1
|
Yu F, Zhang L, Zhang X, Zeng J, Lai F. Integrated analysis of single-cell and bulk-RNA sequencing for the cellular senescence in prognosis of lung adenocarcinoma. Sci Rep 2025; 15:1442. [PMID: 39789322 PMCID: PMC11717922 DOI: 10.1038/s41598-025-85758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Non-small cell lung cancer (NSCLC), half of which are lung adenocarcinoma (LUAD), is one of the most widely spread cancers in the world. Telomerase, which maintains telomere length and chromosomal integrity, enables cancer cells to avoid replicative senescence. When telomerase is inhibited, cancer cells' senescence began, preventing them from growing indefinitely. Cellular senescence and telomeres are intrinsically linked. As of yet, still laking a systematic study of the involvement of telomere-senescence related genes in lung adenocarcinoma development. In this study, myeloid cells were identified as the cell type which are most correlated with cellular senescence based on its highest telomere-related gene activity. GO, KEGG, GSEA and GSVA analyses were used to explore the biological function of telomere-senescence related genes in LUAD. The combined analysis of single-cell RNA-sequencing and bulk-RNA sequencing identified a gene signature composed of 14 genes which can accurately predict the prognosis of patients with LUAD. In one training and four validation sets, patients with higher Telomere Related Gene Signature (TRGS) had a worse prognosis than those with lower TRGS. Different TRGS patient groups showed varying degrees of immune cell infiltration, frequency of gene missense mutation, sensitivity to different drugs, and tumor mutation burden (TMB). Collectively, we developed a brand new signature composed of telomere-senescence related genes that can accurately predicts patients' prognosis in LUAD, which provides new insights for future research into the role of cellular senescence in LUAD.
Collapse
Affiliation(s)
- Fengqiang Yu
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Liangyu Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xun Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jianshen Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fancai Lai
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
2
|
Mahmud S, Zheng C, Santiago FE, Zhang L, Robbins PD, Dong X. A machine learning approach identifies cellular senescence on transcriptome data of human cells in vitro. GeroScience 2024:10.1007/s11357-024-01485-6. [PMID: 39738795 DOI: 10.1007/s11357-024-01485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025] Open
Abstract
Although cellular senescence has been recognized as a hallmark of aging, it is challenging to detect senescence cells (SnCs) due to their high level of heterogeneity at the molecular level. Machine learning (ML) is likely an ideal approach to address this challenge because of its ability to recognize complex patterns that cannot be characterized by one or a few features, from high-dimensional data. To test this, we evaluated the performance of four ML algorithms including support vector machines (SVM), random forest (RF), decision tree (DT), and Soft Independent Modelling of Class Analogy (SIMCA), in distinguishing SnCs from controls based on bulk RNA sequencing data. The dataset includes 162 in vitro samples, covering three human cell types: fibroblasts, melanocytes, and keratinocytes, and three senescence inducers: irradiation, bleomycin treatment, and replication. Under tenfold and leave-one-out cross-validation, as well as independent dataset validation, all methods provided ~ 80% or higher accuracy, with SVM reaching over 99%. Similar accuracy was achieved using expert-curated gene lists, e.g., SenMayo and CellAge, instead of our algorithm-prioritized gene list using minimum redundancy-maximum relevance (mRMR). However, only a few genes overlapped between the gene sets, suggesting a wide impact of senescence on the transcriptome. Overall, our study demonstrated a proof-of-concept for identifying senescence using ML.
Collapse
Affiliation(s)
- Shamsed Mahmud
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Chen Zheng
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fernando E Santiago
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA.
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Nagayama K, Nogami K, Sugano S, Nakazawa M. Dedifferentiation- and aging-induced loss of mechanical contractility and polarity in vascular smooth muscle cells: Heterogeneous changes in macroscopic and microscopic behavior of cells in serial passage culture. J Mech Behav Biomed Mater 2024; 160:106744. [PMID: 39303420 DOI: 10.1016/j.jmbbm.2024.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Dedifferentiation and aging of vascular smooth muscle cells (VSMCs) are associated with serious vascular diseases, such as arteriosclerosis and aneurysm. However, how cell dedifferentiation and aging affect cellular mechanical behaviors at the single-cell and intracellular structure levels remains unclear. An in-depth understanding of these interactions is extremely important for understanding the mechanism underlying VSMC mechanical integrity and homeostatic regulation of vascular walls. Herein, we systematically investigated changes in VSMC morphology, structure, contractility, and motility during dedifferentiation and aging induced by serial passage culture using traction force microscopy with elastic micropillar substrates, laser nanodissection of cytoskeletons, confocal fluorescence microscopy, and atomic force microscopy. We found that VSMC dedifferentiation started in the middle stage of serial passage culture, accompanied by a transient cell spreading in the cell width and decrease in contractile protein expression. Dedifferentiated VSMCs showed a significant decrease in the contraction and stiffness of individual actin stress fibers; however, their overall cell traction forces were maintained. Simultaneously, a significant increase in cell motility and the number of actin fibers was observed in dedifferentiated VSMCs, which may be associated with the enhancement of cell migration and disruption of cell/tissue integrity during the early stage of vascular diseases. As cell senescence progressed in the later stage of serial passage culture, VSMCs displayed reduced cell spreading and migration with decrease in the overall cell traction forces and drastic reduction in mechanical polarity of cell structures and forces. These results suggested that cell senescence causes loss of mechanical contractility and polarity in VSMCs, which may be an important factor in vascular disease progression. The experimental systems established in this study can be powerful tools for understanding the mechanisms underlying cellular dedifferentiation and aging from a biomechanical perspective.
