that sclerostin could activate platelet-derived growth factor receptor (PDGFR) and its downstream signaling pathways PLCγ, PKC, Akt and ERK1/2. PDGFR inhibition could reverse sclerostin-mediated inhibitory activity on BMP2-induced osteoblast differentiation. Therefore, our data suggest that sclerostin can activate PDGFR signaling by itself, and this functional interaction may be involved in the negative effect of sclerostin on osteoblast differentiation.
Collapse
Affiliation(s)
- Cyril Thouverey
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva , Geneva, Switzerland
| | - Joseph Caverzasio
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva , Geneva, Switzerland
| |
Collapse
|
7
|
Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol Ther 2014; 10:463-70. [PMID: 25070604 DOI: 10.1016/j.nephro.2014.04.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Sclerostin is a circulating inhibitor of the Wnt/β-catenin pathway and may have a role in chronic kidney disease (CKD)-mineral and bone disorder. Blood sclerostin levels are known to be elevated in patients undergoing maintenance dialysis. The aims of the present study were to evaluate sclerostin levels in patients at different CKD stages and study potential associations between sclerostin levels and (i) biochemical parameters that are disturbed in CKD, (ii) markers of vascular disease and (iii) mortality. METHODS One hundred and forty patients at CKD stages 2-5D were included in the present study. Routine clinical biochemistry tests and assays for sclerostin, protein-bound uremic toxins (indoxylsulphate [IS] and p-cresyl sulphate [PCS]) and the toxin β2 microglobulin (β2M) were performed. Aortic and coronary calcification and arterial stiffness were assessed by multislice spiral computed tomography and pulse wave velocity measurements. The enrolled patients were prospectively monitored for mortality. RESULTS Sclerostin levels were found to be elevated in CKD patients (especially those on hemodialysis). Furthermore, sclerostin levels were positively correlated with inflammation markers, phosphate, fibroblast growth factor 23, IS, PCS, β2M and arterial stiffness. A multivariate linear regression analysis indicated that sclerostin levels were independently associated with IS, PCS and β2M levels. Elevated serum sclerostin appeared to be associated with mortality (independently of age and inflammation). However, this association disappeared after adjustment for a propensity score including age, phosphate, interleukin-6, CKD stage and PCS. CONCLUSION Our results indicate that sclerostin levels are elevated in CKD patients and are associated with inflammation, vascular lesions, uremia and (potentially) mortality.
Collapse
|
8
|
CYR61/CCN1 overexpression in the myeloma microenvironment is associated with superior survival and reduced bone disease. Blood 2014; 124:2051-60. [PMID: 25061178 DOI: 10.1182/blood-2014-02-555813] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Secreted protein CCN1, encoded by CYR61, is involved in wound healing, angiogenesis, and osteoblast differentiation. We identified CCN1 as a microenvironmental factor produced by mesenchymal cells and overexpressed in bones of a subset of patients with monoclonal gammopathy of undetermined significance (MGUS), asymptomatic myeloma (AMM), and multiple myeloma (MM). Our analysis showed that overexpression of CYR61 was independently associated with superior overall survival of MM patients enrolled in our Total Therapy 3 protocol. Moreover, elevated CCN1 was associated with a longer time for MGUS/AMM to progress to overt MM. During remission from MM, high levels of CCN1 were associated with superior progression-free and overall survival and stratified patients with molecularly defined high-risk MM. Recombinant CCN1 directly inhibited in vitro growth of MM cells, and overexpression of CYR61 in MM cells reduced tumor growth and prevented bone destruction in vivo in severe combined immunodeficiency-hu mice. Signaling through αvβ3 was required for CCN1 prevention of bone disease. CYR61 expression may signify early perturbation of the microenvironment before conversion to overt MM and may be a compensatory mechanism to control MM progression. Therapeutics that upregulate CYR61 should be investigated for treating MM bone disease.
