1
|
Yagi A, Sato T, Kano C, Igari T, Oshima N, Ohte S, Ohshiro T, Uchida R. Evaluation of tirandamycins with selective activity against Enterococci in the silkworm infection model. J Antibiot (Tokyo) 2025; 78:211-218. [PMID: 39953284 DOI: 10.1038/s41429-024-00805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 02/17/2025]
Abstract
In the course of screening for anti-enterococcal antibiotics from microbial resources, a new tirandamycin congener (1), together with four known tirandamycins (2 to 5), were isolated from Streptomyces tirandamycinicus TMPU-20A040. The structures of these tirandamycins were elucidated using NMR and MS analyses; 1 was identified as 12-carboxy tirandamycin A and 2 to 5 as known tirandamycins A (2), B (3), E (4), and J (5). Compounds 1 to 3 exhibited selective anti-Enterococci activity, including vancomycin-resistant strains, with MIC in the range of 1.0 to 64 µg ml-1 in the microdilution method. 2 and 3 exerted weak therapeutic effects in the in vivo-mimic silkworm Enterococcus faecalis infection model with ED50 values of 150 and 75 µg larva-1 g-1, respectively, indicating that the in vivo activities of 2 and 3 were lower than their in vitro activities. Further investigations into the causes of the decreased in vivo activities of 2 and 3 suggested the low plasma protein binding ratio of these compounds, but revealed short half-lives of 6.3 and 16 min, respectively, in the silkworm hemolymph.
Collapse
Affiliation(s)
- Akiho Yagi
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Taku Sato
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Chihiro Kano
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Taeko Igari
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Natsuki Oshima
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Satoshi Ohte
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Taichi Ohshiro
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Ryuji Uchida
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
3
|
Liu Z, Sun W, Hu Z, Wang W, Zhang H. Marine Streptomyces-Derived Novel Alkaloids Discovered in the Past Decade. Mar Drugs 2024; 22:51. [PMID: 38276653 PMCID: PMC10821133 DOI: 10.3390/md22010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Natural alkaloids originating from actinomycetes and synthetic derivatives have always been among the important suppliers of small-molecule drugs. Among their biological sources, Streptomyces is the highest and most extensively researched genus. Marine-derived Streptomyces strains harbor unconventional metabolic pathways and have been demonstrated to be efficient producers of biologically active alkaloids; more than 60% of these compounds exhibit valuable activity such as antibacterial, antitumor, anti-inflammatory activities. This review comprehensively summarizes novel alkaloids produced by marine Streptomyces discovered in the past decade, focusing on their structural features, biological activity, and pharmacological mechanisms. Future perspectives on the discovery and development of novel alkaloids from marine Streptomyces are also provided.
Collapse
Affiliation(s)
| | | | | | | | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Z.L.); (W.S.); (Z.H.); (W.W.)
| |
Collapse
|
4
|
Zhang Y, Liao G, Wang M, Zhang Z, Liu L, Song Y, Wang D, Hao T, Feng J, Xia B, Wang Y, Tang X, Chen Y. Human-associated bacteria adopt an unusual route for synthesizing 3-acetylated tetramates for environmental adaptation. MICROBIOME 2023; 11:97. [PMID: 37147735 PMCID: PMC10161427 DOI: 10.1186/s40168-023-01548-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Tetramates or tetramic acid-containing compounds (TACs) are a group of bioactive natural products featuring a pyrrolidine-2,4-dione ring acknowledged being closed via Dieckmann cyclization. The cariogenic Streptococcus mutans strains bearing a muc biosynthetic gene cluster (BGC) can synthesize mutanocyclin (MUC), a 3-acetylated TAC that can inhibit both leukocyte chemotaxis and filamentous development in Candida albicans. Some strains can also accumulate reutericyclins (RTCs), the intermediates of MUC biosynthesis with antibacterial activities. However, the formation mechanism of the pyrrolidine-2,4-dione ring of MUC and the distribution of muc-like BGCs along with their ecological functions has not been explored extensively. RESULTS We demonstrated that a key intermediate of MUC biosynthesis, M-307, is installed by a hybrid nonribosomal peptide synthetase-polyketide synthase assembly line and its pyrrolidine-2,4-dione ring is closed via an unprecedented lactam bond formation style. Subsequent C-3 acetylation will convert M-307 to RTCs, which is then hydrolyzed by a deacylase, MucF, to remove the N-1 fatty acyl appendage to generate MUC. Distribution analysis showed that the muc-like BGCs distribute predominantly in human-associated bacteria. Interestingly, most of the muc-like BGCs possessing a mucF gene were isolated from human or livestock directly, indicating their involvement in alleviating the host's immune attacks by synthesizing MUC; while those BGCs lacking mucF gene distribute mainly in bacteria from fermented products, suggesting that they tend to synthesize RTCs to compete with neighboring bacteria. It is noteworthy that many bacteria in the same habitats (e.g., the oral cavity) lack the muc-like BGC, but possess functional MucF homologues to "detoxify" RTCs to MUC, including several competitive bacteria of S. mutans. We also comparably studied the distribution of TAS1, a fungal enzyme responsible for the production of phytotoxic tenuazonic acids (TeAs), a class of 3-acetylated TACs with similar structure but distinct biosynthetic mechanism to MUC, and found that it mainly exists in plants or crops. CONCLUSIONS The in vivo and in vitro experiments revealed that the pyrrolidine-2,4-dione ring of MUC is closed via lactam bond formation, which may be adopted by many TACs without 3-acyl decorations. Besides, we found that muc-like BGCs are widespread in human-associated bacteria and their shapes and main products can be influenced by the habitat environment and vice versa. By comparing with TeAs, we provided thought-provoking insights into how ecological and evolutionary forces drive bacteria and fungi to construct a common 3-acetylated pyrrolidine-2,4-dione core through different routes, and how the biosynthetic processes are delicately controlled to generate diverse 3-acetylated TACs for environmental adaptation. Video Abstract.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ge Liao
