1
|
Polidori N, Babin P, Daniel B, Gruber K. Structure, Oligomerization, and Thermal Stability of a Recently Discovered Old Yellow Enzyme. Proteins 2025; 93:1181-1188. [PMID: 39840754 PMCID: PMC12046209 DOI: 10.1002/prot.26800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
The Old Yellow Enzyme from Ferrovum sp. JA12 (FOYE) displays an unusual thermal stability for an enzyme isolated from a mesophilic organism. We determined the crystal structure of this enzyme and performed bioinformatic characterization to get insights into its thermal stability. The enzyme displays a tetrameric quaternary structure; however, unlike the other tetrameric homologs, it clusters in a separate phylogenetic group and possesses unique interactions that stabilize this oligomeric state. The thermal stability of this enzyme is mainly due to an unusually high number of intramolecular hydrogen bonds. Finally, this study provides a general analysis of the forces driving the oligomerization in Old Yellow Enzymes.
Collapse
Affiliation(s)
- Nakia Polidori
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
- Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità di TorinoTorinoItaly
| | - Peter Babin
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Bastian Daniel
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Karl Gruber
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| |
Collapse
|
2
|
Damada PH, Rozeboom HJ, Fraaije MW. Recombinant Production and Characterization of Six Ene-reductases from Penicillium steckii. Chembiochem 2025; 26:e202401007. [PMID: 40072226 PMCID: PMC12002099 DOI: 10.1002/cbic.202401007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Fungi, known for their adaptability, are valuable sources of enzymes, making them promising for biocatalyst discovery. This study explored Penicillium steckii, primarily recognized for secondary metabolite production, as a source of ene-reductases (ERs), which reduce α,β-unsaturated compounds. Eleven ER-encoding genes were identified, and plasmids for Escherichia coli expression were generated. Six ERs (PsOYE1-6) were successfully produced and purified as soluble FMN-containing proteins. Sequence analysis classified them into Class II (PsOYE1, PsOYE4, PsOYE6), Class III (PsOYE2, PsOYE3), and Class V (PsOYE5) OYEs. All were active on p-benzoquinone and maleimide, with varying activity on other substrates. Their pH optima ranged from 6 to 7, and they exhibited moderate thermostability (35-50 °C). PsOYE2 was crystallized, and its 2.3 Å structure revealed a stable dimer with a unique active site. PsOYE3, PsOYE4, and PsOYE5 were tested for R-carvone conversion and stereoselectivity, all favouring one diastereomer. These fungal ERs expand the enzymatic toolbox for biocatalysis, emphasizing the need for tailored strategies based on specific applications.
Collapse
Affiliation(s)
- Pedro H. Damada
- Molecular Enzymology GroupInstitute of Biomolecular Sciences & BiotechnologyUniversity of GroningenNijenborgh 39747 AGGroningen, theNetherlands
- Laboratório de Química Orgânica e BiocatáliseInstituto de Química de São CarlosUniversidade de São PauloAv. João Dagnone, 1100, “Ed. Prof. Wagner Douglas Franco”, Santa Angelina13563-120São CarlosSPBrazil
| | - Henriette J. Rozeboom
- Molecular Enzymology GroupInstitute of Biomolecular Sciences & BiotechnologyUniversity of GroningenNijenborgh 39747 AGGroningen, theNetherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupInstitute of Biomolecular Sciences & BiotechnologyUniversity of GroningenNijenborgh 39747 AGGroningen, theNetherlands
| |
Collapse
|
3
|
Blue-Lahom TC, Jones SK, Davis KM. Bioinformatic and biochemical analysis uncovers novel activity in the 2-ER subfamily of OYEs. RSC Chem Biol 2025:d4cb00289j. [PMID: 39867842 PMCID: PMC11759058 DOI: 10.1039/d4cb00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/18/2025] [Indexed: 01/28/2025] Open
Abstract
Members of the old yellow enzyme (OYE) family utilize a flavin mononucleotide cofactor to catalyze the asymmetric reduction of activated alkenes. The 2-enoate reductase (2-ER) subfamily are of particular industrial relevance as they can reduce α/β alkenes near electron-withdrawing groups. While the broader OYE family is being extensively explored for biocatalytic applications, oxygen sensitivity and poor expression yields associated with the presence of an Fe/S cluster in 2-ERs have hampered their characterization. Herein, we explore the use of pseudo-anaerobic preparation as a route to more widespread study of these enzymes and apply bioinformatics approaches to identify a subset of 2-ERs containing unusual mutations in both a key catalytic residue and the Fe/S cluster-binding motif. Biochemical analysis of a representative member from Burkholderia insecticola (OYEBi) reveals novel N-methyl-proline demethylation activity, which we hypothesize may play a role in osmotic stress regulation based on genomic neighborhood analysis.
Collapse
Affiliation(s)
| | - Stacey K Jones
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | | |
Collapse
|
4
|
Li N, Wang Y, Meng Y, Lv Y, Zhang S, Wei S, Ma P, Hu Y, Lin H. Structural and functional characterization of a new thermophilic-like OYE from Aspergillus flavus. Appl Microbiol Biotechnol 2024; 108:134. [PMID: 38229304 DOI: 10.1007/s00253-023-12963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 01/18/2024]
Abstract
Old yellow enzymes (OYEs) have been proven as powerful biocatalysts for the asymmetric reduction of activated alkenes. Fungi appear to be valuable sources of OYEs, but most of the fungal OYEs are unexplored. To expand the OYEs toolbox, a new thermophilic-like OYE (AfOYE1) was identified from Aspergillus flavus strain NRRL3357. The thermal stability analysis showed that the T1/2 of AfOYE1 was 60 °C, and it had the optimal temperature at 45 °C. Moreover, AfOYE1 exhibited high reduction activity in a wide pH range (pH 5.5-8.0). AfOYE1 could accept cyclic enones, acrylamide, nitroalkenes, and α, β-unsaturated aldehydes as substrates and had excellent enantioselectivity toward prochiral alkenes (> 99% ee). Interestingly, an unexpected (S)-stereoselectivity bioreduction toward 2-methylcyclohexenone was observed. The further crystal structure of AfOYE1 revealed that the "cap" region from Ala132 to Thr182, the loop of Ser316 to Gly325, α short helix of Arg371 to Gln375, and the C-terminal "finger" structure endow the catalytic cavity of AfOYE1 quite deep and narrow, and flavin mononucleotide (FMN) heavily buried at the bottom of the active site tunnel. Furthermore, the catalytic mechanism of AfOYE1 was also investigated, and the results confirmed that the residues His211, His214, and Tyr216 compose its catalytic triad. This newly identified thermophilic-like OYE would thus be valuable for asymmetric alkene hydrogenation in industrial processes. KEY POINTS: A new thermophilic-like OYE AfOYE1 was identified from Aspergillus flavus, and the T1/2 of AfOYE1 was 60 °C AfOYE1 catalyzed the reduction of 2-methylcyclohexenone with (S)-stereoselectivity The crystal structure of AfOYE1 was revealedv.
Collapse
Affiliation(s)
- Na Li
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Yuan Wang
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Yinyin Meng
- Henan International Joint Laboratory of Biocatalysis and Bio-Based Products, College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Yangyong Lv
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Shan Wei
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | | | - Yuansen Hu
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China.
| | - Hui Lin
- Henan International Joint Laboratory of Biocatalysis and Bio-Based Products, College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Chen J, Qi S, Wang Z, Hu L, Liu J, Huang G, Peng Y, Fang Z, Wu Q, Hu Y, Guo K. Ene-Reductase-Catalyzed Aromatization of Simple Cyclohexanones to Phenols. Angew Chem Int Ed Engl 2024; 63:e202408359. [PMID: 39106109 DOI: 10.1002/anie.202408359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/09/2024]
Abstract
Direct aromatization of cyclohexanones to synthesize substituted phenols represents a significant challenge in modern synthetic chemistry. Herein, we describe a novel ene-reductase (TsER) catalytic system that converts substituted cyclohexanones into the corresponding phenols. This process involves the successive dehydrogenation of two saturated carbon-carbon bonds within the six-membered ring of cyclohexanones and utilizes molecular oxygen to drive the reaction cycle. It demonstrates a versatile and efficient approach for the synthesis of substituted phenols, providing a valuable complement to existing chemical methodologies.