Collapse
|
9
|
Ryan ZC, Craig TA, Salisbury JL, Carpio LR, McGee-Lawrence M, Westendorf JJ, Kumar R. Enhanced prostacyclin formation and Wnt signaling in sclerostin deficient osteocytes and bone. Biochem Biophys Res Commun 2014; 448:83-8. [PMID: 24780398 DOI: 10.1016/j.bbrc.2014.04.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 01/22/2023]
Abstract
We show that prostacyclin production is increased in bone and osteocytes from sclerostin (Sost) knockout mice which have greatly increased bone mass. The addition of prostacyclin or a prostacyclin analog to bone forming osteoblasts enhances differentiation and matrix mineralization of osteoblasts. The increase in prostacyclin synthesis is linked to increases in β-catenin concentrations and activity as shown by enhanced binding of lymphoid enhancer factor, Lef1, to promoter elements within the prostacyclin synthase promoter. Blockade of Wnt signaling reduces prostacyclin production in osteocytes. Increased prostacyclin production by osteocytes from sclerostin deficient mice could potentially contribute to the increased bone formation seen in this condition.
Collapse
Affiliation(s)
- Zachary C Ryan
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Theodore A Craig
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jeffrey L Salisbury
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Lomeli R Carpio
- Mayo Graduate School, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Meghan McGee-Lawrence
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
10
|
Kedlaya R, Veera S, Horan DJ, Moss RE, Ayturk UM, Jacobsen CM, Bowen ME, Paszty C, Warman ML, Robling AG. Sclerostin inhibition reverses skeletal fragility in an Lrp5-deficient mouse model of OPPG syndrome. Sci Transl Med 2013; 5:211ra158. [PMID: 24225945 PMCID: PMC3964772 DOI: 10.1126/scitranslmed.3006627] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Osteoporosis pseudoglioma syndrome (OPPG) is a rare genetic disease that produces debilitating effects in the skeleton. OPPG is caused by mutations in LRP5, a WNT co-receptor that mediates osteoblast activity. WNT signaling through LRP5, and also through the closely related receptor LRP6, is inhibited by the protein sclerostin (SOST). It is unclear whether OPPG patients might benefit from the anabolic action of sclerostin neutralization therapy (an approach currently being pursued in clinical trials for postmenopausal osteoporosis) in light of their LRP5 deficiency and consequent osteoblast impairment. To assess whether loss of sclerostin is anabolic in OPPG, we measured bone properties in a mouse model of OPPG (Lrp5(-/-)), a mouse model of sclerosteosis (Sost(-/-)), and in mice with both genes knocked out (Lrp5(-/-);Sost(-/-)). Lrp5(-/-);Sost(-/-) mice have larger, denser, and stronger bones than do Lrp5(-/-) mice, indicating that SOST deficiency can improve bone properties via pathways that do not require LRP5. Next, we determined whether the anabolic effects of sclerostin depletion in Lrp5(-/-) mice are retained in adult mice by treating 17-week-old Lrp5(-/-) mice with a sclerostin antibody for 3 weeks. Lrp5(+/+) and Lrp5(-/-) mice each exhibited osteoanabolic responses to antibody therapy, as indicated by increased bone mineral density, content, and formation rates. Collectively, our data show that inhibiting sclerostin can improve bone mass whether LRP5 is present or not. In the absence of LRP5, the anabolic effects of SOST depletion can occur via other receptors (such as LRP4/6). Regardless of the mechanism, our results suggest that humans with OPPG might benefit from sclerostin neutralization therapies.
Collapse
Affiliation(s)
- Rajendra Kedlaya
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shreya Veera
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniel J. Horan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
| | - Rachel E. Moss
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ugur M. Ayturk
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Christina M. Jacobsen
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Margot E. Bowen
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Chris Paszty
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Matthew L. Warman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander G. Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
- Department of Biomedical Engineering, Indiana University–Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Balcı M, Kırkpantur A, Turkvatan A, Mandıroglu S, Ozturk E, Afsar B. Sclerostin as a new key player in arteriovenous fistula calcification. Herz 2013; 40:289-97. [PMID: 24135878 DOI: 10.1007/s00059-013-3992-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND The osteocyte-derived sclerostin has been shown to play a key inhibitor role in determining the normal extent of bone formation, and it consequently protects against the deleterious effects of uncontrolled bone growth. Sclerostin has been demonstrated to be upregulated during vascular smooth muscle cell calcification in vitro and has recently been identified in the human aorta at the protein level. Whether the effects of sclerostin on bone turnover and its vascular expression also translate into clinically significant changes in arteriovenous fistula patency is unknown. PATIENTS AND METHODS The primary outcome was loss of unassisted arteriovenous fistula patency, defined as arteriovenous fistula thrombosis or need for intervention. In this prospective cohort study, 350 prevalent hemodialysis patients were followed up for 12 months. Serum sclerostin levels were measured and arteriovenous fistula calcification was detected using a 64-detector computerized tomographic scanner. RESULTS Patients with calcified arteriovenous fistula had higher serum sclerostin levels than patients without. Overall, 26 % of the patients reached the outcome during the follow-up. The 12-month arteriovenous fistula survival was reduced in patients with calcified arteriovenous fistulas. Patients with serum sclerostin levels above median levels at the start of the observation period had a worse arteriovenous fistula survival. Multivariable-adjusted Cox regression analyses revealed that only presence of arteriovenous fistula calcification and serum C-reactive protein level independently predicted loss of unassisted arteriovenous fistula patency. CONCLUSION Our study suggests that the detection of arteriovenous fistula calcification and serum C-reactive protein levels might be useful for identifying patients at an increased risk for loss of unassisted arteriovenous fistula patency.