Collapse
Affiliation(s)
- Kazuaki Nagayama
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan.
| | - Kenzo Nogami
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan
| | - Shunta Sugano
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan
| | - Miku Nakazawa
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan
| |
Collapse
|
4
|
Li Y, Baig N, Roncancio D, Elbein K, Lowe D, Kyba M, Arriaga EA. Multiparametric identification of putative senescent cells in skeletal muscle via mass cytometry. Cytometry A 2024; 105:580-594. [PMID: 38995093 PMCID: PMC11719773 DOI: 10.1002/cyto.a.24853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 07/13/2024]
Abstract
Senescence is an irreversible arrest of the cell cycle that can be characterized by markers of senescence such as p16, p21, and KI-67. The characterization of different senescence-associated phenotypes requires selection of the most relevant senescence markers to define reliable cytometric methodologies. Mass cytometry (a.k.a. Cytometry by time of flight, CyTOF) can monitor up to 40 different cell markers at the single-cell level and has the potential to integrate multiple senescence and other phenotypic markers to identify senescent cells within a complex tissue such as skeletal muscle, with greater accuracy and scalability than traditional bulk measurements and flow cytometry-based measurements. This article introduces an analysis framework for detecting putative senescent cells based on clustering, outlier detection, and Boolean logic for outliers. Results show that the pipeline can identify putative senescent cells in skeletal muscle with well-established markers such as p21 and potential markers such as GAPDH. It was also found that heterogeneity of putative senescent cells in skeletal muscle can partly be explained by their cell type. Additionally, autophagy-related proteins ATG4A, LRRK2, and GLB1 were identified as important proteins in predicting the putative senescent population, providing insights into the association between autophagy and senescence. It was observed that sex did not affect the proportion of putative senescent cells among total cells. However, age did have an effect, with a higher proportion observed in fibro/adipogenic progenitors (FAPs), satellite cells, M1 and M2 macrophages from old mice. Moreover, putative senescent cells from muscle of old and young mice show different expression levels of senescence-related proteins, with putative senescent cells of old mice having higher levels of p21 and GAPDH, whereas putative senescent cells of young mice had higher levels of IL-6. Overall, the analysis framework prioritizes multiple senescence-associated proteins to characterize putative senescent cells sourced from tissue made of different cell types.
Collapse
Affiliation(s)
- Yijia Li
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nameera Baig
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Roncancio
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kris Elbein
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dawn Lowe
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edgar A. Arriaga
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
He F, Shi H, Guo S, Li X, Tan X, Liu R. Molecular mechanisms of nano-sized polystyrene plastics induced cytotoxicity and immunotoxicity in Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133032. [PMID: 38000284 DOI: 10.1016/j.jhazmat.2023.133032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/29/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Nanoplastics (NPs) are currently everywhere and environmental pollution by NPs is a pressing global problem. Nevertheless, until now, few studies have concentrated on the mechanisms and pathways of cytotoxic effects and immune dysfunction of NPs on soil organisms employing a multidimensional strategy. Hence, earthworm immune cells and immunity protein lysozyme (LZM) were selected as specific receptors to uncover the underlying mechanisms of cytotoxicity, genotoxicity, and immunotoxicity resulting from exposure to polystyrene nanoplastics (PS-NPs), and the binding mechanisms of PS-NPs-LZM interaction. Results on cells indicated that when earthworm immune cells were exposed to high-dose PS-NPs, it caused a notable rise in the release of reactive oxygen species (ROS), resulting in oxidative stress. PS-NPs exposure significantly decreased the cell viability of earthworm immune cells, inducing cytotoxicity through ROS-mediated oxidative stress pathway, and oxidative injury effects, including reduced antioxidant defenses, lipid peroxidation, DNA damage, and protein oxidation. Moreover, PS-NPs stress inhibited the intracellular LZM activity in immune cells, resulting in impaired immune function and immunotoxicity by activating the oxidative stress pathway mediated by ROS. The results from molecular studies revealed that PS-NPs binding destroyed the LZM structure and conformation, including secondary structure changes, protein skeleton unfolding/loosening, fluorescence sensitization, microenvironment changes, and particle size changes. Molecular docking suggested that PS-NPs combined with active center of LZM easier and inhibited the protein function more, and formed a hydrophobic interaction with TRP 62, a crucial amino acid residue closely associated with the function and conformation of LZM. This is also responsible for LZM conformational changes and functional inhibition /inactivation. These results of this research offer a fresh outlook on evaluating the detriment of NPs to the immune function of soil organisms using cellular and molecular strategies.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xuejie Tan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
6
|
Aoki R, Tanaka T. Pathogenesis of Warthin's Tumor: Neoplastic or Non-Neoplastic? Cancers (Basel) 2024; 16:912. [PMID: 38473274 DOI: 10.3390/cancers16050912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Warthin's tumor is the second most frequent neoplasm next to pleomorphic adenoma in the salivary gland, mostly in the parotid gland. The epithelial cells constituting a tumor are characterized by the presence of mitochondria that undergo structural and functional changes, resulting in the development of oncocytes. In addition to containing epithelial cells, Warthin's tumors contain abundant lymphocytes with lymph follicles (germinal centers) that are surrounded by epithelial cells. The pathogenesis of Warthin's tumor is not fully understood, and several hypotheses have been proposed. The risk factors for the development of Warthin's tumor, which predominantly occurs in males, include aging, smoking, and radiation exposure. Recently, it has been reported that chronic inflammation and aging cells promote the growth of Warthin's tumor. Several reports regarding the origin of the tumor have suggested that (1) Warthin's tumor is an IgG4-related disease, (2) epithelial cells that compose Warthin's tumor accumulate mitochondria, and (3) Warthin's tumor is a metaplastic lesion in the lymph nodes. It is possible that the pathogenesis of Warthin's tumor includes mitochondrial metabolic abnormalities, accumulation of aged cells, chronic inflammation, and senescence-associated secretory phenotype (SASP). In this short review, we propose that DNA damage, metabolic dysfunction of mitochondria, senescent cells, SASP, human papillomavirus, and IgG4 may be involved in the development of Warthin's tumor.
