1
|
Nassar MK, El Kannishy G, Nagy E, Shemies RS, Mansour M, Mofreh M, Gaber TZ, Tharwat S. The Relation of Serum Dehydroepiandrosterone Sulfate Level to Protein Energy Wasting in Hemodialysis Patients. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2022; 33:639-649. [PMID: 37955456 DOI: 10.4103/1319-2442.389424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
Protein-energy wasting (PEW) is a major risk for morbidity and mortality in hemodialysis (HD) patients. The change in the concentration of dehydroepiandrosterone sulfate (DHEA-S) may play a role in PEW. The aim of this work was to study the possible relationship between serum DHEA-S levels and various nutritional and inflammatory parameters in a cohort of HD patients. In total, 78 HD patients (47 males and 31 females) were included in this crosssectional observational study. In addition to taking their history, clinical examinations, and routine laboratory investigations, the nutritional status was assessed, and their serum DHEA-S was measured. Nutritional status was assessed by anthropometric measures, bioelectrical impedance analysis, malnutrition inflammation scores, and subjective global assessments. A diagnosis of malnutrition was made based on the recommendations of the International Society of Renal Nutrition and Metabolism. The relationship between DHEA-S and various nutritional parameters was analyzed. Eighteen patients (23.1%) suffered from PEW. Those with PEW had a longer duration of HD (P = 0.04), and lower serum levels of creatinine (P = 0.003), hemoglobin (P = 0.01), albumin (P <0.0001), cholesterol (P = 0.02), and DHEA-S (P = 0.01). Among the variables, serum DHEA-S levels were significant predictors of PEW in this cohort (odds ratio: 0.976; 95% confidence interval: 0.954-1.0; P = 0.04). PEW is frequently encountered in HD patients. Decreased serum DHEA-S levels were associated with PEW in male HD patients. Further studies are needed to assess the effect of hormone supplementation on this serious disorder in HD patients.
Collapse
Affiliation(s)
- Mohammed Kamal Nassar
- Department of Internal Medicine, Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Ghada El Kannishy
- Department of Internal Medicine, Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Eman Nagy
- Department of Internal Medicine, Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Rasha Samir Shemies
- Department of Internal Medicine, Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Mostafa Mansour
- Department of Clinical Pathology, Rheumatology and Immunology Unit, Mansoura University, Mansoura, Egypt
| | - Mohamed Mofreh
- Department of Clinical Pathology, Rheumatology and Immunology Unit, Mansoura University, Mansoura, Egypt
| | - Tamer Zaki Gaber
- Department of Internal Medicine, Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Samar Tharwat
- Department of Internal Medicine, Rheumatology and Immunology Unit, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Armeni E, Lambrinoudaki I. Menopause, androgens, and cardiovascular ageing: a narrative review. Ther Adv Endocrinol Metab 2022; 13:20420188221129946. [PMID: 36325501 PMCID: PMC9619256 DOI: 10.1177/20420188221129946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide; however, women tend to be less affected than men during their reproductive years. The female cardiovascular risk increases significantly around the time of the menopausal transition. The loss of the protective action of ovarian oestrogens and the circulating androgens has been implicated in possibly inducing subclinical and overt changes in the cardiovascular system after the menopausal transition. In vitro studies performed in human or animal cell lines demonstrate an adverse effect of testosterone on endothelial cell function and nitric oxide bioavailability. Cohort studies evaluating associations between testosterone and/or dehydroepiandrosterone and subclinical vascular disease and clinical cardiovascular events show an increased risk for women with more pronounced androgenicity. However, a mediating effect of insulin resistance is possible. Data on cardiovascular implications following low-dose testosterone treatment in middle-aged women or high-dose testosterone supplementation for gender affirmatory purposes remain primarily inconsistent. It is prudent to consider the possible adverse association between testosterone and endothelial function during the decision-making process of the most appropriate treatment for a postmenopausal woman.
