1
|
Li Z, Tian Y. Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review). Int J Mol Med 2025; 55:5. [PMID: 39450541 PMCID: PMC11537270 DOI: 10.3892/ijmm.2024.5446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
A dynamic balance exists between osteogenesis and osteoclastogenesis in bone tissue, which can lead to several bone diseases, such as osteoporosis, osteoarthritis, bone necrosis and bone defects, in cases of insufficient osteogenesis or excessive osteoclastogenesis. NEL‑like molecule‑1 (NELL‑1) was first discovered in 1999 as an osteogenic factor that can prevent or treat bone diseases by increasing osteogenic levels. To date, research has identified multiple signaling pathways involved in improving osteogenic levels. Furthermore, to apply NELL‑1 in clinical practice, researchers have optimized its osteogenic effect by combining it with other molecules, changing its molecular structure and performing bone tissue engineering. Currently, research on NELL‑1 is gaining increasing attention. In the near future, it will definitely be applied in clinical practice to eliminate diseases. Thus, the present study provides a comprehensive review of NELL‑1 in enhancing osteogenic levels from the perspectives of the molecular mechanism, interactions with other molecules/cells, molecular‑level changes, applications in bone tissue engineering and its expression in tumors, providing a solid theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Zihan Li
- Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yihao Tian
- Department of Pathology, Beifang Hospital of China Medical University, General Hospital of Northern Theater Command, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
2
|
Gu Y, Song Y, Pan Y, Liu J. The essential roles of m 6A modification in osteogenesis and common bone diseases. Genes Dis 2024; 11:335-345. [PMID: 37588215 PMCID: PMC10425797 DOI: 10.1016/j.gendis.2023.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 03/30/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent modification in the eukaryotic transcriptome and has a wide range of functions in coding and noncoding RNAs. It affects the fate of the modified RNA, including its stability, splicing, and translation, and plays an important role in post-transcriptional regulation. Bones play a key role in supporting and protecting muscles and other organs, facilitating the movement of the organism, ensuring blood production, etc. Bone diseases such as osteoarthritis, osteoporosis, and bone tumors are serious public health problems. The processes of bone development and osteogenic differentiation require the precise regulation of gene expression through epigenetic mechanisms including histone, DNA, and RNA modifications. As a reversible dynamic epigenetic mark, m6A modifications affect nearly every important biological process, cellular component, and molecular function, including skeletal development and homeostasis. In recent years, studies have shown that m6A modification is involved in osteogenesis and bone-related diseases. In this review, we summarized the proteins involved in RNA m6A modification and the latest progress in elucidating the regulatory role of m6A modification in bone formation and stem cell directional differentiation. We also discussed the pathological roles and potential molecular mechanisms of m6A modification in bone-related diseases like osteoporosis and osteosarcoma and suggested potential areas for new strategies that could be used to prevent or treat bone defects and bone diseases.
Collapse
Affiliation(s)
- Yuxi Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yidan Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yihua Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Qi J, Wu H, Liu G. Novel Strategies for Spatiotemporal and Controlled BMP-2 Delivery in Bone Tissue Engineering. Cell Transplant 2024; 33:9636897241276733. [PMID: 39305020 PMCID: PMC11418245 DOI: 10.1177/09636897241276733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/25/2024] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) has been commercially approved by the Food and Drug Administration for use in bone defects and diseases. BMP-2 promotes osteogenic differentiation of mesenchymal stem cells. In bone tissue engineering, BMP-2 incorporated into scaffolds can be used for stimulating bone regeneration in organoid construction, drug testing platforms, and bone transplants. However, the high dosage and uncontrollable release rate of BMP-2 challenge its clinical application, mainly due to the short circulation half-life of BMP-2, microbial contamination in bone extracellular matrix hydrogel, and the delivery method. Moreover, in clinical translation, the requirement of high doses of BMP-2 for efficacy poses challenges in cost and safety. Based on these, novel strategies should ensure that BMP-2 is delivered precisely to the desired location within the body, regulating the timing of BMP-2 release to coincide with the bone healing process, as well as release BMP-2 in a controlled manner to optimize its therapeutic effect and minimize side effects. This review highlights improvements in bone tissue engineering applying spatiotemporal and controlled BMP-2 delivery, including molecular engineering, biomaterial modification, and synergistic therapy, aiming to provide references for future research and clinical trials.
Collapse
Affiliation(s)
- Jingqi Qi
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hongwei Wu
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Gengyan Liu
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
4
|
Altoum SM, Al-Mahayri ZN, Ali BR. Antihypertensives associated adverse events: a review of mechanisms and pharmacogenomic biomarkers available evidence in multi-ethnic populations. Front Pharmacol 2023; 14:1286494. [PMID: 38108069 PMCID: PMC10722273 DOI: 10.3389/fphar.2023.1286494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Hypertension remains a significant health burden worldwide, re-emphasizing the outstanding need for more effective and safer antihypertensive therapeutic approaches. Genetic variation contributes significantly to interindividual variability in treatment response and adverse events, suggesting pharmacogenomics as a major approach to optimize such therapy. This review examines the molecular mechanisms underlying antihypertensives-associated adverse events and surveys existing research on pharmacogenomic biomarkers associated with these events. The current literature revealed limited conclusive evidence supporting the use of genetic variants as reliable indicators of antihypertensive adverse events. However, several noteworthy associations have emerged, such as 1) the role of ACE variants in increasing the risk of multiple adverse events, 2) the bradykinin pathway's involvement in cough induced by ACE inhibitors, and 3) the impact of CYP2D6 variants on metoprolol-induced bradycardia. Nonetheless, challenges persist in identifying biomarkers for adverse events across different antihypertensive classes, sometimes due to the rarity of certain events, such as ACE inhibitors-induced angioedema. We also highlight the main limitations of previous studies that warrant attention, including using a targeted gene approach with a limited number of tested variants, small sample sizes, and design issues such as overlooking doses or the time between starting treatment and the onset of adverse events. Addressing these challenges requires collaborative efforts and the integration of technological advancements, such as next-generation sequencing, which can significantly enhance research outcomes and provide the needed evidence. Furthermore, the potential combination of genomic biomarker identification and machine learning is a promising approach for tailoring antihypertensive therapy to individual patients, thereby mitigating the risk of developing adverse events. In conclusion, a deeper understanding of the mechanisms and the pharmacogenomics of adverse events in antihypertensive therapy will likely pave the way for more personalized treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Sahar M. Altoum
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zeina N. Al-Mahayri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Sparks L, Whytock K, Divoux A, Sun Y, Pino M, Yu G, Smith S, Walsh M. A single nuclei atlas of aging human abdominal subcutaneous white adipose tissue. RESEARCH SQUARE 2023:rs.3.rs-3097605. [PMID: 37503028 PMCID: PMC10371078 DOI: 10.21203/rs.3.rs-3097605/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
White adipose tissue (WAT) is a robust energy storage and endocrine organ critical for maintaining metabolic health as we age. Our aim was to identify cell-specific transcriptional aberrations that occur in WAT with aging. We leveraged full-length snRNA-Seq to characterize the cellular landscape of human subcutaneous WAT in a prospective cohort of 10 Younger (≤ 30 years) and 10 Older individuals (≥ 65 years) balanced for sex and body mass index (BMI). We highlight that aging WAT is associated with adipocyte hypertrophy, increased proportions of resident macrophages (M2), an upregulated innate immune response and senescence profiles in specific adipocyte populations, highlighting CXCL14 as a biomarker of this process. We also identify novel markers of pre-adipocytes and track their expression levels through pre-adipocyte differentiation. We propose that aging WAT is associated with low-grade inflammation that is managed by a foundation of innate immunity to preserve the metabolic health of the WAT.
Collapse
Affiliation(s)
| | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai
| | - Maria Pino
- Translational Research Institute, AdventHealth
| | - Gongxin Yu
- Translational Research Institute, AdventHealth
| | | | | |
Collapse
|
6
|
Tanjaya J, Ha P, Zhang Y, Wang C, Shah Y, Berthiaume E, Pan HC, Shi J, Kwak J, Wu B, Ting K, Zhang X, Soo C. Genetic and pharmacologic suppression of PPARγ enhances NELL-1-stimulated bone regeneration. Biomaterials 2022; 287:121609. [PMID: 35839586 PMCID: PMC10434299 DOI: 10.1016/j.biomaterials.2022.121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/15/2022] [Accepted: 05/28/2022] [Indexed: 11/02/2022]
Abstract
Recent investigations into mechanisms behind the development of osteoporosis suggest that suppressing PPARγ-mediated adipogenesis can improve bone formation and bone mineral density. In this study, we investigated a co-treatment strategy to enhance bone formation by combining NELL-1, an osteogenic molecule that has been extensively studied for its potential use as a therapeutic for osteoporosis, with two methods of PPARγ suppression. First, we suppressed PPARγ genetically using lentiviral PPARγ-shRNA in immunocompromised mice for a proof of concept. Second, we used a PPARγ antagonist to suppress PPARγ pharmacologically in immunocompetent senile osteopenic mice for clinical transability. We found that the co-treatment strategy significantly increased bone formation, increased the proliferation stage cell population, decreased late apoptosis of primary mouse BMSCs, and increased osteogenic marker mRNA levels in comparison to the single agent treatment groups. The addition of PPARγ suppression to NELL-1 therapy enhanced NELL-1's effects on bone formation by upregulating anabolic processes without altering NELL-1's inhibitory effects on osteoclastic and adipogenic activities. Our findings suggest that combining PPARγ suppression with therapeutic NELL-1 may be a viable method that can be further developed as a novel strategy to reverse bone loss and decrease marrow adiposity in age-related osteoporosis.
Collapse
Affiliation(s)
- Justine Tanjaya
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Pin Ha
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Yulong Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA, USA, 90025; Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Chenchao Wang
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Yash Shah
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Emily Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Hsin Chuan Pan
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Jiayu Shi
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Jinny Kwak
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Benjamin Wu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA, USA, 90025; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA, 90025; Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Kang Ting
- Forsyth Institute, Harvard University, Cambridge, MA, USA, 02142.
| | - Xinli Zhang
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA, 90025; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA, 90025; Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025.
| |
Collapse
|
7
|
Duan C, Townley HE. Isolation of NELL 1 Aptamers for Rhabdomyosarcoma Targeting. Bioengineering (Basel) 2022; 9:bioengineering9040174. [PMID: 35447734 PMCID: PMC9032205 DOI: 10.3390/bioengineering9040174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
NELL1 (Neural epidermal growth factor-like (EGFL)-like protein) is an important biomarker associated with tissue and bone development and regeneration. NELL1 upregulation has been linked with metastasis and negative prognosis in rhabdomyosarcoma (RMS). Furthermore, multiple recent studies have also shown the importance of NELL1 in inflammatory bowel disease and membranous nephropathy, amongst other diseases. In this study, several anti-NELL1 DNA aptamers were selected from a randomized ssDNA pool using a fluorescence-guided method and evaluated for their binding affinity and selectivity. Several other methods such as a metabolic assay and confocal microscopy were also applied for the evaluation of the selected aptamers. The top three candidates were evaluated further, and AptNCan3 was shown to have a binding affinity up to 959.2 nM. Selectivity was examined in the RH30 RMS cells that overexpressed NELL1. Both AptNCan2 and AptNCan3 could significantly suppress metabolic activity in RMS cells. AptNCan3 was found to locate on the cell membrane and also on intracellular vesicles, which matched the location of NELL1 shown by antibodies in previous research. These results indicate that the selected anti-NELL1 aptamer showed strong and highly specific binding to NELL1 and therefore has potential to be used for in vitro or in vivo studies and treatments.