Collapse
Affiliation(s)
- Ryogo Aoki
- Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-l Kashima-Cho, Gifu City 500-8513, Gifu, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-l Kashima-Cho, Gifu City 500-8513, Gifu, Japan
| |
Collapse
|
7
|
He F, Hu S, Liu R, Li X, Guo S, Wang H, Tian G, Qi Y, Wang T. Decoding the biological toxicity of phenanthrene on intestinal cells of Eisenia fetida: Effects, toxicity pathways and corresponding mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166903. [PMID: 37683861 DOI: 10.1016/j.scitotenv.2023.166903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/13/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Phenanthrene is frequently detected and exists extensively in the soil environment, and its residues inevitably impose a significant threat to soil organisms. Exposure to and toxicity of phenanthrene on earthworms has been extensively studied before, however, the possible mechanisms and related pathways associated with phenanthrene-triggered toxicity at the intestinal cell level remain unclear. Herein, primary intestinal cells isolated from Eisenia fetida (Annelida, Oligochaeta) intestine were used as targeted receptors to probe the molecular mechanisms involved in ROS-mediated damaging effects and the potential pathways of phenanthrene-induced toxicity at cellular and sub-cellular levels. Results indicated that phenanthrene exposure induced oxidative stress by activating intracellular ROS (elevated O2-, H2O2, and OH- content) bursts in E. fetida intestinal cells, causing various oxidative damage effects, including lipid peroxidation (increased MDA content), protein oxidation (enhanced PCO levels), and DNA damage (enhanced 8-OHdG levels). The enzymatic and non-enzymatic strategies in earthworm cells were activated to mitigate these detrimental effects by regulating ROS-mediated pathways involving defense regulation. Also, phenanthrene stress destroyed the cell membrane of E. fetida intestinal cells, resulting in cellular calcium homeostasis disruption and cellular energetic alteration, ultimately causing cytotoxicity and cell apoptosis/death. More importantly, the mitochondrial dysfunction in E. fetida cells was induced by phenanthrene-caused mitochondrial membrane depolarization, which in turn caused un-controlled ROS burst and induced apoptosis through mitochondria-mediated caspase-3 activation and ROS-mediated mitochondrial-dependent pathway. Furthermore, exposure to phenanthrene activated an abnormal mRNA expression profile associated with defense regulation (e.g., Hsp70, MT, CRT, SOD, CAT, and GST genes) in E. fetida intestinal cells, resulting in various cellular dysfunctions and pathological conditions, eventually, apoptotic cell death. Taken together, this study offers valuable insights for probing the toxic effects and underlying mechanisms posed by phenanthrene at the intestinal cell level, and is of great significance to estimate the detrimental side effects of phenanthrene on soil ecological health.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Hao Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| |
Collapse
|
8
|
Wang J, Yu X, Cao X, Tan L, Jia B, Chen R, Li J. GAPDH: A common housekeeping gene with an oncogenic role in pan-cancer. Comput Struct Biotechnol J 2023; 21:4056-4069. [PMID: 37664172 PMCID: PMC10470192 DOI: 10.1016/j.csbj.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is one of the most prominent housekeeping proteins and is widely used as an internal control in some semi-quantitative assays. In addition to glycolysis, GAPDH is involved in several cancer-related biological processes and has been reported to be commonly dysregulated in multiple cancer types. Therefore, its role in the physiological process of cancer needs to be urgently elucidated. Pan-cancer analysis indicated that GAPDH is ubiquitously highly expressed in most cancer types, and that patients with a high GAPDH expression of in tumor tissues have a poor prognosis. The concordance of GAPDH expression in tumors with the infiltration of immune cells and immune checkpoints implies a certain association between GAPDH and the tumor microenvironment as well as tumor development. Gene Set Enrichment Analysis revealed that GAPDH may contribute to multiple important cancer-related pathways and biological processes. Multi-omics analysis and in vitro cell experiments revealed that GAPDH overexpression is regulated by DNA copy number amplification and promoter methylation modification. Importantly, a transcription factor, forkhead box M1 (FOXM1), which is capable of regulating GAPDH expression, was also identified and was confirmed to be an oncogene and ubiquitously highly expressed in multiple cancer types. Semi-quantitative chromatin immunoprecipitation, quantitative PCR, and dual-luciferase assays showed that FOXM1 mainly binds to the promoter region of GAPDH in two cancer cell lines. The present findings revealed the implication of GAPDH in tumor development, thus bringing attention to this important molecule and casting doubts on its role as an internal reference gene in cancer studies.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xueting Yu
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xiyuan Cao
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Lirong Tan
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Beibei Jia
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Rui Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| |
Collapse
|
9
|
Liu A, Wang X, Hu L, Yan D, Yin Y, Zheng H, Liu G, Zhang J, Li Y. A predictive molecular signature consisting of lncRNAs associated with cellular senescence for the prognosis of lung adenocarcinoma. PLoS One 2023; 18:e0287132. [PMID: 37352167 PMCID: PMC10289466 DOI: 10.1371/journal.pone.0287132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/31/2023] [Indexed: 06/25/2023] Open
Abstract
The role of long noncoding RNAs (lncRNAs) has been verified by more and more researches in recent years. However, there are few reports on cellular senescence-associated lncRNAs in lung adenocarcinoma (LUAD). Therefore, to explore the prognostic effect of lncRNAs in LUAD, 279 cellular senescence-related genes, survival information and clinicopathologic parameters were derived from the CellAge database and The Cancer Genome Atlas (TCGA) database. Then, we constructed a novel cellular senescence-associated lncRNAs predictive signature (CS-ALPS) consisting of 6 lncRNAS (AC026355.1, AL365181.2, AF131215.5, C20orf197, GAS6-AS1, GSEC). According to the median of the risk score, 480 samples were divided into high-risk and low-risk groups. Furthermore, the clinicopathological and biological functions, immune characteristics and common drug sensitivity were analyzed between two risk groups. In conclusion, the CS-ALPS can independently forecast the prognosis of LUAD, which reveals the potential molecular mechanism of cellular senescence-associated lncRNAs, and provides appropriate strategies for the clinical treatment of patients with LUAD.
