1
|
Zhang T, Wang W, Zhang L, He J. Functional Correlation of Two Novel Nonsense POU4F3 Mutations Causing Late-Onset Progressive Nonsyndromic Hearing Loss in DFNA15 Families. Mol Genet Genomic Med 2025; 13:e70100. [PMID: 40364746 PMCID: PMC12076007 DOI: 10.1002/mgg3.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND POU4F3 mutations cause DFNA15, an autosomal dominant nonsyndromic hearing loss. POU4F3 encodes a transcription factor crucial for inner ear hair cell development and maintenance. OBJECTIVE To identify and functionally characterize novel POU4F3 mutations in two Chinese families with late-onset progressive hearing loss. METHODS Massively parallel DNA sequencing (MPS) was performed on affected individuals from two unrelated Chinese families. Sanger sequencing validated mutations and confirmed co-segregation. Functional analyses included protein expression analysis by Western blots and subcellular localization studies by immunofluorescence. RESULTS We identified two novel nonsense mutations in POU4F3: c.863C > A (p.Ser288Ter) and c.172G > T (p.Glu58Ter), both co-segregating with the hearing loss phenotype. Functional studies showed p.Ser288Ter produced a stable but mislocalized protein with impaired nuclear transport, while p.Glu58Ter resulted in a severely truncated, rapidly degraded protein. CONCLUSION This study expands the DFNA15 mutation spectrum and provides new insights into POU4F3-related hearing loss pathogenesis. Our findings demonstrate that different molecular mechanisms can lead to similar DFNA15 phenotypes, supporting POU4F3 haploinsufficiency as the primary pathogenic mechanism.
Collapse
Affiliation(s)
- Tianyang Zhang
- Department of Otorhinolaryngology Head and Neck SurgeryXinhua Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
- Department of Otolaryngology‐Head and Neck SurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Wei Wang
- Qidong People's Hospital, Qidong Liver Cancer InstituteAffiliated Qidong Hospital of Nantong UniversityNantongChina
| | - Luping Zhang
- Department of Otolaryngology‐Head and Neck SurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Jingchun He
- Department of Otorhinolaryngology Head and Neck SurgeryXinhua Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|
3
|
Singh S, Penney C, Griffin A, Woodland G, Werdyani S, Benteau TA, Abdelfatah N, Squires J, King B, Houston J, Dyer MJ, Roslin NM, Vincent D, Marquis P, O'Rielly DD, Hodgkinson K, Burt T, Baker A, Stanton SG, Young TL. Highly variable hearing loss due to POU4F3 (c.37del) is revealed by longitudinal, frequency specific analyses. Eur J Hum Genet 2023:10.1038/s41431-023-01358-0. [PMID: 37072551 DOI: 10.1038/s41431-023-01358-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Genotype-phenotype correlations add value to the management of families with hereditary hearing loss (HL), where age-related typical audiograms (ARTAs) are generated from cross-sectional regression equations and used to predict the audiogram phenotype across the lifespan. A seven-generation kindred with autosomal dominant sensorineural HL (ADSNHL) was recruited and a novel pathogenic variant in POU4F3 (c.37del) was identified by combining linkage analysis with whole exome sequencing (WES). POU4F3 is noted for large intrafamilial variation including the age of onset of HL, audiogram configuration and presence of vestibular impairment. Sequential audiograms and longitudinal analyses reveal highly variable audiogram features among POU4F3 (c.37del) carriers, limiting the utility of ARTAs for clinical prognosis and management of HL. Furthermore, a comparison of ARTAs against three previously published families (1 Israeli Jewish, 2 Dutch) reveals significant interfamilial differences, with earlier onset and slower deterioration. This is the first published report of a North American family with ADSNHL due to POU4F3, the first report of the pathogenic c.37del variant, and the first study to conduct longitudinal analysis, extending the phenotypic spectrum of DFNA15.
Collapse
Affiliation(s)
- Sushma Singh
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada
| | - Cindy Penney
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Anne Griffin
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Geoffrey Woodland
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Salem Werdyani
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Tammy A Benteau
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Nelly Abdelfatah
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Jessica Squires
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | | | - Jim Houston
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Matthew J Dyer
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Nicole M Roslin
- The Centre for Applied Genomics, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, Canada
| | - Daniel Vincent
- Canadian Centre for Computational Genomics, McGill University, 740 Dr. Penfield Avenue, Montréal, QC, Canada
| | - Pascale Marquis
- Canadian Centre for Computational Genomics, McGill University, 740 Dr. Penfield Avenue, Montréal, QC, Canada
| | - Darren D O'Rielly
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Kathy Hodgkinson
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Taylor Burt
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Ashley Baker
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Susan G Stanton
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada
| | - Terry-Lynn Young
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada.
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada.
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada.
| |
Collapse
|
4
|
A Missense POU4F3 Variant Associated with Autosomal Dominant Midfrequency Hearing Loss Alters Subnuclear Localization and Transcriptional Capabilities. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5574136. [PMID: 34250087 PMCID: PMC8238589 DOI: 10.1155/2021/5574136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Background The pathogenic variant, POU class 4 transcription factor 3 (POU4F3), is reported to cause autosomal dominant nonsyndromic hearing loss (ADNSHL). Previously, we have examined a four-generation midfrequency sensorineural hearing loss (MFSNHL) family (no. 6126) and established POU4F3 c.602T>C (p.Leu201Pro) as a potential disease-causing variant. Objectives We explored the structural and functional alterations that the c.602T>C (p.Leu201Pro) variant enforces on the POU4F3 protein. Methods We utilized wild-type (WT) and mutant (MUT) POU4F3 c.602T>C plasmid incorporation into HeLa cells to assess functional changes, by immunofluorescence and luciferase assays. To predict protein structural alterations in the MUT versus WT POU4F3, we also generated 3D structures to compare both types of POU4F3 proteins. Results The WT POU4F3 is ubiquitously present in the nucleus, whereas the MUT form of POU4F3 exhibits a more restricted nuclear presence. This finding is different from other publications, which report a cytoplasmic localization of the MUT POU4F3. We also demonstrated that, as opposed to WT POU4F3, the MUT POU4F3 had 40% reduced luciferase activity. Conclusions The reduced nuclear presence, combined with reduced transcriptional activity, suggests that the POU4F3 c.602T>C variant alters cellular activity and may contribute to the pathogenicity of POU4F3-related hearing loss. It, also, provides more evidence of the pathophysiological characteristics of MFSNHL.