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Zhao Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China
| | - Liwei Liu
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dacheng Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Hao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Xia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yixiang Wang
- Central Laboratory Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Duangupama T, Pratuangdejkul J, Chongruchiroj S, Pittayakhajonwut P, Intaraudom C, Tadtong S, Nunthanavanit P, Samee W, He YW, Tanasupawat S, Thawai C. New insights into the neuroprotective and beta-secretase1 inhibitor profiles of tirandamycin B isolated from a newly found Streptomyces composti sp. nov. Sci Rep 2023; 13:4825. [PMID: 36964207 PMCID: PMC10038987 DOI: 10.1038/s41598-023-32043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
Tirandamycin (TAM B) is a tetramic acid antibiotic discovered to be active on a screen designed to find compounds with neuroprotective activity. The producing strain, SBST2-5T, is an actinobacterium that was isolated from wastewater treatment bio-sludge compost collected from Suphanburi province, Thailand. Taxonomic characterization based on a polyphasic approach indicates that strain SBST2-5T is a member of the genus Streptomyces and shows low average nucleotide identity (ANI) (81.7%), average amino-acid identity (AAI) (78.5%), and digital DNA-DNA hybridization (dDDH) (25.9%) values to its closest relative, Streptomyces thermoviolaceus NBRC 13905T, values that are significantly below the suggested cut-off values for the species delineation, indicating that strain SBST2-5T could be considered to represent a novel species of the genus Streptomyces. The analysis of secondary metabolites biosynthetic gene clusters (smBGCs) in its genome and chemical investigation led to the isolation of TAM B. Interestingly, TAM B at 20 µg/mL displayed a suppressive effect on beta-secretase 1 (BACE1) with 68.69 ± 8.84% inhibition. Molecular docking simulation reveals the interaction mechanism between TAM B and BACE1 that TAM B was buried in the pocket of BACE-1 by interacting with amino acids Thr231, Asp 228, Gln73, Lys 107 via hydrogen bond and Leu30, Tyr71, Phe108, Ile118 via hydrophobic interaction, indicating that TAM B represents a potential active BACE1 inhibitor. Moreover, TAM B can protect the neuron cells significantly (% neuron viability = 83.10 ± 9.83% and 112.72 ± 6.83%) from oxidative stress induced by serum deprivation and Aβ1-42 administration models at 1 ng/mL, respectively, without neurotoxicity on murine P19-derived neuron cells nor cytotoxicity against Vero cells. This study was reportedly the first study to show the neuroprotective and BACE1 inhibitory activities of TAM B.
Collapse
Affiliation(s)
- Thitikorn Duangupama
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Jaturong Pratuangdejkul
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Phayathai, Bangkok, 10400, Thailand
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Phayathai, Bangkok, 10400, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, 12120, Pathum Thani, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, 12120, Pathum Thani, Thailand
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, 26120, Thailand
| | - Patcharawee Nunthanavanit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, 26120, Thailand
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, 26120, Thailand
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chitti Thawai
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
- Actinobacterial Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
6
|
Tsevelkhoroloo M, Xiaoqiang L, Jin XM, Shin JH, Lee CR, Kang Y, Hong SK. LuxR-Type SCO6993 Negatively Regulates Antibiotic Production at the Transcriptional Stage by Binding to Promoters of Pathway-Specific Regulatory Genes in Streptomyces coelicolor. J Microbiol Biotechnol 2022; 32:1134-1145. [PMID: 36116920 PMCID: PMC9628970 DOI: 10.4014/jmb.2205.07050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022]
Abstract
SCO6993 (606 amino acids) in Streptomyces coelicolor belongs to the large ATP-binding regulators of the LuxR family regulators having one DNA-binding motif. Our previous findings predicted that SCO6993 may suppress the production of pigmented antibiotics, actinorhodin, and undecylprodigiosin, in S. coelicolor, resulting in the characterization of its properties at the molecular level. SCO6993-disruptant, S. coelicolor ΔSCO6993 produced excess pigments in R2YE plates as early as the third day of culture and showed 9.0-fold and 1.8-fold increased production of actinorhodin and undecylprodigiosin in R2YE broth, respectively, compared with that by the wild strain and S. coelicolor ΔSCO6993/SCO6993+. Real-time polymerase chain reaction analysis showed that the transcription of actA and actII-ORF4 in the actinorhodin biosynthetic gene cluster and that of redD and redQ in the undecylprodigiosin biosynthetic gene cluster were significantly increased by SCO6993-disruptant. Electrophoretic mobility shift assay and DNase footprinting analysis confirmed that SCO6993 protein could bind only to the promoters of pathway-specific transcriptional activator genes, actII-ORF4 and redD, and a specific palindromic sequence is essential for SCO6993 binding. Moreover, SCO6993 bound to two palindromic sequences on its promoter region. These results indicate that SCO6993 suppresses the expression of other biosynthetic genes in the cluster by repressing the transcription of actII-ORF4 and redD and consequently negatively regulating antibiotic production.