Collapse
Affiliation(s)
- Anbang Liu
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaohuai Wang
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liu Hu
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dongqing Yan
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yin Yin
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongjie Zheng
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Gengqiu Liu
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Junhang Zhang
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yun Li
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
10
|
Podyacheva E, Toropova Y. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis. Int J Mol Sci 2023; 24:ijms24097925. [PMID: 37175631 PMCID: PMC10178434 DOI: 10.3390/ijms24097925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
11
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
12
|
A Lipid Metabolism-Based Seven-Gene Signature Correlates with the Clinical Outcome of Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9913206. [PMID: 35186082 PMCID: PMC8856807 DOI: 10.1155/2022/9913206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Background. Herein, we tried to develop a prognostic prediction model for patients with LUAD based on the expression profiles of lipid metabolism-related genes (LMRGs). Methods. Molecular subtypes were identified by non-negative matrix factorization (NMF) clustering. The overall survival (OS) predictive gene signature was developed and validated internally and externally based on online data sets. Time-dependent receiver operating characteristic (ROC) curve, Kaplan–Meier curve, nomogram, restricted mean survival time (EMST), and decision curve analysis (DCA) were used to assess the performance of the gene signature. Results. We identified three molecular subtypes in LUAD with distinct characteristics on immune cells infiltration and clinical outcomes. Moreover, we confirmed a seven-gene signature as an independent prognostic factor for patients with LUAD. Calibration and DCA analysis plots indicated the excellent predictive performance of the prognostic nomogram constructed based on the gene signature. In addition, the nomogram showed higher robustness and clinical usability compared with four previously reported prognostic gene signatures. Conclusions. Findings in the present study shed new light on the characteristics of lipid metabolism within LUAD, and the established seven-gene signature can be utilized as a new prognostic marker for predicting survival in patients with LUAD.
Collapse
|
13
|
Rahman ANU, Liu J, Mujib S, Kidane S, Ali A, Szep S, Han C, Bonner P, Parsons M, Benko E, Kovacs C, Yue FY, Ostrowski M. Elevated glycolysis imparts functional ability to CD8 + T cells in HIV infection. Life Sci Alliance 2021; 4:4/11/e202101081. [PMID: 34548381 PMCID: PMC8473722 DOI: 10.26508/lsa.202101081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
The mechanisms inducing exhaustion of HIV-specific CD8+ T cells are not fully understood. Metabolic programming directly influences T-cell differentiation, effector function, and memory. We evaluated metabolic profiles of ex vivo CD8+ T cells in HIV-infected individuals. The baseline oxygen consumption rate of CD8+ T cells was elevated in all infected individuals and CD8+ T cells were working at maximal respiratory capacity. The baseline glycolysis rate was enhanced only during early untreated HIV and in viral controllers, but glycolytic capacity was conserved at all stages of infection. CD8+ T-cell mTOR activity was found to be reduced. Enhanced glycolysis was crucial for HIV-specific killing of CD8+ T cells. CD8+ T-cell cytoplasmic GAPDH content was reduced in HIV, but less in early infection and viral controllers. Thus, CD8+ T-cell exhaustion in HIV is characterized by reduced glycolytic activity, enhanced OXPHOS demands, dysregulated mTOR, and reduced cytoplasmic GAPDH. These data provide potential metabolic strategies to reverse CD8+ T-cell dysfunction in HIV.