Collapse
Affiliation(s)
| | - Irene Lambrinoudaki
- Second Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Zhang S, Zhou J, Li L, Pan X, Lin J, Li C, Leung WT, Wang L. Effect of dehydroepiandrosterone on atherosclerosis in postmenopausal women. Biosci Trends 2021; 15:353-364. [PMID: 34759119 DOI: 10.5582/bst.2021.01320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In China, cardiovascular disease (CVD) has surpassed malignant tumours to become the disease with the highest mortality rate, and atherosclerosis (AS) is an important pathological cause of CVD. Dehydroepiandrosterone (DHEA) is the most abundant steroid hormone in circulating human blood and is a precursor of estrogen and androgen. DHEA is converted into a series of sex hormones in local peripheral tissues where its acts physiologically. DHEA also acts therapeutically, thereby avoiding the adverse systemic reactions to sex hormones. DHEA inhibits AS, thus inhibiting the development of CVD, and it improves the prognosis for CVD. The incidence of CVD in postmenopausal women is substantially higher than that in premenopausal women, and that incidence is believed to be related to a decrease in ovarian function. The current review analyzes the mechanisms of postmenopausal women's susceptibility to AS. They tend to have dyslipidemia, and their vascular smooth muscle cells (VSMCs) proliferate and migrate more. In addition, oxidative stress and the inflammatory response of endothelial cells (ECs) are more serious in postmenopausal women. This review also discusses how DHEA combats AS by countering these mechanisms, which include regulating the blood lipid status, protecting ECs (including coping with oxidative stress and inflammatory reactions of the vascular endothelium, inhibiting apoptosis of ECs, and inducing NO production) and inhibiting the proliferation and migration of VSMCs. As a result, DHEA has great value in preventing AS and inhibiting its progression in postmenopausal women.
Collapse
Affiliation(s)
- Siwei Zhang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lijuan Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Xinyao Pan
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Lin
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Chuyu Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wing Ting Leung
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
4
|
Haefliger JA, Allagnat F, Hamard L, Le Gal L, Meda P, Nardelli-Haefliger D, Génot E, Alonso F. Targeting Cx40 (Connexin40) Expression or Function Reduces Angiogenesis in the Developing Mouse Retina. Arterioscler Thromb Vasc Biol 2017; 37:2136-2146. [PMID: 28982669 DOI: 10.1161/atvbaha.117.310072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cx40 (Connexin40) forms intercellular channels that coordinate the electric conduction in the heart and the vasomotor tone in large vessels. The protein was shown to regulate tumoral angiogenesis; however, whether Cx40 also contributes to physiological angiogenesis is still unknown. APPROACH AND RESULTS Here, we show that Cx40 contributes to physiological angiogenesis. Genetic deletion of Cx40 leads to a reduction in vascular growth and capillary density in the neovascularization model of the mouse neonatal retina. At the angiogenic front, vessel sprouting is reduced, and the mural cells recruited along the sprouts display an altered phenotype. These alterations can be attributed to disturbed endothelial cell functions as selective reexpression of Cx40 in these cells restores normal angiogenesis. In vitro, targeting Cx40 in microvascular endothelial cells, by silencing its expression or by blocking gap junction channels, decreases their proliferation. Moreover, loss of Cx40 in these cells also increases their release of PDGF (platelet-derived growth factor) and promotes the chemoattraction of mural cells. In vivo, an intravitreal injection of a Cx40 inhibitory peptide, phenocopies the loss of Cx40 in the retinal vasculature of wild-type mice. CONCLUSIONS Collectively, our data show that endothelial Cx40 contributes to the early stages of physiological angiogenesis in the developing retina, by regulating vessel growth and maturation. Cx40 thus represents a novel therapeutic target for treating pathological ocular angiogenesis.