Collapse
|
5
|
Miyake K, Shirai K, Nishiyama N, Kawaguchi S, Ohta Y, Kawano A, Usami S, Kitano T, Tsukahara K. Cochlear implantation in a patient with a POU4F3 mutation. Clin Case Rep 2021; 9:298-303. [PMID: 33489177 PMCID: PMC7813023 DOI: 10.1002/ccr3.3520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/12/2020] [Accepted: 10/24/2020] [Indexed: 11/21/2022] Open
Abstract
Cochlear implants (CIs) are generally considered useful in the treatment of hereditary hearing loss with progressive deafness. Early CI can be beneficial for maintaining social activities in POU4F3 mutation patients.
Collapse
Affiliation(s)
- Keitaro Miyake
- Department of Otolaryngology, Head and Neck SurgeryTokyo Medical UniversityShinjuku‐kuJapan
| | - Kyoko Shirai
- Department of Otolaryngology, Head and Neck SurgeryTokyo Medical UniversityShinjuku‐kuJapan
| | - Nobuhiro Nishiyama
- Department of Clinical OncologyTokyo Medical University Ibaraki Medical CenterInashiki‐gunJapan
| | - Sachie Kawaguchi
- Department of OtorhinolaryngologyYokohama Asahi Chuo General HospitalYokohama‐shiJapan
| | - Yoko Ohta
- Department of Otolaryngology, Head and Neck SurgeryTokyo Medical UniversityShinjuku‐kuJapan
| | - Atsushi Kawano
- Department of Otolaryngology, Head and Neck SurgeryTokyo Medical UniversityShinjuku‐kuJapan
| | - Shin‐ichi Usami
- Department of Hearing Implant SciencesShinshu University School of MedicineMatsumoto‐shiJapan
| | - Tomohiro Kitano
- Department of OtorhinolaryngologyShinshu University School of MedicineMatsumoto‐shiJapan
| | - Kiyoaki Tsukahara
- Department of Otolaryngology, Head and Neck SurgeryTokyo Medical UniversityShinjuku‐kuJapan
| |
Collapse
|
6
|
Zhu GJ, Gong S, Ma DB, Tao T, He WQ, Zhang L, Wang F, Qian XY, Zhou H, Fan C, Wang P, Chen X, Zhao W, Sun J, Chen H, Wang Y, Gao X, Zuo J, Zhu MS, Gao X, Wan G. Aldh inhibitor restores auditory function in a mouse model of human deafness. PLoS Genet 2020; 16:e1009040. [PMID: 32970669 PMCID: PMC7553308 DOI: 10.1371/journal.pgen.1009040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/13/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic hearing loss is a common health problem with no effective therapy currently available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common forms of autosomal dominant non-syndromic deafness. In this study, we established a novel mouse model of the human DFNA15 deafness, with a Pou4f3 gene mutation (Pou4f3Δ) identical to that found in a familial case of DFNA15. The Pou4f3(Δ/+) mice suffered progressive deafness in a similar manner to the DFNA15 patients. Hair cells in the Pou4f3(Δ/+) cochlea displayed significant stereociliary and mitochondrial pathologies, with apparent loss of outer hair cells. Progression of hearing and outer hair cell loss of the Pou4f3(Δ/+) mice was significantly modified by other genetic and environmental factors. Using Pou4f3(-/+) heterozygous knockout mice, we also showed that DFNA15 is likely caused by haploinsufficiency of the Pou4f3 gene. Importantly, inhibition of retinoic acid signaling by the aldehyde dehydrogenase (Aldh) and retinoic acid receptor inhibitors promoted Pou4f3 expression in the cochlear tissue and suppressed the progression of hearing loss in the mutant mice. These data demonstrate Pou4f3 haploinsufficiency as the main underlying cause of human DFNA15 deafness and highlight the therapeutic potential of Aldh inhibitors for treatment of progressive hearing loss. More than 50% of deafness cases are due to genetic defects with no treatment available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common types of autosomal dominant non-syndromic deafness. Here, we established a novel mouse model with the exact Pou4f3 mutation identified in human patients. The mutant mouse display similar auditory pathophysiology as human patients and exhibit multiple hair cell abnormalities. The onset and severity of hearing loss in the mouse model is highly modifiable to environmental factors, such as aging, noise exposure or genetic backgrounds. Using a new knockout mouse model, we found Pou4f3 haploinsufficiency as the underlying mechanism of human DFNA15. Importantly, we identified Aldh inhibitor as a potent small molecule for upregulation of Pou4f3 and treatment of hearing loss in the mutant mouse. The identification of Aldh inhibitor for treatment of DFNA15 deafness represents a major advance in the unmet medical need for this common form of progressive hearing loss.