Collapse
Affiliation(s)
- Maral Tsevelkhoroloo
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea
| | - Li Xiaoqiang
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea,GeneNet Pharmaceuticals Co. Ltd., Tianjin 300410, P.R. China
| | - Xue-Mei Jin
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea,Characteristic Industry Development Center of Yanbian, Jilin Province 133000, P.R. China
| | - Jung-Ho Shin
- R&D, Health & Bioscience, DuPont-IFF, Wilmington 19898, DE, USA
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea
| | - Yup Kang
- Institute for Medical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058, Republic of Korea,Corresponding author Phone: 81-3-335-330-6198 Fax: 81-3-335-335-8249 E-mail:
| |
Collapse
|
7
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
8
|
Zong G, Fu J, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Crit Rev Biotechnol 2021; 42:1260-1283. [PMID: 34706600 DOI: 10.1080/07388551.2021.1987856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Streptomyces is the largest and most significant genus of Actinobacteria, comprising 961 species. These Gram-positive bacteria produce many versatile and important bioactive compounds; of these, antibiotics, specifically the enhancement or activation of their production, have received extensive research attention. Recently, various biotic and abiotic elicitors have been reported to modify the antibiotic metabolism of Streptomyces, which promotes the production of new antibiotics and bioactive metabolites for improvement in the yields of endogenous products. However, some elicitors that obviously contribute to secondary metabolite production have not yet received sufficient attention. In this study, we have reviewed the functions and mechanisms of chemicals, novel microbial metabolic elicitors, microbial interactions, enzymes, enzyme inhibitors, environmental factors, and novel combination methods regarding antibiotic production in Streptomyces. This review has aimed to identify potentially valuable elicitors for stimulating the production of latent antibiotics or enhancing the synthesis of subsistent antibiotics in Streptomyces. Future applications and challenges in the discovery of new antibiotics and enhancement of existing antibiotic production using elicitors are discussed.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Mo X, Gulder TAM. Biosynthetic strategies for tetramic acid formation. Nat Prod Rep 2021; 38:1555-1566. [PMID: 33710214 DOI: 10.1039/d0np00099j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Covering: up to the end of 2020Natural products bearing tetramic acid units as part of complex molecular architectures exhibit a broad range of potent biological activities. These compounds thus attract significant interest from both the biosynthetic and synthetic communities. Biosynthetically, most of the tetramic acids are derived from hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) machineries. To date, over 30 biosynthetic gene clusters (BGCs) involved in tetramate formation have been identified, from which different biosynthetic strategies evolved in Nature to assemble this intriguing structural unit were characterized. In this Highlight we focus on the biosynthetic concepts of tetramic acid formation and discuss the molecular mechanism towards selected representatives in detail, providing a systematic overview for the development of strategies for targeted tetramate genome mining and future applications of tetramate-forming biocatalysts for chemo-enzymatic synthesis.
Collapse
Affiliation(s)
- Xuhua Mo
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 266109 Qingdao, China. and Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| |
Collapse
|
10
|
Yin Z, Dickschat JS. Cis double bond formation in polyketide biosynthesis. Nat Prod Rep 2021; 38:1445-1468. [PMID: 33475122 DOI: 10.1039/d0np00091d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: up to 2020Polyketides form a large group of bioactive secondary metabolites that usually contain one or more double bonds. Although most of the double bonds found in polyketides are trans or E-configured, several cases are known in which cis or Z-configurations are observed. Double bond formation by polyketide synthases (PKSs) is widely recognised to be catalysed by ketoreduction and subsequent dehydration of the acyl carrier protein (ACP)-tethered 3-ketoacyl intermediate in the PKS biosynthetic assembly line with a specific stereochemical course in which the ketoreduction step determines the usual trans or more rare cis double bond configuration. Occasionally, other mechanisms for the installation of cis double bonds such as double bond formation during chain release or post-PKS modifications including, amongst others, isomerisations or double bond installations by oxidation are observed. This review discusses the peculiar mechanisms of cis double bond formation in polyketide biosynthesis.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | | |
Collapse
|
11
|
The Biological and Chemical Diversity of Tetramic Acid Compounds from Marine-Derived Microorganisms. Mar Drugs 2020; 18:md18020114. [PMID: 32075282 PMCID: PMC7074263 DOI: 10.3390/md18020114] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
Tetramic acid (pyrrolidine-2,4-dione) compounds, isolated from a variety of marine and terrestrial organisms, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities. In the past decade, marine-derived microorganisms have become great repositories of novel tetramic acids. Here, we discuss the biological activities of 277 tetramic acids of eight classifications (simple 3-acyl tetramic acids, 3-oligoenoyltetramic acids, 3-decalinoyltetramic acid, 3-spirotetramic acids, macrocyclic tetramic acids, N-acylated tetramic acids, α-cyclopiazonic acid-type tetramic acids, and other tetramic acids) from marine-derived microbes, including fungi, actinobacteria, bacteria, and cyanobacteria, as reported in 195 research studies up to 2019.
Collapse
|
12
|
Gui C, Chen J, Xie Q, Mo X, Zhang S, Zhang H, Ma J, Li Q, Gu YC, Ju J. CytA, a reductase in the cytorhodin biosynthesis pathway, inactivates anthracycline drugs in Streptomyces. Commun Biol 2019; 2:454. [PMID: 31840099 PMCID: PMC6897945 DOI: 10.1038/s42003-019-0699-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/08/2019] [Indexed: 01/22/2023] Open
Abstract
Antibiotic-producing microorganism can develop strategies to deal with self-toxicity. Cytorhodins X and Y, cosmomycins A and B, and iremycin, are produced as final products from a marine-derived Streptomyces sp. SCSIO 1666. These C-7 reduced metabolites show reduced antimicrobial and comparable cytotoxic activities relative to their C-7 glycosylated counterparts. However, the biosynthetic mechanisms and relevant enzymes that drive C-7 reduction in cytorhodin biosynthesis have not yet been characterized. Here we report the discovery and characterization of a reductase, CytA, that mediates C-7 reduction of this anthracycline scaffold; CytA endows the producer Streptomyces sp. SCSIO 1666 with a means of protecting itself from the effects of its anthracycline products. Additionally, we identified cosmomycins C and D as two intermediates involved in cytorhodin biosynthesis and we also broadened the substrate specificity of CytA to clinically used anthracycline drugs.
Collapse
Affiliation(s)
- Chun Gui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qing Xie
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808 China
| | - Xuhua Mo
- Shangdong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Shanwen Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808 China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY UK
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
13
|
Liu M, Jia Y, Xie Y, Zhang C, Ma J, Sun C, Ju J. Identification of the Actinomycin D Biosynthetic Pathway from Marine-Derived Streptomyces costaricanus SCSIO ZS0073. Mar Drugs 2019; 17:E240. [PMID: 31018504 PMCID: PMC6521150 DOI: 10.3390/md17040240] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
Bioactive secondary metabolites from Streptomycetes are important sources of lead compounds in current drug development. Streptomyces costaricanus SCSIO ZS0073, a mangrove-derived actinomycete, produces actinomycin D, a clinically used therapeutic for Wilm's tumor of the kidney, trophoblastic tumors and rhabdomyosarcoma. In this work, we identified the actinomycin biosynthetic gene cluster (BGC) acn by detailed analyses of the S. costaricanus SCSIO ZS0073 genome. This organism produces actinomycin D with a titer of ~69.8 μg mL-1 along with traces of actinomycin Xoβ. The acn cluster localized to a 39.8 kb length region consisting of 25 open reading frames (ORFs), including a set of four genes that drive the construction of the 4-methyl-3-hydroxy-anthranilic acid (4-MHA) precursor and three non-ribosomal peptide synthetases (NRPSs) that generate the 4-MHA pentapeptide semi-lactone, which, upon dimerization, affords final actinomycin D. Furthermore, the acn cluster contains four positive regulatory genes acnWU4RO, which were identified by in vivo gene inactivation studies. Our data provide insights into the genetic characteristics of this new mangrove-derived actinomycin D bioproducer, enabling future metabolic engineering campaigns to improve both titers and the structural diversities possible for actinomycin D and related analogues.