Collapse
Affiliation(s)
- Jie Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Shaofang Qi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Zhiguo Wang
- Institute of Aging Research, Hangzhou Normal University, Zhejiang, Hangzhou, 311121, PR China
| | - Liran Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Jialing Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Guixiang Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Yongzhen Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou, 310027, PR China
| | - Yujing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 210009, PR China
| |
Collapse
|
6
|
Lim G, Calabrese D, Wolder A, Cordero PRF, Rother D, Mulks FF, Paul CE, Lauterbach L. H 2-driven biocatalysis for flavin-dependent ene-reduction in a continuous closed-loop flow system utilizing H 2 from water electrolysis. Commun Chem 2024; 7:200. [PMID: 39244618 PMCID: PMC11380674 DOI: 10.1038/s42004-024-01288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate flavin-dependent biocatalysis, targeting as a proof-of-concept asymmetric alkene reduction. The system integrates a flavin-dependent Old Yellow Enzyme (OYE) and a soluble hydrogenase to enable H2-driven regeneration of the OYE cofactor FMNH2. Molecular hydrogen was produced by water electrolysis using a proton exchange membrane (PEM) electrolyzer and introduced into the flow system via a designed gas membrane addition module at a high diffusion rate. The flow system shows remarkable stability and reusability, consistently achieving >99% conversion of ketoisophorone to levodione. It also demonstrates versatility and selectivity in reducing various cyclic enones and can be extended to further flavin-based biocatalytic approaches and gas-dependent reactions. This electro-driven continuous flow system, therefore, has significant potential for advancing sustainable processes in fine chemical synthesis.
Collapse
Affiliation(s)
- Guiyeoul Lim
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Donato Calabrese
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Allison Wolder
- Biocatalysis Section, Department Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Paul R F Cordero
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Dörte Rother
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
- Institute for Bio-and Geosciences 1: Biotechnology Forschungzentrum Jülich GmbH, Jülich, Germany
| | - Florian F Mulks
- Institute of Organic Chemistry-iOC RWTH Aachen University, Aachen, Germany
| | - Caroline E Paul
- Biocatalysis Section, Department Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lars Lauterbach
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
7
|
Zhang J, Li Y, Gao H, Zhang H, Zhang X, Rao Z, Xu M. N-terminal truncation (N-) and directional proton transfer in an old yellow enzyme enables tunable efficient producing (R)- or (S)-citronellal. Int J Biol Macromol 2024; 262:130129. [PMID: 38354939 DOI: 10.1016/j.ijbiomac.2024.130129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
(R)-Citronellal is a valuable molecule as the precursor for the industrial synthesis of (-)-menthol, one of the worldwide best-selling compounds in the flavors and fragrances field. However, its biocatalytic production, even from the optically pure substrate (E)-citral, is inherently limited by the activity of Old Yellow Enzyme (OYE). Herein, we rationally designed a different approach to increase the activity of OYE in biocatalytic production. The activity of OYE from Corynebacterium glutamicum (CgOYE) is increased, as well as superior thermal stability and pH tolerance via truncating the different lengths of regions at N-terminal of CgOYE. Next, we converted the truncation mutant N31-CgOYE, a protein involved in proton transfer for the asymmetric hydrogenation of CC bonds, into highly (R)- and (S)-stereoselective enzymes using only three mutations. The mixture of racemic (E/Z)-citral is reduced into the (R)-citronellal with ee and conversion up to 99 % by the mutant of CgOYE, overcoming the problem of the reduction for the mixtures of (E/Z)-citral in biocatalytic reaction. The present work provides a general and effective strategy for improving the activity of OYE, in which the partially conserved histidine residues provide "tunable gating" for the enantioselectivity for both the (R)- and (S)-isomerases.
Collapse
Affiliation(s)
- Jie Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yueshu Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hui Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hengwei Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China..
| |
Collapse
|
8
|
Shi XC, Wang K, Xue M, Mao W, Xu K, Tremblay PL, Zhang T. Ultrafast removal of toxic Cr(VI) by the marine bacterium Vibrio natriegens. CHEMOSPHERE 2024; 350:141177. [PMID: 38211787 DOI: 10.1016/j.chemosphere.2024.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The fastest-growing microbe Vibrio natriegens is an excellent platform for bioproduction processes. Until now, this marine bacterium has not been examined for bioremediation applications, where the production of substantial amounts of biomass would be beneficial. V. natriegens can perform extracellular electron transfer (EET) to Fe(III) via a single porin-cytochrome circuit conserved in Vibrionaceae. Electroactive microbes capable of EET to Fe(III) usually also reduce toxic metals such as carcinogenic Cr(VI), which is converted to Cr(III), thus decreasing its toxicity and mobility. Here, the performance of V. natriegens was explored for the bioremediation of Cr(VI). At a density of 100 mg/mL, V. natriegens removed 5-20 mg/L Cr(VI) within 30 s and 100 mg/L Cr(VI) within 10 min. In comparison, the model bacterium Escherichia coli grown to a comparable cell density removed Cr(VI) 36 times slower. To eliminate Cr(VI), V. natriegens had to be metabolically active, and functional outer-membrane c-type cytochromes were required. At the end of the Cr(VI) removal process, V. natriegens had reduced all of it into Cr(III) while adsorbing more than half of the metallic ions. These results demonstrate that V. natriegens, with its fast metabolism, is a viable option for the rapid treatment of aqueous pollution with Cr.
Collapse
Affiliation(s)
- Xiao-Chen Shi
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Zhongshan, 528437, PR China
| | - Kefan Wang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Miao Xue
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Weijia Mao
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Kai Xu
- Center for Material Research and Analysis, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| |
Collapse
|
9
|
Tong Y, Kaya SG, Russo S, Rozeboom HJ, Wijma HJ, Fraaije MW. Fixing Flavins: Hijacking a Flavin Transferase for Equipping Flavoproteins with a Covalent Flavin Cofactor. J Am Chem Soc 2023; 145:27140-27148. [PMID: 38048072 PMCID: PMC10722498 DOI: 10.1021/jacs.3c12009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Most flavin-dependent enzymes contain a dissociable flavin cofactor. We present a new approach for installing in vivo a covalent bond between a flavin cofactor and its host protein. By using a flavin transferase and carving a flavinylation motif in target proteins, we demonstrate that "dissociable" flavoproteins can be turned into covalent flavoproteins. Specifically, four different flavin mononucleotide-containing proteins were engineered to undergo covalent flavinylation: a light-oxygen-voltage domain protein, a mini singlet oxygen generator, a nitroreductase, and an old yellow enzyme-type ene reductase. Optimizing the flavinylation motif and expression conditions led to the covalent flavinylation of all four flavoproteins. The engineered covalent flavoproteins retained function and often exhibited improved performance, such as higher thermostability or catalytic performance. The crystal structures of the designed covalent flavoproteins confirmed the designed threonyl-phosphate linkage. The targeted flavoproteins differ in fold and function, indicating that this method of introducing a covalent flavin-protein bond is a powerful new method to create flavoproteins that cannot lose their cofactor, boosting their performance.
Collapse
Affiliation(s)
- Yapei Tong
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Saniye G. Kaya
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Sara Russo
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Henriette J. Rozeboom
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Hein J. Wijma
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| |
Collapse
|
10
|
Villa R, Ferrer-Carbonell C, Paul CE. Biocatalytic reduction of alkenes in micro-aqueous organic solvent catalysed by an immobilised ene reductase. Catal Sci Technol 2023; 13:5530-5535. [PMID: 38013840 PMCID: PMC10544049 DOI: 10.1039/d3cy00541k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 11/29/2023]
Abstract
Biocatalytic asymmetric reduction of alkenes in organic solvent is attractive for enantiopurity and product isolation, yet remains under developed. Herein we demonstrate the robustness of an ene reductase immobilised on Celite for the reduction of activated alkenes in micro-aqueous organic solvent. Full conversion was obtained in methyl t-butyl ether, avoiding hydrolysis and racemisation of products. The immobilised ene reductase showed reusability and a scale-up demonstrated its applicability.
