1
|
Choi SY, Song P, Hwang JS, Lee YK, Shin MS, Son HJ, Kim YJ, Kim W, Lee KM. Cereblon deficiency ameliorates carbon tetrachloride-induced acute hepatotoxicity in HepG2 cells by suppressing MAPK-mediated apoptosis. Front Immunol 2024; 15:1457636. [PMID: 39139558 PMCID: PMC11319158 DOI: 10.3389/fimmu.2024.1457636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
The liver is vulnerable to various hepatotoxins, including carbon tetrachloride (CCl4), which induces oxidative stress and apoptosis by producing reactive oxygen species (ROS) and activating the mitogen-activated protein kinase (MAPK) pathway. Cereblon (CRBN), a multifunctional protein implicated in various cellular processes, functions in the pathogenesis of various diseases; however, its function in liver injury remains unknown. We established a CRBN-knockout (KO) HepG2 cell line and examined its effect on CCl4-induced hepatocellular damage. CRBN-KO cells exhibited reduced sensitivity to CCl4-induced cytotoxicity, as evidenced by decreased levels of apoptosis markers, such as cleaved caspase-3, and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. CRBN deficiency enhanced antioxidant defense, with increased superoxide dismutase activity and glutathione ratios (GSH/GSSG), as well as reduced pro-inflammatory cytokine expression. Mechanistically, the protective effects of CRBN deficiency appeared to involve the attenuation of the MAPK-mediated pathways, particularly through decreased phosphorylation of JNK and ERK. Overall, these results suggest the crucial role of CRBN in mediating the hepatocellular response to oxidative stress and inflammation triggered by CCl4 exposure, offering potential clinical implications for liver injury in a wide range of liver diseases.
Collapse
Affiliation(s)
- Seo Young Choi
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, Republic of Korea
| | - Parkyong Song
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ji Sun Hwang
- New Drug Development Center, Daegu–Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - You Kyeong Lee
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, Republic of Korea
| | - Mi Song Shin
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, Republic of Korea
| | - Hong-Joo Son
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, Republic of Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, Republic of Korea
| | - Wanil Kim
- Department of Biochemistry, Department of Convergence Medical Science, and Institute of Medical Science, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Kwang Min Lee
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, Republic of Korea
| |
Collapse
|
2
|
Zhu L, Xin YJ, He M, Bian J, Cheng XL, Li R, Li JJ, Wang J, Liu JY, Yang L. Downregulation of miR-337-3p in hypoxia/reoxygenation neuroblastoma cells increases KCTD11 expression. J Biochem Mol Toxicol 2024; 38:e23685. [PMID: 38495002 DOI: 10.1002/jbt.23685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/18/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Neurodegeneration is linked to the progressive loss of neural function and is associated with several diseases. Hypoxia is a hallmark in many of these diseases, and several therapies have been developed to treat this disease, including gene expression therapies that should be tightly controlled to avoid side effects. Cells experiencing hypoxia undergo a series of physiological responses that are induced by the activation of various transcription factors. Modulation of microRNA (miRNA) expression to alter transcriptional regulation has been demonstrated to be beneficial in treating multiple diseases, and in this study, we therefore explored potential miRNA candidates that could influence hypoxia-induced nerve cell death. Our data suggest that in mouse neuroblasts Neuro-2a cells with hypoxia/reoxygenation (H/R), miR-337-3p is downregulated to increase the expression of Potassium channel tetramerization domain containing 11 (KCTD11) and subsequently promote apoptosis. Here, we demonstrate for the first time that KCTD11 plays a role in the cellular response to hypoxia, and we also provide a possible regulatory mechanism by identifying the axis of miR-337-3p/KCTD11 as a promising candidate modulator of nerve cell survival after H/R exposure.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yi-Juan Xin
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Mu He
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jun Bian
- Department of General Surgery, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, China
| | - Xiao-Li Cheng
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Rui Li
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jin-Jie Li
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Juan Wang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jia-Yun Liu
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Liu Yang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Zhai Y, Liu BG, Mo XN, Zou M, Mei XP, Chen W, Huang GD, Wu L. Gingerol ameliorates neuronal damage induced by hypoxia-reoxygenation via the miR-210/brain-derived neurotrophic factor axis. Kaohsiung J Med Sci 2021; 38:367-377. [PMID: 34962339 DOI: 10.1002/kjm2.12486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 01/15/2023] Open