Collapse
Affiliation(s)
- Mengchan Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanxi Jia
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunchang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Chunyan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Changli Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Fidan O, Yan R, Zhu D, Zhan J. Improved production of antifungal angucycline Sch47554 by manipulating three regulatory genes inStreptomycessp. SCC‐2136. Biotechnol Appl Biochem 2019; 66:517-526. [DOI: 10.1002/bab.1748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/27/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Ozkan Fidan
- Department of Biological EngineeringUtah State University Logan UT USA
| | - Riming Yan
- Department of Biological EngineeringUtah State University Logan UT USA
- Key Laboratory of Protection and Utilization of Subtropic PlantResources of Jiangxi ProvinceCollege of Life ScienceJiangxi Normal University Jiangxi People's Republic of China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic PlantResources of Jiangxi ProvinceCollege of Life ScienceJiangxi Normal University Jiangxi People's Republic of China
| | - Jixun Zhan
- Department of Biological EngineeringUtah State University Logan UT USA
- TCM and Ethnomedicine Innovation & Development LaboratorySchool of PharmacyHunan University of Chinese Medicine Changsha Hunan People's Republic of China
| |
Collapse
|
15
|
Mo X, Gui C, Yang S. Cytochrome P450 oxidase SlgO1 catalyzes the biotransformation of tirandamycin C to a new tirandamycin derivative. 3 Biotech 2019; 9:71. [PMID: 30800582 DOI: 10.1007/s13205-019-1611-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/01/2019] [Indexed: 10/27/2022] Open
Abstract
In the present study, an Escherichia coli whole cell system with overexpression of a cytochrome P450 oxidase SlgO1 involved in streptolydigin biosynthetic pathway, an E. coli flavodoxin NADP+ oxidoreductase (EcFLDR), and an E. coli flavodoxin A (EcFLDA) were constructed. Biotransformation experiments revealed that SlgO1 can convert tirandamycin C to tirandamycin F, indicating that it can introduce a hydroxyl group into the C-10 position of tirandamycin C. Subsequently, slgO1 was cloned into pSET152AKE vector under the downstream of ermE* promoter, which was, respectively, introduced into Streptomyces sp. SCSIO1666 (tirandamycin B producer), Streptomyces sp. Ju1008 (tirandamycin C producer), and Streptomyces sp. Ju1009 (tirandamycin E producer). A novel tirandamycin derivative tirandamycin L accumulated in the engineered strain Streptomyces sp. Ju1008::slgO1 was isolated and its structure was determined on the basis of nuclear magnetic resonance (NMR) and mass spectrometry. Unlike most of the identified tirandamycins, tirandamycin L possessed a rare C-11-C-12 saturated bond as well as a C-10 ketone moiety. In addition, tirandamycin L showed weaker antibacterial activity. Based on the structure of tirandamycin L, SlgO1 was proposed to be responsible for multiple modifications toward tirandamycin C, including the formation of C-10 hydroxyl and C-11-C-12 saturated bond.
Collapse
|
16
|
Krause J, Ratnakomala S, Lisdiyanti P, Ort-Winklbauer R, Wohlleben W, Mast Y. Complete Genome Sequence of the Putative Phosphonate Producer Streptomyces sp. Strain I6, Isolated from Indonesian Mangrove Sediment. Microbiol Resour Announc 2019; 8:e01580-18. [PMID: 30701253 PMCID: PMC6346202 DOI: 10.1128/mra.01580-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/19/2018] [Indexed: 11/28/2022] Open
Abstract
Streptomyces sp. strain I6 is a novel strain isolated from an Indonesian mangrove sediment sample. Bioinformatic analysis of the genome sequence of Streptomyces sp. I6 revealed 23 biosynthetic gene clusters. One of them encodes the synthesis of a putative phosphonate secondary metabolite, a class of underexplored natural compounds with great pharmaceutical potential.
Collapse
Affiliation(s)
- Janina Krause
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Shanti Ratnakomala
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Puspita Lisdiyanti
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Regina Ort-Winklbauer
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Wolfgang Wohlleben
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Yvonne Mast
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Gui C, Yuan J, Mo X, Huang H, Zhang S, Gu YC, Ju J. Cytotoxic Anthracycline Metabolites from a Recombinant Streptomyces. JOURNAL OF NATURAL PRODUCTS 2018; 81:1278-1289. [PMID: 29767975 DOI: 10.1021/acs.jnatprod.8b00212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The C7 (C9 or C10)- O-l-rhodosamine-bearing anthracycline antibiotic cytorhodins and their biosynthetic intermediates were recently isolated from Streptomyces sp. SCSIO 1666. Cosmid p17C4 from the Streptomyces lydicus genomic library, which harbors both the biosynthetic genes for l-rhodinose (or 2-deoxy-l-fucose) and its glycosyltransferase (encoded by slgG), was introduced into SCSIO 1666 to yield the recombinant strain Streptomyces sp. SCSIO 1666/17C4. Chemical investigations of this strain's secondary metabolic potential revealed the production of different anthracyclines featuring C7- O-l-rhodinose (or 2-deoxy-l-fucose) instead of the typically observed l-rhodosamine. Purification of the fermentation broth yielded 12 new anthracycline antibiotics including three new ε-rhodomycinone derivatives, 1, 4, and 8, nine new β-rhodomycinone derivatives, 2, 3, 5-7, and 9-12, and three known compounds, l-rhodinose-l-rhodinose-l-rhodinoserhodomycinone (13), ε-rhodomycinone (14), and γ-rhodomycinone (15). All compounds were characterized on the basis of detailed spectroscopic analyses and comparisons with previously reported data. These compounds exhibited cytotoxicity against a panel of human cancer cell lines. Significantly, compounds 4 and 13 displayed pronounced activity against HCT-116 as characterized by IC50 values of 0.3 and 0.2 μM, respectively; these IC50 values are comparable to that of the positive control epirubicin.