Collapse
Affiliation(s)
- M Balcı
- Division of Cardiology, Yuksek Ihtisas Hospital, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
12
|
Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci U S A 2013; 110:6199-204. [PMID: 23530237 DOI: 10.1073/pnas.1221255110] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Inactivating mutations of the SOST (sclerostin) gene are associated with overgrowth and sclerosis of the skeleton. To determine mechanisms by which increased amounts of calcium and phosphorus are accreted to enable enhanced bone mineralization in the absence of sclerostin, we measured concentrations of calciotropic and phosphaturic hormones, and urine and serum calcium and inorganic phosphorus in mice in which the sclerostin (sost) gene was replaced by the β-D-galactosidase (lacZ) gene in the germ line. Knockout (KO) (sost(-/-)) mice had increased bone mineral density and content, increased cortical and trabecular bone thickness, and greater net bone formation as a result of increased osteoblast and decreased osteoclast surfaces compared with wild-type (WT) mice. β-Galactosidase activity was detected in osteocytes of sost KO mice but was undetectable in WT mice. Eight-week-old, male sost KO mice had increased serum 1α,25-dihydroxyvitamin D, decreased 24,25-dihydroxyvitamin D, decreased intact fibroblast growth factor 23, and elevated inorganic phosphorus concentrations compared with age-matched WT mice. 25-Hydroxyvitamin D 1α-hydroxylase cytochrome P450 (cyp27B1) mRNA was increased in kidneys of sost KO mice compared with WT mice. Treatment of cultured proximal tubule cells with mouse recombinant sclerostin decreased cyp27B1 mRNA transcripts. Urinary calcium and renal fractional excretion of calcium were decreased in sost KO mice compared with WT mice. Sost KO and WT mice had similar serum calcium and parathyroid hormone concentrations. The data show that sclerostin not only alters bone mineralization, but also influences mineral metabolism by altering concentrations of hormones that regulate mineral accretion.
Collapse
|
13
|
Gkotzamanidou M, Dimopoulos MA, Kastritis E, Christoulas D, Moulopoulos LA, Terpos E. Sclerostin: a possible target for the management of cancer-induced bone disease. Expert Opin Ther Targets 2012; 16:761-9. [DOI: 10.1517/14728222.2012.697154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Holdsworth G, Slocombe P, Doyle C, Sweeney B, Veverka V, Le Riche K, Franklin RJ, Compson J, Brookings D, Turner J, Kennedy J, Garlish R, Shi J, Newnham L, McMillan D, Muzylak M, Carr MD, Henry AJ, Ceska T, Robinson MK. Characterization of the interaction of sclerostin with the low density lipoprotein receptor-related protein (LRP) family of Wnt co-receptors. J Biol Chem 2012; 287:26464-77. [PMID: 22696217 DOI: 10.1074/jbc.m112.350108] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LRP5 and LRP6 are proteins predicted to contain four six-bladed β-propeller domains and both bind the bone-specific Wnt signaling antagonist sclerostin. Here, we report the crystal structure of the amino-terminal region of LRP6 and using NMR show that the ability of sclerostin to bind to this molecule is mediated by the central core of sclerostin and does not involve the amino- and carboxyl-terminal flexible arm regions. We show that this structured core region interacts with LRP5 and LRP6 via an NXI motif (found in the sequence PNAIG) within a flexible loop region (loop 2) within the central core region. This sequence is related closely to a previously identified motif in laminin that mediates its interaction with the β-propeller domain of nidogen. However, the NXI motif is not involved in the interaction of sclerostin with LRP4 (another β-propeller containing protein in the LRP family). A peptide derived from the loop 2 region of sclerostin blocked the interaction of sclerostin with LRP5/6 and also inhibited Wnt1 but not Wnt3A or Wnt9B signaling. This suggests that these Wnts interact with LRP6 in different ways.