Collapse
Affiliation(s)
- Rocio Villa
- Biocatalysis section, Department of Biotechnology, Delft University of Biotechnology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Claudia Ferrer-Carbonell
- Biocatalysis section, Department of Biotechnology, Delft University of Biotechnology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Caroline E Paul
- Biocatalysis section, Department of Biotechnology, Delft University of Biotechnology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
11
|
Long Z, Li K, Xue Y, Sun Y, Li J, Su Z, Sun J, Liu Q, Liu H, Wei T. Purification and biochemical characterization of a novel ene- reductase from Kazachstania exigua HSC6 for dihydro-β-ionone from β-ionone. Biotechnol Lett 2023; 45:499-508. [PMID: 36738355 DOI: 10.1007/s10529-023-03355-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE We purified and characterized a novel ene-reductase (KaDBR1) from Kazachstania exigua HSC6 for the synthesis of dihydro-β-ionone from β-ionone. METHODS KaDBR1 was purified to homogeneity by ammonium sulfate precipitation and phenyl-Sepharose Fast Flow and Q-Sepharose chromatography. The purified enzyme was characterized by measuring the amount of dihydro-β-ionone from β-ionone with LC-MS analysis method. RESULTS The molecular mass of KaDBR1 was estimated to be 45 kDa by SDS-PAGE. The purified KaDBR1 enzyme had optimal activity at 60 °C and pH 6.0. The addition of 5 mM Mg2+, Ca2+, Al3+, Na+, and dithiothreitol increased the activity of KaDBR1 by 25%, 18%, 34%, 20%, and 23%, respectively. KaDBR1 favored NADH over NADPH as a cofactor, and its catalytic efficiency (kcat/Km) toward β-ionone using NADH was 8.1-fold greater than when using NADPH. CONCLUSION Owing to its unique properties, KaDBR1 is a potential candidate for the enzymatic biotransformation of β-ionone to dihydro-β-ionone in biotechnology applications.
Collapse
Affiliation(s)
- Zhangde Long
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Kena Li
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Yun Xue
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Yongwei Sun
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China
| | - Jigang Li
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Zan Su
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Jiansheng Sun
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Qibin Liu
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Hong Liu
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Tao Wei
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, China.
| |
Collapse
|
12
|
Zhang B, Sun J, Zheng Y, Mao X, Lin J, Wei D. Identification of a novel ene reductase from Pichia angusta with potential application in ( R)-levodione production. RSC Adv 2022; 12:13924-13931. [PMID: 35558851 PMCID: PMC9088392 DOI: 10.1039/d2ra01716d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Asymmetric reduction of electronically activated alkenes by ene reductases (ERs) is an attractive approach for the production of enantiopure chiral products. Herein, a novel FMN-binding ene reductase (PaER) from Pichia angusta was heterologously expressed in Escherichia coli BL21(DE3), and the recombinant enzyme was characterized for its biocatalytic properties. PaER displayed optimal activity at 40 °C and pH 7.5, respectively. The purified enzyme was quite stable below 30 °C over a broad pH range of 5.0–10.0. PaER was identified to have a good ability to reduce the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond of various α,β-unsaturated compounds in the presence of NADPH. In addition, PaER exhibited a high reduction rate (kcat = 3.57 s−1) and an excellent stereoselectivity (>99%) for ketoisophorone. Engineered E. coli cells harboring PaER and glucose dehydrogenase (for cofactor regeneration) were employed as biocatalysts for the asymmetric reduction of ketoisophorone. As a result, up to 1000 mM ketoisophorone was completely and enantioselectively converted to (R)-levodione with a >99% ee value in a space–time yield of 460.7 g L−1 d−1. This study provides a great potential biocatalyst for practical synthesis of (R)-levodione. Asymmetric reduction of electronically activated alkenes by ene reductases (ERs) is an attractive approach for the production of enantiopure chiral products.![]()
Collapse
Affiliation(s)
- Baoqi Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Jiale Sun
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yanqiu Zheng
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Xinlei Mao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology Shanghai 200237 People's Republic of China
| |
Collapse
|
13
|
Ribeaucourt D, Höfler GT, Yemloul M, Bissaro B, Lambert F, Berrin JG, Lafond M, Paul CE. Tunable Production of ( R)- or ( S)-Citronellal from Geraniol via a Bienzymatic Cascade Using a Copper Radical Alcohol Oxidase and Old Yellow Enzyme. ACS Catal 2022; 12:1111-1116. [PMID: 35096467 PMCID: PMC8787751 DOI: 10.1021/acscatal.1c05334] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/26/2021] [Indexed: 01/08/2023]
Abstract
Biocatalytic pathways for the synthesis of (-)-menthol, the most sold flavor worldwide, are highly sought-after. To access the key intermediate (R)-citronellal used in current major industrial production routes, we established a one-pot bienzymatic cascade from inexpensive geraniol, overcoming the problematic biocatalytic reduction of the mixture of (E/Z)-isomers in citral by harnessing a copper radical oxidase (CgrAlcOx) and an old yellow enzyme (OYE). The cascade using OYE2 delivered 95.1% conversion to (R)-citronellal with 95.9% ee, a 62 mg scale-up affording high yield and similar optical purity. An alternative OYE, GluER, gave (S)-citronellal from geraniol with 95.3% conversion and 99.2% ee.
Collapse
Affiliation(s)
- David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Georg T. Höfler
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mehdi Yemloul
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Fanny Lambert
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Caroline E. Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
14
|
Jongkind EPJ, Fossey‐Jouenne A, Mayol O, Zaparucha A, Vergne‐Vaxelaire C, Paul CE. Synthesis of Chiral Amines via a Bi‐Enzymatic Cascade Using an Ene‐Reductase and Amine Dehydrogenase. ChemCatChem 2021. [DOI: 10.1002/cctc.202101576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ewald P. J. Jongkind
- Biocatalysis Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Aurélie Fossey‐Jouenne
- Génomique Métabolique Genoscope Institut François Jacob CEA CNRS Univ Evry Université Paris-Saclay 2 rue Gaston Crémieux 91057 Evry France
| | - Ombeline Mayol
- Génomique Métabolique Genoscope Institut François Jacob CEA CNRS Univ Evry Université Paris-Saclay 2 rue Gaston Crémieux 91057 Evry France
| | - Anne Zaparucha
- Génomique Métabolique Genoscope Institut François Jacob CEA CNRS Univ Evry Université Paris-Saclay 2 rue Gaston Crémieux 91057 Evry France
| | - Carine Vergne‐Vaxelaire
- Génomique Métabolique Genoscope Institut François Jacob CEA CNRS Univ Evry Université Paris-Saclay 2 rue Gaston Crémieux 91057 Evry France
| | - Caroline E. Paul
- Biocatalysis Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
15
|
Drenth J, Yang G, Paul CE, Fraaije MW. A Tailor-Made Deazaflavin-Mediated Recycling System for Artificial Nicotinamide Cofactor Biomimetics. ACS Catal 2021; 11:11561-11569. [PMID: 34557329 PMCID: PMC8453485 DOI: 10.1021/acscatal.1c03033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/22/2021] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) and its 2'-phosphorylated form NADP are crucial cofactors for a large array of biocatalytically important redox enzymes. Their high cost and relatively poor stability, however, make them less attractive electron mediators for industrial processes. Nicotinamide cofactor biomimetics (NCBs) are easily synthesized, are inexpensive, and are also generally more stable than their natural counterparts. A bottleneck for the application of these artificial hydride carriers is the lack of efficient cofactor recycling methods. Therefore, we engineered the thermostable F420:NADPH oxidoreductase from Thermobifida fusca (Tfu-FNO), by structure-inspired site-directed mutagenesis, to accommodate the unnatural N1 substituents of eight NCBs. The extraordinarily low redox potential of the natural cofactor F420H2 was then exploited to reduce these NCBs. Wild-type enzyme had detectable activity toward all selected NCBs, with K m values in the millimolar range and k cat values ranging from 0.09 to 1.4 min-1. Saturation mutagenesis at positions Gly-29 and Pro-89 resulted in mutants with up to 139 times higher catalytic efficiencies. Mutant G29W showed a k cat value of 4.2 s-1 toward 1-benzyl-3-acetylpyridine (BAP+), which is similar to the k cat value for the natural substrate NADP+. The best Tfu-FNO variants for a specific NCB were then used for the recycling of catalytic amounts of these nicotinamides in conversion experiments with the thermostable ene-reductase from Thermus scotoductus (TsOYE). We were able to fully convert 10 mM ketoisophorone with BAP+ within 16 h, using F420 or its artificial biomimetic FOP (FO-2'-phosphate) as an efficient electron mediator and glucose-6-phosphate as an electron donor. The generated toolbox of thermostable and NCB-dependent Tfu-FNO variants offers powerful cofactor regeneration biocatalysts for the reduction of several artificial nicotinamide biomimetics at both ambient and high temperatures. In fact, to our knowledge, this enzymatic method seems to be the best-performing NCB-recycling system for BNAH and BAPH thus far.