Collapse
Affiliation(s)
- Chun Gui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , People's Republic of China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 110039 , People's Republic of China
| | - Jie Yuan
- Zhongshan School of Medicine , Sun Yat-sen University , Guangzhou 510301 , People's Republic of China
| | - Xuhua Mo
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Hongbo Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , People's Republic of China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 110039 , People's Republic of China
| | - Shanwen Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , People's Republic of China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 110039 , People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre , Bracknell , Berkshire RG42 6EY , U.K
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road , Guangzhou 510301 , People's Republic of China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 110039 , People's Republic of China
| |
Collapse
|
18
|
Rudolf JD, Chang CY, Ma M, Shen B. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep 2017; 34:1141-1172. [PMID: 28758170 PMCID: PMC5585785 DOI: 10.1039/c7np00034k] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and <0.4% of streptomycete P450s have been functionally and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
19
|
Mo X, Shi C, Gui C, Zhang Y, Ju J, Wang Q. Identification of nocamycin biosynthetic gene cluster from Saccharothrix syringae NRRL B-16468 and generation of new nocamycin derivatives by manipulating gene cluster. Microb Cell Fact 2017; 16:100. [PMID: 28599654 PMCID: PMC5466765 DOI: 10.1186/s12934-017-0718-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Nocamycins I and II, produced by the rare actinomycete Saccharothrix syringae, belong to the tetramic acid family natural products. Nocamycins show potent antimicrobial activity and they hold great potential for antibacterial agent design. However, up to now, little is known about the exact biosynthetic mechanism of nocamycin. RESULTS In this report, we identified the gene cluster responsible for nocamycin biosynthesis from S. syringae and generated new nocamycin derivatives by manipulating its gene cluster. The biosynthetic gene cluster for nocamycin contains a 61 kb DNA locus, consisting of 21 open reading frames (ORFs). Five type I polyketide synthases (NcmAI, NcmAII, NcmAIII, NcmAIV, NcmAV) and a non-ribosomal peptide synthetase (NcmB) are proposed to be involved in synthesis of the backbone structure, a Dieckmann cyclase NcmC catalyze the releasing of linear chain and the formation of tetramic acid moiety, five enzymes (NcmEDGOP) are related to post-tailoring steps, and five enzymes (NcmNJKIM) function as regulators. Targeted inactivation of ncmB led to nocamycin production being completely abolished, which demonstrates that this gene cluster is involved in nocamycin biosynthesis. To generate new nocamycin derivatives, the gene ncmG, encoding for a cytochrome P450 oxidase, was inactivated. Two new nocamycin derivatives nocamycin III and nocamycin IV were isolated from the ncmG deletion mutant strain and their structures were elucidated by spectroscopic data analyses. Based on bioinformatics analysis and new derivatives isolated from gene inactivation mutant strains, a biosynthetic pathway of nocamycins was proposed. CONCLUSION These findings provide the basis for further understanding of nocamycin biosynthetic mechanism, and set the stage to rationally engineer new nocamycin derivatives via combinatorial biosynthesis strategy.
Collapse
Affiliation(s)
- Xuhua Mo
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Chunrong Shi
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Chun Gui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Rd., Guangzhou, 510301 China
| | - Yanjiao Zhang
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Rd., Guangzhou, 510301 China
| | - Qingji Wang
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| |
Collapse
|
20
|
Ye S, Molloy B, Braña AF, Zabala D, Olano C, Cortés J, Morís F, Salas JA, Méndez C. Identification by Genome Mining of a Type I Polyketide Gene Cluster from Streptomyces argillaceus Involved in the Biosynthesis of Pyridine and Piperidine Alkaloids Argimycins P. Front Microbiol 2017; 8:194. [PMID: 28239372 PMCID: PMC5300972 DOI: 10.3389/fmicb.2017.00194] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Genome mining of the mithramycin producer Streptomyces argillaceus ATCC 12956 revealed 31 gene clusters for the biosynthesis of secondary metabolites, and allowed to predict the encoded products for 11 of these clusters. Cluster 18 (renamed cluster arp) corresponded to a type I polyketide gene cluster related to the previously described coelimycin P1 and streptazone gene clusters. The arp cluster consists of fourteen genes, including genes coding for putative regulatory proteins (a SARP-like transcriptional activator and a TetR-like transcriptional repressor), genes coding for structural proteins (three PKSs, one aminotransferase, two dehydrogenases, two cyclases, one imine reductase, a type II thioesterase, and a flavin reductase), and one gene coding for a hypothetical protein. Identification of encoded compounds by this cluster was achieved by combining several strategies: (i) inactivation of the type I PKS gene arpPIII; (ii) inactivation of the putative TetR-transcriptional repressor arpRII; (iii) cultivation of strains in different production media; and (iv) using engineered strains with higher intracellular concentration of malonyl-CoA. This has allowed identifying six new alkaloid compounds named argimycins P, which were purified and structurally characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. Some argimycins P showed a piperidine ring with a polyene side chain (argimycin PIX); others contain also a fused five-membered ring (argimycins PIV-PVI). Argimycins PI-PII showed a pyridine ring instead, and an additional N-acetylcysteinyl moiety. These compounds seem to play a negative role in growth and colony differentiation in S. argillaceus, and some of them show weak antibiotic activity. A pathway for the biosynthesis of argimycins P is proposed, based on the analysis of proposed enzyme functions and on the structure of compounds encoded by the arp cluster.