Collapse
Affiliation(s)
- Chengchen Duan
- Nuffield Department of Women’s and Reproductive Health, Oxford University John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Helen Elizabeth Townley
- Nuffield Department of Women’s and Reproductive Health, Oxford University John Radcliffe Hospital, Oxford OX3 9DU, UK;
- Department of Engineering Science, Oxford University, Oxford OX1 3PJ, UK
- Correspondence: ; Tel.: +44-1865-283792
| |
Collapse
|
8
|
Lee CJ, Choi B, Pak H, Park JM, Lee JH, Lee SH. Genetic Variants Associated with Adverse Events after Angiotensin-Converting Enzyme Inhibitor Use: Replication after GWAS-Based Discovery. Yonsei Med J 2022; 63:342-348. [PMID: 35352885 PMCID: PMC8965428 DOI: 10.3349/ymj.2022.63.4.342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Angiotensin-converting enzyme inhibitors (ACEIs) are medications generally prescribed for patients with high cardiovascular risk; however, they are suboptimally used due to frequent adverse events (AEs). The present study aimed to identify and replicate the genetic variants associated with ACEI-related AEs in the Korean population. MATERIALS AND METHODS A two-stage approach employing genome-wide association study (GWAS)-based discovery and replication through target sequencing was used. In total, 1300 individuals received ACEIs from 2001 to 2007; among these, 228 were selected for GWAS. An additional 336 patients were selected for replication after screening 1186 subjects treated from 2008 to 2018. Candidate genes for target sequencing were selected based on the present GWAS, previous GWASs, and data from the PharmGKB database. Furthermore, association analyses were performed between no AE and AE or cough groups after target sequencing. RESULTS Five genes, namely CRIM1, NELL1, CACNA1D, VOPP1, and MYBPC1, were identified near variants associated with ACEI-related AEs. During target sequencing of 34 candidate genes, six single-nucleotide polymorphisms (SNPs; rs5224, rs8176786, rs10766756, rs561868018, rs4974539, and rs10946364) were replicated for association with all ACEI-related AEs. Four of these SNPs and rs147912715 exhibited associations with ACEI-related cough, whereas four SNPs (rs5224, rs81767786, rs10766756, and rs4974539 near BDKRB2, NELL1, NELL1 intron, and CPN2, respectively) were significantly associated with both categories of AEs. CONCLUSION Several variants, including novel and known variants, were successfully replicated and found to have associations with ACEI-related AEs. These results provide rare and clinically relevant information for safer use of ACEIs.
Collapse
Affiliation(s)
- Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Bogeum Choi
- Kyung Hee University College of Medicine, Seoul, Korea
| | - Hayeon Pak
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jung Mi Park
- Department of Biostatistics and Computing, Graduate School, Yonsei University, Seoul, Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul, Korea.
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Thomas S, Jaganathan BG. Signaling network regulating osteogenesis in mesenchymal stem cells. J Cell Commun Signal 2022; 16:47-61. [PMID: 34236594 PMCID: PMC8688675 DOI: 10.1007/s12079-021-00635-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Osteogenesis is an important developmental event that results in bone formation. Bone forming cells or osteoblasts develop from mesenchymal stem cells (MSCs) through a highly controlled process regulated by several signaling pathways. The osteogenic lineage commitment of MSCs is controlled by cell-cell interactions, paracrine factors, mechanical signals, hormones, and cytokines present in their niche, which activate a plethora of signaling molecules belonging to bone morphogenetic proteins, Wnt, Hedgehog, and Notch signaling. These signaling pathways individually as well as in coordination with other signaling molecules, regulate the osteogenic lineage commitment of MSCs by activating several osteo-lineage specific transcription factors. Here, we discuss the key signaling pathways that regulate osteogenic differentiation of MSCs and the cross-talk between them during osteogenic differentiation. We also discuss how these signaling pathways can be modified for therapy for bone repair and regeneration.
Collapse
Affiliation(s)
- Sachin Thomas
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
10
|
Cheng X, Shi J, Jia Z, Ha P, Soo C, Ting K, James AW, Shi B, Zhang X. NELL-1 in Genome-Wide Association Studies across Human Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:395-405. [PMID: 34890556 PMCID: PMC8895422 DOI: 10.1016/j.ajpath.2021.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023]
Abstract
Neural epidermal growth factor-like (EGFL)-like protein (NELL)-1 is a potent and key osteogenic factor in the development and regeneration of skeletal tissues. Intriguingly, accumulative data from genome-wide association studies (GWASs) have started unveiling potential broader roles of NELL-1 beyond its functions in bone and cartilage. With exploration of the genetic variants of the entire genome in large-scale disease cohorts, GWASs have been used for establishing the connection between specific single-nucleotide polymorphisms of NELL1, in addition to osteoporosis, metabolic diseases, inflammatory conditions, neuropsychiatric diseases, neurodegenerative disorders, and malignant tumors. This review summarizes the findings from GWASs on the manifestation, significance level, implications on function, and correlation of specific NELL1 single-nucleotide polymorphisms in various disorders in humans. By offering a unique and comprehensive correlation between genetic variants and plausible functions of NELL1 in GWASs, this review illustrates the wide range of potential effects of a single gene on the pathogenesis of multiple disorders in humans.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and the Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Jiayu Shi
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and the Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pin Ha
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California-Los Angeles, Los Angeles, California
| | - Kang Ting
- Forsyth Institute, affiliate of the Harvard School of Dental Medicine, Boston, Massachusetts
| | - Aaron W James
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bing Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and the Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California.
| |
Collapse
|
11
|
METTL3-Mediated lncRNA m 6A Modification in the Osteogenic Differentiation of Human Adipose-Derived Stem Cells Induced by NEL-Like 1 Protein. Stem Cell Rev Rep 2021; 17:2276-2290. [PMID: 34505967 DOI: 10.1007/s12015-021-10245-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES This study aimed to explore the regulatory mechanism of methyltransferase3 (METTL3) -mediated long non-coding RNA (lncRNA) N6-methyladenosine (m6A) modification in the osteogenic differentiation of human adipose-derived stem cells (hASCs) induced by NEL-like 1 protein (NELL-1). MATERIALS AND METHODS Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and high- throughput sequencing for RNA (RNA-seq) were performed on hASCs. Osteogenic ability was detected by alkaline phosphatase (ALP) staining, Alizarin Red S(ARS) staining, ALP quantification and Quantitative real-time polymerase chain reaction analysis (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis predicted the osteogenesis-related pathways enriched for the lncRNAs and identified the target lncRNAs. After overexpression and knockdown of METTL3, methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) and qRT-PCR were used to detect the levels of m6A modification and the expression of the target lncRNA, and the binding of both was confirmed by RNA binding protein immunoprecipitation (RIP) assay. The effects of lncRNA and METTL3 on phosphorylation of the key proteins of the pathway were detected by western blot analysis. RESULTS In vitro experiments showed that METTL3 can promote osteogenic differentiation and that its expression level is upregulated. KEGG pathway analysis predicted that lncRNAs with differentially upregulated methylated peaks were enriched mostly in the mitogen-activated protein kinase (MAPK) signaling pathway, in which Serine/threonine protein kinase 3 (STK3) was the predicted target gene of the lncRNA RP11-44 N12.5. The m6A modification and expression of RP11-44 N12.5 were both regulated by METTL3. Subsequently, lncRNA RP11-44 N12.5 and METTL3 were found to regulate the phosphorylation levels of three key proteins in the MAPK signaling pathway, ERK, JNK and p38. CONCLUSIONS This study shows, for the first time, that METTL3 can activate the MAPK signaling pathway by regulating the m6A modification and expression of a lncRNA, thereby enhancing the osteogenic differentiation of hASCs.
Collapse
|
12
|
Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (Beijing) 2021; 2:145-174. [PMID: 34766140 PMCID: PMC8491221 DOI: 10.1002/mco2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells' investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zane Mills
- College of DentistryUniversity of OklahomaOklahoma CityOklahomaUSA
| | - Zhong Zheng
- Division of Growth and Development, School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
13
|
Chen J, Tian Y, Zhang Q, Ren D, Zhang Q, Yan X, Wang L, He Z, Zhang W, Zhang T, Yuan X. Novel Insights Into the Role of N6-Methyladenosine RNA Modification in Bone Pathophysiology. Stem Cells Dev 2020; 30:17-28. [PMID: 33231507 DOI: 10.1089/scd.2020.0157] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thus far, there are more than known 150 modifications to RNA, in which common internal modifications of mRNA include N6-methyladenosine (m6A), N1-methyladenosine, and 5-methylcytosine. Among them, m6A RNA modification is one of the highest abundance modifications in eukaryotes, regulating mechanisms controlling gene expression at the post-transcription level. As an invertible and dynamic epigenetic marker, m6A base modification influences almost all vital biological processes, cellular components, and molecular functions. Once the m6A modification process is abnormal, a series of diseases-including cancer, neurological diseases, and growth disorders-will be caused. Besides, several base modification activities also have been created by noncoding RNAs (ncRNAs), for instance, microRNAs, and circular RNAs, long ncRNAs, which were dynamically regulated during bone and cartilage pathophysiology processes. Therefore, it has now been clear that dynamic modification on coding RNAs and ncRNAs represents a completely new way to modulate genetic information. In this review, we highlight up-to-date progress and applications of m6A RNA modification in bone and cartilage pathophysiology, and we discuss the pathological roles and underlying molecular mechanism of m6A modifications in osteoarthritis and osteoporosis and osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Junbo Chen
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Yihong Tian
- School of Stomatology, Qingdao University, Qingdao, China
| | - Qi Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingzhi Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Zijing He
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Tianzhen Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Yu L, Cen X, Xia K, Huang X, Sun W, Zhao Z, Liu J. microRNA expression profiles and the potential competing endogenous RNA networks in NELL-1-induced human adipose-derived stem cell osteogenic differentiation. J Cell Biochem 2020; 121:4623-4641. [PMID: 32065449 DOI: 10.1002/jcb.29695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/27/2020] [Indexed: 02/05/2023]
Abstract
Studies have indicated that Nel-like molecule-1 (NELL-1) was an osteoblast-specific cytokine and some specific microRNAs (miRNAs) could serve as competing endogenous RNA (ceRNA) to partake in osteogenic differentiation of human adipose-derived stem cells (hASCs). The aim of this study was to explore the potential functional mechanisms of recombinant human NELL-1 protein (rhNELL-1) during hASCs osteogenic differentiation. rhNELL-1 was added to osteogenic medium to activate osteogenic differentiation of hASCs. High-throughput RNA sequencing (RNA-Seq) was performed and validated by real-time quantitative polymerase chain reaction. Gene ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed to detect the functions of differentially expressed miRNAs and genes. Coding-noncoding gene co-expression network and ceRNA networks were constructed to predict the potential regulatory role of miRNAs. A total of 1010 differentially expressed miRNAs and 1762 differentially expressed messenger RNAs (mRNAs) were detected. miRNA-370-3p, bone morphogenetic protein 2 (BMP2), and parathyroid hormone like hormone (PTHLH) were differentially expressed during NELL-1-induced osteogenesis. Bioinformatic analyses demonstrated that these differentially expressed miRNAs and mRNAs enriched in Rap1 signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, Glucagon signaling pathway, and hypoxia-inducible factor-1 signaling pathway, which were important pathways related to osteogenic differentiation. In addition, miRNA-370-3p and has-miR-485-5p were predicted to interact with circ0001543, circ0002405, and ENST00000570267 in ceRNA networks. Based on the gain or loss of functional experiments by transfection, the results showed that miR-370-3p was a key regulator in osteogenic differentiation by targeting BMP2 and disturbing the expression of PTHLH, and participated in NELL-1-stimulated osteogenesis. The present study provided the primary data and evidence for further exploration on the roles of miRNAs and ceRNAs during NELL-1-induced ossification of hASCs.