Abstract
The specific mechanism of gingerol in cerebral ischemia remains unknown. A neuroprotective function for miR-210 in cerebral ischemia has been identified. The brain-derived neurotrophic factor (BDNF)-mediated signaling pathway protects against cerebral ischemic injury. This investigation aimed to determine whether gingerol plays a neuroprotective role in cerebral ischemia via the miR-210/BDNF axis. N2a cells subjected to 10 h of hypoxia and 4 h of reoxygenation were treated with 5, 10, or 20 μmol/L gingerol. The levels of viability, apoptosis, and proteins in N2a cells were determined using MTT assays, flow cytometry, and western blotting, respectively. The binding relationship between BDNF and miR-210 was studied using a dual luciferase reporter assay. The expression levels of miR-210 and BDNF were determined using qPCR. Gingerol repressed the increase in apoptosis and decrease in viability observed in response to hypoxia/reoxygenation. Gingerol increased Bcl-2, BDNF, and TrkB levels and reduced Bax and cleaved caspase 3 levels after hypoxia/reoxygenation. Gingerol evoked decreased expression of miR-210. Inhibition of miR-210 resulted in increased viability and reduced apoptosis along with increased levels of Bcl-2, BDNF, and TrkB and reduced levels of Bax and cleaved caspase 3 after hypoxia/reoxygenation. Additionally, the miR-210 mimic reversed changes induced by gingerol. The cotransfection of the miR-210 mimic and wild type BDNF led to decreased luciferase activity. BDNF was negatively regulated by miR-210. BDNF siRNA reversed these changes evoked by miR-210 inhibition. Gingerol ameliorated hypoxia/reoxygenation-stimulated neuronal damage by regulating the miR-210/BDNF axis, indicating that gingerol is worthy of further application in cerebral ischemia therapy.
Collapse
Affiliation(s)
- Yang Zhai
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China.,Department of Neurology, Guangxi Key Laboratory of Chinese Medicine Foundation Research, Nanning, China.,Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Bu-Gu Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Xue-Ni Mo
- Department of Neurology, Guangxi University of Chinese Medicine, Nanning, China
| | - Min Zou
- Department of Pediatrics, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Xiao-Ping Mei
- Department of Endocrinology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Wei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Guo-Dong Huang
- Department of International Medical, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Lin Wu
- Department of Neurology, Guangxi Key Laboratory of Chinese Medicine Foundation Research, Nanning, China.,Department of Neurology, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
4
|
Fuchs O. Treatment of Lymphoid and Myeloid Malignancies by Immunomodulatory Drugs. Cardiovasc Hematol Disord Drug Targets 2019; 19:51-78. [PMID: 29788898 DOI: 10.2174/1871529x18666180522073855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Thalidomide and its derivatives (lenalidomide, pomalidomide, avadomide, iberdomide hydrochoride, CC-885 and CC-90009) form the family of immunomodulatory drugs (IMiDs). Lenalidomide (CC5013, Revlimid®) was approved by the US FDA and the EMA for the treatment of multiple myeloma (MM) patients, low or intermediate-1 risk transfusion-dependent myelodysplastic syndrome (MDS) with chromosome 5q deletion [del(5q)] and relapsed and/or refractory mantle cell lymphoma following bortezomib. Lenalidomide has also been studied in clinical trials and has shown promising activity in chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). Lenalidomide has anti-inflammatory effects and inhibits angiogenesis. Pomalidomide (CC4047, Imnovid® [EU], Pomalyst® [USA]) was approved for advanced MM insensitive to bortezomib and lenalidomide. Other IMiDs are in phases 1 and 2 of clinical trials. Cereblon (CRBN) seems to have an important role in IMiDs action in both lymphoid and myeloid hematological malignancies. Cereblon acts as the substrate receptor of a cullin-4 really interesting new gene (RING) E3 ubiquitin ligase CRL4CRBN. This E3 ubiquitin ligase in the absence of lenalidomide ubiquitinates CRBN itself and the other components of CRL4CRBN complex. Presence of lenalidomide changes specificity of CRL4CRBN which ubiquitinates two transcription factors, IKZF1 (Ikaros) and IKZF3 (Aiolos), and casein kinase 1α (CK1α) and marks them for degradation in proteasomes. Both these transcription factors (IKZF1 and IKZF3) stimulate proliferation of MM cells and inhibit T cells. Low CRBN level was connected with insensitivity of MM cells to lenalidomide. Lenalidomide decreases expression of protein argonaute-2, which binds to cereblon. Argonaute-2 seems to be an important drug target against IMiDs resistance in MM cells. Lenalidomide decreases also basigin and monocarboxylate