Collapse
Affiliation(s)
- Suhui Ye
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Brian Molloy
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Daniel Zabala
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | | | | | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| |
Collapse
|
21
|
Zhang X, Li S. Expansion of chemical space for natural products by uncommon P450 reactions. Nat Prod Rep 2017; 34:1061-1089. [DOI: 10.1039/c7np00028f] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on unusual P450 reactions related to new chemistry, skeleton construction, structure re-shaping, and protein–protein interactions in natural product biosynthesis, which play significant roles in chemical space expansion for natural products.
Collapse
Affiliation(s)
- Xingwang Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology
- CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology
- CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| |
Collapse
|
22
|
Zhang X, Li Z, Du L, Chlipala GE, Lopez PC, Zhang W, Sherman DH, Li S. Identification of an unexpected shunt pathway product provides new insights into tirandamycin biosynthesis. Tetrahedron Lett 2016; 57:5919-5923. [PMID: 28989201 PMCID: PMC5628624 DOI: 10.1016/j.tetlet.2016.11.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tirandamycin K (7), the first linear 7,13;9,13-diseco-tirandamycin derivative, was isolated from the tamI (encoding the TamI P450 monooxygenase) disruption mutant strain (ΔtamI) of marine Streptomyces sp. 307-9. Its chemical structure with relative and absolute configurations was elucidated by a combination of extensive spectroscopic analyses and biosynthetic inferences. Structural elucidation of this unusual compound provides new insights into tirandamycin biosynthesis. Moreover, examination of the biological activity of 7 confirms the essential function of the bicyclic ketal ring for antibiotic activities of tirandamycins.
Collapse
Affiliation(s)
- Xingwang Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Du
- Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - George E. Chlipala
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patricia C. Lopez
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - David H. Sherman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| |
Collapse
|
23
|
FkbN and Tcs7 are pathway-specific regulators of the FK506 biosynthetic gene cluster in Streptomyces tsukubaensis L19. J Ind Microbiol Biotechnol 2016; 43:1693-1703. [PMID: 27757551 DOI: 10.1007/s10295-016-1849-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
FK506 (tacrolimus), which is produced by many Streptomyces strains, is clinically used as an immunosuppressive agent and for treatment of inflammatory skin diseases. Here, we identified that the FK506 biosynthetic gene cluster in an industrial FK506-producing strain Streptomyces tsukubaensis L19 is organized as eight transcription units. Two pathway-specific regulators, FkbN and Tcs7, involved in FK506 biosynthesis from S. tsukubaensis L19 were characterized in vivo and in vitro. FkbN activates the transcription of six transcription units in FK506 biosynthetic gene cluster, and Tcs7 activates the transcription of fkbN. In addition, the DNA-binding specificity of FkbN was determined. Finally, a high FK506-producing strain was constructed by overexpression of both fkbN and tcs7 in S. tsukubaensis L19, which improved FK506 production by 89 % compared to the parental strain.
Collapse
|
24
|
Liu X. Generate a bioactive natural product library by mining bacterial cytochrome P450 patterns. Synth Syst Biotechnol 2016; 1:95-108. [PMID: 29062932 PMCID: PMC5640691 DOI: 10.1016/j.synbio.2016.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
The increased number of annotated bacterial genomes provides a vast resource for genome mining. Several bacterial natural products with epoxide groups have been identified as pre-mRNA spliceosome inhibitors and antitumor compounds through genome mining. These epoxide-containing natural products feature a common biosynthetic characteristic that cytochrome P450s (CYPs) and its patterns such as epoxidases are employed in the tailoring reactions. The tailoring enzyme patterns are essential to both biological activities and structural diversity of natural products, and can be used for enzyme pattern-based genome mining. Recent development of direct cloning, heterologous expression, manipulation of the biosynthetic pathways and the CRISPR-CAS9 system have provided molecular biology tools to turn on or pull out nascent biosynthetic gene clusters to generate a microbial natural product library. This review focuses on a library of epoxide-containing natural products and their associated CYPs, with the intention to provide strategies on diversifying the structures of CYP-catalyzed bioactive natural products. It is conceivable that a library of diversified bioactive natural products will be created by pattern-based genome mining, direct cloning and heterologous expression as well as the genomic manipulation.
Collapse
Affiliation(s)
- Xiangyang Liu
- UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
25
|
Jenifer JSCA, Donio MBS, Michaelbabu M, Vincent SGP, Citarasu T. Haloalkaliphilic Streptomyces spp. AJ8 isolated from solar salt works and its' pharmacological potential. AMB Express 2015; 5:143. [PMID: 26307214 PMCID: PMC4549370 DOI: 10.1186/s13568-015-0143-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022] Open
Abstract
Antagonistic Streptomyces spp. AJ8 was isolated and identified from the Kovalam solar salt works in India. The antimicrobial NRPS cluster gene was characterized by PCR, sequencing and predict the secondary structure analysis. The secondary metabolites will be extracted from different organic solvent extraction and studied the antibacterial, antifungal, antiviral and anticancer activities. In vitro antagonistic activity results revealed that, Streptomyces spp. AJ8 was highly antagonistic against Staphylococcus aureus, Aeromonas hydrophila WPD1 and Candida albicans. The genomic level identification revealed that, the strain was confirmed as Streptomyces spp. AJ8 and submitted the NCBI database (KC603899). The NRPS gene was generated a single gene fragment of 781 bp length (KR491940) and the database analysis revealed that, the closely related to Streptomyces spp. SAUK6068 and S. coeruleoprunus NBRC15400. The secondary metabolites extracted with ethyl acetate was effectively inhibited the bacterial and fungal growth at the ranged between 7 and 19.2 mm of zone of inhibition. The antiviral activity results revealed that, the metabolite was significantly (P < 0.001) controlled the killer shrimp virus white spot syndrome virus at the level of 85 %. The metabolite also suppressed the L929 fibroblast cancer cells at 35.7 % viability in 1000 µg treatment.