Collapse
Affiliation(s)
- Liyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kai Xia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wentian Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Xia K, Cen X, Yu L, Huang X, Sun W, Zhao Z, Liu J. Long noncoding RNA expression profiles during the NEL-like 1 protein-induced osteogenic differentiation. J Cell Physiol 2020; 235:6010-6022. [PMID: 31985033 DOI: 10.1002/jcp.29526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/09/2020] [Indexed: 02/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) are important modulators of mesenchymal stem cells (MSCs) in cellular differentiation. However, the regulatory mechanisms of lncRNAs in NEL-like 1 (NELL-1)-induced osteogenic differentiation of human adipose-derived stem cells remain elusive. Expression profiles of lncRNAs and messenger RNAs during NELL-1-induced osteogenesis were obtained using high-throughput sequencing. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene coexpression networks were performed. We identified 323 statistically differentially expressed lncRNAs during osteogenesis and NELL-1-induced osteogenesis, and three lncRNAs (ENST00000602964, ENST00000326734, and TCONS_00006792) were identified as core regulators. Hedgehog pathway markers, including IHH and GLI1, were downregulated, while the antagonists of this pathway (GLI3 and HHIP) were upregulated during NELL-1-induced osteogenesis. In this process, the antagonist of Wnt, SFRP1, was downregulated. According to the analysis, we speculated that lncRNAs played important roles in NELL-1-induced osteogenesis via the crosstalk between Hedgehog and Wnt pathways.
Collapse
Affiliation(s)
- Kai Xia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wentian Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Effect of dietary nutrition on tail fat deposition and evaluation of tail-related genes in fat-tailed sheep. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Chen X, Wang H, Yu M, Kim JK, Qi H, Ha P, Jiang W, Chen E, Luo X, Needle RB, Baik L, Yang C, Shi J, Kwak JH, Ting K, Zhang X, Soo C. Cumulative inactivation of Nell-1 in Wnt1 expressing cell lineages results in craniofacial skeletal hypoplasia and postnatal hydrocephalus. Cell Death Differ 2020; 27:1415-1430. [PMID: 31582804 PMCID: PMC7206096 DOI: 10.1038/s41418-019-0427-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/09/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023] Open
Abstract
Upregulation of Nell-1 has been associated with craniosynostosis (CS) in humans, and validated in a mouse transgenic Nell-1 overexpression model. Global Nell-1 inactivation in mice by N-ethyl-N-nitrosourea (ENU) mutagenesis results in neonatal lethality with skeletal abnormalities including cleidocranial dysplasia (CCD)-like calvarial bone defects. This study further defines the role of Nell-1 in craniofacial skeletogenesis by investigating specific inactivation of Nell-1 in Wnt1 expressing cell lineages due to the importance of cranial neural crest cells (CNCCs) in craniofacial tissue development. Nell-1flox/flox; Wnt1-Cre (Nell-1Wnt1 KO) mice were generated for comprehensive analysis, while the relevant reporter mice were created for CNCC lineage tracing. Nell-1Wnt1 KO mice were born alive, but revealed significant frontonasal and mandibular bone defects with complete penetrance. Immunostaining demonstrated that the affected craniofacial bones exhibited decreased osteogenic and Wnt/β-catenin markers (Osteocalcin and active-β-catenin). Nell-1-deficient CNCCs demonstrated a significant reduction in cell proliferation and osteogenic differentiation. Active-β-catenin levels were significantly low in Nell-1-deficient CNCCs, but were rescued along with osteogenic capacity to a level close to that of wild-type (WT) cells via exogenous Nell-1 protein. Surprisingly, 5.4% of young adult Nell-1Wnt1 KO mice developed hydrocephalus with premature ossification of the intrasphenoidal synchondrosis and widened frontal, sagittal, and coronal sutures. Furthermore, the epithelial cells of the choroid plexus and ependymal cells exhibited degenerative changes with misplaced expression of their respective markers, transthyretin and vimentin, as well as dysregulated Pit-2 expression in hydrocephalic Nell-1Wnt1 KO mice. Nell-1Wnt1 KO embryos at E9.5, 14.5, 17.5, and newborn mice did not exhibit hydrocephalic phenotypes grossly and/or histologically. Collectively, Nell-1 is a pivotal modulator of CNCCs that is essential for normal development and growth of the cranial vault and base, and mandibles partially via activating the Wnt/β-catenin pathway. Nell-1 may also be critically involved in regulating cerebrospinal fluid homeostasis and in the pathogenesis of postnatal hydrocephalus.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Orthodontics, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Huiming Wang
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mengliu Yu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
- Center of Stomatology, China-Japan Friendship Hospital, 2nd Yinghuayuan East Street, Chaoyang District, Beijing, PR China
| | - Jong Kil Kim
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Huichuan Qi
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, PR China
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Wenlu Jiang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Eric Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Xiangyou Luo
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
- Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Ryan Brent Needle
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Lloyd Baik
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Cathryn Yang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Jiejun Shi
- Department of Orthodontics, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jin Hee Kwak
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA.
| | - Chia Soo
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, CA, USA
- UCLA Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Yu L, Xia K, Cen X, Huang X, Sun W, Zhao Z, Liu J. DNA methylation of noncoding RNAs: new insights into osteogenesis and common bone diseases. Stem Cell Res Ther 2020; 11:109. [PMID: 32143708 PMCID: PMC7060611 DOI: 10.1186/s13287-020-01625-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/09/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Bone diseases such as osteoarthritis, osteoporosis, and bone tumor present a severe public health problem. Osteogenic differentiation is a complex process associated with the differentiation of different cells, which could regulate transcription factors, cytokines, many signaling pathways, noncoding RNAs (ncRNAs), and epigenetic modulation. DNA methylation is a kind of stable epigenetic alterations in CpG islands without DNA sequence changes and is involved in cancer and other diseases, including bone development and homeostasis. ncRNAs can perform their crucial biological functions at the RNA level, and many findings have demonstrated essential functions of ncRNAs in osteogenic differentiation. In this review, we highlight current researches in DNA methylation of two relevant ncRNAs, including microRNAs and long noncoding RNAs, in the initiation and progression of osteogenesis and bone diseases.
Collapse
Affiliation(s)
- Liyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Kai Xia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
- Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Wentian Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041 Sichuan China
| |
Collapse
|
19
|
Senile Osteoporosis: The Involvement of Differentiation and Senescence of Bone Marrow Stromal Cells. Int J Mol Sci 2020; 21:ijms21010349. [PMID: 31948061 PMCID: PMC6981793 DOI: 10.3390/ijms21010349] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
Senile osteoporosis has become a worldwide bone disease with the aging of the world population. It increases the risk of bone fracture and seriously affects human health. Unlike postmenopausal osteoporosis which is linked to menopause in women, senile osteoporosis is due to aging, hence, affecting both men and women. It is commonly found in people with more than their 70s. Evidence has shown that with age increase, bone marrow stromal cells (BMSCs) differentiate into more adipocytes rather than osteoblasts and undergo senescence, which leads to decreased bone formation and contributes to senile osteoporosis. Therefore, it is necessary to uncover the molecular mechanisms underlying the functional changes of BMSCs. It will benefit not only for understanding the senile osteoporosis development, but also for finding new therapies to treat senile osteoporosis. Here, we review the recent advances of the functional alterations of BMSCs and the related mechanisms during senile osteoporosis development. Moreover, the treatment of senile osteoporosis by aiming at BMSCs is introduced.
Collapse
|
20
|
Huang X, Cen X, Zhang B, Liao Y, Zhao Z, Zhu G, Zhao Z, Liu J. The roles of circRFWD2 and circINO80 during NELL-1-induced osteogenesis. J Cell Mol Med 2019; 23:8432-8441. [PMID: 31633307 PMCID: PMC6850935 DOI: 10.1111/jcmm.14726] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Bone defects caused heavy social and economic burdens worldwide. Nel-like molecule, type 1 (NELL-1) could enhance the osteogenesis and the repairment of bone defects, while the specific mechanism remains to be elucidated. Circular RNAs (circRNAs) have been found to play critical roles in the tissue development and serve as biomarkers for various diseases. However, it remains unclear that the expression patterns of circRNAs and the roles of them played in recombinant NELL-1-induced osteogenesis of human adipose-derived stem cells (hASCs). In this study, we performed RNA-sequencing to investigate the expression profiles of circRNAs in recombinant NELL-1-induced osteogenic differentiation and identified two key circRNAs, namely circRFWD2 and circINO80. These two circRNAs were confirmed to be up-regulated during recombinant NELL-1-induced osteogenesis, and knockdown of them affected the positive effect of NELL-1 on osteogenesis. CircRFWD2 and circINO80 could interact with hsa-miR-6817-5p, which could inhibit the osteogenesis. Silencing hsa-miR-6817-5p could partially reverse the negative effect of si-circRFWD2 and si-circINO80 on the osteogenesis. Therefore, circRFWD2 and circINO80 could regulate the expression of hsa-miR-6817-5p and influence the recombinant NELL-1-induced osteogenic differentiation of hASCs. It opens a new window to better understanding the effects of NELL-1 on the osteogenic differentiation of hASCs and provides potential molecular targets and novel methods for bone regeneration efficiently and safely.
Collapse
Affiliation(s)
- Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Temporomandibular JointWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuwei Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhenxing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Guanyin Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
21
|
Li C, Zhang X, Zheng Z, Nguyen A, Ting K, Soo C. Nell-1 Is a Key Functional Modulator in Osteochondrogenesis and Beyond. J Dent Res 2019; 98:1458-1468. [PMID: 31610747 DOI: 10.1177/0022034519882000] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neural EGFL-like 1 (Nell-1) is a well-studied osteogenic factor that has comparable osteogenic potency with the Food and Drug Administration-approved bone morphogenic protein 2 (BMP-2). In this review, which aims to summarize the advanced Nell-1 research in the past 10 y, we start with the correlation of structural and functional relevance of the Nell-1 protein with the identification of a specific receptor of Nell-1, contactin-associated protein-like 4 (Cntnap4), for osteogenesis. The indispensable role of Nell-1 in normal craniofacial and appendicular skeletal development and growth was also defined by using the newly developed tissue-specific Nell-1 knockout mouse lines in addition to the existing transgenic mouse models. With the achievements on Nell-1's osteogenic therapeutic evaluations from multiple preclinical animal models for local and systemic bone regeneration, the synergistic effect of Nell-1 with BMP-2 on osteogenesis, as well as the advantages of Nell-1 as an osteogenic protein with antiadipogenic, anti-inflammatory, and provascularized characteristics over BMP-2 in bone tissue engineering, is highlighted, which lays the groundwork for the clinical trial approval of Nell-1. At the molecular level, besides the mitogen-activated protein kinase (MAPK) signaling pathway, we emphasize the significant involvement of the Wnt/β-catenin pathway as well as the key regulatory molecules Runt-related transcription factor 2 (Runx2) in Nell-1-induced osteogenesis. In addition, the involvement of Nell-1 in chondrogenesis and its relevant pathologies have been revealed with the participation of the nuclear factor of activated T cells 1 (Nfatc1), Runx3, and Indian hedgehog (Ihh) signaling pathways, although the mechanistic insights of Nell-1's osteochondrogenic property will be continuously evolving. With this perspective, we elucidate some emerging and novel functional properties of Nell-1 in oral-dental and neural tissues that will be the frontiers of future Nell-1 studies beyond the context of bone and cartilage. As such, the therapeutic potential of Nell-1 continues to evolve and grow with continuous pursuit.