Collapse
Affiliation(s)
| | - Jun Liu
- Deparment of Medicine, University of Toronto, Toronto, Canada
| | - Shariq Mujib
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Segen Kidane
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Arman Ali
- Deparment of Medicine, University of Toronto, Toronto, Canada
| | - Steven Szep
- Deparment of Medicine, University of Toronto, Toronto, Canada
| | - Carrie Han
- Deparment of Medicine, University of Toronto, Toronto, Canada
| | - Phil Bonner
- Deparment of Medicine, University of Toronto, Toronto, Canada
| | - Michael Parsons
- Flow Cytometry Facility, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | | | - Feng Yun Yue
- Deparment of Medicine, University of Toronto, Toronto, Canada
| | - Mario Ostrowski
- Deparment of Medicine, University of Toronto, Toronto, Canada .,Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Deparment of Immunology, University of Toronto, Toronto, Canada.,Keenan Research Centre for Biomedical Sciences of St. Michael's Hospital Toronto, Toronto, Canada
| |
Collapse
|
14
|
Dowling CM, Zhang H, Chonghaile TN, Wong KK. Shining a light on metabolic vulnerabilities in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188462. [PMID: 33130228 PMCID: PMC7836022 DOI: 10.1016/j.bbcan.2020.188462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer which contributes to essential processes required for cell survival, growth, and proliferation. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and its genomic classification has given rise to the design of therapies targeting tumors harboring specific gene alterations that cause aberrant signaling. Lung tumors are characterized with having high glucose and lactate use, and high heterogeneity in their metabolic pathways. Here we review how NSCLC cells with distinct mutations reprogram their metabolic pathways and highlight the potential metabolic vulnerabilities that might lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Catríona M Dowling
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA; School of Medicine, University of Limerick, Limerick, Ireland
| | - Hua Zhang
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
| | - Tríona Ní Chonghaile
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kwok-Kin Wong
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
15
|
Activation of LKB1 rescues 3T3-L1 adipocytes from senescence induced by Sirt1 knock-down: a pivotal role of LKB1 in cellular aging. Aging (Albany NY) 2020; 12:18942-18956. [PMID: 33040052 PMCID: PMC7732306 DOI: 10.18632/aging.104052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/24/2020] [Indexed: 01/24/2023]
Abstract
Previous reports have shown that excess calorie intake promotes p53 dependent senescence in mouse adipose tissues. The objective of the current study was to address the mechanism underlying this observation, i.e. adipocyte aging. Using cultured 3T3-L1 cells, we investigated the involvement of energy regulators Sirt1, AMPK, and LKB1 in senescence. Fifteen days post differentiation, Sirt1 knock-down increased senescence-associated beta-galactosidase (SA-β-Gal) staining by 20-40% (p<0.05, n=12) and both cyclin kinase inhibitor p21Cip and chemokine receptor IL8Rb expression by 2-4 fold. ATP and expression of mitochondria Complex 1 were also reduced by 30% and 50%, respectively (p<0.05, n=4). Such energy depletion may have caused the observed increase in AMPK activity, despite LKB1 activity downregulation. This association between Sirt1 and LKB1 activity was confirmed in vivo in mouse adipose tissue. Upregulation of LKB1 activity by expression of the Sirt1-insensitive LKB1-K48R mutant in 3T3-L1 cells completely prevented the senescence-associated changes of Sirt1 knock-down. In addition, cellular senescence, which also occurs in cultured primary human aortic endothelial cells, was largely prevented by ectopic expression of LKB1. These results suggest that LKB1 plays a pivotal role in cellular senescence occurring in adipocytes and other cell types.
Collapse
|
16
|
Qian H, Cao Y, Sun J, Zu J, Ma L, Zhou H, Tang X, Li Y, Yu H, Zhang M, Bai Y, Xu C, Ishii N, Hashimoto T, Li X. Anti-human serum albumin autoantibody may be involved in the pathogenesis of autoimmune bullous skin diseases. FASEB J 2020; 34:8574-8595. [PMID: 32369236 DOI: 10.1096/fj.201903247rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Although effective immunological diagnostic systems for autoimmune bullous skin diseases (AIBD) have been established, there are still unidentified cutaneous autoantigens. The purpose of this study is to investigative whether anti-human serum albumin (HSA) autoantibodies exist in AIBD sera and their potential pathogenesis. By immunoprecipitation-immunoblotting, immunofluorescence assay, anti-HSA autoantibodies could be detected in AIBD sera; by ELISAs, positive rates of AIBD sera for IgG and IgA anti-HSA autoantibodies were 29% and 34%, respectively. The IgG anti-HSA autoantibodies in ABID sera recognized a number of HSA antigen epitopes and therefore a polyclonal antibody against HSA were next employed to study its pathogenesis. In vitro cell and tissue culture models, anti-HSA antibody could influence DNA damage-related signaling proteins, via activation of phospho-p38 signaling pathway. This is the first report that an autoantibody may influence DNA damage-related signaling proteins. Statistical analyses also proved that anti-HSA autoantibodies were positively correlated with various known autoantibodies and clinical features of ABID patients. In summary, IgG and IgA autoantibodies to HSA may have diagnosis values for AIBD. DNA damage-related signaling proteins might be involved in the pathogenic role of anti-HSA autoantibodies in AIBD. Phospho-p38 signaling pathway is a potential target for treatment of AIBD positive for serum anti-HSA autoantibodies.
Collapse
Affiliation(s)
- Hua Qian
- Central Laboratory, Dermatology Hospital of Jiangxi Province, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University and Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yan Cao
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Junfeng Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jianing Zu
- Department of Orthopaedics, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liang Ma
- Department of Pharmacology, College of Pharmacy, Harbin Medical University and Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Haizhou Zhou
- Department of Laboratory Diagnosis, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xianling Tang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Haiyang Yu
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyu Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University and Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yunlong Bai
- Department of Pharmacology, College of Pharmacy, Harbin Medical University and Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Chaoqian Xu
- Department of Pharmacology, Mudanjiang Medical University, Mudanjiang, China
| | - Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Japan
| | - Takashi Hashimoto
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Xiaoguang Li
- Central Laboratory, Dermatology Hospital of Jiangxi Province, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University and Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
17
|
Glyceraldehyde-3-phosphate Dehydrogenase is a Multifaceted Therapeutic Target. Pharmaceutics 2020; 12:pharmaceutics12050416. [PMID: 32370188 PMCID: PMC7285110 DOI: 10.3390/pharmaceutics12050416] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme whose role in cell metabolism and homeostasis is well defined, while its function in pathologic processes needs further elucidation. Depending on the cell context, GAPDH may bind a number of physiologically important proteins, control their function and correspondingly affect the cell’s fate. These interprotein interactions and post-translational modifications of GAPDH mediate its cytotoxic or cytoprotective functions in the manner of a Janus-like molecule. In this review, we discuss the functional features of the enzyme in cellular physiology and its possible involvement in human pathologies. In the last part of the article, we describe drugs that can be employed to modulate this enzyme’s function in some pathologic states.