Collapse
Affiliation(s)
- Jeroen Drenth
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Guang Yang
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Caroline E. Paul
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Marco W. Fraaije
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
16
|
Joseph Srinivasan S, Cleary SE, Ramirez MA, Reeve HA, Paul CE, Vincent KA. E. coli Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases*. Angew Chem Int Ed Engl 2021; 60:13824-13828. [PMID: 33721401 PMCID: PMC8252551 DOI: 10.1002/anie.202101186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Indexed: 11/10/2022]
Abstract
A new activity for the [NiFe] uptake hydrogenase 1 of Escherichia coli (Hyd1) is presented. Direct reduction of biological flavin cofactors FMN and FAD is achieved using H2 as a simple, completely atom-economical reductant. The robust nature of Hyd1 is exploited for flavin reduction across a broad range of temperatures (25-70 °C) and extended reaction times. The utility of this system as a simple, easy to implement FMNH2 or FADH2 regenerating system is then demonstrated by supplying reduced flavin to Old Yellow Enzyme "ene-reductases" to support asymmetric alkene reductions with up to 100 % conversion. Hyd1 turnover frequencies up to 20.4 min-1 and total turnover numbers up to 20 200 were recorded during flavin recycling.
Collapse
Affiliation(s)
- Shiny Joseph Srinivasan
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| | - Sarah E Cleary
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| | - Miguel A Ramirez
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| | - Holly A Reeve
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| |
Collapse
|
17
|
Joseph Srinivasan S, Cleary SE, Ramirez MA, Reeve HA, Paul CE, Vincent KA. E. coli Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:13943-13947. [PMID: 38529476 PMCID: PMC10962552 DOI: 10.1002/ange.202101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Indexed: 11/10/2022]
Abstract
A new activity for the [NiFe] uptake hydrogenase 1 of Escherichia coli (Hyd1) is presented. Direct reduction of biological flavin cofactors FMN and FAD is achieved using H2 as a simple, completely atom-economical reductant. The robust nature of Hyd1 is exploited for flavin reduction across a broad range of temperatures (25-70 °C) and extended reaction times. The utility of this system as a simple, easy to implement FMNH2 or FADH2 regenerating system is then demonstrated by supplying reduced flavin to Old Yellow Enzyme "ene-reductases" to support asymmetric alkene reductions with up to 100 % conversion. Hyd1 turnover frequencies up to 20.4 min-1 and total turnover numbers up to 20 200 were recorded during flavin recycling.
Collapse
Affiliation(s)
- Shiny Joseph Srinivasan
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Sarah E. Cleary
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Miguel A. Ramirez
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Holly A. Reeve
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Kylie A. Vincent
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| |
Collapse
|
18
|
A New Thermophilic Ene-Reductase from the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aggregans. Microorganisms 2021; 9:microorganisms9050953. [PMID: 33925162 PMCID: PMC8146883 DOI: 10.3390/microorganisms9050953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Aiming at expanding the biocatalytic toolbox of ene-reductase enzymes, we decided to explore photosynthetic extremophile microorganisms as unique reservoir of (new) biocatalytic activities. We selected a new thermophilic ene-reductase homologue in Chloroflexus aggregans, a peculiar filamentous bacterium. We report here on the functional and structural characterization of this new enzyme, which we called CaOYE. Produced in high yields in recombinant form, it proved to be a robust biocatalyst showing high thermostability, good solvent tolerance and a wide range of pH optimum. In a preliminary screening, CaOYE displayed a restricted substrate spectrum (with generally lower activities compared to other ene-reductases); however, given the amazing metabolic ductility and versatility of Chloroflexus aggregans, further investigations could pinpoint peculiar chemical activities. X-ray crystal structure has been determined, revealing conserved features of Class III (or thermophilic-like group) of the family of Old Yellow Enzymes: in the crystal packing, the enzyme was found to assemble as dimer even if it behaves as a monomer in solution. The description of CaOYE catalytic properties and crystal structure provides new details useful for enlarging knowledge, development and application of this class of enzymes.
Collapse
|
19
|
A robust and stereocomplementary panel of ene-reductase variants for gram-scale asymmetric hydrogenation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Buhrman G, Enríquez P, Dillard L, Baer H, Truong V, Grunden AM, Rose RB. Structure, Function, and Thermal Adaptation of the Biotin Carboxylase Domain Dimer from Hydrogenobacter thermophilus 2-Oxoglutarate Carboxylase. Biochemistry 2021; 60:324-345. [PMID: 33464881 DOI: 10.1021/acs.biochem.0c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-Oxoglutarate carboxylase (OGC), a unique member of the biotin-dependent carboxylase family from the order Aquificales, captures dissolved CO2 via the reductive tricarboxylic acid (rTCA) cycle. Structure and function studies of OGC may facilitate adaptation of the rTCA cycle to increase the level of carbon fixation for biofuel production. Here we compare the biotin carboxylase (BC) domain of Hydrogenobacter thermophilus OGC with the well-studied mesophilic homologues to identify features that may contribute to thermal stability and activity. We report three OGC BC X-ray structures, each bound to bicarbonate, ADP, or ADP-Mg2+, and propose that substrate binding at high temperatures is facilitated by interactions that stabilize the flexible subdomain B in a partially closed conformation. Kinetic measurements with varying ATP and biotin concentrations distinguish two temperature-dependent steps, consistent with biotin's rate-limiting role in organizing the active site. Transition state thermodynamic values derived from the Eyring equation indicate a larger positive ΔH⧧ and a less negative ΔS⧧ compared to those of a previously reported mesophilic homologue. These thermodynamic values are explained by partially rate limiting product release. Phylogenetic analysis of BC domains suggests that OGC diverged prior to Aquificales evolution. The phylogenetic tree identifies mis-annotations of the Aquificales BC sequences, including the Aquifex aeolicus pyruvate carboxylase structure. Notably, our structural data reveal that the OGC BC dimer comprises a "wet" dimerization interface that is dominated by hydrophilic interactions and structural water molecules common to all BC domains and likely facilitates the conformational changes associated with the catalytic cycle. Mutations in the dimerization domain demonstrate that dimerization contributes to thermal stability.
Collapse
Affiliation(s)
- Greg Buhrman
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, United States
| | - Paul Enríquez
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, United States
| | - Lucas Dillard
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, United States
| | - Hayden Baer
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, United States
| | - Vivian Truong
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, United States
| | - Amy M Grunden
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7612, United States
| | - Robert B Rose
- Department of Molecular & Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, United States
| |
Collapse
|
21
|
Han H, Zheng Y, Zhou T, Liu P, Li X. Cu(II) nonspecifically binding chromate reductase NfoR promotes Cr(VI) reduction. Environ Microbiol 2020; 23:415-430. [PMID: 33201569 DOI: 10.1111/1462-2920.15329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 11/26/2022]
Abstract
Cu(II)-enhanced microbial Cr(VI) reduction is common in the environment, yet its mechanism is unknown. The specific activity of chromate reductase, NfoR, from Staphylococcus aureus sp. LZ-01 was augmented 1.5-fold by Cu(II). Isothermal titration calorimetry and spectral data show that Cu(II) binds to NfoR nonspecifically. Further, Cu(II) stimulates the nitrobenzene reduction of NfoR, indicating that Cu(II) promotes electron transfer. The crystal structure of NfoR in complex with CuSO4 (1.46 Å) was determined. The overall structure of NfoR-Cu(II) complex is a dimer that covalently binds with FMN and Cu(II)-binding pocket is located at the interface of the NfoR dimer. Structural superposition revealed that NfoR resembles the structure of class II chromate reductase. Site-directed mutagenesis revealed that Leu46 and Phe123 were involved in NADH binding, whereas Trp70 and Ser45 were the key residues for nitrobenzene binding. Furthermore, His100 and Asp171 were preferential affinity sites for Cu(II) and that Cys163 is an active site for FMN binding. Attenuation reductase activity in C163S can be partially restored to 54% wild type by increasing Cu(II) concentration. Partial restoration indicates dual-channel electron transfer of NfoR via Cu(II) and FMN. We propose a catalytic mechanism for Cu(II)-enhanced NfoR activity in which Cu(I) is formed transiently. Together, the current results provide an insight on Cu (II)-induced enhancement and benefit of Cr(VI) bioremediation.