Collapse
Affiliation(s)
- C Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - X Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Z Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - A Nguyen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - K Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - C Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
22
|
The wonders of BMP9: From mesenchymal stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism to regenerative medicine. Genes Dis 2019; 6:201-223. [PMID: 32042861 PMCID: PMC6997590 DOI: 10.1016/j.gendis.2019.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Although bone morphogenetic proteins (BMPs) initially showed effective induction of ectopic bone growth in muscle, it has since been determined that these proteins, as members of the TGF-β superfamily, play a diverse and critical array of biological roles. These roles include regulating skeletal and bone formation, angiogenesis, and development and homeostasis of multiple organ systems. Disruptions of the members of the TGF-β/BMP superfamily result in severe skeletal and extra-skeletal irregularities, suggesting high therapeutic potential from understanding this family of BMP proteins. Although it was once one of the least characterized BMPs, BMP9 has revealed itself to have the highest osteogenic potential across numerous experiments both in vitro and in vivo, with recent studies suggesting that the exceptional potency of BMP9 may result from unique signaling pathways that differentiate it from other BMPs. The effectiveness of BMP9 in inducing bone formation was recently revealed in promising experiments that demonstrated efficacy in the repair of critical sized cranial defects as well as compatibility with bone-inducing bio-implants, revealing the great translational promise of BMP9. Furthermore, emerging evidence indicates that, besides its osteogenic activity, BMP9 exerts a broad range of biological functions, including stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism. This review aims to summarize our current understanding of BMP9 across biology and the body.
Collapse
|
23
|
Li C, Zheng Z, Ha P, Chen X, Jiang W, Sun S, Chen F, Asatrian G, Berthiaume EA, Kim JK, Chen EC, Pang S, Zhang X, Ting K, Soo C. Neurexin Superfamily Cell Membrane Receptor Contactin-Associated Protein Like-4 (Cntnap4) Is Involved in Neural EGFL-Like 1 (Nell-1)-Responsive Osteogenesis. J Bone Miner Res 2018; 33:1813-1825. [PMID: 29905970 PMCID: PMC6390490 DOI: 10.1002/jbmr.3524] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 01/28/2023]
Abstract
Contactin-associated protein-like 4 (Cntnap4) is a member of the neurexin superfamily of transmembrane molecules that have critical functions in neuronal cell communication. Cntnap4 knockout mice display decreased presynaptic gamma-aminobutyric acid (GABA) and increased dopamine release that is associated with severe, highly penetrant, repetitive, and perseverative movements commonly found in human autism spectrum disorder patients. However, no known function of Cntnap4 has been revealed besides the nervous system. Meanwhile, secretory protein neural EGFL-like 1 (Nell-1) is known to exert potent osteogenic effects in multiple small and large animal models without the off-target effects commonly found with bone morphogenetic protein 2. In this study, while searching for a Nell-1-specific cell surface receptor during osteogenesis, we identified and validated a ligand/receptor-like interaction between Nell-1 and Cntnap4 by demonstrating: 1) Nell-1 and Cntnap4 colocalization on the surface of osteogenic-committed cells; 2) high-affinity interaction between Nell-1 and Cntnap4; 3) abrogation of Nell-1-responsive Wnt and MAPK signaling transduction, as well as osteogenic effects, via Cntnap4 knockdown; and 4) replication of calvarial cleidocranial dysplasias-like defects observed in Nell-1-deficient mice in Wnt1-Cre-mediated Cntnap4-knockout transgenic mice. In aggregate, these findings indicate that Cntnap4 plays a critical role in Nell-1-responsive osteogenesis. Further, this is the first functional annotation for Cntnap4 in the musculoskeletal system. Intriguingly, Nell-1 and Cntnap4 also colocalize on the surface of human hippocampal interneurons, implicating Nell-1 as a potential novel ligand for Cntnap4 in the nervous system. This unexpected characterization of the ligand/receptor-like interaction between Nell-1 and Cntnap4 indicates a novel biological functional axis for Nell-1 and Cntnap4 in osteogenesis and, potentially, in neural development and function. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chenshuang Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaoyan Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.,The Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Wenlu Jiang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shan Sun
- Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, PR China
| | - Feng Chen
- School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Greg Asatrian
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emily A Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jong Kil Kim
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eric C Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shen Pang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.,Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Appelman-Dijkstra NM, Papapoulos SE. Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway. Nat Rev Endocrinol 2018; 14:605-623. [PMID: 30181608 DOI: 10.1038/s41574-018-0087-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WNT signalling pathway is a key regulator of bone metabolism, particularly bone formation, which has helped to define the role of osteocytes - the most abundant bone cells - as orchestrators of bone remodelling. Several molecules involved in the control of the WNT signalling pathway have been identified as potential targets for the development of bone-building therapeutics for patients with osteoporosis. Several of these molecules have been investigated in animal models, but only inhibitors of sclerostin (which is produced by osteocytes) have been investigated in phase III clinical studies. Here, we review the rationale for these developments and the specificity and potential off-target actions of WNT-based therapeutics. We also describe the available preclinical and clinical studies and discuss the benefits and risks of using sclerostin inhibitors for the management of patients with osteoporosis.
Collapse
|
25
|
Zhao H, Qin X, Zhang Q, Zhang X, Lin J, Ting K, Chen F. Nell-1-ΔE, a novel transcript of Nell-1, inhibits cell migration by interacting with enolase-1. J Cell Biochem 2018; 119:5725-5733. [PMID: 29388706 DOI: 10.1002/jcb.26756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/25/2018] [Indexed: 11/06/2022]
Abstract
NELL-1 is a secreted protein that was originally found to be upregulated in pathologically fusing and fused sutures in non-syndromic unilateral coronal synostosis patients. Apart from the ability of NELL-1 to promote osteogenesis in long and craniofacial bones, NELL-1 reportedly inhibits the formation of several benign and malignant tumors. We previously identified a novel transcript of Nell-1 that lacked a calcium-binding epidermal growth factor (EGF)-like domain compared with full-length Nell-1; this new transcript was named Nell-1-ΔE. Three obvious structural differences between these two isoforms were revealed by homology modeling. Furthermore, the recombinant Nell-1-ΔE protein, but not the full-length Nell-1 protein, inhibited cell migration in vitro. However, full-length Nell-1 and Nell-1-ΔE proteins were present in similar subcellular locations and displayed similar expression patterns in both the intracellular and extracellular spaces. The results from the co-immunoprecipitation and liquid chromatography/tandem mass spectrometry analyses using two cell lines demonstrated that Nell-1-ΔE but not full-length Nell-1 interacted with enolase-1 in the extracellular spaces of both cell lines. The results of wound healing assays using ENO-1-overexpressing cells treated with full-length Nell-1/Nell-1-ΔE suggested that Nell-1-ΔE inhibited cell migration by interacting with ENO-1. Our study indicated that the novel transcript Nell-1-ΔE, but not full-length Nell-1, might be a candidate tumor suppressor factor for basic research and clinical practice.
Collapse
Affiliation(s)
- Huaxiang Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Xueyan Qin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Xinli Zhang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Kang Ting
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| |
Collapse
|
26
|
Chen YH, Chung CC, Liu YC, Lai WC, Lin ZS, Chen TM, Li LY, Hung MC. YY1 and HDAC9c transcriptionally regulate p38-mediated mesenchymal stem cell differentiation into osteoblasts. Am J Cancer Res 2018; 8:514-525. [PMID: 29637005 PMCID: PMC5883100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have a high self-renewal potential and can differentiate into various types of cells, including adipocytes, osteoblasts, and chondrocytes. Previously, we reported that the enhancer of zeste homolog 2 (EZH2), the catalytic component of the Polycomb-repressive complex 2, and HDAC9c mediate the osteogenesis and adipogenesis of MSCs. In the current study, we identify the role of p38 in osteogenic differentiation from a MAPK antibody array screen and investigate the mechanisms underlying its transcriptional regulation. Our data show that YY1, a ubiquitously expressed transcription factor, and HDAC9c coordinate p38 transcriptional activity to promote its expression to facilitate the osteogenic potential of MSCs. Our results show that p38 mediates osteogenic differentiation, and this has significant implications in bone-related diseases, bone tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Ya-Huey Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
- Cancer Biology and Drug Discovery Ph.D. Program, China Medical UniversityTaichung 40447, Taiwan
| | - Chiao-Chen Chung
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
| | - Yu-Chia Liu
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
| | - Wei-Chen Lai
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
| | - Zong-Shin Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
| | - Tsung-Ming Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and TechnologyKaohsiung 81157, Taiwan
| | - Long-Yuan Li
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
- Cancer Biology and Drug Discovery Ph.D. Program, China Medical UniversityTaichung 40447, Taiwan
- Department of Life Sciences, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
- Cancer Biology and Drug Discovery Ph.D. Program, China Medical UniversityTaichung 40447, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 41354, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer CenterHouston, Texas 77030, USA
| |
Collapse
|
27
|
Abstract
Achieving satisfactory reconstruction of bone remains an important goal in orthopedic and dental conditions such as bone trauma, osteoporosis, arthritis, osteonecrosis, and periodontitis. Appropriate temporal and spatial differentiation of mesenchymal stem cells (MSCs) is essential for postnatal bone regeneration. Additionally, an acute inflammatory response is crucial at the onset of bone repair, while an adaptive immune response has important implications during late bone remodeling. Various reports have indicated bidirectional interactions between MSCs and inflammatory cells or molecules. For example, inflammatory cells can recruit MSCs, direct their migration and differentiation, so as to exert anabolic effects on bone repair. Furthermore, both pro-inflammatory and anti-inflammatory cytokines can regulate MSCs properties and subsequent bone regeneration. MSCs have demonstrated highly immunosuppressive functions, such as inhibiting the differentiation of monocytes/hematopoietic precursors and suppressing the secretion of pro-inflammatory cytokines. This review emphasizes the important interactions between inflammatory stimuli, MSCs, and bone regeneration as well as the underlying regulatory mechanisms. Better understanding of these principles will provide new opportunities for promoting bone regeneration and the treatment of bone loss associated with immunological diseases.