Collapse
Affiliation(s)
- Guang-Jie Zhu
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Sihao Gong
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Deng-Bin Ma
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Tao Tao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Wei-Qi He
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Linqing Zhang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Fang Wang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Xiao-Yun Qian
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Han Zhou
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Chi Fan
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Pei Wang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Xin Chen
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Zhao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Jie Sun
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Huaqun Chen
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ye Wang
- Nanjing MuCyte Biotechnology Co., Ltd., Nanjing, China
| | - Xiang Gao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, United States of America
| | - Min-Sheng Zhu
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| | - Xia Gao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| | - Guoqiang Wan
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| |
Collapse
|
7
|
Four Novel Variants in POU4F3 Cause Autosomal Dominant Nonsyndromic Hearing Loss. Neural Plast 2020; 2020:6137083. [PMID: 32684921 PMCID: PMC7349627 DOI: 10.1155/2020/6137083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
Hereditary hearing loss is one of the most common sensory disabilities worldwide. Mutation of POU domain class 4 transcription factor 3 (POU4F3) is considered the pathogenic cause of autosomal dominant nonsyndromic hearing loss (ADNSHL), designated as autosomal dominant nonsyndromic deafness 15. In this study, four novel variants in POU4F3, c.696G>T (p.Glu232Asp), c.325C>T (p.His109Tyr), c.635T>C (p.Leu212Pro), and c.183delG (p.Ala62Argfs∗22), were identified in four different Chinese families with ADNSHL by targeted next-generation sequencing and Sanger sequencing. Based on the American College of Medical Genetics and Genomics guidelines, c.183delG (p.Ala62Argfs∗22) is classified as a pathogenic variant, c.696G>T (p.Glu232Asp) and c.635T>C (p.Leu212Pro) are classified as likely pathogenic variants, and c.325C>T (p.His109Tyr) is classified as a variant of uncertain significance. Based on previous reports and the results of this study, we speculated that POU4F3 pathogenic variants are significant contributors to ADNSHL in the East Asian population. Therefore, screening of POU4F3 should be a routine examination for the diagnosis of hereditary hearing loss.
Collapse
|
8
|
Bai X, Zhang F, Xiao Y, Jin Y, Zheng Q, Wang H, Xu L. Identification of two novel mutations in POU4F3 gene associated with autosomal dominant hearing loss in Chinese families. J Cell Mol Med 2020; 24:6978-6987. [PMID: 32390314 PMCID: PMC7299729 DOI: 10.1111/jcmm.15359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant non‐syndromic hearing loss is genetically heterogeneous with 47 genes identified to date, including POU4F3. In this study, by using a next‐generation sequencing panel targeting 127 deafness genes, we identified a pathogenic frameshift mutation c.704_705del and a missense mutation c.593G>A in two three‐generation Chinese families with late‐onset progressive ADNSHL, respectively. The novel mutations of POU4F3 co‐segregated with the deafness phenotype in these two families. c.704_705del caused a frameshift p.T235fs and c.593G>A caused an amino acid substitution of p.R198H. Both mutations led to an abnormal and incomplete protein structure. POU4F3 with either of the two mutations was transiently transfected into HEI‐OC1 and HEK 293 cell lines and immunofluorescence assay was performed to investigate the subcellular localization of mutated protein. The results indicated that both c.704_705del (p.T235fs) and c.593G>A (p.R198H) could impair the nuclear localization function of POU4F3. The p.R198H POU4F3 protein was detected as a weak band of the correct molecular weight, indicating that the stability of p.R198H POU4F3 differed from that of the wild‐type protein. While, the p.T235fs POU4F3 protein was expressed with a smaller molecular weight, implying this mutation result in a frameshift and premature termination of the POU4F3 protein. In summary, we report two novel mutations of POU4F3 associated with progressive ADNSHL and explored their effects on POU4F3 nuclear localization. These findings expanded the mutation spectrum of POU4F3 and provided new knowledge for the pathogenesis of POU4F3 in hearing loss.
Collapse
Affiliation(s)
- Xiaohui Bai
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengguo Zhang
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Xiao
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Jin
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingyin Zheng
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - Haibo Wang
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Xu
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
A Missense Mutation in POU4F3 Causes Midfrequency Hearing Loss in a Chinese ADNSHL Family. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5370802. [PMID: 29850532 PMCID: PMC5904794 DOI: 10.1155/2018/5370802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/05/2018] [Indexed: 11/18/2022]
Abstract
Hereditary nonsyndromic hearing loss is extremely heterogeneous. Mutations in the POU class 4 transcription factor 3 (POU4F3) are known to cause autosomal dominant nonsyndromic hearing loss linked to the loci of DFNA15. In this study, we describe a pathogenic missense mutation in POU4F3 in a four-generation Chinese family (6126) with midfrequency, progressive, and postlingual autosomal dominant nonsyndromic hearing loss (ADNSHL). By combining targeted capture of 129 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified POU4F3 c.602T>C (p.Leu201Pro) as the disease-causing variant. This variant cosegregated with hearing loss in other family members but was not detected in 580 normal controls or the ExAC database and could be classified as a “pathogenic variant” according to the American College of Medical Genetics and Genomics guidelines. We conclude that POU4F3 c.602T>C (p.Leu201Pro) is related to midfrequency hearing loss in this family. Routine examination of POU4F3 is necessary for the genetic diagnosis of midfrequency hearing loss.