Collapse
Affiliation(s)
- Gill Holdsworth
- Department of Biology, UCB Pharma, 216 Bath Road, Slough SL1 4EN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
McNulty MS, Bedell VM, Greenwood TM, Craig TA, Ekker SC, Kumar R. Expression of sclerostin in the developing zebrafish (Danio rerio) brain and skeleton. Gene Expr Patterns 2012; 12:228-35. [PMID: 22575304 DOI: 10.1016/j.gep.2012.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/28/2012] [Accepted: 04/27/2012] [Indexed: 11/15/2022]
Abstract
Sclerostin is a highly conserved, secreted, cystine-knot protein which regulates osteoblast function. Humans with mutations in the sclerostin gene (SOST), manifest increased axial and appendicular skeletal bone density with attendant complications. In adult bone, sclerostin is expressed in osteocytes and osteoblasts. Danio rerio sclerostin-like protein is closely related to sea bass sclerostin, and is related to chicken and mammalian sclerostins. Little is known about the expression of sclerostin in early developing skeletal or extra-skeletal tissues. We assessed sclerostin (sost) gene expression in developing zebrafish (D. rerio) embryos with whole mount is situ hybridization methods. The earliest expression of sost mRNA was noted during 12h post-fertilization (hpf). At 15 hpf, sost mRNA was detected in the developing nervous system and in Kupffer's vesicle. At 18, 20 and 22 hpf, expression in rhombic lip precursors was seen. By 24 hpf, expression in the upper and lower rhombic lip and developing spinal cord was noted. Expression in the rhombic lip and spinal cord persisted through 28 hpf and then diminished in intensity through 44 hpf. At 28 hpf, sost expression was noted in developing pharyngeal cartilage; expression in pharyngeal cartilage increased with time. By 48 hpf, sost mRNA was clearly detected in the developing pharyngeal arch cartilage. Sost mRNA was abundantly expressed in the pharyngeal arch cartilage, and in developing pectoral fins, 72, 96 and 120 hpf. Our study is the first detailed analysis of sost gene expression in early metazoan development.
Collapse
Affiliation(s)
- Melissa S McNulty
- Division of Nephrology and Hypertension, Mayo Clinic, 200 1st St., Southwest, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
16
|
Devarajan-Ketha H, Craig TA, Madden BJ, Robert Bergen H, Kumar R. The sclerostin-bone protein interactome. Biochem Biophys Res Commun 2011; 417:830-5. [PMID: 22206666 DOI: 10.1016/j.bbrc.2011.12.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 01/25/2023]
Abstract
The secreted glycoprotein, sclerostin alters bone formation. To gain insights into the mechanism of action of sclerostin, we examined the interactions of sclerostin with bone proteins using a sclerostin affinity capture technique. Proteins from decalcified rat bone were captured on a sclerostin-maltose binding protein (MBP) amylose column, or on a MBP amylose column. The columns were extensively washed with low ionic strength buffer, and bound proteins were eluted with buffer containing 1M sodium chloride. Eluted proteins were separated by denaturing sodium-dodecyl sulfate gel electrophoresis and were identified by mass spectrometry. Several previously unidentified full-length sclerostin-interacting proteins such as alkaline phosphatase, carbonic anhydrase, gremlin-1, fetuin A, midkine, annexin A1 and A2, and collagen α1, which have established roles in bone formation or resorption processes, were bound to the sclerostin-MBP amylose resin but not to the MBP amylose resin. Other full-length sclerostin-interacting proteins such as casein kinase II and secreted frizzled related protein 4 that modulate Wnt signaling were identified. Several peptides derived from proteins such as Phex, asporin and follistatin that regulate bone metabolism also bound sclerostin. Sclerostin interacts with multiple proteins that alter bone formation and resorption and is likely to function by altering several biologically relevant pathways in bone.