Collapse
|
28
|
Pakvasa M, Alverdy A, Mostafa S, Wang E, Fu L, Li A, Oliveira L, Athiviraham A, Lee MJ, Wolf JM, He TC, Ameer GA, Reid RR. Neural EGF-like protein 1 (NELL-1): Signaling crosstalk in mesenchymal stem cells and applications in regenerative medicine. Genes Dis 2017; 4:127-137. [PMID: 29276737 PMCID: PMC5737940 DOI: 10.1016/j.gendis.2017.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 12/15/2022] Open
Abstract
Bone tissue regeneration holds the potential to solve both osteoporosis and large skeletal defects, two problems associated with significant morbidity. The differentiation of mesenchymal stem cells into the osteogenic lineage requires a specific microenvironment and certain osteogenic growth factors. Neural EGF Like-Like molecule 1 (NELL-1) is a secreted glycoprotein that has proven, both in vitro and in vivo, to be a potent osteo-inductive factor. Furthermore, it has been shown to repress adipogenic differentiation and inflammation. NELL-1 can work synergistically with other osteogenic factors such as Bone Morphogenic Protein (BMP) -2 and -9, and has shown promise for use in tissue engineering and as a systemically administered drug for the treatment of osteoporosis. Here we provide a comprehensive up-to-date review on the molecular signaling cascade of NELL-1 in mesenchymal stem cells and potential applications in bone regenerative engineering.
Collapse
Affiliation(s)
- Mikhail Pakvasa
- The University of Chicago, Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alex Alverdy
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| | - Sami Mostafa
- The University of Chicago, Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lucy Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alexander Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Leonardo Oliveira
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Russell R. Reid
- The University of Chicago, Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Abstract
BACKGROUND Nonhealing bone defects represent an immense biomedical burden. Despite recent advances in protein-based bone regeneration, safety concerns over bone morphogenetic protein-2 have prompted the search for alternative factors. Previously, the authors examined the additive/synergistic effects of hedgehog and Nel-like protein-1 (NELL-1) on the osteogenic differentiation of mesenchymal stem cells in vitro. In this study, the authors sought to leverage their previous findings by applying the combination of Smoothened agonist (SAG), hedgehog signal activator, and NELL-1 to an in vivo critical-size bone defect model. METHODS A 4-mm parietal bone defect was created in mixed-gender CD-1 mice. Treatment groups included control (n = 6), SAG (n = 7), NELL-1 (n = 7), and SAG plus NELL-1 (n = 7). A custom fabricated poly(lactic-co-glycolic acid) disk with hydroxyapatite coating was used as an osteoinductive scaffold. RESULTS Results at 4 and 8 weeks showed increased bone formation by micro-computed tomographic analyses with either stimulus alone (SAG or NELL-1), but significantly greater bone formation with both components combined (SAG plus NELL-1). This included greater bone healing scores and increased bone volume and bone thickness. Histologic analyses confirmed a significant increase in new bone formation with the combination therapy SAG plus NELL-1, accompanied by increased defect vascularization. CONCLUSIONS In summary, the authors' results suggest that combining the hedgehog signaling agonist SAG and NELL-1 has potential as a novel therapeutic strategy for the healing of critical-size bone defects. Future directions will include optimization of dosage and delivery strategy for an SAG and NELL-1 combination product.
Collapse
|
30
|
Shen J, Chen X, Jia H, Meyers CA, Shrestha S, Asatrian G, Ding C, Tsuei R, Zhang X, Peault B, Ting K, Soo C, James AW. Effects of WNT3A and WNT16 on the Osteogenic and Adipogenic Differentiation of Perivascular Stem/Stromal Cells. Tissue Eng Part A 2017; 24:68-80. [PMID: 28463594 DOI: 10.1089/ten.tea.2016.0387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human perivascular stem/stromal cells (hPSC) are a multipotent mesenchymogenic stromal cell population defined by their perivascular locale. Recent studies have demonstrated the high potential for clinical translation of this fluorescence-activated cell sorting (FACS)-derived cell population for autologous bone tissue engineering. However, the mechanisms underlying the osteogenic differentiation of PSC are incompletely understood. The current study investigates the roles of canonical and noncanonical Wnt signaling in the osteogenic and adipogenic differentiation of PSC. Results showed that both canonical and noncanonical Wnt signaling activity transiently increased during PSC osteogenic differentiation in vitro. Sustained WNT3A treatment significantly decreased PSC osteogenic differentiation. Conversely, sustained treatment with Wnt family member 16 (WNT16), a mixed canonical and noncanonical ligand, increased osteogenic differentiation in a c-Jun N-terminal kinase (JNK) pathway-dependent manner. Conversely, WNT16 knockdown significantly diminished PSC osteogenic differentiation. Finally, WNT16 but not WNT3A increased the adipogenic differentiation of PSC. These results indicate the importance of regulation of canonical and noncanonical Wnt signaling for PSC fate and differentiation. Moreover, these data suggest that WNT16 plays a functional and necessary role in PSC osteogenesis.
Collapse
Affiliation(s)
- Jia Shen
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA , Los Angeles, California
| | - Xuepeng Chen
- 2 Department of Orthodontics, Stomatological Hospital, Zhejiang University , Hangzhou, China
| | - Haichao Jia
- 3 Department of Orthodontics, School of Stomatology, Capital Medical University , Beijing, China
| | - Carolyn A Meyers
- 4 Department of Pathology, Johns Hopkins University , Baltimore, Maryland
| | - Swati Shrestha
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA , Los Angeles, California
| | - Greg Asatrian
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA , Los Angeles, California
| | - Catherine Ding
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA , Los Angeles, California
| | - Rebecca Tsuei
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA , Los Angeles, California
| | - Xinli Zhang
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA , Los Angeles, California
| | - Bruno Peault
- 5 Department of Orthopaedic Surgery, UCLA and Orthopaedic Hospital, Orthopaedic Hospital Research Center , Los Angeles, California.,6 Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh , Edinburgh, United Kingdom
| | - Kang Ting
- 1 Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA , Los Angeles, California
| | - Chia Soo
- 5 Department of Orthopaedic Surgery, UCLA and Orthopaedic Hospital, Orthopaedic Hospital Research Center , Los Angeles, California.,7 Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Aaron W James
- 4 Department of Pathology, Johns Hopkins University , Baltimore, Maryland.,5 Department of Orthopaedic Surgery, UCLA and Orthopaedic Hospital, Orthopaedic Hospital Research Center , Los Angeles, California
| |
Collapse
|
31
|
James AW, Zhang X, Crisan M, Hardy WR, Liang P, Meyers CA, Lobo S, Lagishetty V, Childers MK, Asatrian G, Ding C, Yen YH, Zou E, Ting K, Peault B, Soo C. Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering. PLoS One 2017; 12:e0177308. [PMID: 28489940 PMCID: PMC5425216 DOI: 10.1371/journal.pone.0177308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/25/2017] [Indexed: 01/04/2023] Open
Abstract
For over 15 years, human subcutaneous adipose tissue has been recognized as a rich source of tissue resident mesenchymal stem/stromal cells (MSC). The isolation of perivascular progenitor cells from human adipose tissue by a cell sorting strategy was first published in 2008. Since this time, the interest in using pericytes and related perivascular stem/stromal cell (PSC) populations for tissue engineering has significantly increased. Here, we describe a set of experiments identifying, isolating and characterizing PSC from canine tissue (N = 12 canine adipose tissue samples). Results showed that the same antibodies used for human PSC identification and isolation are cross-reactive with canine tissue (CD45, CD146, CD34). Like their human correlate, canine PSC demonstrate characteristics of MSC including cell surface marker expression, colony forming unit-fibroblast (CFU-F) inclusion, and osteogenic differentiation potential. As well, canine PSC respond to osteoinductive signals in a similar fashion as do human PSC, such as the secreted differentiation factor NEL-Like Molecule-1 (NELL-1). Nevertheless, important differences exist between human and canine PSC, including differences in baseline osteogenic potential. In summary, canine PSC represent a multipotent mesenchymogenic cell source for future translational efforts in tissue engineering.
Collapse
Affiliation(s)
- Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
| | - Xinli Zhang
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mihaela Crisan
- Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Winters R. Hardy
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
| | - Pei Liang
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sonja Lobo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
| | - Venu Lagishetty
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
| | - Martin K. Childers
- Rehabilitation Medicine Clinic, UWMC, Seattle, Washington, United States of America
| | - Greg Asatrian
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Catherine Ding
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yu-Hsin Yen
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Erin Zou
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kang Ting
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
- Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, United States of America
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
32
|
Hadavi M, Hasannia S, Faghihi S, Mashayekhi F, Zadeh HH, Mostofi SB. Novel calcified gum Arabic porous nano-composite scaffold for bone tissue regeneration. Biochem Biophys Res Commun 2017; 488:671-678. [PMID: 28302485 DOI: 10.1016/j.bbrc.2017.03.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/12/2017] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate the biomechanical and biological properties of a nanocomposite scaffold containing both mineral and polysaccharide constituents. Hydroxyapatite nanoparticles (n-HA) was synthesized from dead abra ovata shells using wet chemical methods and was used in different ratios in concert with gum Arabic, a branched plant polysaccharide. N-HA/gum nanocomposite was fabricated with freeze-drying process and characterized by FTIR and SEM for chemical structure and morphology. Porosity was estimated using liquid substitution method. The scaffold mechanical properties were evaluated by compressive test measurement. Osteogenic differentiation was assessed using alkaline phosphatase production and biomineralization was evaluated using Alizarin red assay. Results demonstrated that the hydroxyapatite/gum Arabic nanocomposite had favorable biocompatibility and a similar structure to natural bone matrix. Porous nanocomposite possessed macropore networks with a porosity 87-93% and mean pore size ranging between 164 and 230 μm. The gum/HA with a ratio of 50% w/w HA had the highest compressive modulus of ∼75.3 MPa Pa (MPa) and the ultimate compressive stress of ∼16.6 MPa. C2C12 cells cultured on a scaffold with higher percentage (40 and 50 w/w) of HA demonstrated increased ALP levels and calcium deposition. The data from the present study demonstrated significant changes to the biomechanical properties and osteoconductivity of the nanocomposite scaffold by modulating its mineral content. Nanocomposite scaffolds containing gum and n-HA of 40-50% exhibited highest mechanical properties, as well as supported increased biomineralization.
Collapse
Affiliation(s)
- M Hadavi
- National Institute of Genetic Engineering and Biotechnology, Institute of Medical Biotechnology, Department of Stem Cell and Regenerative Medicine, Tehran, Iran; University of Guilan, Faculty of Science, Department of Biology, Rasht, Iran
| | - S Hasannia
- Tarbiat Modares University, Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sh Faghihi
- National Institute of Genetic Engineering and Biotechnology, Institute of Medical Biotechnology, Department of Stem Cell and Regenerative Medicine, Tehran, Iran
| | - F Mashayekhi
- University of Guilan, Faculty of Science, Department of Biology, Rasht, Iran
| | - H H Zadeh
- Laboratory for Immunoregulation and Tissue Engineering (LITE), Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, USA
| | - S B Mostofi
- East Kent Hospitals University NHS Foundation Trust, Canterbury, Kent, UK
| |
Collapse
|
33
|
Tanjaya J, Zhang Y, Lee S, Shi J, Chen E, Ang P, Zhang X, Tetradis S, Ting K, Wu B, Soo C, Kwak JH. Efficacy of Intraperitoneal Administration of PEGylated NELL-1 for Bone Formation. Biores Open Access 2016; 5:159-70. [PMID: 27354930 PMCID: PMC4921932 DOI: 10.1089/biores.2016.0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Systemically delivered NEL-like molecule-1 (NELL-1), a potent pro-osteogenic protein, promotes bone formation in healthy and osteoporotic mouse models. PEGylation of NELL-1 (NELL-PEG) increases the half-life of the protein in a mouse model without compromising its osteogenic potential, thereby improving its pharmacokinetics upon systemic delivery. This study consists of a twofold approach: a biodistribution test and an in vivo osteogenic potential test. The biodistribution test compared two commonly used administration methods for drug delivery other than intravenous-intraperitoneal (IP) and subcutaneous (SC)-to examine NELL-PEG biodistribution in mice. Compared to a single-dose SC injection (1.25 mg/kg), a single-dose IP administration yielded a higher protein uptake in the targeted bone sites. When the IP injection dose was doubled to 2.5 mg/kg, the protein remained in the femurs, tibias, and vertebrae for up to 72 h. Next, based on the results of the biodistribution study, IP administration was selected to further investigate the in vivo osteogenic effects of weekly NELL-PEG injection (q7d). In vivo, the IP administered NELL-PEG group showed significantly greater bone mineral density, bone volume fraction, and trabecular bone formation in the targeted bone sites compared to the phosphate-buffered saline control. In summary, weekly NELL-PEG injection via IP administration successfully enhanced the overall bone quality. These findings demonstrate that systemic delivery of NELL-PEG via IP administration may serve as an effective osteogenic therapy for preventing and treating osteoporosis.