Collapse
|
18
|
Kiss Z, Mudryj M, Ghosh PM. Non-circadian aspects of BHLHE40 cellular function in cancer. Genes Cancer 2020; 11:1-19. [PMID: 32577154 PMCID: PMC7289903 DOI: 10.18632/genesandcancer.201] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
While many genes specifically act as oncogenes or tumor suppressors, others are tumor promoters or suppressors in a context-dependent manner. Here we will review the basic-helix-loop-helix (BHLH) protein BHLHE40, (also known as BHLHB2, STRA13, DEC1, or SHARP2) which is overexpressed in gastric, breast, and brain tumors; and downregulated in colorectal, esophageal, pancreatic and lung cancer. As a transcription factor, BHLHE40 is expressed in the nucleus, where it binds to target gene promoters containing the E-box hexanucleotide sequence, but can also be expressed in the cytoplasm, where it stabilizes cyclin E, preventing cyclin E-mediated DNA replication and cell cycle progression. In different organs BHLHE40 regulates different targets; hence may have different impacts on tumorigenesis. BHLHE40 promotes PI3K/Akt/mTOR activation in breast cancer, activating tumor progression, but suppresses STAT1 expression in clear cell carcinoma, triggering tumor suppression. Target specificity likely depends on cooperation with other transcription factors. BHLHE40 is activated in lung and esophageal carcinoma by the tumor suppressor p53 inducing senescence and suppressing tumor growth, but is also activated under hypoxic conditions by HIF-1α in gastric cancer and hepatocellular carcinomas, stimulating tumor progression. Thus, BHLHE40 is a multi-functional protein that mediates the promotion or suppression of cancer in a context dependent manner.
Collapse
Affiliation(s)
- Zsofia Kiss
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Mudryj
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Microbiology and Immunology, University of California, Davis, CA, USA
| | - Paramita M. Ghosh
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
19
|
Al-Shammari AM, Abdullah AH, Allami ZM, Yaseen NY. 2-Deoxyglucose and Newcastle Disease Virus Synergize to Kill Breast Cancer Cells by Inhibition of Glycolysis Pathway Through Glyceraldehyde3-Phosphate Downregulation. Front Mol Biosci 2019; 6:90. [PMID: 31612140 PMCID: PMC6777003 DOI: 10.3389/fmolb.2019.00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/11/2019] [Indexed: 01/16/2023] Open
Abstract
Targeting cancer cells metabolism is promising strategy in inhibiting cancer cells progression that are known to exhibit increased aerobic glycolysis. We used the glucose analog 2-Deoxyglucose (2-DG) as a competitor molecule of glucose. To further enhance the effectiveness of 2-DG, the Newcastle disease virus (NDV) was used as a combination virotherapy to enhance the anti-tumor effect. Human and mouse-breast cancer cells were treated by NDV and/or 2-DG. The effect was analyzed by study cell viability, apoptosis and level of glyceraldehyde3-phosphate (GAPDH) by ELISA and QPCR assays. Synergistic cytotoxicity was found after a 72-h treatment of human- and mouse-breast cancer cells with 2-DG in combination with NDV at different concentrations. The synergistic cytotoxicity was accompanied by apoptotic cell death and GAPDH downregulation and inhibition to glycolysis product pyruvate. The combination treatment showed significant tumor growth inhibition compared to single treatments in vivo. Our results suggest the effectiveness of a novel strategy for anti-breast cancer therapy through glycolysis inhibition and GAPDH downregulation.
Collapse
Affiliation(s)
- Ahmed Majeed Al-Shammari
- Experimental Therapy Department, Iraqi Centre for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| | - Amer Hasan Abdullah
- Experimental Therapy Department, Iraqi Centre for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| | - Zainab Majid Allami
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Nahi Y Yaseen
- Experimental Therapy Department, Iraqi Centre for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
20
|
Han X, Xiong Y, Zhao C, Xie S, Li C, Li X, Liu X, Li K, Zhao S, Ruan J. Identification of Glyceraldehyde-3-Phosphate Dehydrogenase Gene as an Alternative Safe Harbor Locus in Pig Genome. Genes (Basel) 2019; 10:E660. [PMID: 31470649 PMCID: PMC6770653 DOI: 10.3390/genes10090660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/20/2023] Open
Abstract
The ectopic overexpression of foreign genes in animal genomes is an important strategy for gain-of-function study and establishment of transgenic animal models. Previous studies showed that two loci (Rosa26 and pH11) were identified as safe harbor locus in pig genomes, which means foreign genes can be integrated into this locus for stable expression. Moreover, integration of a transgene may interfere with the endogenous gene expression of the target locus after the foreign fragments are inserted. Here, we provide a new strategy for efficient transgene knock-in in the endogenous GAPDH gene via CRISPR/Cas9 mediated homologous recombination. This strategy has no influence on the expression of the endogenous GAPDH gene. Thus, the GAPDH locus is a new alternative safe harbor locus in the pig genome for foreign gene knock-ins. This strategy is promising for agricultural breeding and biomedical model applications.