Collapse
Affiliation(s)
- Jacques-Antoine Haefliger
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.).
| | - Florent Allagnat
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Lauriane Hamard
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Loïc Le Gal
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Paolo Meda
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Denise Nardelli-Haefliger
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Elisabeth Génot
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Florian Alonso
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.).
| |
Collapse
|
5
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
6
|
Bai X, Huang L, Hu K, Qu F. Inhibited proliferation of human umbilical artery smooth muscle cells by xanthinol nicotinate. Med Biol Eng Comput 2016; 54:891-8. [PMID: 26718554 DOI: 10.1007/s11517-015-1438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/12/2015] [Indexed: 11/26/2022]
Abstract
Vascular smooth muscle cell proliferation is a key event in the development of hypertension, instant restenosis and other cardiac disorders. Inhibition of this proliferation could lead to better prevention and treatment of these diseases. This study was designed to investigate the effects and mechanisms of different concentrations of xanthinol nicotinate (XN) on human umbilical artery smooth muscle cell (HUASMC) proliferation in vitro. HUASMCs were cultured by the tissue adherent method, passaged three times, and then identified by immunohistochemistry. HUASMCs were then treated with different concentrations of XN (0, 2.76, 27.6 or 276 µM), and a 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to detect the inhibition of HUASMC proliferation. The levels of platelet-derived growth factor receptor (PDGFR) mRNA and protein (PDGFR-β) were detected on the cell membrane of these treated HUASMCs using RT-PCR and Western blot analysis, respectively. After culturing and passaging three times, 90 % of the cultured cells were identified as HUASMCs by immunohistochemistry. HUASMC proliferation was inhibited by XN in a dose-dependent manner (P < 0.05). Furthermore, XN dose-dependently decreased the PDGFR mRNA and PDGFR-β levels on the cell membranes of HUASMCs (P < 0.05). Thus, the results suggest that XN could become a potent therapeutic agent for regulating VSMC-associated vascular disease such as cardiovascular disease and restenosis after angioplasty.
Collapse
Affiliation(s)
- Xiaodan Bai
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, Heilongjiang Province, China
- Department of Pharmacy, Harbin Traditional Chinese Medical Hospital, 270 Jianguo Street, Daoli District, Harbin, 150076, Heilongjiang Province, China
| | - Lijun Huang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, Heilongjiang Province, China
| | - Kejie Hu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, Heilongjiang Province, China
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, Heilongjiang Province, China
| | - Fujun Qu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
7
|
Chen J, Xu L, Huang C. DHEA inhibits vascular remodeling following arterial injury: a possible role in suppression of inflammation and oxidative stress derived from vascular smooth muscle cells. Mol Cell Biochem 2013; 388:75-84. [PMID: 24287563 DOI: 10.1007/s11010-013-1900-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/15/2013] [Indexed: 12/01/2022]
Abstract
Vascular remodeling is characterized by the aggregation of vascular smooth muscle cells (VSMCs) in intima. Previous studies have demonstrated that dehydroepiandrosterone (DHEA), a steroid hormone, can reverse vascular remodeling. However, it is still far clear that whether and how DHEA participates in the modulation of VSMCs activation and vascular remodeling. VSMCs were obtained from the thoracic aorta of SD rats. Cell proliferation was evaluated by CCK-8 assay and BrdU assay. To measure VSMCs migration activity, a transwell chamber assay was performed. Quantitative real-time RT-PCR and western blot were used to explore the molecular mechanisms. ROS generation by VSMCs was measured by DCF fluorescence. NADPH oxidase activity and SOD activity were measured by the corresponding kits. NF-κB activity was detected by NF-κB luciferase reporter gene assay. A rat carotid artery balloon injury model was built to evaluate the neointimal formation, and plasma PGF2 was measured by ELISA. Our results showed that DHEA significantly inhibited VSMCs proliferation after angiotensin (Ang II) stimulation by down-regulation of NADPH oxidase activity and ERK1/2 phosphorylation. Ang II can increase IL-6 and MCP-1 expression, but DHEA reverses these changes via inhibiting p38-MAPK/NF-κB (p65) signaling pathway. DHEA has no significant effects on VSMCs phenotype transition, but can reduce the neointimal to media area ratio after balloon injury. DHEA can alleviate oxidative stress and inflammation in VSMCs via ERK1/2 and NF-κB signaling pathway, but has no effect on VSMCs phenotype transition. Furthermore, DHEA attenuates VSMCs activation and neointimal formation after carotid injury in vivo. Taken together, DHEA might be a promising treatment for vascular injury under pathological condition.