Collapse
Affiliation(s)
- Justine Tanjaya
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Yulong Zhang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Pocheon, South Korea.; Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Jiayu Shi
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Eric Chen
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Pia Ang
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California.; Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Sotirios Tetradis
- Section of Oral and Maxillofacial Radiology, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Kang Ting
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California.; Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Benjamin Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California
| | - Chia Soo
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California.; Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jin Hee Kwak
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| |
Collapse
|
34
|
Mesenchymal Stem Cells and Metabolic Syndrome: Current Understanding and Potential Clinical Implications. Stem Cells Int 2016; 2016:2892840. [PMID: 27313625 PMCID: PMC4903149 DOI: 10.1155/2016/2892840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/06/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is an obesity-based, complicated clinical condition that has become a global epidemic problem with a high associated risk for cardiovascular disease and mortality. Dyslipidemia, hypertension, and diabetes or glucose dysmetabolism are the major factors constituting metabolic syndrome, and these factors are interrelated and share underlying pathophysiological mechanisms. Severe obesity predisposes individuals to metabolic syndrome, and recent data suggest that mesenchymal stem cells (MSCs) contribute significantly to adipocyte generation by increasing the number of adipocytes. Accordingly, an increasing number of studies have examined the potential roles of MSCs in managing obesity and metabolic syndrome. However, despite the growing bank of experimental and clinical data, the efficacy and the safety of MSCs in the clinical setting are still to be optimized. It is thus hoped that ongoing and future studies can elucidate the roles of MSCs in metabolic syndrome and lead to MSC-based therapeutic options for affected patients. This review discusses current understanding of the relationship between MSCs and metabolic syndrome and its potential implications for patient management.
Collapse
|
35
|
James AW, Chiang M, Asatrian G, Shen J, Goyal R, Chung CG, Chang L, Shrestha S, Turner AS, Seim HB, Zhang X, Wu BM, Ting K, Soo C. Vertebral Implantation of NELL-1 Enhances Bone Formation in an Osteoporotic Sheep Model. Tissue Eng Part A 2016; 22:840-9. [PMID: 27113550 DOI: 10.1089/ten.tea.2015.0230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Vertebral compression fractures related to osteoporosis greatly afflict the aging population. One of the most commonly used therapy today is balloon kyphoplasty. However, this treatment is far from ideal and is associated with significant side effects. NELL-1, an osteoinductive factor that possesses both pro-osteogenic and anti-osteoclastic properties, is a promising candidate for an alternative to current treatment modalities. This study utilizes the pro-osteogenic properties of recombinant human NELL-1 (rhNELL-1) in lumbar spine vertebral defect model in osteoporotic sheep. METHODS Osteoporosis was induced through ovariectomy, dietary depletion of calcium and vitamin D, and steroid administration. After osteoporotic induction, lumbar vertebral body defect creation was performed. Sheep were randomly implanted with the control vehicle, comprised of hyaluronic acid (HA) with hydroxyapatite-coated β-tricalcium phosphate (β-TCP), or the treatment material of rhNELL-1 protein lyophilized onto β-TCP mixed with HA. Analysis of lumbar spine defect healing was performed by radiographic, histologic, and computer-simulated biomechanical testing. RESULTS rhNELL-1 treatment significantly increased lumbar spine bone formation, as determined by bone mineral density, % bone volume, and mean cortical width as assessed by micro-computed tomography. Histological analysis revealed a significant increase in bone area and osteoblast number and decrease in osteoclast number around the implant site. Computer-simulated biomechanical analysis of trabecular bone demonstrated that rhNELL-1-treatment resulted in a significantly more stress-resistant composition. CONCLUSION Our findings suggest rhNELL-1-based vertebral implantation successfully improved cortical and cancellous bone regeneration in the lumbar spine of osteoporotic sheep. rhNELL-1-based bone graft substitutes represent a potential new local therapy.
Collapse
Affiliation(s)
- Aaron W James
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California.,3 Department of Pathology and Laboratory Medicine, University of California , Los Angeles, Los Angeles, California
| | - Michael Chiang
- 2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Greg Asatrian
- 2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Jia Shen
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Raghav Goyal
- 2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Choon G Chung
- 2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Le Chang
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Swati Shrestha
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - A Simon Turner
- 4 Department of Veterinary Sciences, Colorado State University , Fort Collins, Colorado
| | - Howard B Seim
- 4 Department of Veterinary Sciences, Colorado State University , Fort Collins, Colorado
| | - Xinli Zhang
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Benjamin M Wu
- 5 Departments of Bioengineering and Material Sciences, University of California , Los Angeles, Los Angeles, California
| | - Kang Ting
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,2 Division of Growth and Development and Section of Orthodontics, Dental and Craniofacial Research Institute, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Chia Soo
- 1 Departments of Surgery and Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopedic Hospital , Los Angeles, California.,6 Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| |
Collapse
|
36
|
Shen J, James AW, Zhang X, Pang S, Zara JN, Asatrian G, Chiang M, Lee M, Khadarian K, Nguyen A, Lee KS, Siu RK, Tetradis S, Ting K, Soo C. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:419-34. [PMID: 26772960 DOI: 10.1016/j.ajpath.2015.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/23/2015] [Accepted: 10/16/2015] [Indexed: 01/28/2023]
Abstract
The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis.
Collapse
Affiliation(s)
- Jia Shen
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Aaron W James
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Shen Pang
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Janette N Zara
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Greg Asatrian
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Michael Chiang
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Min Lee
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Kevork Khadarian
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Alan Nguyen
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Kevin S Lee
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Ronald K Siu
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Sotirios Tetradis
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, California
| | - Kang Ting
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California.
| | - Chia Soo
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California.
| |
Collapse
|
37
|
Lee S, Zhang X, Shen J, James AW, Chung CG, Hardy R, Li C, Girgius C, Zhang Y, Stoker D, Wang H, Wu BM, Peault B, Ting K, Soo C. Brief Report: Human Perivascular Stem Cells and Nel-Like Protein-1 Synergistically Enhance Spinal Fusion in Osteoporotic Rats. Stem Cells 2015; 33:3158-63. [PMID: 26173400 DOI: 10.1002/stem.2103] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 01/09/2023]
Abstract
Autologous bone grafts (ABGs) are considered as the gold standard for spinal fusion. However, osteoporotic patients are poor candidates for ABGs due to limited osteogenic stem cell numbers and function of the bone microenvironment. There is a need for stem cell-based spinal fusion of proven efficacy under either osteoporotic or nonosteoporotic conditions. The purpose of this study is to determine the efficacy of human perivascular stem cells (hPSCs), a population of mesenchymal stem cells isolated from adipose tissue, in the presence and absence of NELL-1, an osteogenic protein, for spinal fusion in the osteoporosis. Osteogenic differentiation of hPSCs with and without NELL-1 was tested in vitro. The results indicated that NELL-1 significantly increased the osteogenic potential of hPSCs in both osteoporotic and nonosteoporotic donors. Next, spinal fusion was performed by implanting scaffolds with regular or high doses of hPSCs, with or without NELL-1 in ovariectomized rats (n = 41). Regular doses of hPSCs or NELL-1 achieved the fusion rates of only 20%-37.5% by manual palpation. These regular doses had previously been shown to be effective in nonosteoporotic rat spinal fusion. Remarkably, the high dose of hPSCs+NELL-1 significantly improved the fusion rates among osteoporotic rats up to approximately 83.3%. Microcomputed tomography imaging and quantification further confirmed solid bony fusion with high dose hPSCs+NELL-1. Finally, histologically, direct in situ involvement of hPSCs in ossification was shown using undecalcified samples. To conclude, hPSCs combined with NELL-1 synergistically enhances spinal fusion in osteoporotic rats and has great potential as a novel therapeutic strategy for osteoporotic patients.
Collapse
Affiliation(s)
- Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, Republic of Korea.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| | - Xinli Zhang
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Jia Shen
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Aaron W James
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Choon G Chung
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Reef Hardy
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| | - Chenshuang Li
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Caroline Girgius
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Yulong Zhang
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - David Stoker
- Marina Plastic Surgery Associates, Marina del Rey, California, USA
| | - Huiming Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, People's Republic of China
| | - Benjamin M Wu
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA.,Department of Materials Science and Engineering, and Division of Advanced Prosthodontics, University of California, Los Angeles, California, USA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.,Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kang Ting
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.,Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.,UCLA Division of Plastic Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| |
Collapse
|
38
|
James AW, Shen J, Zhang X, Asatrian G, Goyal R, Kwak JH, Jiang L, Bengs B, Culiat CT, Turner AS, Seim Iii HB, Wu BM, Lyons K, Adams JS, Ting K, Soo C. NELL-1 in the treatment of osteoporotic bone loss. Nat Commun 2015; 6:7362. [PMID: 26082355 PMCID: PMC4557288 DOI: 10.1038/ncomms8362] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/28/2015] [Indexed: 01/09/2023] Open
Abstract
NELL-1 is a secreted, osteoinductive protein whose expression rheostatically controls skeletal ossification. Overexpression of NELL-1 results in craniosynostosis in humans and mice, whereas lack of Nell-1 expression is associated with skeletal undermineralization. Here we show that Nell-1-haploinsufficient mice have normal skeletal development but undergo age-related osteoporosis, characterized by a reduction in osteoblast:osteoclast (OB:OC) ratio and increased bone fragility. Recombinant NELL-1 binds to integrin β1 and consequently induces Wnt/β-catenin signalling, associated with increased OB differentiation and inhibition of OC-directed bone resorption. Systemic delivery of NELL-1 to mice with gonadectomy-induced osteoporosis results in improved bone mineral density. When extended to a large animal model, local delivery of NELL-1 to osteoporotic sheep spine leads to significant increase in bone formation. Altogether, these findings suggest that NELL-1 deficiency plays a role in osteoporosis and demonstrate the potential utility of NELL-1 as a combination anabolic/antiosteoclastic therapeutic for bone loss.