Collapse
Affiliation(s)
- Xiaosong Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Youcai Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production-Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production-Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production-Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangdong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production-Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production-Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
- College of Life Science, Foshan University, Guangdong 528231, China.
| |
Collapse
|
21
|
Zheng Q, Liu P, Gao G, Yuan J, Wang P, Huang J, Xie L, Lu X, Di F, Tong T, Chen J, Lu Z, Guan J, Wang G. Mitochondrion-processed TERC regulates senescence without affecting telomerase activities. Protein Cell 2019; 10:631-648. [PMID: 30788732 PMCID: PMC6711880 DOI: 10.1007/s13238-019-0612-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial dysfunctions play major roles in ageing. How mitochondrial stresses invoke downstream responses and how specificity of the signaling is achieved, however, remains unclear. We have previously discovered that the RNA component of Telomerase TERC is imported into mitochondria, processed to a shorter form TERC-53, and then exported back to the cytosol. Cytosolic TERC-53 levels respond to mitochondrial functions, but have no direct effect on these functions, suggesting that cytosolic TERC-53 functions downstream of mitochondria as a signal of mitochondrial functions. Here, we show that cytosolic TERC-53 plays a regulatory role on cellular senescence and is involved in cognition decline in 10 months old mice, independent of its telomerase function. Manipulation of cytosolic TERC-53 levels affects cellular senescence and cognition decline in 10 months old mouse hippocampi without affecting telomerase activity, and most importantly, affects cellular senescence in terc−/− cells. These findings uncover a senescence-related regulatory pathway with a non-coding RNA as the signal in mammals.
Collapse
Affiliation(s)
- Qian Zheng
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peipei Liu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ge Gao
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiapei Yuan
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pengfeng Wang
- Peking University Research Center on Aging, Beijing, 100191, China
| | - Jinliang Huang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Leiming Xie
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinping Lu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fan Di
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tanjun Tong
- Peking University Research Center on Aging, Beijing, 100191, China.,Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing, 100191, China.,Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Zhi Lu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jisong Guan
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Geng Wang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
22
|
Correlation study of GAPDH, Bcl-2, and Bax protein immunoexpression in patients with colorectal adenocarcinoma. GASTROENTEROLOGY REVIEW 2018; 13:322-331. [PMID: 30581507 PMCID: PMC6300847 DOI: 10.5114/pg.2018.79813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
Introduction Colorectal cancer (CRC) is the third and second most commonly diagnosed cancer worldwide in males and females, respectively. Despite prominent progress in diagnosis and treatment, the recurrence rates are still high. A tumour hypoxic environment leads to an increase in glycolytic metabolism. The crucial intermediate component of glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), could play a significant role in cancer progression. An increased level of GAPDH has been described in oncogene-induced transformation and anti-apoptotic function. In other studies, GAPDH has been involved in apoptosis induction. Aim We examined colorectal adenocarcinoma samples to assess the immunoexpression of GAPDH protein. We also evaluated the correlation between the expression of GAPDH protein and apoptotic parameters including expression of Bcl2 and Bax. Material and methods Paraffin sections were incubated for 60 min with primary antibody against GAPDH, Bcl-2, and Bax. Results Results of our study have shown that GAPDH expression in colorectal cancer is upregulated. We revealed significant positive correlation between expression of this protein and grade and size of tumour, and regional lymph node involvement. In the case of apoptosis-associated proteins, e.g. Bcl-2 and Bax, we found negative correlations between expression of these proteins and grade and size of tumour, lymphovascular invasion, and regional lymph node involvement. Finally, we demonstrated that GAPDH up-regulation is connected with down-regulation in Bcl-2 and Bax. Conclusions Up-regulation of GAPDH protein and down-regulation of Bcl-2 and Bax may result in increased of cancer.
Collapse
|
23
|
Dealing with Stress: Defective Metabolic Adaptation in Chronic Obstructive Pulmonary Disease Pathogenesis. Ann Am Thorac Soc 2018; 14:S374-S382. [PMID: 29161091 DOI: 10.1513/annalsats.201702-153aw] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mitochondrion is the main site of energy production and a hub of key signaling pathways. It is also central in stress-adaptive response due to its dynamic morphology and ability to interact with other organelles. In response to stress, mitochondria fuse into networks to increase bioenergetic efficiency and protect against oxidative damage. Mitochondrial damage triggers segregation of damaged mitochondria from the mitochondrial network through fission and their proteolytic degradation by mitophagy. Post-translational modifications of the mitochondrial proteome and nuclear cross-talk lead to reprogramming of metabolic gene expression to maintain energy production and redox balance. Chronic obstructive pulmonary disease (COPD) is caused by chronic exposure to oxidative stress arising from inhaled irritants, such as cigarette smoke. Impaired mitochondrial structure and function, due to oxidative stress-induced damage, may play a key role in causing COPD. Deregulated metabolic adaptation may contribute to the development and persistence of mitochondrial dysfunction in COPD. We discuss the evidence for deregulated metabolic adaptation and highlight important areas for investigation that will allow the identification of molecular targets for protecting the COPD lung from the effects of dysfunctional mitochondria.
Collapse
|
24
|
Wang WT, Li Z, Shi M, Zhu H, Xiong X, Shang J, Liu J, Teng M, Yang M. Association of the GLB1 rs4678680 genetic variant with risk of HBV-related hepatocellular carcinoma. Oncotarget 2018; 7:56501-56507. [PMID: 27489354 PMCID: PMC5302931 DOI: 10.18632/oncotarget.10963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/19/2016] [Indexed: 01/22/2023] Open
Abstract
Accumulated evidences demonstrated that GLB1 is involved in cell senescence and cancer development. The GLB1 rs4678680 single nucleotide polymorphism (SNP) has been identified as a hepatocellular carcinoma (HCC) susceptibility polymorphism by a genome-wide association study in Korean population previously. However, little or nothing was known about its involvement and functional significance in hepatitis B viruses (HBV)-related HCC in Chinese. Therefore, we investigated the association between the GLB1 rs4678680 SNP and HBV-related HCC risk as well as its biological function in vivo. Genotypes were determined in two independent case-control sets from two medical centers of China. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression. The potential regulation role the rs4678680 genetic variant on GLB1 expression was examined with HCC and normal liver tissues. We found that The rs4678680 G allele was showed to be risk allele; individuals with the TG genotype had an OR of 1.51 (95% CI = 1.10–2.07, P = 0.010, Shandong set) or 1.49 (95% CI = 1.11–1.99, P = 0.008, Jiangsu set) for developing HBV-related HCC, respectively, compared with individuals with the TT genotype. This association was more pronounced in males, individuals aged older than 57 years and drinkers (all P < 0.05). In the genotype-phenotype correlation analyses of fifty-six human liver tissue samples, rs4678680 TG or GG was associated with a statistically significant increase of GLB1 mRNA expression (P < 0.05). Our data indicated that the GLB1 rs4678680 SNP contributes to susceptibility to develop HBV-related HCC, highlighting the involvement of GLB1 and cell senescence in etiology of HCC.