Collapse
Affiliation(s)
- Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yuanzhang Zheng
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
In silico studies on structural, functional, and evolutionary analysis of bacterial chromate reductase family responsible for high chromate bioremediation efficiency. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03830-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
23
|
Dávila Costa JS, Hoskisson PA, Paterlini P, Romero CM, Alvarez A. Whole genome sequence of the multi-resistant plant growth-promoting bacteria Streptomyces sp. Z38 with potential application in agroindustry and bio-nanotechnology. Genomics 2020; 112:4684-4689. [DOI: 10.1016/j.ygeno.2020.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/14/2020] [Accepted: 08/15/2020] [Indexed: 11/26/2022]
|
24
|
Al-Shameri A, Willot SJP, Paul CE, Hollmann F, Lauterbach L. H 2 as a fuel for flavin- and H 2O 2-dependent biocatalytic reactions. Chem Commun (Camb) 2020; 56:9667-9670. [PMID: 32696786 DOI: 10.1039/d0cc03229h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The soluble hydrogenase from Ralstonia eutropha provides an atom efficient regeneration system for reduced flavin cofactors using H2 as an electron source. We demonstrated this system for highly selective ene-reductase-catalyzed C[double bond, length as m-dash]C-double bond reductions and monooxygenase-catalyzed epoxidation. Reactions were expanded to aerobic conditions to supply H2O2 for peroxygenase-catalyzed hydroxylations.
Collapse
Affiliation(s)
- Ammar Al-Shameri
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany.
| | | | | | | | | |
Collapse
|
25
|
Nayak S, S R, P B, Kale P. A review of chromite mining in Sukinda Valley of India: impact and potential remediation measures. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:804-818. [PMID: 32028787 DOI: 10.1080/15226514.2020.1717432] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sukinda Valley, one of the highly polluted areas of the world is generating tons of mining waste and causing serious health and environmental issues in its surroundings. Several reports are available reporting the severity of hexavalent chromium, yet little efforts have been made to address the pollution and its remediation due to a lack of proper remedial measures. The review highlights the pros and cons of various physical, chemical and biological techniques used worldwide for the treatment of chromium waste and also suggests better and reliable bioremediation measures. Microbes such as Acidophilium and Acidithiobacillus caldus (Bioleaching), Pseudomonas, Micrococcus and Bacillus (Bioreduction), Aereobacterium and Saccharomyces (Biosorption), are widely used for bioremediation of hexavalent chromium owing to their unique metabolic activities, ionic movement through an extracellular membrane, and other cellular adsorptions and reduction properties. The use of native and hybrid combinations of microbes supported by organic supplements is projected as a fast and efficient technique that not only reduces chromium quantity but also maintains the integrity of the microbial sources. Innovation and emphasis on nano-based products like nanocomposite, nano adsorbent, nanoscale zerovalent iron (nZVI) particles and multifunctional plant-growth-promoting bacteria (PGPB) will serve as the next generation environmental remediation technologies in the near future.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | | | - Balasubramanian P
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Paresh Kale
- Department of Electrical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
26
|
Robescu MS, Niero M, Hall M, Cendron L, Bergantino E. Two new ene-reductases from photosynthetic extremophiles enlarge the panel of old yellow enzymes: CtOYE and GsOYE. Appl Microbiol Biotechnol 2020; 104:2051-2066. [PMID: 31930452 DOI: 10.1007/s00253-019-10287-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 01/25/2023]
Abstract
Looking for new ene-reductases with uncovered features beneficial for biotechnological applications, by mining genomes of photosynthetic extremophile organisms, we identified two new Old Yellow Enzyme homologues: CtOYE, deriving from the cyanobacterium Chroococcidiopsis thermalis, and GsOYE, from the alga Galdieria sulphuraria. Both enzymes were produced and purified with very good yields and displayed catalytic activity on a broad substrate spectrum by reducing α,β-unsaturated ketones, aldehydes, maleimides and nitroalkenes with good to excellent stereoselectivity. Both enzymes prefer NADPH but demonstrate a good acceptance of NADH as cofactor. CtOYE and GsOYE represent robust biocatalysts showing high thermostability, a wide range of pH optimum and good co-solvent tolerance. High resolution X-ray crystal structures of both enzymes have been determined, revealing conserved features of the classical OYE subfamily as well as unique properties, such as a very long loop entering the active site or an additional C-terminal alpha helix in GsOYE. Not surprisingly, the active site of CtOYE and GsOYE structures revealed high affinity toward anions caught from the mother liquor and trapped in the anion hole where electron-withdrawing groups such as carbonyl group are engaged. Ligands (para-hydroxybenzaldehyde and 2-methyl-cyclopenten-1-one) added on purpose to study complexes of GsOYE were detected in the enzyme catalytic cavity, stacking on top of the FMN cofactor, and support the key role of conserved residues and FMN cofactor in the catalysis.
Collapse
Affiliation(s)
- Marina Simona Robescu
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Mattia Niero
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Mélanie Hall
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| | - Elisabetta Bergantino
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| |
Collapse
|
27
|
Kim J, Lee SH, Tieves F, Paul CE, Hollmann F, Park CB. Nicotinamide adenine dinucleotide as a photocatalyst. SCIENCE ADVANCES 2019; 5:eaax0501. [PMID: 31334353 PMCID: PMC6641943 DOI: 10.1126/sciadv.aax0501] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/14/2019] [Indexed: 05/15/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a key redox compound in all living cells responsible for energy transduction, genomic integrity, life-span extension, and neuromodulation. Here, we report a new function of NAD+ as a molecular photocatalyst in addition to the biological roles. Our spectroscopic and electrochemical analyses reveal light absorption and electronic properties of two π-conjugated systems of NAD+. Furthermore, NAD+ exhibits a robust photostability under UV-Vis-NIR irradiation. We demonstrate photocatalytic redox reactions driven by NAD+, such as O2 reduction, H2O oxidation, and the formation of metallic nanoparticles. Beyond the traditional role of NAD+ as a cofactor in redox biocatalysis, NAD+ executes direct photoactivation of oxidoreductases through the reduction of enzyme prosthetic groups. Consequently, the synergetic integration of biocatalysis and photocatalysis using NAD+ enables solar-to-chemical conversion with the highest-ever-recorded turnover frequency and total turnover number of 1263.4 hour-1 and 1692.3, respectively, for light-driven biocatalytic trans-hydrogenation.
Collapse
Affiliation(s)
- Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Caroline E. Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
- Corresponding author.
| |
Collapse
|
28
|
Pradhan SK, Singh NR, Dehury B, Panda D, Modi MK, Thatoi H. Insights into the mode of flavin mononucleotide binding and catalytic mechanism of bacterial chromate reductases: A molecular dynamics simulation study. J Cell Biochem 2019; 120:16990-17005. [PMID: 31131470 DOI: 10.1002/jcb.28960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 11/09/2022]
Abstract
Enzymes from natural sources protect the environment via complex biological mechanisms, which aid in reductive immobilization of toxic metals including chromium. Nevertheless, progress was being made in elucidating high-resolution crystal structures of reductases and their binding with flavin mononucleotide (FMN) to understand the underlying mechanism of chromate reduction. Therefore, herein, we employed molecular dynamics (MD) simulations, principal component analysis (PCA), and binding free energy calculations to understand the dynamics behavior of these enzymes with FMN. Six representative chromate reductases in monomeric and dimeric forms were selected to study the mode, dynamics, and energetic component that drive the FMN binding process. As evidenced by MD simulation, FMN prefers to bind the cervix formed between the catalytic domain surrounded by strong conserved hydrogen bonding, electrostatic, and hydrophobic contacts. The slight movement and reorientation of FMN resulted in breakage of some crucial H-bonds and other nonbonded contacts, which were well compensated with newly formed H-bonds, electrostatic, and hydrophobic interactions. The critical residues aiding in tight anchoring of FMN within dimer were found to be strongly conserved in the bacterial system. The molecular mechanics combined with the Poisson-Boltzmann surface area binding free energy of the monomer portrayed that the van der Waals and electrostatic energy contribute significantly to the total free energy, where, the polar solvation energy opposes the binding of FMN. The proposed proximity relationships between enzyme and FMN binding site presented in this study will open up better avenues to engineer enzymes with optimized chromate reductase activity for sustainable bioremediation of heavy metals.