Collapse
Affiliation(s)
- Aaron W James
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA.,Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Jia Shen
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA.,Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | - Greg Asatrian
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | - Raghav Goyal
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | - Jin H Kwak
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | - Lin Jiang
- Department of Neurology, Easton Center for Alzheimer's Disease Research, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | - Benjamin Bengs
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA
| | | | - A Simon Turner
- Department of Veterinary Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Howard B Seim Iii
- Department of Veterinary Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Benjamin M Wu
- Department of Bioengineering and Department of Material Sciences, University of California, Los Angeles, California 90095, USA
| | - Karen Lyons
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA
| | - John S Adams
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA
| | - Kang Ting
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA.,Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | - Chia Soo
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA.,Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
39
|
Pharmacokinetics and osteogenic potential of PEGylated NELL-1 in vivo after systemic administration. Biomaterials 2015; 57:73-83. [PMID: 25913252 DOI: 10.1016/j.biomaterials.2015.03.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022]
Abstract
Osteoporosis is a skeletal disorder attributable to an imbalance in osteoblast and osteoclast activity. NELL-1, a secretory protein that promotes osteogenesis while suppressing osteoclastic activity, holds potential as an osteoporosis therapy. Recently, we demonstrated that PEGylation of NELL-1 significantly improves its thermostability while preserving its bioactivity in vitro. However, the effect of PEGylation on the pharmacokinetics and osteogenic potential of NELL-1 in vivo have yet to be investigated. The present study demonstrated that PEGylation of NELL-1 significantly increases the elimination half-life time of the protein from 5.5 h to 15.5 h while distributing more than 2-3 times the amount of protein to bone tissues (femur, tibia, vertebrae, calvaria) in vivo when compared to naked NELL-1. In addition, microCT and DXA analyses demonstrated that systemic NELL-PEG therapy administered every 4 or 7 days significantly increases not only femoral and lumbar BMD and percent bone volume, but also new bone formation throughout the overall skeleton after four weeks of treatment. Furthermore, immunohistochemistry revealed increased osteocalcin expression, while TRAP staining showed reduced osteoclast numbers in NELL-PEG groups. Our findings suggest that the PEGylation technique presents a viable and promising approach to further develop NELL-1 into an effective systemic therapeutic for the treatment of osteoporosis.
Collapse
|
40
|
Shen J, LaChaud G, Khadarian K, Shrestha S, Zhang X, Soo C, Ting K, Dry SM, James AW. NELL-1 expression in benign and malignant bone tumors. Biochem Biophys Res Commun 2015; 460:368-74. [PMID: 25791475 DOI: 10.1016/j.bbrc.2015.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 03/08/2015] [Indexed: 12/31/2022]
Abstract
NELL-1 (NEL-like Protein 1) is an osteoinductive protein with increasing usage as a bone graft substitute in preclinical animal models. NELL-1 was first identified to have bone-forming properties by its overexpression in fusing cranial sutures. Since this time, addition of recombinant NELL-1 has been used to successfully induce bone formation in the calvarial, axial and appendicular skeleton. With increasing interest in the use of NELL-1 as a bone-graft substitute, we sought to examine the expression of NELL-1 in a wide spectrum of benign and malignant bone-forming skeletal tumors. Immunohistochemical expression was examined in human pathologic specimens. Quantitative RT-PCR evaluated NELL-1 expression among OS cell lines in vitro. Results showed NELL-1 expression in all bone tumors. Likewise, all OS cell lines demonstrated increased NELL-1 expression in comparison to non-lesional human bone marrow stromal cells. Among, benign bone tumors (osteoid osteoma and osteoblastoma), strong and diffuse staining was observed, which spatially correlated with markers of osteogenic differentiation. In contrast, a relative reduction in NELL-1 staining was observed in osteosarcoma, accompanied by increased variation between tumors. Among osteosarcoma specimens, NELL-1 expression did not correlate well with markers of osteogenic differentiation. Surprisingly, among osteosarcoma subtypes, fibroblastic osteosarcoma demonstrated the highest expression of NELL-1. In summary, NELL-1 demonstrates diffuse and reliable expression in benign but not malignant bone-forming skeletal tumors. Future studies will further define the basic biologic, diagnostic and prognostic importance of NELL-1 in bone neoplasms.
Collapse
Affiliation(s)
- Jia Shen
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA
| | - Greg LaChaud
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA
| | - Kevork Khadarian
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA
| | - Swati Shrestha
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA
| | - Xinli Zhang
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA; UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and The Orthopaedic Hospital Research Center, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA
| | - Kang Ting
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA
| | - Sarah M Dry
- Department of Pathology and Laboratory Medicine, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA
| | - Aaron W James
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA; UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and The Orthopaedic Hospital Research Center, University of California, David Geffen School of Medicine, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA 90095, USA.
| |
Collapse
|
41
|
Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 2015; 24:1150-63. [PMID: 25603196 PMCID: PMC4424969 DOI: 10.1089/scd.2014.0484] [Citation(s) in RCA: 486] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering and regenerative medicine. The multipotent stem cell component of MSC isolates is able to differentiate into derivatives of the mesodermal lineage including adipocytes, osteocytes, chondrocytes, and myocytes. Many common pathways have been described in the regulation of adipogenesis and osteogenesis. However, stimulation of osteogenesis appears to suppress adipogenesis and vice-versa. Increasing evidence implicates a tight regulation of these processes by reactive oxygen species (ROS). ROS are short-lived oxygen-containing molecules that display high chemical reactivity toward DNA, RNA, proteins, and lipids. Mitochondrial complexes I and III, and the NADPH oxidase isoform NOX4 are major sources of ROS production during MSC differentiation. ROS are thought to interact with several pathways that affect the transcription machinery required for MSC differentiation including the Wnt, Hedgehog, and FOXO signaling cascades. On the other hand, elevated levels of ROS, defined as oxidative stress, lead to arrest of the MSC cell cycle and apoptosis. Tightly regulated levels of ROS are therefore critical for MSC terminal differentiation, although the precise sources, localization, levels and the exact species of ROS implicated remain to be determined. This review provides a detailed overview of the influence of ROS on adipogenic and osteogenic differentiation in MSCs.
Collapse
Affiliation(s)
- Fatemeh Atashi
- 1 Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva , University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
42
|
Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep. Gene 2014; 549:252-7. [PMID: 25088569 DOI: 10.1016/j.gene.2014.07.072] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/21/2014] [Accepted: 07/30/2014] [Indexed: 11/20/2022]
Abstract
Recent studies in domestic animals have used RNA-seq to explore the transcriptome of different tissues in a limited number of individuals. In the present study, de novo transcriptome sequencing was used to compare sheep adipose tissue transcriptome profiles between a fat-tailed breed (Kazak sheep; KS) and a short-tailed (Tibetan sheep; TS). The RNA-seq data from these two groups revealed that 646 genes were differentially expressed between the KS and TS groups, including 280 up-regulated and 366 down-regulated genes. We identified genes relevant to fat metabolism in adipose tissues, including two top genes with the largest fold change (NELL1 and FMO3). Pathway analysis revealed that the differentially expressed genes between the KS and TS breeds belong to fatty acid metabolism relevant pathways (e.g. fat digestion and absorption, glycine, serine, and threonine metabolism) and cell junction-related pathways (e.g. cell adhesion molecules) which contribute to fat deposition. This work highlighted potential genes and gene networks that affect fat deposition and meat quality in sheep.
Collapse
|
43
|
Shen J, James AW, Zara JN, Asatrian G, Khadarian K, Zhang JB, Ho S, Kim HJ, Ting K, Soo C. BMP2-induced inflammation can be suppressed by the osteoinductive growth factor NELL-1. Tissue Eng Part A 2013; 19:2390-401. [PMID: 23758588 DOI: 10.1089/ten.tea.2012.0519] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bone-morphogenetic protein 2 (BMP2) is currently the only Food and Drug Administration-approved osteoinductive growth factor used in clinical settings for bone regeneration and repair. However, the use of BMP2 is encumbered by numerous clinical complications, including postoperative inflammation and life-threatening cervical swelling. Thus, methods to prevent BMP2-induced inflammation would have far-reaching clinical implications toward improving current BMP2-based methods for bone regeneration. For the first time, we investigate the potential role of the growth factor Nel-like molecule-1 (NELL-1) in inhibiting BMP2-induced inflammation. Adult rats underwent a femoral bone onlay procedure, treated with either BMP2 protein (4 mg/mL), NELL-1 protein (4 mg/mL), or both proteins combined. Animals were evaluated at 3, 7, and 14 days postoperatively by histology, histomorphometry, immunohistochemistry, and real-time PCR for markers of inflammation (TNFα, IL6). The relative levels of TNFα and IL6 in serum were also detected by ELISA. The mechanism for NELL-1's anti-inflammatory effect was further assessed through examining inflammatory markers and generation of reactive oxygen species (ROS) in the mouse embryonic fibroblast NIH3T3 cells. BMP2 significantly induced local inflammation, including an early and pronounced polymorphonuclear cell infiltration accompanied by increased expression of TNFα and IL6. Treatment with NELL-1 alone elicited no significant inflammatory response. However, NELL-1 significantly attenuated BMP2-induced inflammation by all markers and at all timepoints. These local findings were also confirmed using systemic serum inflammatory biomarkers (TNFα, IL6). In each case, NELL-1 fully reversed BMP2-induced systemic inflammation. Lastly, our findings were recapitulated in vitro, where NELL-1 suppressed BMP2 induced expression of inflammatory markers, as well as NF-κB transcriptional activity and generation of ROS. BMP2-induced inflammation is a serious public health concern with potentially life-threatening complications. In the present study, we observed that the growth factor, NELL-1, significantly attenuates or completely reverses BMP2-induced inflammation. The mechanisms of NELL-1's anti-inflammatory effect are only partially elucidated, and may include reduction of NF-κB transcriptional activity or ROS generation.
Collapse
Affiliation(s)
- Jia Shen
- 1 Division of Associated Clinical Specialties, Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Askarinam A, James AW, Zara JN, Goyal R, Corselli M, Pan A, Liang P, Chang L, Rackohn T, Stoker D, Zhang X, Ting K, Péault B, Soo C. Human perivascular stem cells show enhanced osteogenesis and vasculogenesis with Nel-like molecule I protein. Tissue Eng Part A 2013; 19:1386-97. [PMID: 23406369 PMCID: PMC3638559 DOI: 10.1089/ten.tea.2012.0367] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/16/2013] [Indexed: 12/31/2022] Open
Abstract
An ideal mesenchymal stem cell (MSC) source for bone tissue engineering has yet to be identified. Such an MSC population would be easily harvested in abundance, with minimal morbidity and with high purity. Our laboratories have identified perivascular stem cells (PSCs) as a candidate cell source. PSCs are readily isolatable through fluorescent-activated cell sorting from adipose tissue and have been previously shown to be indistinguishable from MSCs in the phenotype and differentiation potential. PSCs consist of two distinct cell populations: (1) pericytes (CD146+, CD34-, and CD45-), which surround capillaries and microvessels, and (2) adventitial cells (CD146-, CD34+, and CD45-), found within the tunica adventitia of large arteries and veins. We previously demonstrated the osteogenic potential of pericytes by examining pericytes derived from the human fetal pancreas, and illustrated their in vivo trophic and angiogenic effects. In the present study, we used an intramuscular ectopic bone model to develop the translational potential of our original findings using PSCs (as a combination of pericytes and adventitial cells) from human white adipose tissue. We evaluated human PSC (hPSC)-mediated bone formation and vascularization in vivo. We also examined the effects of hPSCs when combined with the novel craniosynostosis-associated protein, Nel-like molecule I (NELL-1). Implants consisting of the demineralized bone matrix putty combined with NELL-1 (3 μg/μL), hPSC (2.5×10(5) cells), or hPSC+NELL-1, were inserted in the bicep femoris of SCID mice. Bone growth was evaluated using microcomputed tomography, histology, and immunohistochemistry over 4 weeks. Results demonstrated the osteogenic potential of hPSCs and the additive effect of hPSC+NELL-1 on bone formation and vasculogenesis. Comparable osteogenesis was observed with NELL-1 as compared to the more commonly used bone morphogenetic protein-2. Next, hPSCs induced greater implant vascularization than the unsorted stromal vascular fraction from patient-matched samples. Finally, we observed an additive effect on implant vascularization with hPSC+NELL-1 by histomorphometry and immunohistochemistry, accompanied by in vitro elaboration of vasculogenic growth factors. These findings hold significant implications for the cell/protein combination therapy hPSC+NELL-1 in the development of strategies for vascularized bone regeneration.