Collapse
Affiliation(s)
| | - Mariathason Birdilla Selva Donio
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, 629502 Tamilnadu India
| | - Mariavincent Michaelbabu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, 629502 Tamilnadu India
| | - Samuel Gnana Prakash Vincent
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, 629502 Tamilnadu India
| | - Thavasimuthu Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, 629502 Tamilnadu India
| |
Collapse
|
26
|
Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional regulators in Streptomyces. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1017-39. [PMID: 26093238 DOI: 10.1016/j.bbagrm.2015.06.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Ivonne Robledo-Casados
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
27
|
Gui C, Li Q, Mo X, Qin X, Ma J, Ju J. Discovery of a New Family of Dieckmann Cyclases Essential to Tetramic Acid and Pyridone-Based Natural Products Biosynthesis. Org Lett 2015; 17:628-31. [PMID: 25621700 DOI: 10.1021/ol5036497] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chun Gui
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, China
| | - Qinglian Li
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xuhua Mo
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Shandong
Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangjing Qin
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Junying Ma
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
28
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
29
|
Mo X, Li Q, Ju J. Naturally occurring tetramic acid products: isolation, structure elucidation and biological activity. RSC Adv 2014. [DOI: 10.1039/c4ra09047k] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Natural products containing the tetramic acid core scaffold have been isolated from an assortment of terrestrial and marine species and often display wide ranging and potent biological activities including antibacterial, antiviral and antitumoral activities.
Collapse
Affiliation(s)
- Xuhua Mo
- Shandong Key Laboratory of Applied Mycology
- School of Life Sciences
- Qingdao Agricultural University
- Qingdao, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| |
Collapse
|
30
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
31
|
Zhang Y, Huang H, Chen Q, Luo M, Sun A, Song Y, Ma J, Ju J. Identification of the Grincamycin Gene Cluster Unveils Divergent Roles for GcnQ in Different Hosts, Tailoring the l-Rhodinose Moiety. Org Lett 2013; 15:3254-7. [PMID: 23782455 DOI: 10.1021/ol401253p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yun Zhang
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hongbo Huang
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qi Chen
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Minghe Luo
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Aijun Sun
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yongxiang Song
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Junying Ma
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
32
|
Rateb ME, Yu Z, Yan Y, Yang D, Huang T, Vodanovic-Jankovic S, Kron MA, Shen B. Medium optimization of Streptomyces sp. 17944 for tirandamycin B production and isolation and structural elucidation of tirandamycins H, I and J. J Antibiot (Tokyo) 2013; 67:127-32. [PMID: 23715040 PMCID: PMC3773001 DOI: 10.1038/ja.2013.50] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 01/27/2023]
Abstract
We have recently isolated tirandamycin (TAM) B from Streptomyces sp. 17944 as a Brugia malayi AsnRS (BmAsnRS) inhibitor that efficiently kills the adult B. malayi parasites and does not exhibit general cytotoxicity to human hepatic cells. We now report (i) the comparison of metabolite profiles of S. sp. 17944 in six different media, (ii) identification of a medium enabling the production of TAM B as essentially the sole metabolite, and with improved titer, and (iii) isolation and structural elucidation of three new TAM congeners. These findings shed new insights into the structure-activity relationship of TAM B as a BmAsnRS inhibitor, highlighting the δ-hydroxymethyl-α,β-epoxyketone moiety as the critical pharmacophore, and should greatly facilitate the production and isolation of sufficient quantities of TAM B for further mechanistic and preclinical studies to advance the candidacy of TAM B as an antifilarial drug lead. The current study also serves as an excellent reminder that traditional medium and fermentation optimization should continue to be very effective in improving metabolite flux and titer.
Collapse
Affiliation(s)
- Mostafa E Rateb
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Zhiguo Yu
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Yijun Yan
- 1] Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA [2] School of Life Science, Northeast Agricultural University, Harbin, China
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Tingting Huang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Sanja Vodanovic-Jankovic
- Biotechnology and Bioengineering Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael A Kron
- Biotechnology and Bioengineering Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ben Shen
- 1] Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA [2] Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA [3] Natural Products Library Initiative, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
33
|
Gómez C, Olano C, Méndez C, Salas JA. Three pathway-specific regulators control streptolydigin biosynthesis in Streptomyces lydicus. Microbiology (Reading) 2012; 158:2504-2514. [DOI: 10.1099/mic.0.061325-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Cristina Gómez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
34
|
Gómez C, Horna DH, Olano C, Méndez C, Salas JA. Participation of putative glycoside hydrolases SlgC1 and SlgC2 in the biosynthesis of streptolydigin in Streptomyces lydicus. Microb Biotechnol 2012; 5:663-7. [PMID: 22726958 PMCID: PMC3815878 DOI: 10.1111/j.1751-7915.2012.00352.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 11/28/2022] Open
Abstract
Two genes of the streptolydigin gene cluster in Streptomyces lydicus cluster encode putative family 16 glycoside hydrolases. Both genes are expressed when streptolydigin is produced. Inactivation of these genes affects streptolydigin production when the microorganism is grown in minimal medium containing either glycerol or d-glucans as carbon source. Streptolydigin yields in S. lydicus were increased by overexpression of either slgC1 or slgC2.
Collapse
Affiliation(s)
- Cristina Gómez
- Departamento de Biología Funcional, Universidad de Oviedo, 33006, Oviedo, Spain
| | | | | | | | | |
Collapse
|
35
|
Novel compounds produced by Streptomyces lydicus NRRL 2433 engineered mutants altered in the biosynthesis of streptolydigin. J Antibiot (Tokyo) 2012; 65:341-8. [PMID: 22569159 DOI: 10.1038/ja.2012.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Streptolydigin is a tetramic acid antibiotic produced by Streptomyces lydicus NRRL 2433 and involving a hybrid polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) system in its biosynthesis. The streptolydigin amino-acid precursor, 3-methylaspartate, has been proposed to be condensed to the polyketide portion of the molecule by a NRPS composed by three enzymes (SlgN1, SlgN2 and SlgL). On the other hand, biosynthesis of the polyketide moiety involves the participation of cytochrome P450 SlgO2 for the correct cyclization of the characteristic bicyclic ketal. Independent disruption of slgN1, slgN2, slgL or slgO2 resulted in S. lydicus mutants unable to produce the antibiotic thus confirming the involvement of these genes in the biosynthesis of the antibiotic. These mutants did not accumulate any streptolydigin biosynthesis intermediate or shunt product derived from early polyketides released from the PKS. However, they produced three novel compounds identified as 4-(2-carboxy-propylamino)-3-chloro-benzoic acid, 4-(2-carboxy-propylamino)-3-hydroxy-benzoic acid and 4-(2-carboxy-propylamino)-benzoic acid, which were designated as christolane A, christolane B and christolane C, respectively. These compounds have been shown to exert some antibiotic activity.