Collapse
Affiliation(s)
- Hemamalini Devarajan-Ketha
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
17
|
Park KH, Kang JW, Lee EM, Kim JS, Rhee YH, Kim M, Jeong SJ, Park YG, Kim SH. Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res 2011; 51:187-94. [PMID: 21470302 DOI: 10.1111/j.1600-079x.2011.00875.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although melatonin has a variety of biological actions such as antitumor, antiangiogenic, and antioxidant activities, the osteogenic mechanism of melatonin still remains unclear. Thus, in the present study, the molecular mechanism of melatonin was elucidated in the differentiation of mouse osteoblastic MC3T3-E1 cells. Melatonin enhanced osteoblastic differentiation and mineralization compared to untreated controls in preosteoblastic MC3T3-E1 cells. Also, melatonin increased wound healing and dose-dependently activated osteogenesis markers such as runt-related transcription factor 2 (Runx2), osteocalcin (OCN), bone morphogenic protein (BMP)-2 and -4 in MC3T3-E1 cells. Of note, melatonin activated Wnt 5 α/β, β-catenin and the phosphorylation of c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) in a time-dependent manner while it attenuated phosphorylation of glycogen synthase kinase 3 beta (GSK-3β) in MC3T3-E1 cells. Consistently, confocal microscope observation revealed that BMP inhibitor Noggin blocked melatonin-induced nuclear localization of β-catenin. Furthermore, Western blotting showed that Noggin reversed activation of β-catenin and Wnt5 α/β and suppression of GSK-3β induced by melatonin in MC3T3-E1 cells, which was similarly induced by ERK inhibitor PD98059. Overall, these findings demonstrate that melatonin promotes osteoblastic differentiation and mineralization in MC3T3-E1 cells via the BMP/ERK/Wnt pathways.
Collapse
Affiliation(s)
- Ki-Ho Park
- Department of Orthodondritics, Kyung-Hee University College of Dental Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Robling AG, Kedlaya R, Ellis SN, Childress PJ, Bidwell JP, Bellido T, Turner CH. Anabolic and catabolic regimens of human parathyroid hormone 1-34 elicit bone- and envelope-specific attenuation of skeletal effects in Sost-deficient mice. Endocrinology 2011; 152:2963-75. [PMID: 21652726 PMCID: PMC3138236 DOI: 10.1210/en.2011-0049] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PTH is a potent calcium-regulating factor that has skeletal anabolic effects when administered intermittently or catabolic effects when maintained at consistently high levels. Bone cells express PTH receptors, but the cellular responses to PTH in bone are incompletely understood. Wnt signaling has recently been implicated in the osteo-anabolic response to the hormone. Specifically, the Sost gene, a major antagonist of Wnt signaling, is down-regulated by PTH exposure. We investigated this mechanism by treating Sost-deficient mice and their wild-type littermates with anabolic and catabolic regimens of PTH and measuring the skeletal responses. Male Sost(+/+) and Sost(-/-) mice were injected daily with human PTH 1-34 (0, 30, or 90 μg/kg) for 6 wk. Female Sost(+/+) and Sost(-/-) mice were continuously infused with vehicle or high-dose PTH (40 μg/kg · d) for 3 wk. Dual energy x-ray absorptiometry-derived measures of intermittent PTH (iPTH)-induced bone gain were impaired in Sost(-/-) mice. Further probing revealed normal or enhanced iPTH-induced cortical bone formation rates but concomitant increases in cortical porosity among Sost(-/-) mice. Distal femur trabecular bone was highly responsive to iPTH in Sost(-/-) mice. Continuous PTH (cPTH) infusion resulted in equal bone loss in Sost(+/+) and Sost(-/-) mice as measured by dual energy x-ray absorptiometry. However, distal femur trabecular bone, but not lumbar spine trabecular bone, was spared the bone-wasting effects of cPTH in Sost(-/-) mice. These results suggest that changes in Sost expression are not required for iPTH-induced anabolism. iPTH-induced resorption of cortical bone might be overstimulated in Sost-deficient environments. Furthermore, Sost deletion protects some trabecular compartments, but not cortical compartments, from bone loss induced by high-dose PTH infusion.