transporter 1 in MM cells. MM cells with low expression of Ikaros, Aiolos and basigin are more sensitive to lenalidomide treatment. The CK1α gene (CSNK1A1) is located on 5q32 in commonly deleted region (CDR) in del(5q) MDS. Inhibition of CK1α sensitizes del(5q) MDS cells to lenalidomide. CK1α mediates also survival of malignant plasma cells in MM. Though, inhibition of CK1α is a potential novel therapy not only in del(5q) MDS but also in MM. High level of full length CRBN mRNA in mononuclear cells of bone marrow and of peripheral blood seems to be necessary for successful therapy of del(5q) MDS with lenalidomide. While transfusion independence (TI) after lenalidomide treatment is more than 60% in MDS patients with del(5q), only 25% TI and substantially shorter duration of response with occurrence of neutropenia and thrombocytopenia were achieved in lower risk MDS patients with normal karyotype treated with lenalidomide. Shortage of the biomarkers for lenalidomide response in these MDS patients is the main problem up to now.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| |
Collapse
|
5
|
Steinebach C, Lindner S, Udeshi ND, Mani DC, Kehm H, Köpff S, Carr SA, Gütschow M, Krönke J. Homo-PROTACs for the Chemical Knockdown of Cereblon. ACS Chem Biol 2018; 13:2771-2782. [PMID: 30118587 DOI: 10.1021/acschembio.8b00693] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide, all approved for the treatment of multiple myeloma, induce targeted ubiquitination and degradation of Ikaros (IKZF1) and Aiolos (IKZF3) via the cereblon (CRBN) E3 ubiquitin ligase. IMiD-based proteolysis-targeting chimeras (PROTACs) can efficiently recruit CRBN to a protein of interest, leading to its ubiquitination and proteasomal degradation. By linking two pomalidomide molecules, we designed homobifunctional, so-called homo-PROTACs and investigated their ability to induce self-directed ubiquitination and degradation. The homodimerized compound 15a was characterized as a highly potent and efficient CRBN degrader with only minimal effects on IKZF1 and IKZF3. The cellular selectivity of 15a for CRBN degradation was confirmed at the proteome level by quantitative mass spectrometry. Inactivation by compound 15a did not affect proliferation of different cell lines, prevented pomalidomide-induced degradation of IKZF1 and IKZF3, and antagonized the effects of pomalidomide on multiple myeloma cells. Homobifunctional CRBN degraders will be useful tools for future biomedical investigations of CRBN-related signaling and may help to further elucidate the molecular mechanism of thalidomide analogues.
Collapse
Affiliation(s)
- Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Stefanie Lindner
- Department of Internal Medicine III, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Namrata D. Udeshi
- Proteomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Deepak C. Mani
- Proteomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Hannes Kehm
- Department of Internal Medicine III, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Simon Köpff
- Department of Internal Medicine III, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Steven A. Carr
- Proteomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jan Krönke
- Department of Internal Medicine III, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
6
|
Liu XP, He L, Zhang QP, Zeng XT, Liu SQ. Baicalein Inhibits Proliferation of Myeloma U266 Cells by Downregulating IKZF1 and IKZF3. Med Sci Monit 2018; 24:2809-2817. [PMID: 29729093 PMCID: PMC5958785 DOI: 10.12659/msm.907058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Baicalein can suppress the growth of multiple tumors, including multiple myeloma (MM), but the exact mechanisms remains elusive. Here, we investigated the exact mechanisms of the anti-myeloma activity of baicalein. MATERIAL AND METHODS Proliferation and rates of apoptosis of myeloma U266 cells exposed to baicalein were detected. Microarray, polymerase chain reaction (PCR) assay, and Western blot analysis were applied to evaluate the mRNA and protein levels of associated molecules. Survival analysis of IKZF1 and IKZF3 was conducted as well. RESULTS Baicalein suppressed the growth and stimulated apoptosis of myeloma U266 cells in a dose- and time-dependent way. Baicalein increased mRNA level of CRBN, and further studies suggested that baicalein downregulated IKZF1 and IKZF3 on a post-transcriptional level. Although the differences did not reach statistical significance, IKZF1 and IKZF3 were associated with poor overall survival. CONCLUSIONS Our results suggest that baicalein suppresses the growth and promotes apoptosis of myeloma U266 cells through downregulating IKZF1 and IKZF3. Baicalein increased the expression of CRBN, which might exert a reversion effect on resistance of IMiDs. MM patients in IKZF1 and IKZF3 low-expression groups had better overall survival than those in IKZF1 and IKZF3 high-expression groups. Thus, the present results indicate that baicalein might be a therapeutic choice for targeting IKZF1 and IKZF3.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Qiu-Ping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Shang-Qin Liu