Collapse
|
10
|
Lin YH, Lin YH, Lu YC, Liu TC, Chen CY, Hsu CJ, Chen PL, Wu CC. A novel missense variant in the nuclear localization signal of POU4F3 causes autosomal dominant non-syndromic hearing loss. Sci Rep 2017; 7:7551. [PMID: 28790396 PMCID: PMC5548901 DOI: 10.1038/s41598-017-08236-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/10/2017] [Indexed: 02/01/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (ADNSHL) is genetically heterogeneous with more than 35 genes identified to date. Using a massively parallel sequencing panel targeting 159 deafness genes, we identified a novel missense variant of POU4F3 (c.982A>G, p.Lys328Glu) which co-segregated with the deafness phenotype in a three-generation Taiwanese family with ADNSHL. This variant could be classified as a "pathogenic variant" according to the American College of Medical Genetics and Genomics guidelines. We then performed subcellular localization experiments and confirmed that p.Lys328Glu compromised transportation of POU4F3 from the cytoplasm to the nucleus. POU3F4 p.Lys328Glu was located within a bipartite nuclear localization signal (NLS), and was the first missense variant in bipartite NLS of POU4F3 validated in functional studies. These findings expanded the mutation spectrum of POU4F3 and provided insight into the pathogenesis associated with aberrant POU4F3 localization.
Collapse
Affiliation(s)
- Yin-Hung Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hsin Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Yu Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Otolaryngology, Taichung Tzu-Chi Hospital, Taichung, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan. .,Graduate Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
11
|
Kitano T, Miyagawa M, Nishio SY, Moteki H, Oda K, Ohyama K, Miyazaki H, Hidaka H, Nakamura KI, Murata T, Matsuoka R, Ohta Y, Nishiyama N, Kumakawa K, Furutate S, Iwasaki S, Yamada T, Ohta Y, Uehara N, Noguchi Y, Usami SI. POU4F3 mutation screening in Japanese hearing loss patients: Massively parallel DNA sequencing-based analysis identified novel variants associated with autosomal dominant hearing loss. PLoS One 2017; 12:e0177636. [PMID: 28545070 PMCID: PMC5435223 DOI: 10.1371/journal.pone.0177636] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/01/2017] [Indexed: 11/18/2022] Open
Abstract
A variant in a transcription factor gene, POU4F3, is responsible for autosomal dominant nonsyndromic hereditary hearing loss, DFNA15. To date, 14 variants, including a whole deletion of POU4F3, have been reported to cause HL in various ethnic groups. In the present study, genetic screening for POU4F3 variants was carried out for a large series of Japanese hearing loss (HL) patients to clarify the prevalence and clinical characteristics of DFNA15 in the Japanese population. Massively parallel DNA sequencing of 68 target candidate genes was utilized in 2,549 unrelated Japanese HL patients (probands) to identify genomic variations responsible for HL. The detailed clinical features in patients with POU4F3 variants were collected from medical charts and analyzed. Novel 12 POU4F3 likely pathogenic variants (six missense variants, three frameshift variants, and three nonsense variants) were successfully identified in 15 probands (2.5%) among 602 families exhibiting autosomal dominant HL, whereas no variants were detected in the other 1,947 probands with autosomal recessive or inheritance pattern unknown HL. To obtain the audiovestibular configuration of the patients harboring POU4F3 variants, we collected audiograms and vestibular symptoms of the probands and their affected family members. Audiovestibular phenotypes in a total of 24 individuals from the 15 families possessing variants were characterized by progressive HL, with a large variation in the onset age and severity with or without vestibular symptoms observed. Pure-tone audiograms indicated the most prevalent configuration as mid-frequency HL type followed by high-frequency HL type, with asymmetry observed in approximately 20% of affected individuals. Analysis of the relationship between age and pure-tone average suggested that individuals with truncating variants showed earlier onset and slower progression of HL than did those with non-truncating variants. The present study showed that variants in POU4F3 were a common cause of autosomal dominant HL.
Collapse
Affiliation(s)
- Tomohiro Kitano
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maiko Miyagawa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideaki Moteki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kiyoshi Oda
- Department of Otorhinolaryngology, Tohoku Rosai Hospital, Sendai, Japan
| | - Kenji Ohyama
- Department of Otorhinolaryngology, Tohoku Rosai Hospital, Sendai, Japan
| | - Hiromitsu Miyazaki
- Department of Otorhinolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Hiroshi Hidaka
- Department of Otorhinolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Ken-ichi Nakamura
- Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Takaaki Murata
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rina Matsuoka
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yoko Ohta
- Department of Otorhinolaryngology Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Nobuhiro Nishiyama
- Department of Otorhinolaryngology Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Kozo Kumakawa
- Department of Otorhinolaryngology, Toranomon Hospital, Tokyo, Japan
| | - Sakiko Furutate
- Department of Otorhinolaryngology, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Satoshi Iwasaki
- Department of Otorhinolaryngology, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Fukui, Fukui, Japan
| | - Yumi Ohta
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Natsumi Uehara
- Department of Otolaryngology-Head and Neck Surgery, Kobe University School of Medicine, Kobe, Japan
| | - Yoshihiro Noguchi
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
- * E-mail:
| |
Collapse
|
12
|
Mutation in the Hair Cell Specific Gene POU4F3 Is a Common Cause for Autosomal Dominant Nonsyndromic Hearing Loss in Chinese Hans. Neural Plast 2016; 2016:9890827. [PMID: 28053790 PMCID: PMC5178374 DOI: 10.1155/2016/9890827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 11/17/2022] Open
Abstract
Autosomal dominant nonsyndromic hearing loss (ADNSHL) is extremely heterogeneous. So far the genetic etiological contribution of the gene POU4F3 associated with ADNSHL has been rarely reported. In our previous study, a c.603_604delGG mutation in the hair cell specific gene POU4F3 has been identified as the pathogenic cause in one of the seven Chinese Han ADNSHL families. In the present study, we performed targeted next-generation sequencing of 144 known deafness genes in another nine Chinese Han ADNSHL families and identified two more novel mutations in POU4F3, p.Leu311Pro and c.120+1G>C, as the pathogenic cause. Clinical characterization of the affected individuals in these three families showed that the three POU4F3 mutations may lead to progressive hearing loss with variable ages of onset and degrees of severity. Our results suggested that mutations in POU4F3 are a relatively common cause (3/16) for ADNSHL in Chinese Hans, which should be routinely screened in such cases during genetic testing.