Collapse
Affiliation(s)
- Asal Askarinam
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - Aaron W. James
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Janette N. Zara
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Raghav Goyal
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - Mirko Corselli
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Angel Pan
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - Pei Liang
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Le Chang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - Todd Rackohn
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - David Stoker
- Division of Plastic and Reconstructive Surgery, University of Southern California, Los Angeles, California
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - Kang Ting
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Bruno Péault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
45
|
Shen J, James AW, Chung J, Lee K, Zhang JB, Ho S, Lee KS, Kim TM, Niimi T, Kuroda S, Ting K, Soo C. NELL-1 promotes cell adhesion and differentiation via Integrinβ1. J Cell Biochem 2013; 113:3620-8. [PMID: 22807400 DOI: 10.1002/jcb.24253] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
NELL-1 (Nel-like molecule-1) is a secreted osteogenic growth factor first identified in human craniosynostosis (CS) patients. NELL-1 protein has been observed to promote bone and cartilage differentiation and to suppress adipogenesis in both in vitro and in vivo models. Despite these findings, the cell surface receptors of NELL-1 have remained unknown. In this study, we observed for the first time that NELL-1 promotes cell adherence in multiple cell lines, including ST2, C3H10T1/2, M2-10B4, ATDC5, and MC3T3 cells. Additionally, we found that NELL-1 binds to extracellular Integrinβ1 and induces cell focal adhesion. By utilizing siRNA methods, we determined that NELL-1 cell surface binding and enhanced cell attachment were dependent on Integrinβ1 expression. Finally, we observed that pre-coating of culture dishes or PLGA (polylactic-co-glycolic acid) scaffold with NELL-1 resulted in a significant increase in both cell attachment and osteogenic differentiation. Our results identify for the first time a cell surface target of NELL-1, Integrinβ1, and elucidate new functions of NELL-1 in promoting cell adherence and osteogenic differentiation.
Collapse
Affiliation(s)
- Jia Shen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Del-Aguila JL, Beitelshees AL, Cooper-Dehoff RM, Chapman AB, Gums JG, Bailey K, Gong Y, Turner ST, Johnson JA, Boerwinkle E. Genome-wide association analyses suggest NELL1 influences adverse metabolic response to HCTZ in African Americans. THE PHARMACOGENOMICS JOURNAL 2013; 14:35-40. [PMID: 23400010 PMCID: PMC3812324 DOI: 10.1038/tpj.2013.3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/13/2012] [Accepted: 01/03/2013] [Indexed: 12/02/2022]
Abstract
Hydrochlorothiazide (HCTZ) is one of the most widely prescribed antihypertensive medications. Although it is well known that HCTZ is associated with hyperglycemia and hypertriglyceridemia, the mechanisms underlying these adverse effects are not well understood. We performed a genome-wide association study and meta-analysis of the change in fasting plasma glucose and triglycerides in response to HCTZ from two different clinical trials: the Pharmacogenomic Evaluation of Antihypertensive Responses and the Genetic Epidemiology of Responses to Antihypertensive studies. Two single-nucleotide polymorphisms (rs12279250 and rs4319515 (r2=0.73)), located at 11p15.1 in the NELL1 gene, achieved genome-wide significance for association with change in fasting plasma triglycerides in African Americans, whereby each variant allele was associated with a 28 mg dl−1 increase in the change in triglycerides. NELL1 encodes a cytoplasmic protein that contains epidermal growth factor-like repeats and has been shown to represses adipogenic differentiation. These findings may represent a novel mechanism underlying HCTZ-induced adverse metabolic effects.
Collapse
Affiliation(s)
- J L Del-Aguila
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - A L Beitelshees
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland, Baltimore, MD, USA
| | - R M Cooper-Dehoff
- Department of Pharmacotherapy and Translational Research and Division of Cardiovascular Medicine, Colleges of Pharmacy and Medicine, University of Florida, Gainesville, FL, USA
| | - A B Chapman
- Renal Division, Emory University School of Medicine, Atlanta, GA, USA
| | - J G Gums
- Department of Pharmacotherapy and Translational Research and Division of Cardiovascular Medicine, Colleges of Pharmacy and Medicine, University of Florida, Gainesville, FL, USA
| | - K Bailey
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Y Gong
- Department of Pharmacotherapy and Translational Research and Division of Cardiovascular Medicine, Colleges of Pharmacy and Medicine, University of Florida, Gainesville, FL, USA
| | - S T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - J A Johnson
- Department of Pharmacotherapy and Translational Research and Division of Cardiovascular Medicine, Colleges of Pharmacy and Medicine, University of Florida, Gainesville, FL, USA
| | - E Boerwinkle
- 1] Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA [2] Human Genome Sequencing Center at Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
47
|
James AW. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. SCIENTIFICA 2013; 2013:684736. [PMID: 24416618 PMCID: PMC3874981 DOI: 10.1155/2013/684736] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 05/07/2023]
Abstract
Mesenchymal stem cells (MSC) are multipotent cells, functioning as precursors to a variety of cell types including adipocytes, osteoblasts, and chondrocytes. Between osteogenic and adipogenic lineage commitment and differentiation, a theoretical inverse relationship exists, such that differentiation towards an osteoblast phenotype occurs at the expense of an adipocytic phenotype. This balance is regulated by numerous, intersecting signaling pathways that converge on the regulation of two main transcription factors: peroxisome proliferator-activated receptor- γ (PPAR γ ) and Runt-related transcription factor 2 (Runx2). These two transcription factors, PPAR γ and Runx2, are generally regarded as the master regulators of adipogenesis and osteogenesis. This review will summarize signaling pathways that govern MSC fate towards osteogenic or adipocytic differentiation. A number of signaling pathways follow the inverse balance between osteogenic and adipogenic differentiation and are generally proosteogenic/antiadipogenic stimuli. These include β -catenin dependent Wnt signaling, Hedgehog signaling, and NELL-1 signaling. However, other signaling pathways exhibit more context-dependent effects on adipogenic and osteogenic differentiation. These include bone morphogenic protein (BMP) signaling and insulin growth factor (IGF) signaling, which display both proosteogenic and proadipogenic effects. In summary, understanding those factors that govern osteogenic versus adipogenic MSC differentiation has significant implications in diverse areas of human health, from obesity to osteoporosis to regenerative medicine.
Collapse
Affiliation(s)
- Aaron W. James
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS A3-251, Los Angeles, CA 90077, USA
- *Aaron W. James:
| |
Collapse
|
48
|
Liu Y, Chen C, He H, Wang D, E L, Liu Z, Liu H. Lentiviral-mediated gene transfer into human adipose-derived stem cells: role of NELL1 versus BMP2 in osteogenesis and adipogenesis in vitro. Acta Biochim Biophys Sin (Shanghai) 2012; 44:856-65. [PMID: 23017834 DOI: 10.1093/abbs/gms070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
NEL-like molecule 1 (NELL1) is a potent osteogenic factor associated with craniosynostosis. Adenoviruses, the most commonly used viral vectors for gene therapy, have several disadvantages that may restrict osteogenesis. Previous studies have shown that lentiviruses can serve as ideal vectors for gene therapy for bone regeneration. In this study, two lentiviral vectors (LvNELL1 and LvBMP2) that encode human NELL1 and bone morphogenetic protein-2 (BMP2), respectively, were constructed. The effect of LvNELL1 infection on the proliferation, osteogenesis, and adipogenesis of human adipose-derived stem cells (hADSCs) in vitro was assessed and compared with that of LvBMP2. The results showed that hADSCs infected with LvNELL1 could efficiently and stably overexpress the target genes. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results demonstrated that LvBMP2, but not LvNELL1, enhanced the proliferation of hADSCs. Assessment of alkaline phosphatase activity and cellular mineralization indicated that LvNELL1 infection promoted the osteogenic differentiation of hADSCs, and the effect was comparable with that of LvBMP2. Real-time polymerase chain reaction (PCR) revealed that LvNELL1 infection upregulated OSX expression but not RUNX2 expression in hADSCs. In addition, adipogenic markers (lipid droplets, peroxisome proliferator-activating receptor γ, and lipoprotein lipase) analysis showed that LvNELL1 could dramatically inhibit the adipogenic differentiation of hADSCs, but LvBMP2 had no such effect. Taken together, these findings suggested that lentiviral-mediated NELL1 gene transfer in hADSCs may be a novel and promising approach to achieve effective and precise bone regeneration.
Collapse
Affiliation(s)
- Yajing Liu
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Chen CY, Liu YJ, Shi SG, Chen FM, Cai C, Li B, Wang J, Shi L, Li Y, Liu ZY, Niu ZY. Osteogenic differentiation of human periodontal ligament stem cells expressing lentiviral NEL-like protein 1. Int J Mol Med 2012; 30:863-9. [PMID: 22767336 DOI: 10.3892/ijmm.2012.1053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 06/15/2012] [Indexed: 11/05/2022] Open
Abstract
NEL-like protein 1 (NELL1) is a newly identified secreted protein involved in craniosynostosis and has been found to promote osteogenic differentiation of mesenchymal stem cells. The objective of this study was to investigate the effect of NELL1 on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and the potential underlying mechanism. hPDLSCs underwent lentivirus-mediated NELL1 transfection (Lenti-NELL1) and markers of osteogenesis were assessed [alkaline phosphate (ALP), osteocalcin (OCN) and calcium deposition] to evaluate the effect of NELL1 on the differentiation of these cells. Quantitative polymerase chain reaction (qPCR) was employed to measure the mRNA expression of Msx2 and Runx2, and Lenti-enhanced green fluorescent protein (EGFP) served as a control. Western blot analysis and qPCR analyses confirmed that Lenti-NELL1-transfected hPDLSCs could express NELL1. Compared with the Lenti-EGFP group, ALP, OCN, calcium deposition and Msx2 mRNA expression were markedly increased (P<0.01), but there was no significant difference in Runx2 mRNA expression between the two groups (P>0.01). hPDLSCs can be transfected by Lenti-NELL1 and can stably express NELL1. NELL1 is able to promote the osteogenic differentiation of hPDLSCs, which may be related to the downregulation of Msx2 expression. Lenti-NELL1 transfection can be used during in vitro gene therapy for periodontal regeneration.
Collapse
Affiliation(s)
- Cai-Yun Chen
- Chinese PLA Postgraduate Medical School, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
James AW, Zara JN, Zhang X, Askarinam A, Goyal R, Chiang M, Yuan W, Chang L, Corselli M, Shen J, Pang S, Stoker D, Wu B, Ting K, Péault B, Soo C. Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med 2012. [PMID: 23197855 DOI: 10.5966/sctm.2012-0002] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34-CD45-) and adventitial cells (CD146-CD34+CD45-), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis.
Collapse
Affiliation(s)
- Aaron W James
- Dental and Craniofacial Research Institute, University of California, Los Angeles, USA. 900950-1579, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|