Collapse
|
36
|
Mo X, Ma J, Huang H, Wang B, Song Y, Zhang S, Zhang C, Ju J. Δ11,12 Double Bond Formation in Tirandamycin Biosynthesis is Atypically Catalyzed by TrdE, a Glycoside Hydrolase Family Enzyme. J Am Chem Soc 2012; 134:2844-7. [PMID: 22280373 DOI: 10.1021/ja206713a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuhua Mo
- CAS Key Laboratory of Marine
Bio-resources Sustainable Utilization, Guangdong Key Laboratory of
Marine Materia Medica, RNAM Center for Marine Microbiology, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Graduate University of the Chinese Academy of Sciences, 19 Yuquan Road,
Beijing 110039, China
| | - Junying Ma
- CAS Key Laboratory of Marine
Bio-resources Sustainable Utilization, Guangdong Key Laboratory of
Marine Materia Medica, RNAM Center for Marine Microbiology, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hongbo Huang
- CAS Key Laboratory of Marine
Bio-resources Sustainable Utilization, Guangdong Key Laboratory of
Marine Materia Medica, RNAM Center for Marine Microbiology, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Bo Wang
- CAS Key Laboratory of Marine
Bio-resources Sustainable Utilization, Guangdong Key Laboratory of
Marine Materia Medica, RNAM Center for Marine Microbiology, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yongxiang Song
- CAS Key Laboratory of Marine
Bio-resources Sustainable Utilization, Guangdong Key Laboratory of
Marine Materia Medica, RNAM Center for Marine Microbiology, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Si Zhang
- CAS Key Laboratory of Marine
Bio-resources Sustainable Utilization, Guangdong Key Laboratory of
Marine Materia Medica, RNAM Center for Marine Microbiology, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Changsheng Zhang
- CAS Key Laboratory of Marine
Bio-resources Sustainable Utilization, Guangdong Key Laboratory of
Marine Materia Medica, RNAM Center for Marine Microbiology, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Marine
Bio-resources Sustainable Utilization, Guangdong Key Laboratory of
Marine Materia Medica, RNAM Center for Marine Microbiology, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
37
|
Discovery and engineered overproduction of antimicrobial nucleoside antibiotic A201A from the deep-sea marine actinomycete Marinactinospora thermotolerans SCSIO 00652. Antimicrob Agents Chemother 2011; 56:110-4. [PMID: 22064543 DOI: 10.1128/aac.05278-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marinactinospora thermotolerans SCSIO 00652, originating from a deep-sea marine sediment of the South China Sea, was discovered to produce antimicrobial nucleoside antibiotic A201A. Whole-genome scanning and annotation strategies enabled us to localize the genes responsible for A201A biosynthesis and to experimentally identify the gene cluster; inactivation of mtdF, an oxidoreductase gene within the suspected gene cluster, abolished A201A production. Bioinformatics analysis revealed that a gene designated mtdA furthest upstream within the A201A biosynthetic gene cluster encodes a GntR family transcriptional regulator. To determine the role of MtdA in regulating A201A production, the mtdA gene was inactivated in frame and the resulting ΔmtdA mutant was fermented alongside the wild-type strain as a control. High-performance liquid chromatography (HPLC) analyses of fermentation extracts revealed that the ΔmtdA mutant produced A201A in a yield ∼25-fold superior to that of the wild-type strain, thereby demonstrating that MtdA is a negative transcriptional regulator governing A201A biosynthesis. By virtue of its high production capacity, the ΔmtdA mutant constitutes an ideal host for the efficient large-scale production of A201A. These results validate M. thermotolerans as an emerging source of antibacterial agents and highlight the efficiency of metabolic engineering for antibiotic titer improvement.
Collapse
|
38
|
Kang Q, Bai L, Deng Z. Toward steadfast growth of antibiotic research in China: from natural products to engineered biosynthesis. Biotechnol Adv 2011; 30:1228-41. [PMID: 21930196 DOI: 10.1016/j.biotechadv.2011.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 11/30/2022]
Abstract
Antibiotics are widely used for clinical treatment and preventing or curing diseases in agriculture. Cloning and studies of their biosynthetic gene clusters are vital for yield enhancement and engineering new derivatives with new and prominent activities. In recent years, research in this aspect is impressively active in China. This article reviews biosynthetic progress on 28 antibiotics, including polyketides, nonribosomal peptides, hybrid polyketide-nonribosomal peptides, peptidyl nucleoside, nucleoside, and others. Their biosynthetic mechanisms were disclosed, and their derivatives with new structures/activities were obtained by gene inactivation, mutasynthesis and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Qianjin Kang
- State key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | |
Collapse
|
39
|
Mo X, Huang H, Ma J, Wang Z, Wang B, Zhang S, Zhang C, Ju J. Characterization of TrdL as a 10-Hydroxy Dehydrogenase and Generation of New Analogues from a Tirandamycin Biosynthetic Pathway. Org Lett 2011; 13:2212-5. [PMID: 21456513 DOI: 10.1021/ol200447h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuhua Mo
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P.R. China, and Graduate University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, P.R. China
| | - Hongbo Huang
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P.R. China, and Graduate University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, P.R. China
| | - Junying Ma
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P.R. China, and Graduate University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, P.R. China
| | - Zhongwen Wang
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P.R. China, and Graduate University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, P.R. China
| | - Bo Wang
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P.R. China, and Graduate University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, P.R. China
| | - Si Zhang
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P.R. China, and Graduate University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, P.R. China
| | - Changsheng Zhang
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P.R. China, and Graduate University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, P.R. China
| | - Jianhua Ju
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P.R. China, and Graduate University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 110039, P.R. China
| |
Collapse
|