Collapse
|
13
|
A Novel Nonsense Mutation of POU4F3 Gene Causes Autosomal Dominant Hearing Loss. Neural Plast 2016; 2016:1512831. [PMID: 27999687 PMCID: PMC5143711 DOI: 10.1155/2016/1512831] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
POU4F3 gene encodes a transcription factor which plays an essential role in the maturation and maintenance of hair cells in cochlea and vestibular system. Several mutations of POU4F3 have been reported to cause autosomal dominant nonsyndromic hearing loss in recent years. In this study, we describe a pathogenic nonsense mutation located in POU4F3 in a four-generation Chinese family. Target region capture sequencing was performed to search for the candidate mutations from 81 genes related to nonsyndromic hearing loss in this family. A novel nonsense mutation of POU4F3, c.337C>T (p. Gln113⁎), was identified in a Chinese family characterized by late-onset progressive nonsyndromic hearing loss. The novel mutation cosegregated with hearing loss in this family and was absent in 200 ethnicity-matched controls. The mutation led to a stop codon and thus a truncated protein with no functional domains remained. Transient transfection and immunofluorescence assay revealed that the subcellular localization of the truncated protein differed markedly from normal protein, which could be the underlying reason for complete loss of its normal function. Here, we report the first nonsense mutation of POU4F3 associated with progressive hearing loss and explored the possible underlying mechanism. Routine examination of POU4F3 is necessary for the genetic diagnosis of hereditary hearing loss in the future.
Collapse
|
14
|
Cai XZ, Li Y, Xia L, Peng Y, He CF, Jiang L, Feng Y, Xia K, Liu XZ, Mei LY, Hu ZM. Exome sequencing identifies POU4F3 as the causative gene for a large Chinese family with non-syndromic hearing loss. J Hum Genet 2016; 62:317-320. [PMID: 27535032 DOI: 10.1038/jhg.2016.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/01/2016] [Accepted: 06/30/2016] [Indexed: 01/05/2023]
Abstract
Hearing impairment, or deafness (in its most severe form), is one of the most common human sensory disorders. There have been several reports of autosomal dominant mutations in the POU4F3 gene, which is associated with non-syndromic hearing loss. In this study, we identified a novel heterozygous mutation (c.602delT, p.L201fs) in the gene POU4F3 by taking advantage of whole-exome sequencing, which was validated by Sanger sequencing and completely co-segregated within a large hearing impaired Chinese family. We have focused on this pedigree since 2002, and we have mapped a deafness locus named DFNA42 (which has been renamed DFNA52, OMIM entry 607683) via a genome-wide scan. Furthermore, we analyzed this mutational variant and found that it was located at the beginning of the first functional domain of POU4F3, which could theoretically impair the function of POU4F3. We have identified a novel frameshift mutation in the POU4F3 gene. Further functional studies of variants of this specific gene are needed to illustrate the pathogenic mechanism(s) that underlie hearing impairment.
Collapse
Affiliation(s)
- Xin Zhang Cai
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Ying Li
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Lu Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Yu Peng
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Chu Feng He
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Jiang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Feng
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China.,School of Biological Science and Technology, Central South University, Changsha, China
| | - Xue Zhong Liu
- Department of Otolaryngology-Head and Neck Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ling Yun Mei
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Mao Hu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China.,School of Biological Science and Technology, Central South University, Changsha, China
| |
Collapse
|
15
|
Genetic Variation in POU4F3 and GRHL2 Associated with Noise-Induced Hearing Loss in Chinese Population: A Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060561. [PMID: 27271650 PMCID: PMC4924018 DOI: 10.3390/ijerph13060561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
Abstract
Noise-induced hearing loss (NIHL) is an important occupational disease worldwide resulting from interactions between genetic and environmental factors. The purpose of this study was to examine whether genetic variations in POU4F3 and GRHL2 may influence susceptibility to NIHL in the Chinese population. A matched case-control study was carried out among 293 hearing loss individuals and 293 normal hearing workers drawn from a population of 3790 noise-exposed workers. Ten single-nucleotide polymorphisms (SNPs) in POU4F3 and GRHL2 were selected and genotyped. Logistic regression was performed to analyze the main effects of SNPs and the interactions between noise exposure and SNPs. Moreover, the interactions between predictor haplotypes and noise exposure were also analyzed. Analysis revealed that the CC genotype of rs1981361 in the GRHL2 gene was associated with a higher risk of NIHL (adjusted OR = 1.59; 95% CI: 1.08–2.32, p = 0.018). Additionally, the GG genotype of rs3735715 in the GRHL2 gene was also a risk genotype (adjusted OR = 1.48; 95% CI: 1.01–2.19, p = 0.046). Significant interactions were found between rs3735715, rs1981361 (GRHL2), rs1368402 as well as rs891969 (POU4F3) and noise exposure in the high-level exposure groups. Furthermore, the protective haplotype CA in the POU4F3 gene and the risk haplotype GCCG in the GRHL2 gene were identified combined with noise exposure. These results indicated that GRHL2 might be an NIHL susceptibility gene, but the effect of POU4F3 on NIHL could only be detected when taking noise exposure into account, and their effects were enhanced by higher levels of noise exposure. However, the differences were not significant after the Bonferroni correction was applied. These results should be seen as suggestive.