Collapse
Affiliation(s)
- Alexander G Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 5035, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
McNulty M, Singh RJ, Li X, Bergstralh EJ, Kumar R. Determination of serum and plasma sclerostin concentrations by enzyme-linked immunoassays. J Clin Endocrinol Metab 2011; 96:E1159-62. [PMID: 21543425 PMCID: PMC3135202 DOI: 10.1210/jc.2011-0254] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Sclerostin alters bone formation. The precise and reproducible measurement of sclerostin concentrations in biological samples is important for assessment of metabolic bone disease. We determined sclerostin concentrations in serum and plasma using two commercially available ELISA. METHODS We measured sclerostin concentrations in serum or heparin-plasma obtained from 25 normal human subjects using two commercial ELISA available from Biomedica Medizinprodukte GmbH and TECOmedical AG. RESULTS With the Biomedica assay, serum sclerostin concentrations were 0.99 ± 0.12 ng/ml (mean ± sem), and plasma concentrations were 1.47 ± 0.13 ng/ml (paired t test, P < 0.001). With the TECO assay, serum sclerostin levels were 0.71 ± 0.05 ng/ml, and plasma sclerostin concentrations were 0.80 ± 0.06 ng/ml (paired t test, P < 0.001). Serum and plasma sclerostin concentrations were significantly different when determined by the two assays (serum, P = 0.015; plasma, P < 0.001). Recovery of added recombinant sclerostin to serum was less than expected with both Biomedica and TECO assays (P < 0.001, paired t test). CONCLUSIONS The concentrations of sclerostin in serum and plasma are different when determined by the two assays. Serum or plasma sclerostin concentrations with current assays should be interpreted with caution. The data suggest that the same assay should be used for comparing groups of patients or patients being followed longitudinally. Standardization of sclerostin assays is required before being introduced into general clinical laboratory use.
Collapse
Affiliation(s)
- Melissa McNulty
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
20
|
Gorski JP. Biomineralization of bone: a fresh view of the roles of non-collagenous proteins. Front Biosci (Landmark Ed) 2011; 16:2598-621. [PMID: 21622198 DOI: 10.2741/3875] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of genetics has dramatically affected our understanding of the functions of non-collagenous proteins. Specifically, mutations and knockouts have defined their cellular spectrum of actions. However, the biochemical mechanisms mediated by non-collagenous proteins in biomineralization remain elusive. It is likely that this understanding will require more focused functional testing at the protein, cell, and tissue level. Although initially viewed as rather redundant and static acidic calcium binding proteins, it is now clear that non-collagenous proteins in mineralizing tissues represent diverse entities capable of forming multiple protein-protein interactions which act in positive and negative ways to regulate the process of bone mineralization. Several new examples from the author's laboratory are provided which illustrate this theme including an apparent activating effect of hydroxyapatite crystals on metalloproteinases. This review emphasizes the view that secreted non-collagenous proteins in mineralizing bone actively participate in the mineralization process and ultimately control where and how much mineral crystal is deposited, as well as determining the quality and biomechanical properties of the mineralized matrix produced.
Collapse
Affiliation(s)
- Jeffrey Paul Gorski
- Center of Excellence in the Study of Musculoskeletal and Dental Tissues and Dept. of Oral Biology, Sch. Of Dentistry, Univ. of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
21
|
Zhu D, Mackenzie NCW, Millán JL, Farquharson C, MacRae VE. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One 2011; 6:e19595. [PMID: 21611184 PMCID: PMC3096630 DOI: 10.1371/journal.pone.0019595] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/01/2011] [Indexed: 02/02/2023] Open
Abstract
Background Vascular calcification is an indicator of elevated cardiovascular risk. Vascular smooth muscle cells (VSMCs), the predominant cell type involved in medial vascular calcification, can undergo phenotypic transition to both osteoblastic and chondrocytic cells within a calcifying environment. Methodology/Principal Findings In the present study, using in vitro VSMC calcification studies in conjunction with ex vivo analyses of a mouse model of medial calcification, we show that vascular calcification is also associated with the expression of osteocyte phenotype markers. As controls, the terminal differentiation of murine calvarial osteoblasts into osteocytes was induced in vitro in the presence of calcifying medium (containing ß-glycerophosphate and ascorbic acid), as determined by increased expression of the osteocyte markers DMP-1, E11 and sclerostin. Culture of murine aortic VSMCs under identical conditions confirmed that the calcification of these cells can also be induced in similar calcifying medium. Calcified VSMCs had increased alkaline phosphatase activity and PiT-1 expression, which are recognized markers of vascular calcification. Expression of DMP-1, E11 and sclerostin was up-regulated during VSMC calcification in vitro. Increased protein expression of E11, an early osteocyte marker, and sclerostin, expressed by more mature osteocytes was also observed in the calcified media of Enpp1−/− mouse aortic tissue. Conclusions/Significance This study has demonstrated the up-regulation of key osteocytic molecules during the vascular calcification process. A fuller understanding of the functional role of osteocyte formation and specifically sclerostin and E11 expression in the vascular calcification process may identify novel potential therapeutic strategies for clinical intervention.