- Department of Hematology, Zhongnan hospital of Wuhan University, , China (mainland)
| |
Collapse
|
7
|
Pak JH, Son WC, Seo SB, Hong SJ, Sohn WM, Na BK, Kim TS. Peroxiredoxin 6 expression is inversely correlated with nuclear factor-κB activation during Clonorchis sinensis infestation. Free Radic Biol Med 2016; 99:273-285. [PMID: 27554973 DOI: 10.1016/j.freeradbiomed.2016.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022]
Abstract
Clonorchis sinensis is a carcinogenic human liver fluke. Its infection promotes persistent oxidative stress and chronic inflammation environments in the bile duct and surrounding liver tissues owing to direct contact with worms and their excretory-secretory products (ESPs), provoking epithelial hyperplasia, periductal fibrosis, and cholangiocarcinogenesis. We examined the reciprocal regulation of two ESP-induced redox-active proteins, NF-κB and peroxiredoxin 6 (Prdx6), during C. sinensis infection. Prdx6 overexpression suppressed intracellular free-radical generation by inhibiting NADPH oxidase2 and inducible nitric oxide synthase activation in the ESP-treated cholangiocarcinoma cells, substantially attenuating NF-κB-mediated inflammation. NF-κB overexpression decreased Prdx6 transcription levels by binding to two κB sites within the promoter. This transcriptional repression was compensated for by other ESP-induced redox-active transcription factors, including erythroid 2-related factor 2 (Nrf2), hypoxia inducible factor 1α (HIF1α), and CCAAT/enhancer-binding protein β (C/EBPβ). Distribution of immunoreactive Prdx6 and NF-κB was distinct in the early stages of infection in mouse livers but shared concomitant localization in the later stages. The intensity and extent of their immunoreactive staining in infected mouse livers are proportional to lesion severity and infection duration. The constitutive elevations of Prdx6 and NF-κB during C. sinensis infection may be associated with more severe persistent hepatobiliary abnormalities mediated by clonorchiasis.
Collapse
Affiliation(s)
- Jhang Ho Pak
- Department of Convergence Medicine University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, 388-1 Pungnap-2 dong, Songpa-gu, Seoul 138-736, Republic of Korea.
| | - Woo Chan Son
- Department of Pathology, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology and Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Tong-Soo Kim
- Department of Parasitology, Inha University School of Medicine, Incheon 400-103, Republic of Korea
| |
Collapse
|
8
|
Kim HK, Ko TH, Nyamaa B, Lee SR, Kim N, Ko KS, Rhee BD, Park CS, Nilius B, Han J. Cereblon in health and disease. Pflugers Arch 2016; 468:1299-309. [PMID: 27343012 DOI: 10.1007/s00424-016-1854-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/12/2022]
Abstract
Cereblon (CRBN) is a substrate receptor of the E3 ubiquitin ligase complex that has been linked to autosomal recessive non-syndromic mental retardation. Several key findings suggest diverse roles of CRBN, including its regulation of the large-conductance calcium- and voltage-activated potassium (BKCa) channels, regulation of thalidomide-binding proteins, and mediation of lenalidomide treatment in multiple myeloma. Recent studies also indicate that CRBN is involved in energy metabolism and negatively regulates AMP-activated protein kinase signaling. Mice with genetic depletion of CRBN are resistant to various stress conditions including a high-fat diet, endoplasmic reticulum stress, ischemia/reperfusion injury, and alcohol-related liver damage. In this review, we discuss the various roles of CRBN in human health and disease and suggest avenues for further research to enhance our basic knowledge and clinical application of CRBN.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 plus Project Team, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea.,Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan, South Korea
| | - Tae Hee Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 plus Project Team, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Bayalagmaa Nyamaa
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 plus Project Team, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 plus Project Team, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea.,Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan, South Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 plus Project Team, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 plus Project Team, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 plus Project Team, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea
| | - Chul-Seung Park
- School of Life Sciences and National Leading Research Laboratory for Ion Channels, Gwangju Institute Science and Technology, Gwangju, 500-712, South Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 plus Project Team, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Bokji-ro 75, Busanjin-gu, Busan, 47392, South Korea.