Collapse
Affiliation(s)
- Jiangbin Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | | | | |
Collapse
|
8
|
Kakiya R, Shoji T, Hayashi T, Tatsumi-Shimomura N, Tsujimoto Y, Tabata T, Shima H, Mori K, Fukumoto S, Tahara H, Koyama H, Emoto M, Ishimura E, Nishizawa Y, Inaba M. Decreased serum adrenal androgen dehydroepiandrosterone sulfate and mortality in hemodialysis patients. Nephrol Dial Transplant 2012; 27:3915-22. [PMID: 22764194 DOI: 10.1093/ndt/gfs162] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Endocrine and metabolic abnormalities may affect the survival of hemodialysis patients. Serum dehydroepiandrosterone sulfate (DHEA-S), an adrenal androgen with anabolic properties, is known to be lowered in ill patients and predicts poor outcome in the general population and in those with cardiac disease. The aims of this study were to examine a possible change in the DHEA-S level in dialysis patients and its association with survival in this population. METHODS This was an observational cohort study in 494 prevalent hemodialysis patients (313 men and 181 women) in urban area of Osaka, Japan. The main exposure was the baseline DHEA-S level in December 2004 and the key outcome was all-cause mortality during the subsequent 5 years. Also, DHEA-S levels were compared between the hemodialysis patients and 122 matched healthy controls. RESULTS The median (inter-quartile range) DHEA-S levels were 771 (447-1351) and 414 (280-659) ng/mL for male and female dialysis patients, respectively, and these values were significantly lower by 40-53% than the healthy control levels. Among the hemodialysis patients, DHEA-S was lower in women, those with older age, pre-existing cardiovascular disease, lower serum albumin and higher C-reactive protein. During the follow-up, we recorded 101 deaths. A low DHEA-S level was a significant predictor of all-cause mortality independent of potential confounders in male, but not in female, hemodialysis patients. CONCLUSIONS The serum DHEA-S level is decreased in hemodialysis patients and associated with mortality in men. These results support the growing observational evidence that uremia-induced endocrine alterations including decreased sex hormones may be linked to adverse clinical outcomes.
Collapse
Affiliation(s)
- Ryusuke Kakiya
- Department of Metabolism, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yoshida T, Goto S, Kawakatsu M, Urata Y, Li TS. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic Res 2012; 46:147-53. [PMID: 22126415 DOI: 10.3109/10715762.2011.645207] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several recent studies have suggested that the reactive oxygen species (ROS) generated from mitochondria contribute to genomic instability after exposure of the cells to ionizing radiation, but the mechanism of this process is not yet fully understood. We examined the hypothesis that irradiation induces mitochondrial dysfunction to cause persistent oxidative stress, which contributes to genomic instability. After the exposure of cells to 5 Gy gamma-ray irradiation, we found that the irradiation induced the following changes in a clear pattern of time courses. First, a robust increase of intracellular ROS levels occurred within minutes, but the intracellular ROS disappeared within 30 min. Then the mitochondrial dysfunction was detected at 12 h after irradiation, as indicated by the decreased activity of NADH dehydrogenase (Complex I), the most important enzyme in regulating the release of ROS from the mitochondrial electron transport chain (ETC). Finally, a significant increase of ROS levels in the mitochondria and the oxidation of mitochondrial DNA were observed in cells at 24 h or later after irradiation. Although further experiments are required, results in this study support the hypothesis that mitochondrial dysfunction causes persistent oxidative stress that may contribute to promote radiation-induced genomic instability.
Collapse
Affiliation(s)
- Takako Yoshida
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | |
Collapse
|
10
|
Traish AM, Kang HP, Saad F, Guay AT. Dehydroepiandrosterone (DHEA)—A Precursor Steroid or an Active Hormone in Human Physiology (CME). J Sex Med 2011; 8:2960-82; quiz 2983. [DOI: 10.1111/j.1743-6109.2011.02523.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|