Collapse
|
16
|
Kelly KM, Lalwani AK. On the Distant Horizon--Medical Therapy for Sensorineural Hearing Loss. Otolaryngol Clin North Am 2015; 48:1149-65. [PMID: 26409822 DOI: 10.1016/j.otc.2015.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hearing loss is the most common sensory deficit in developed societies. Hearing impairment in children, particularly of prelingual onset, has been shown to negatively affect educational achievement, future employment and earnings, and even life expectancy. Sensorineural hearing loss (SNHL), which refers to defects within the cochlea or auditory nerve itself, far outweighs conductive causes for permanent hearing loss in both children and adults. The causes of SNHL in children are heterogeneous, including both congenital and acquired causes. This article identifies potential mechanisms of intervention both at the level of the hair cell and the spiral ganglion neurons.
Collapse
Affiliation(s)
- Kathleen M Kelly
- Department of Otolaryngology - Head and Neck Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hinds Blvd, Dallas, TX 75390, USA
| | - Anil K Lalwani
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Medical Center, Harkness Pavilion, 180 Fort Washington Avenue, Floor 7, New York, NY 10032, USA.
| |
Collapse
|
17
|
Wei Q, Zhu H, Qian X, Chen Z, Yao J, Lu Y, Cao X, Xing G. Targeted genomic capture and massively parallel sequencing to identify novel variants causing Chinese hereditary hearing loss. J Transl Med 2014; 12:311. [PMID: 25388789 PMCID: PMC4234825 DOI: 10.1186/s12967-014-0311-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/23/2014] [Indexed: 11/15/2022] Open
Abstract
Background Hereditary hearing loss is genetically heterogeneous, and hundreds of mutations in than 60 genes are involved in this disease. Therefore, it is difficult to identify the causative gene mutations involved. In this study, we combined targeted genomic capture and massively parallel sequencing (MPS) to address this issue. Methods Using targeted genomic capture and MPS, 104 genes and three microRNA regions were selected and simultaneously sequenced in 23 unrelated probands of Chinese families with nonsyndromic hearing loss. The results were validated by Sanger sequencing for all available members of the probands’ families. To analyze the possible pathogenic functional effects of the variants, three types of prediction programs (Mutation Taster, PROVEAN and SIFT) were used. A total of 195 healthy Chinese Han individuals were compared as controls to verify the novel causative mutations. Results Of the 23 probands, six had mutations in DFNA genes [WFS1 (n = 2), COCH, ACTG1, TMC1, and POU4F3] known to cause autosomal dominant nonsyndromic hearing loss. These included one novel in-frame indel mutation, three novel missense mutations and two reported missense mutations. Furthermore, one proband from a family with recessive DFNB carried two monoallelic mutations in the GJB2 and USH2A genes. All of these mutations co-segregated with the hearing loss phenotype in 36 affected individuals from 7 families and were predicted to be pathogenic. Conclusions Mutations in uncommon deafness genes contribute to a portion of nonsyndromic deafness cases. In the future, critical gene mutations may be accurately and quickly identified in families with hereditary hearing loss by targeted genomic capture and MPS. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0311-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qinjun Wei
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 210029, PR China.
| | - Hongmei Zhu
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Xuli Qian
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 210029, PR China.
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Jun Yao
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 210029, PR China.
| | - Yajie Lu
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 210029, PR China.
| | - Xin Cao
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 210029, PR China.
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
18
|
Tornari C, Towers ER, Gale JE, Dawson SJ. Regulation of the orphan nuclear receptor Nr2f2 by the DFNA15 deafness gene Pou4f3. PLoS One 2014; 9:e112247. [PMID: 25372459 PMCID: PMC4221282 DOI: 10.1371/journal.pone.0112247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022] Open
Abstract
Hair cells are the mechanotransducing cells of the inner ear that are essential for hearing and balance. POU4F3--a POU-domain transcription factor selectively expressed by these cells--has been shown to be essential for hair cell differentiation and survival in mice and its mutation in humans underlies late-onset progressive hearing loss (DFNA15). The downstream targets of POU4F3 are required for hair cell differentiation and survival. We aimed to identify such targets in order to elucidate the molecular pathways involved in hair cell production and maintenance. The orphan thyroid nuclear receptor Nr2f2 was identified as a POU4F3 target using a subtractive hybridization strategy and EMSA analysis showed that POU4F3 binds to two sites in the Nr2f2 5' flanking region. These sites were shown to be required for POU4F3 activation as their mutation leads to a reduction in the response of an Nr2f2 5' flanking region reporter construct to POU4F3. Immunocytochemistry was carried out in the developing and adult inner ear in order to investigate the relevance of this interaction in hearing. NR2F2 expression in the postnatal mouse organ of Corti was shown to be detectable in all sensory epithelia examined and characterised. These data demonstrate that Nr2f2 is a direct target of POU4F3 in vitro and that this regulatory relationship may be relevant to hair cell development and survival.
Collapse
Affiliation(s)
| | - Emily R. Towers
- UCL Ear Institute, University College London, London, United Kingdom
| | - Jonathan E. Gale
- UCL Ear Institute, University College London, London, United Kingdom
| | - Sally J. Dawson
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
19
|
Chai Y, Chen D, Wang X, Wu H, Yang T. A novel splice site mutation in DFNA5 causes late-onset progressive non-syndromic hearing loss in a Chinese family. Int J Pediatr Otorhinolaryngol 2014; 78:1265-8. [PMID: 24933359 DOI: 10.1016/j.ijporl.2014.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Mutations in DFNA5 may lead to autosomal dominant non-syndromic sensorineural hearing loss (NSHL). To date, only four DFNA5 mutations have been reported, all resulting in skipping of exon 8 at the mRNA level. In this study, we aim to characterize the clinical features and the genetic cause of a Chinese DFNA5 family. METHODS Targeted next-generation sequencing of 79 known deafness genes was performed in the proband. Co-segregation between the disease phenotype and the potentially pathogenic variant was confirmed in all family members by Sanger sequencing. RESULTS A novel heterozygous c.991-2A>G mutation in DFNA5 was identified in this family segregating with the autosomal dominant, late-onset NSHL. This mutation was located in the conventional splice site in intron 7 and was likely to result in skipping of exon 8. The severity of hearing impairment varied intrafamilially. CONCLUSION We identified a novel c.991-2A>G mutation in DFNA5 which again may lead to exon 8 skipping at the mRNA level. Our findings supported that the DFNA5-associated NSHL results from a specific gain-of-function mechanism.