Collapse
Affiliation(s)
- Dongxing Zhu
- The Roslin Institute, The University of Edinburgh, Roslin, Midlothian, Scotland, United Kingdom
| | | | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Colin Farquharson
- The Roslin Institute, The University of Edinburgh, Roslin, Midlothian, Scotland, United Kingdom
| | - Vicky Elizabeth MacRae
- The Roslin Institute, The University of Edinburgh, Roslin, Midlothian, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Craig TA, Kumar R. Sclerostin-erbB-3 interactions: modulation of erbB-3 activity by sclerostin. Biochem Biophys Res Commun 2010; 402:421-4. [PMID: 20951118 DOI: 10.1016/j.bbrc.2010.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 11/17/2022]
Abstract
To gain insights into the mechanism of action of sclerostin, a protein that regulates bone mass, we performed yeast two-hybrid analyses using human SOST (sclerostin) cDNA cloned into pGBKT7 DNA-binding domain vector as a bait, and a normalized, high-complexity, universal cDNA library in a GAL4 activating domain vector. We identified an interaction between sclerostin and the carboxyl-terminal portion of the receptor tyrosine-protein kinase erbB-3. To determine the biological relevance of this interaction, we treated MC3T3-E1 mouse osteoblast cells transfected with either a SOST expression plasmid or a control vector, with recombinant heregulin/neuregulin. Phospho-p44/42 (Thr202/Tyr204) MAPK was assessed in heregulin/neuregulin treated cells. We observed an increase in phospho-p44/42 (Thr202/Tyr204) MAPK concentrations in SOST transfected cells but not in cells transfected with a control vector, thus demonstrating a modulatory effect of sclerostin on heregulin/neuregulin signaling in osteoblasts. The data demonstrate that sclerostin functions in part, by modulating the activity of erbB-3.
Collapse
Affiliation(s)
- Theodore A Craig
- Nephrology and Hypertension Research, Department of Internal Medicine, MS 1-120, Mayo Clinic, 200 1st St., Southwest, Rochester, MN 55905, USA
| | | |
Collapse
|
23
|
Su JL, Chiou J, Tang CH, Zhao M, Tsai CH, Chen PS, Chang YW, Chien MH, Peng CY, Hsiao M, Kuo ML, Yen ML. CYR61 regulates BMP-2-dependent osteoblast differentiation through the {alpha}v{beta}3 integrin/integrin-linked kinase/ERK pathway. J Biol Chem 2010; 285:31325-36. [PMID: 20675382 DOI: 10.1074/jbc.m109.087122] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is one of the most common bone pathologies. A number of novel molecules have been reported to increase bone formation including cysteine-rich protein 61 (CYR61), a ligand of integrin receptor, but mechanisms remain unclear. It is known that bone morphogenetic proteins (BMPs), especially BMP-2, are crucial regulators of osteogenesis. However, the interaction between CYR61 and BMP-2 is unclear. We found that CYR61 significantly increases proliferation and osteoblastic differentiation in MC3T3-E1 osteoblasts and primary cultured osteoblasts. CYR61 enhances mRNA and protein expression of BMP-2 in a time- and dose-dependent manner. Moreover, CYR61-mediated proliferation and osteoblastic differentiation are significantly decreased by knockdown of BMP-2 expression or inhibition of BMP-2 activity. In this study we found integrin α(v)β(3) is critical for CYR61-mediated BMP-2 expression and osteoblastic differentiation. We also found that integrin-linked kinase, which is downstream of the α(v)β(3) receptor, is involved in CYR61-induced BMP-2 expression and subsequent osteoblastic differentiation through an ERK-dependent pathway. Taken together, our results show that CYR61 up-regulates BMP-2 mRNA and protein expression, resulting in enhanced cell proliferation and osteoblastic differentiation through activation of the α(v)β(3) integrin/integrin-linked kinase/ERK signaling pathway.
Collapse
Affiliation(s)
- Jen-Liang Su
- Graduate Institute of Cancer Biology, College of Medicine, and the eGraduate Institute of Basic Medical Science, China Medical University, Taichung 404,Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|