| |
Collapse
|
9
|
Inhibition of cereblon by fenofibrate ameliorates alcoholic liver disease by enhancing AMPK. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2662-70. [DOI: 10.1016/j.bbadis.2015.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/10/2015] [Accepted: 09/23/2015] [Indexed: 12/20/2022]
|
10
|
Lee KM, Yang SJ, Park S, Choi YD, Shin HK, Pak JH, Park CS, Kim I. Depletion of the cereblon gene activates the unfolded protein response and protects cells from ER stress-induced cell death. Biochem Biophys Res Commun 2015; 458:34-9. [PMID: 25619137 DOI: 10.1016/j.bbrc.2015.01.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 11/29/2022]
Abstract
Previous studies showed that cereblon (CRBN) binds to various cellular target proteins, implying that CRBN regulates a wide range of cell responses. In this study, we found that deletion of the Crbn gene desensitized mouse embryonic fibroblast cells to various cell death-promoting stimuli, including endoplasmic reticulum stress inducers. Mechanistically, deletion of Crbn activates pathways involved in the unfolded protein response prior to ER stress induction. Loss of Crbn activated PKR-like ER kinase (PERK) with enhanced phosphorylation of eIF2α. Following ER stress induction, loss of Crbn delayed dephosphorylation of eIF2α, while reconstitution of Crbn reversed enhanced phosphorylation of PERK and eIF2α. Lastly, we found that activation of the PERK/eIF2α pathway following Crbn deletion is caused by activation of AMP-activated protein kinase (AMPK). We propose that CRBN plays a role in cellular stress signaling, including the unfolded protein response, by controlling the activity of AMPK.
Collapse
Affiliation(s)
- Kwang Min Lee
- School of Life Sciences and Cell Dynamics Research Center and National Leading Research Laboratory, Gwangju Institute Science and Technology (GIST), Gwangju 500-712, Republic of Korea; Department of Molecular Genetics, University of Texas South Western Medical Center, Dallas, TX 75390-9046, USA
| | - Seung-Joo Yang
- School of Life Sciences and Cell Dynamics Research Center and National Leading Research Laboratory, Gwangju Institute Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Sojung Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Yoo Duk Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Hwa Kyoung Shin
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Jhang Ho Pak
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea; Department of Medicine, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Chul-Seung Park
- School of Life Sciences and Cell Dynamics Research Center and National Leading Research Laboratory, Gwangju Institute Science and Technology (GIST), Gwangju 500-712, Republic of Korea.
| | - Inki Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea; Department of Medicine, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea.
| |
Collapse
|
11
|
Huang SY, Lin CW, Lin HH, Yao M, Tang JL, Wu SJ, Chen YC, Lu HY, Hou HA, Chen CY, Chou WC, Tsay W, Chou SJ, Tien HF. Expression of cereblon protein assessed by immunohistochemicalstaining in myeloma cells is associated with superior response of thalidomide- and lenalidomide-based treatment, but not bortezomib-based treatment, in patients with multiple myeloma. Ann Hematol 2014; 93:1371-80. [PMID: 24687382 PMCID: PMC4082140 DOI: 10.1007/s00277-014-2063-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/16/2014] [Indexed: 11/30/2022]
Abstract
Cereblon (CRBN) is essential for the anti-myeloma (MM) activity of immunomodulatory drugs (IMiDs), such as thalidomide and lenalidomide. However, the clinical implications of CRBN in MM patients are unclear. Using immunohistochemical (IHC) staining on paraffin-embedded bone marrow sections, the expression of CRBN protein in myeloma cells (MCs) was assessed in 40 relapsed/refractory MM (RRMM) patients who received lenalidomide/dexamethasone (LD) and 45 and 22 newly diagnosed MM (NDMM) patients who received thalidomide/dexamethasone (TD) and melphalan/bortezomib/prednisolone (MVP), respectively. IHC staining were scored on a scale representing the diffuseness and intensity of positive-staining MCs (range, 0–8) and a score ≥4.5 was used for CRBN positivity (CRBN+) on a cut-point analysis of all possible scores and response of TD and LD. Compared to CRBN+ NDMM patients, CRBN− NDMM patients had more international staging system (ISS) III (26 vs. 61 %, respectively; P = 0.006). In the LD and TD cohorts, the response rate (RR) was higher in CRBN+ patients than CRBN− patients (LD 79 vs. 33 %, respectively; P = 0.005) (TD 75 vs. 29 %, respectively; P = 0.005); however, this trend was not observed in the MVP cohort. In the LD and TD cohorts, the positive and negative prediction value of CRBN+ for treatment response was 79 and 67 % and 75 and 71 %, respectively. Multivariate analysis showed that CRBN+ was a significant factor associated with superior RR for LD and TD. The data suggest that expression of CRBN protein in MCs assessed using the IHC is a feasible approach to predict the response of IMiDs in MM patients.