Collapse
Affiliation(s)
- Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.,Department of Biotechnology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, India
| | - Nihar Ranjan Singh
- Department of Botany, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, India
| | - Budheswar Dehury
- Biomedical Informatics Centre, Regional Medical Research Centre (ICMR), Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India.,Department of Chemistry, Technical University of Denmark, DK-2800 Kgs, Lyngby
| | - Debashis Panda
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, North Orissa University, Sriram Chandra Vihar, Takatpur, Baripada, Odisha, India
| |
Collapse
|
29
|
Low potential enzymatic hydride transfer via highly cooperative and inversely functionalized flavin cofactors. Nat Commun 2019; 10:2074. [PMID: 31061390 PMCID: PMC6502838 DOI: 10.1038/s41467-019-10078-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/12/2019] [Indexed: 02/01/2023] Open
Abstract
Hydride transfers play a crucial role in a multitude of biological redox reactions and are mediated by flavin, deazaflavin or nicotinamide adenine dinucleotide cofactors at standard redox potentials ranging from 0 to –340 mV. 2-Naphthoyl-CoA reductase, a key enzyme of oxygen-independent bacterial naphthalene degradation, uses a low-potential one-electron donor for the two-electron dearomatization of its substrate below the redox limit of known biological hydride transfer processes at E°’ = −493 mV. Here we demonstrate by X-ray structural analyses, QM/MM computational studies, and multiple spectroscopy/activity based titrations that highly cooperative electron transfer (n = 3) from a low-potential one-electron (FAD) to a two-electron (FMN) transferring flavin cofactor is the key to overcome the resonance stabilized aromatic system by hydride transfer in a highly hydrophobic pocket. The results evidence how the protein environment inversely functionalizes two flavins to switch from low-potential one-electron to hydride transfer at the thermodynamic limit of flavin redox chemistry. The reduction of 2-naphtoyl-CoA to 5,6 dihydro-2-naphtoyl-CoA by 2-naphtoyl-CoA reductase is below the negative redox limit usually encountered in biological hydride transfer. Here, via X-ray crystallography and spectroscopic analysis, the authors elucidated the mechanism behind this.
Collapse
|
30
|
Chromium(VI) reduction in Streptomyces sp. M7 mediated by a novel Old Yellow Enzyme. Appl Microbiol Biotechnol 2019; 103:5015-5022. [DOI: 10.1007/s00253-019-09841-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022]
|
31
|
Gonçalves LCP, Mansouri HR, PourMehdi S, Abdellah M, Fadiga BS, Bastos EL, Sá J, Mihovilovic MD, Rudroff F. Boosting photobioredox catalysis by morpholine electron donors under aerobic conditions. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00496c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Morpholine derivatives expand the applicability of photobiocatalysis towards stabilization of flavin-based bio- and photocatalysts.
Collapse
Affiliation(s)
| | | | - Shadi PourMehdi
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | - Mohamed Abdellah
- Physical Chemistry Division
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- 75120 Uppsala
| | - Bruna S. Fadiga
- Physical Chemistry Division
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- 75120 Uppsala
| | - Erick L. Bastos
- Department of Fundamental Chemistry
- Institute of Chemistry
- University of São Paulo
- 03178-200 São Paulo
- Brazil
| | - Jacinto Sá
- Physical Chemistry Division
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- 75120 Uppsala
| | | | - Florian Rudroff
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| |
Collapse
|
32
|
Wang J, Yang Y, Zhang R, Shen X, Chen Z, Wang J, Yuan Q, Yan Y. Microbial production of branched-chain dicarboxylate 2-methylsuccinic acid via enoate reductase-mediated bioreduction. Metab Eng 2018; 45:1-10. [DOI: 10.1016/j.ymben.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 12/23/2022]
|
33
|
Powell, III RW, Buteler MP, Lenka S, Crotti M, Santangelo S, Burg MJ, Bruner S, Brenna E, Roitberg AE, Stewart JD. Investigating Saccharomyces cerevisiae alkene reductase OYE 3 by substrate profiling, X-ray crystallography and computational methods. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00440d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Saccharomyces cerevisiae OYE 3 and OYE 1 share 80% sequence identity, but sometimes differ in stereoselectivities.
Collapse
Affiliation(s)
| | - M. Pilar Buteler
- Department of Chemistry
- 126 Sisler Hall
- University of Florida
- Gainesville
- USA
| | - Sunidhi Lenka
- Department of Chemistry
- 126 Sisler Hall
- University of Florida
- Gainesville
- USA
| | - Michele Crotti
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano
- Milano
- Italy
| | - Sara Santangelo
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano
- Milano
- Italy
| | - Matthew J. Burg
- Department of Chemistry
- 126 Sisler Hall
- University of Florida
- Gainesville
- USA
| | - Steven Bruner
- Department of Chemistry
- 126 Sisler Hall
- University of Florida
- Gainesville
- USA
| | - Elisabetta Brenna
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano
- Milano
- Italy
| | - Adrian E. Roitberg
- Department of Chemistry
- 126 Sisler Hall
- University of Florida
- Gainesville
- USA
| | - Jon D. Stewart
- Department of Chemistry
- 126 Sisler Hall
- University of Florida
- Gainesville
- USA
| |
Collapse
|
34
|
Opperman DJ. Structural investigation into the C-terminal extension of the ene-reductase from Ralstonia (Cupriavidus) metallidurans. Proteins 2017; 85:2252-2257. [PMID: 28833623 DOI: 10.1002/prot.25372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/25/2023]
Abstract
Ene-reductases (ERs), or Old Yellow Enzymes, catalyze the asymmetric reduction of various activated alkenes. This class of biocatalysts is considered an attractive alternative to current chemical technologies for hydrogenation due to their high selectivity and specificity. Here the X-ray crystal structure of RmER, a "thermophilic"-like ER from Ralstonia (Cupriavidus) metallidurans, is reported. Unlike other members of this class of ERs, RmER is monomeric in solution which we previously related to its atypical elongated C-terminus. A typical dimer interface was however observed in our crystal structure, with the conserved Arg-"finger" forming part of the adjacent monomer's active site and the elongated C-terminus extending into the active site through contacting the "capping" domain. This dimerization also resulted in the loss of one FMN cofactor from each dimer pair. This potential transient dimerization and dissociation of FMN could conceivably explain the rapid rates previously observed when an FMN light-driven cofactor regeneration system was used during catalysis with RmER.