Collapse
Affiliation(s)
- Yongchuan Chai
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongye Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaowen Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Tao Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Yoshimura H, Takumi Y, Nishio SY, Suzuki N, Iwasa YI, Usami SI. Deafness gene expression patterns in the mouse cochlea found by microarray analysis. PLoS One 2014; 9:e92547. [PMID: 24676347 PMCID: PMC3967995 DOI: 10.1371/journal.pone.0092547] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tonotopy is one of the most fundamental principles of auditory function. While gradients in various morphological and physiological characteristics of the cochlea have been reported, little information is available on gradient patterns of gene expression. In addition, the audiograms in autosomal dominant non syndromic hearing loss can be distinctive, however, the mechanism that accounts for that has not been clarified. We thought that it is possible that tonotopic gradients of gene expression within the cochlea account for the distinct audiograms. METHODOLOGY/PRINCIPAL FINDINGS We compared expression profiles of genes in the cochlea between the apical, middle, and basal turns of the mouse cochlea by microarray technology and quantitative RT-PCR. Of 24,547 genes, 783 annotated genes expressed more than 2-fold. The most remarkable finding was a gradient of gene expression changes in four genes (Pou4f3, Slc17a8, Tmc1, and Crym) whose mutations cause autosomal dominant deafness. Expression of these genes was greater in the apex than in the base. Interestingly, expression of the Emilin-2 and Tectb genes, which may have crucial roles in the cochlea, was also greater in the apex than in the base. CONCLUSIONS/SIGNIFICANCE This study provides baseline data of gradient gene expression in the cochlea. Especially for genes whose mutations cause autosomal dominant non syndromic hearing loss (Pou4f3, Slc17a8, Tmc1, and Crym) as well as genes important for cochlear function (Emilin-2 and Tectb), gradual expression changes may help to explain the various pathological conditions.
Collapse
Affiliation(s)
- Hidekane Yoshimura
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yutaka Takumi
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Shin-ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Nobuyoshi Suzuki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yoh-ichiro Iwasa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Shin-ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
21
|
Freitas ÉL, Oiticica J, Silva AG, Bittar RSM, Rosenberg C, Mingroni-Netto RC. Deletion of the entire POU4F3 gene in a familial case of autosomal dominant non-syndromic hearing loss. Eur J Med Genet 2014; 57:125-8. [PMID: 24556497 DOI: 10.1016/j.ejmg.2014.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 02/08/2014] [Indexed: 11/17/2022]
Abstract
In 20% of cases, hereditary non-syndromic hearing loss has an autosomal dominant inheritance (ADNSHL). To date, more than 50 loci for ADNSHL have been mapped to different chromosomal regions. In order to verify whether genomic alterations contribute to the hearing loss etiology and to search for novel deafness candidate loci, we investigated probands from families with ADNSHL by oligonucleotide array-CGH. A deletion in the 5q32 region encompassing only one gene, POU4F3, which corresponds to DFNA15, was detected in one family. POU4F3 protein has an important role in the maturation, differentiation and survival of cochlear hair cells. Defects in these cells may therefore explain sensorineural hearing loss. Mutations in this gene have already been associated with autosomal dominant hearing loss but this is the first description of a germline POUF4F3 deletion associated with hearing impairment.
Collapse
Affiliation(s)
- Érika L Freitas
- Department of Genetics and Evolutionary Biology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil.
| | - Jeanne Oiticica
- Department of Otolaryngology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Amanda G Silva
- Department of Genetics and Evolutionary Biology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Roseli S M Bittar
- Department of Otolaryngology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Regina C Mingroni-Netto
- Department of Genetics and Evolutionary Biology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Kim HJ, Won HH, Park KJ, Hong SH, Ki CS, Cho SS, Venselaar H, Vriend G, Kim JW. SNP linkage analysis and whole exome sequencing identify a novel POU4F3 mutation in autosomal dominant late-onset nonsyndromic hearing loss (DFNA15). PLoS One 2013; 8:e79063. [PMID: 24260153 PMCID: PMC3832514 DOI: 10.1371/journal.pone.0079063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Autosomal dominant non-syndromic hearing loss (AD-NSHL) is one of the most common genetic diseases in human and is well-known for the considerable genetic heterogeneity. In this study, we utilized whole exome sequencing (WES) and linkage analysis for direct genetic diagnosis in AD-NSHL. The Korean family had typical AD-NSHL running over 6 generations. Linkage analysis was performed by using genome-wide single nucleotide polymorphism (SNP) chip and pinpointed a genomic region on 5q31 with a significant linkage signal. Sequential filtering of variants obtained from WES, application of the linkage region, bioinformatic analyses, and Sanger sequencing validation identified a novel missense mutation Arg326Lys (c.977G>A) in the POU homeodomain of the POU4F3 gene as the candidate disease-causing mutation in the family. POU4F3 is a known disease gene causing AD-HSLH (DFNA15) described in 5 unrelated families until now each with a unique mutation. Arg326Lys was the first missense mutation affecting the 3(rd) alpha helix of the POU homeodomain harboring a bipartite nuclear localization signal sequence. The phenotype findings in our family further supported previously noted intrafamilial and interfamilial variability of DFNA15. This study demonstrated that WES in combination with linkage analysis utilizing bi-allelic SNP markers successfully identified the disease locus and causative mutation in AD-NSHL.