Collapse
Affiliation(s)
- Shang-Yi Huang
- Department of Internal Medicine, National Taiwan University Hospital, B4:0509, No.7, Chung-Shan South Road, 10002, Taipei, R.O.C, Taiwan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rajadhyaksha AM, Ra S, Kishinevsky S, Lee AS, Romanienko P, DuBoff M, Yang C, Zupan B, Byrne M, Daruwalla ZR, Mark W, Kosofsky BE, Toth M, Higgins JJ. Behavioral characterization of cereblon forebrain-specific conditional null mice: a model for human non-syndromic intellectual disability. Behav Brain Res 2011; 226:428-34. [PMID: 21995942 DOI: 10.1016/j.bbr.2011.09.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
Abstract
A nonsense mutation in the human cereblon gene (CRBN) causes a mild type of autosomal recessive non-syndromic intellectual disability (ID). Animal studies show that crbn is a cytosolic protein with abundant expression in the hippocampus (HPC) and neocortex (CTX). Its diverse functions include the developmental regulation of ion channels at the neuronal synapse, the mediation of developmental programs by ubiquitination, and a target for herpes simplex type I virus in HPC neurons. To test the hypothesis that anomalous CRBN expression leads to HPC-mediated memory and learning deficits, we generated germ-line crbn knock-out mice (crbn(-/-)). We also inactivated crbn in forebrain neurons in conditional knock-out mice in which crbn exons 3 and 4 are deleted by cre recombinase under the direction of the Ca(2+)/calmodulin-dependent protein kinase II alpha promoter (CamKII(cre/+), crbn(-/-)). crbn mRNA levels were negligible in the HPC, CTX, and cerebellum (CRBM) of the crbn(-/-) mice. In contrast, crbn mRNA levels were reduced 3- to 4-fold in the HPC, CTX but not in the CRBM in CamKII(cre/+), crbn(-/-) mice as compared to wild type (CamKII(cre/+), crbn(+/+)). Contextual fear conditioning showed a significant decrease in the percentage of freezing time in CamKII(cre/+), crbn(-/-) and crbn(-/-) mice while motor function, exploratory motivation, and anxiety-related behaviors were normal. These findings suggest that CamKII(cre/+), crbn(-/-) mice exhibit selective HPC-dependent deficits in associative learning and supports the use of these mice as in vivo models to study the functional consequences of CRBN aberrations on memory and learning in humans.
Collapse
Affiliation(s)
- Anjali M Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, New York Presbyterian Hospital, Laboratory of Molecular and Developmental Neurobiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ito T, Ando H, Handa H. Teratogenic effects of thalidomide: molecular mechanisms. Cell Mol Life Sci 2011; 68:1569-79. [PMID: 21207098 PMCID: PMC11114848 DOI: 10.1007/s00018-010-0619-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/01/2010] [Accepted: 12/16/2010] [Indexed: 12/27/2022]
Abstract
Fifty years ago, prescription of the sedative thalidomide caused a worldwide epidemic of multiple birth defects. The drug is now used in the treatment of leprosy and multiple myeloma. However, its use is limited due to its potent teratogenic activity. The mechanism by which thalidomide causes limb malformations and other developmental defects is a long-standing question. Multiple hypotheses exist to explain the molecular mechanism of thalidomide action. Among them, theories involving oxidative stress and anti-angiogenesis have been widely supported. Nevertheless, until recently, the direct target of thalidomide remained elusive. We identified a thalidomide-binding protein, cereblon (CRBN), as a primary target for thalidomide teratogenicity. Our data suggest that thalidomide initiates its teratogenic effects by binding to CRBN and inhibiting its ubiquitin ligase activity. In this review, we summarize the biology of thalidomide, focusing on the molecular mechanisms of its teratogenic effects. In addition, we discuss the questions still to be addressed.
Collapse
Affiliation(s)
- Takumi Ito
- Solutions Research Laboratory, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8503, Japan.
| | | | | |
Collapse
|