Collapse
Affiliation(s)
- Diederik J Opperman
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| |
Collapse
|
35
|
Nowak C, Pick A, Lommes P, Sieber V. Enzymatic Reduction of Nicotinamide Biomimetic Cofactors Using an Engineered Glucose Dehydrogenase: Providing a Regeneration System for Artificial Cofactors. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00721] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Nowak
- Department
of Life Science Engineering, Straubing Center of Science, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - André Pick
- Department
of Life Science Engineering, Straubing Center of Science, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Petra Lommes
- Department
of Life Science Engineering, Straubing Center of Science, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Volker Sieber
- Department
of Life Science Engineering, Straubing Center of Science, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
- TUM Catalysis Research Center, Ernst-Otto-Fischer-Straße 1, 85748 Garching, Germany
| |
Collapse
|
36
|
Lee SH, Choi DS, Pesic M, Lee YW, Paul CE, Hollmann F, Park CB. Cofactor-Free, Direct Photoactivation of Enoate Reductases for the Asymmetric Reduction of C=C Bonds. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702461] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology; 335 Science Road Daejeon 305-701 Republic of Korea
| | - Da Som Choi
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology; 335 Science Road Daejeon 305-701 Republic of Korea
| | - Milja Pesic
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Yang Woo Lee
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology; 335 Science Road Daejeon 305-701 Republic of Korea
| | - Caroline E. Paul
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering; Korea Advanced Institute of Science and Technology; 335 Science Road Daejeon 305-701 Republic of Korea
| |
Collapse
|
37
|
Lee SH, Choi DS, Pesic M, Lee YW, Paul CE, Hollmann F, Park CB. Cofactor-Free, Direct Photoactivation of Enoate Reductases for the Asymmetric Reduction of C=C Bonds. Angew Chem Int Ed Engl 2017; 56:8681-8685. [PMID: 28544039 PMCID: PMC5519925 DOI: 10.1002/anie.201702461] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/08/2017] [Indexed: 11/10/2022]
Abstract
Enoate reductases from the family of old yellow enzymes (OYEs) can catalyze stereoselective trans-hydrogenation of activated C=C bonds. Their application is limited by the necessity for a continuous supply of redox equivalents such as nicotinamide cofactors [NAD(P)H]. Visible light-driven activation of OYEs through NAD(P)H-free, direct transfer of photoexcited electrons from xanthene dyes to the prosthetic flavin moiety is reported. Spectroscopic and electrochemical analyses verified spontaneous association of rose bengal and its derivatives with OYEs. Illumination of a white light-emitting-diode triggered photoreduction of OYEs by xanthene dyes, which facilitated the enantioselective reduction of C=C bonds in the absence of NADH. The photoenzymatic conversion of 2-methylcyclohexenone resulted in enantiopure (ee>99 %) (R)-2-methylcyclohexanone with conversion yields as high as 80-90 %. The turnover frequency was significantly affected by the substitution of halogen atoms in xanthene dyes.
Collapse
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Milja Pesic
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Yang Woo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
38
|
Waller J, Toogood HS, Karuppiah V, Rattray NJW, Mansell DJ, Leys D, Gardiner JM, Fryszkowska A, Ahmed ST, Bandichhor R, Reddy GP, Scrutton NS. Structural insights into the ene-reductase synthesis of profens. Org Biomol Chem 2017; 15:4440-4448. [PMID: 28485453 DOI: 10.1039/c7ob00163k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of double bonds of α,β-unsaturated carboxylic acids and esters by ene-reductases remains challenging and it typically requires activation by a second electron-withdrawing moiety, such as a halide or second carboxylate group. We showed that profen precursors, 2-arylpropenoic acids and their esters, were efficiently reduced by Old Yellow Enzymes (OYEs). The XenA and GYE enzymes showed activity towards acids, while a wider range of enzymes were active towards the equivalent methyl esters. Comparative co-crystal structural analysis of profen-bound OYEs highlighted key interactions important in determining substrate binding in a catalytically active conformation. The general utility of ene reductases for the synthesis of (R)-profens was established and this work will now drive future mutagenesis studies to screen for the production of pharmaceutically-active (S)-profens.
Collapse
Affiliation(s)
- J Waller
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Old Yellow Enzyme-Catalysed Asymmetric Hydrogenation: Linking Family Roots with Improved Catalysis. Catalysts 2017. [DOI: 10.3390/catal7050130] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Ansell BRE, Baker L, Emery SJ, McConville MJ, Svärd SG, Gasser RB, Jex AR. Transcriptomics Indicates Active and Passive Metronidazole Resistance Mechanisms in Three Seminal Giardia Lines. Front Microbiol 2017; 8:398. [PMID: 28367140 PMCID: PMC5355454 DOI: 10.3389/fmicb.2017.00398] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Giardia duodenalis is an intestinal parasite that causes 200-300 million episodes of diarrhoea annually. Metronidazole (Mtz) is a front-line anti-giardial, but treatment failure is common and clinical resistance has been demonstrated. Mtz is thought to be activated within the parasite by oxidoreductase enzymes, and to kill by causing oxidative damage. In G. duodenalis, Mtz resistance involves active and passive mechanisms. Relatively low activity of iron-sulfur binding proteins, namely pyruvate:ferredoxin oxidoreductase (PFOR), ferredoxins, and nitroreductase-1, enable resistant cells to passively avoid Mtz activation. Additionally, low expression of oxygen-detoxification enzymes can allow passive (non-enzymatic) Mtz detoxification via futile redox cycling. In contrast, active resistance mechanisms include complete enzymatic detoxification of the pro-drug by nitroreductase-2 and enhanced repair of oxidized biomolecules via thioredoxin-dependent antioxidant enzymes. Molecular resistance mechanisms may be largely founded on reversible transcriptional changes, as some resistant lines revert to drug sensitivity during drug-free culture in vitro, or passage through the life cycle. To comprehensively characterize these changes, we undertook strand-specific RNA sequencing of three laboratory-derived Mtz-resistant lines, 106-2ID10, 713-M3, and WB-M3, and compared transcription relative to their susceptible parents. Common up-regulated genes encoded variant-specific surface proteins (VSPs), a high cysteine membrane protein, calcium and zinc channels, a Mad-2 cell cycle regulator and a putative fatty acid α-oxidase. Down-regulated genes included nitroreductase-1, putative chromate and quinone reductases, and numerous genes that act proximal to PFOR. Transcriptional changes in 106-2ID10 diverged from those in 713-r and WB-r (r ≤ 0.2), which were more similar to each other (r = 0.47). In 106-2ID10, a nonsense mutation in nitroreductase-1 transcripts could enhance passive resistance whereas increased transcription of nitroreductase-2, and a MATE transmembrane pump system, suggest active drug detoxification and efflux, respectively. By contrast, transcriptional changes in 713-M3 and WB-M3 indicated a higher oxidative stress load, attributed to Mtz- and oxygen-derived radicals, respectively. Quantitative comparisons of orthologous gene transcription between Mtz-resistant G. duodenalis and Trichomonas vaginalis, a closely related parasite, revealed changes in transcripts encoding peroxidases, heat shock proteins, and FMN-binding oxidoreductases, as prominent correlates of resistance. This work provides deep insight into Mtz-resistant G. duodenalis, and illuminates resistance-associated features across parasitic species.
Collapse
Affiliation(s)
- Brendan R. E. Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of MelbourneMelbourne, VIC, Australia
| | - Louise Baker
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
| | - Samantha J. Emery
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
| | - Malcolm J. McConville
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneMelbourne, VIC, Australia
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala UniversityUppsala, Sweden
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of MelbourneMelbourne, VIC, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, The University of MelbourneMelbourne, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
| |
Collapse
|
41
|
Nett N, Duewel S, Richter AA, Hoebenreich S. Revealing Additional Stereocomplementary Pairs of Old Yellow Enzymes by Rational Transfer of Engineered Residues. Chembiochem 2017; 18:685-691. [PMID: 28107586 DOI: 10.1002/cbic.201600688] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 01/01/2023]
Abstract
Every year numerous protein engineering and directed evolution studies are published, increasing the knowledge that could be used by protein engineers. Here we test a protein engineering strategy that allows quick access to improved biocatalysts with very little screening effort. Conceptually it is assumed that engineered residues previously identified by rational and random methods induce similar improvements when transferred to family members. In an application to ene-reductases from the Old Yellow Enzyme (OYE) family, the newly created variants were tested with three compounds, revealing more stereocomplementary OYE pairs with potent turnover frequencies (up to 660 h-1 ) and excellent stereoselectivities (up to >99 %). Although systematic prediction of absolute enantioselectivity of OYE variants remains a challenge, "scaffold sampling" was confirmed as a promising addition to protein engineers' collection of strategies.