Collapse
Affiliation(s)
- Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong-Hee Won
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Kyoung-Jin Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Sung Hwa Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Sun Cho
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Fukui H, Wong HT, Beyer LA, Case BG, Swiderski DL, Di Polo A, Ryan AF, Raphael Y. BDNF gene therapy induces auditory nerve survival and fiber sprouting in deaf Pou4f3 mutant mice. Sci Rep 2012; 2:838. [PMID: 23150788 PMCID: PMC3495341 DOI: 10.1038/srep00838] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/15/2012] [Indexed: 01/22/2023] Open
Abstract
Current therapy for patients with hereditary absence of cochlear hair cells, who have severe or profound deafness, is restricted to cochlear implantation, a procedure that requires survival of the auditory nerve. Mouse mutations that serve as models for genetic deafness can be utilized for developing and enhancing therapies for hereditary deafness. A mouse with Pou4f3 loss of function has no hair cells and a subsequent, progressive degeneration of auditory neurons. Here we tested the influence of neurotrophin gene therapy on auditory nerve survival and peripheral sprouting in Pou4f3 mouse ears. BDNF gene transfer enhanced preservation of auditory neurons compared to control ears, in which nearly all neurons degenerated. Surviving neurons in treated ears exhibited pronounced sprouting of nerve fibers into the auditory epithelium, despite the absence of hair cells. This enhanced nerve survival and regenerative sprouting may improve the outcome of cochlear implant therapy in patients with hereditary deafness.
Collapse
Affiliation(s)
- H Fukui
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI 48109-5648, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Baek JI, Oh SK, Kim DB, Choi SY, Kim UK, Lee KY, Lee SH. Targeted massive parallel sequencing: the effective detection of novel causative mutations associated with hearing loss in small families. Orphanet J Rare Dis 2012; 7:60. [PMID: 22938506 PMCID: PMC3495859 DOI: 10.1186/1750-1172-7-60] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/21/2012] [Indexed: 01/24/2023] Open
Abstract
Background Hereditary hearing loss is one of the most common heterogeneous disorders, and genetic variants that can cause hearing loss have been identified in over sixty genes. Most of these hearing loss genes have been detected using classical genetic methods, typically starting with linkage analysis in large families with hereditary hearing loss. However, these classical strategies are not well suited for mutation analysis in smaller families who have insufficient genetic information. Methods Eighty known hearing loss genes were selected and simultaneously sequenced by targeted next-generation sequencing (NGS) in 8 Korean families with autosomal dominant non-syndromic sensorineural hearing loss. Results Five mutations in known hearing loss genes, including 1 nonsense and 4 missense mutations, were identified in 5 different genes (ACTG1, MYO1F, DIAPH1, POU4F3 and EYA4), and the genotypes for these mutations were consistent with the autosomal dominant inheritance pattern of hearing loss in each family. No mutational hot-spots were revealed in these Korean families. Conclusion Targeted NGS allowed for the detection of pathogenic mutations in affected individuals who were not candidates for classical genetic studies. This report is the first documenting the effective use of an NGS technique to detect pathogenic mutations that underlie hearing loss in an East Asian population. Using this NGS technique to establish a database of common mutations in Korean patients with hearing loss and further data accumulation will contribute to the early diagnosis and fundamental therapies for hereditary hearing loss.
Collapse
Affiliation(s)
- Jeong-In Baek
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Gau SSF, Liao HM, Hong CC, Chien WH, Chen CH. Identification of two inherited copy number variants in a male with autism supports two-hit and compound heterozygosity models of autism. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:710-7. [PMID: 22778016 DOI: 10.1002/ajmg.b.32074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/06/2012] [Indexed: 01/08/2023]
Abstract
Autism is a childhood-onset neurodevelopmental disorder with complex genetic mechanism underlying its etiology. Recent studies revealed that a few single de novo copy number variants of genomic DNA (copy number variants [CNVs]) are pathogenic and causal in some sporadic cases, adding support to the hypothesis that some sporadic autism might be caused by single rare mutation with large clinical effect. In this study, we report the detection of two novel private CNVs simultaneously in a male patient with autism. These two CNVs include a microduplication of ~4.5 Mb at chromosome 4q12-13.1 that was transmitted from his mother and a microdeletion of ~1.8 Mb at 5q32 that was transmitted from his father. Several genes such as LPHN3, POU4F3, SH3RF2, and TCERG1 mapped to these two regions have psychiatric implications. However, the parents had only mild degree of attention deficit symptoms but did not demonstrate any obvious autistic symptoms or psychopathology. Our findings indicate that each of these two CNVs alone may not be pathogenic enough to cause clinical symptoms in their respective carriers, and hence they can be transmitted within each individual family. However, concomitant presence of these two CNVs might result in the clinical phenotypes of the affected patient reported here. Thus, our report of this family may represent an example to show that two hits of CNV and the presence of compound heterozygosity might be important mechanisms underlying the pathogenesis of autism.
Collapse
Affiliation(s)
- Susan Shur-Fen Gau
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
26
|
Kim HK, Kim YH, Sagong B, Kwon TJ, Oh SK, Lee HJ, Lee KY, Lee SH, Kim UK. Molecular analysis of TMC1 gene in the Korean patients with nonsyndromic hearing loss. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|