Collapse
Affiliation(s)
- Nathalie Nett
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | - Sabine Duewel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | - Alexandra Annelis Richter
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | - Sabrina Hoebenreich
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| |
Collapse
|
42
|
Tosstorff A, Kroner C, Opperman DJ, Hollmann F, Holtmann D. Towards electroenzymatic processes involving old yellow enzymes and mediated cofactor regeneration. Eng Life Sci 2016; 17:71-76. [PMID: 32624730 DOI: 10.1002/elsc.201600158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/02/2016] [Accepted: 09/07/2016] [Indexed: 11/08/2022] Open
Abstract
Old yellow enzymes are able to catalyze asymmetric C=C reductions. A mediated electroenzymatic process to regenerate the NADPH in combination with an old yellow enzyme was investigated. Due to the fact that the overall process was affected by a broad set of parameters, a design of experiments (DoE) approach was chosen to identify suitable process conditions. Process conditions with high productivities of up to 2.27 mM/h in combination with approximately 90% electron transfer efficiency were identified.
Collapse
Affiliation(s)
| | - Cora Kroner
- DECHEMA Research Institute Frankfurt Germany
| | - Diederik J Opperman
- Department of Biotechnology, University of the Free State Bloemfontein South Africa
| | - Frank Hollmann
- Department of Biotechnology TU Delft Julianalaan BL Delft The Netherlands
| | | |
Collapse
|
43
|
Catucci G, Romagnolo A, Spina F, Varese GC, Gilardi G, Di Nardo G. Enzyme-substrate matching in biocatalysis: in silico studies to predict substrate preference of ten putative ene-reductases from Mucor circinelloides MUT44. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Sheng X, Yan M, Xu L, Wei M. Identification and characterization of a novel Old Yellow Enzyme from Bacillus subtilis str.168. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Okamoto Y, Köhler V, Paul CE, Hollmann F, Ward TR. Efficient In Situ Regeneration of NADH Mimics by an Artificial Metalloenzyme. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00258] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yasunori Okamoto
- Department
of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department
of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Caroline E. Paul
- Department
of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL Delft, The Netherlands
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL Delft, The Netherlands
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
46
|
Microbiology of the Deep Continental Biosphere. THEIR WORLD: A DIVERSITY OF MICROBIAL ENVIRONMENTS 2016. [DOI: 10.1007/978-3-319-28071-4_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Isupov MN, Schröder E, Gibson RP, Beecher J, Donadio G, Saneei V, Dcunha SA, McGhie EJ, Sayer C, Davenport CF, Lau PC, Hasegawa Y, Iwaki H, Kadow M, Balke K, Bornscheuer UT, Bourenkov G, Littlechild JA. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer-Villiger monooxygenase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2344-53. [PMID: 26527149 PMCID: PMC4631483 DOI: 10.1107/s1399004715017939] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022]
Abstract
The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer-Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.
Collapse
Affiliation(s)
- Michail N. Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Ewald Schröder
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Robert P. Gibson
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Jean Beecher
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Giuliana Donadio
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Vahid Saneei
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Stephlina A. Dcunha
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Emma J. McGhie
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Christopher Sayer
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Colin F. Davenport
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Peter C. Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Yoshie Hasegawa
- Department of Biotechnology, Faculty of Engineering, Kansai University, Japan
| | - Hiroaki Iwaki
- Department of Biotechnology, Faculty of Engineering, Kansai University, Japan
| | - Maria Kadow
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Kathleen Balke
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Gleb Bourenkov
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jennifer A. Littlechild
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| |
Collapse
|
48
|
Riedel A, Mehnert M, Paul CE, Westphal AH, van Berkel WJH, Tischler D. Functional characterization and stability improvement of a 'thermophilic-like' ene-reductase from Rhodococcus opacus 1CP. Front Microbiol 2015; 6:1073. [PMID: 26483784 PMCID: PMC4589676 DOI: 10.3389/fmicb.2015.01073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/18/2015] [Indexed: 01/26/2023] Open
Abstract
Ene-reductases (ERs) are widely applied for the asymmetric synthesis of relevant industrial chemicals. A novel ER OYERo2 was found within a set of 14 putative old yellow enzymes (OYEs) obtained by genome mining of the actinobacterium Rhodococcus opacus 1CP. Multiple sequence alignment suggested that the enzyme belongs to the group of 'thermophilic-like' OYEs. OYERo2 was produced in Escherichia coli and biochemically characterized. The enzyme is strongly NADPH dependent and uses non-covalently bound FMNH2 for the reduction of activated α,β-unsaturated alkenes. In the active form OYERo2 is a dimer. Optimal catalysis occurs at pH 7.3 and 37°C. OYERo2 showed highest specific activities (45-50 U mg(-1)) on maleimides, which are efficiently converted to the corresponding succinimides. The OYERo2-mediated reduction of prochiral alkenes afforded the (R)-products with excellent optical purity (ee > 99%). OYERo2 is not as thermo-resistant as related OYEs. Introduction of a characteristic intermolecular salt bridge by site-specific mutagenesis raised the half-life of enzyme inactivation at 32°C from 28 to 87 min and improved the tolerance toward organic co-solvents. The suitability of OYERo2 for application in industrial biocatalysis is discussed.
Collapse
Affiliation(s)
- Anika Riedel
- Interdisciplinary Ecological Center, Environmental Microbiology Group, Institute of Biosciences, Technical University Bergakademie Freiberg Freiberg, Germany ; Laboratory of Biochemistry, Wageningen University Wageningen, Netherlands
| | - Marika Mehnert
- Interdisciplinary Ecological Center, Environmental Microbiology Group, Institute of Biosciences, Technical University Bergakademie Freiberg Freiberg, Germany
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology Delft, Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University Wageningen, Netherlands
| | | | - Dirk Tischler
- Interdisciplinary Ecological Center, Environmental Microbiology Group, Institute of Biosciences, Technical University Bergakademie Freiberg Freiberg, Germany ; Laboratory of Biochemistry, Wageningen University Wageningen, Netherlands
| |
Collapse
|
49
|
Kara S, Schrittwieser JH, Gargiulo S, Ni Y, Yanase H, Opperman DJ, van Berkel WJH, Hollmann F. Complete Enzymatic Oxidation of Methanol to Carbon Dioxide: Towards More Eco-Efficient Regeneration Systems for Reduced Nicotinamide Cofactors. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500173] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Bergner T, Pavkov-Keller T, Kreuzer K, Kowaliuk J, Plank M, Runggatscher K, Turrini NG, Zucol B, Wallner S, Faber K, Gruber K, Macheroux P. Anthranoyl-CoA monooxygenase/reductase from Azoarcus evansii possesses both FMN and FAD in two distinct and independent active sites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:890-6. [PMID: 25843773 DOI: 10.1016/j.bbapap.2015.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/10/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Anthranoyl-CoA monooxygenase/reductase (ACMR) participates in an unusual pathway for the degradation of aromatic compounds in Azoarcus evansii. It catalyzes the monooxygenation of anthranoyl-CoA to 5-hydroxyl-2-aminobenzoyl-CoA and the subsequent reduction to the dearomatized product 2-amino-5-oxo-cyclohex-1-ene-1-carbonyl-CoA. The two reactions occur in separate domains, termed the monooxygenase and reductase domain. Both domains were reported to utilize FAD as a cofactor for hydroxylation and reduction, respectively. We have heterologously expressed ACMR in Escherichia coli BL21 and found that the monooxygenase domain contains FAD. However, the reductase domain utilizes FMN and not FAD for the reduction of the intermediate 5-hydroxyl-2-aminobenzoyl-CoA. A homology model for the reductase domain predicted a topology similar to the Old Yellow Enzyme family, which exclusively bind FMN, in accordance with our results. Binding studies with 2-aminobenzoyl-CoA (AbCoA) and p-hydroxybenzaldehyde (pHB) as probes for the monooxygenase and reductase domain, respectively, indicated that two functionally distinct and independent active sites exist. Given the homodimeric quartenary structure of ACMR and the compact shape of the dimer as determined by small-angle X-ray scattering experiments we propose that the monooxygenase and reductase domain of opposite peptide chains are involved in the transformation of anthranoyl-CoA to 2-amino-5-oxo-cyclohex-1-ene-1-carbonyl-CoA.
Collapse
Affiliation(s)
- Thomas Bergner
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Tea Pavkov-Keller
- ACIB-Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria
| | - Katharina Kreuzer
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Jakob Kowaliuk
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Markus Plank
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | | | | | - Benjamin Zucol
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, A-8010 Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria.
| |
Collapse
|