Collapse
Affiliation(s)
- Wen-Tao Wang
- Department of Hepatobiliary Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
| | - Ziqiang Li
- Department of Hepatobiliary Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
| | - Meng Shi
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Xiangyu Xiong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jinhua Shang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jibing Liu
- Department of Intervention Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Mujian Teng
- Department of Hepatobiliary Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
25
|
Zhao H, Dennery PA, Yao H. Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2018; 314:L544-L554. [PMID: 29351437 DOI: 10.1152/ajplung.00521.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The metabolism of nutrient substrates, including glucose, glutamine, and fatty acids, provides acetyl-CoA for the tricarboxylic acid cycle to generate energy, as well as metabolites for the biosynthesis of biomolecules, including nucleotides, proteins, and lipids. It has been shown that metabolism of glucose, fatty acid, and glutamine plays important roles in modulating cellular proliferation, differentiation, apoptosis, autophagy, senescence, and inflammatory responses. All of these cellular processes contribute to the pathogenesis of chronic lung diseases, including bronchopulmonary dysplasia, chronic obstructive pulmonary disease, and pulmonary fibrosis. Recent studies demonstrate that metabolic reprogramming occurs in patients with and animal models of chronic lung diseases, suggesting that metabolic dysregulation may participate in the pathogenesis and progression of these diseases. In this review, we briefly discuss the catabolic pathways for glucose, glutamine, and fatty acids, and focus on how metabolic reprogramming of these pathways impacts cellular functions and leads to the development of these chronic lung diseases. We also highlight how targeting metabolic pathways can be utilized in the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Haifeng Zhao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence, Rhode Island.,Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University , Taiyuan, Shanxi , China
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence, Rhode Island.,Department of Pediatrics, Warren Alpert Medical School of Brown University , Providence, Rhode Island
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence, Rhode Island
| |
Collapse
|
26
|
Wang J, Wang J, Zhang L, Liu R, Zong W. Response of Catalase of the Mouse Primary Hepatocytes to Sodium Dodecylbenzenesulfonate and the Underlying Molecular Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3039-3047. [PMID: 28340295 DOI: 10.1021/acs.jafc.7b00291] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study investigated the adverse effects of sodium dodecylbenzenesulfonates (SDBS) on mouse primary hepatocytes by conducting cell viability, intracellular oxidative stress level, and catalase (CAT) activity assays. It was shown that SDBS altered CAT activities, triggered oxidative stress, and thus exhibited cytotoxicity to the hepatocytes. Both the stimulation of intracellular CAT production and the inhibition of molecular CAT activity contributed to intracellular CAT activity change. Molecular mechanisms underlying CAT activity inhibition and structural changes were explored by isothermal titration calorimetry, multispectroscopy, and molecular docking studies. SDBS binds to CAT with 8.81 ± 0.751 sites via electrostatic forces, resulting in structural changes with α-helix significantly decreasing to 9.7 ± 1.2%. SDBS could interact with HIS 74, ASN 147, and TYR 357 around the active sites as well as TRP 185, ASP 127, and GLN 167 within the substrate channel and therefore might result in the inhibition of molecular CAT activity.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Material Engineering, Yantai University , 30 Qingquan Road, Yantai 264005, People's Republic of China
| | - Jiaxi Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health , 27 Shanda South Road, Jinan, Shandong Province 250100, People's Republic of China
| | - Lu Zhang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health , 27 Shanda South Road, Jinan, Shandong Province 250100, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health , 27 Shanda South Road, Jinan, Shandong Province 250100, People's Republic of China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University , 88 East Wenhua Road, Jinan 250014, People's Republic of China
| |
Collapse
|
27
|
Su X, Yao X, Sun Z, Han Q, Zhao RC. Optimization of Reference Genes for Normalization of Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction Results in Senescence Study of Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1355-65. [PMID: 27484587 DOI: 10.1089/scd.2016.0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recently, it has been suggested that cellular senescence is associated with stem cell exhaustion, which reduces the regenerative potential of tissues and contributes to aging and age-related diseases. Mesenchymal stem cells (MSCs) attract a large amount of attention in stem cell research and regeneration medicine because they possess multiple advantages and senescent MSCs could be one of the most useful stem cell models in aging studies. It is important to quantitatively evaluate senescence markers to both identify and study the mechanisms involved in MSC senescence. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is currently the most widely used tool to quantify the mRNA levels of markers. However, no report has demonstrated the optimal reference genes that should be used to normalize RT-qPCR in senescence studies of MSCs. In this study, we compared 16 commonly used reference genes (GAPDH, ACTB, RPL13A, TBP, B2M, GUSB, RPLPO, YWHAZ, RPS18, EEF1A1, ATP5F1, HPRT1, PGK1, TFRC, UBC, and PPIA) in proliferating or replicative-senescent human adipose-derived MSCs (hAD-MSCs) that were isolated from seven healthy donors aged 29-59 years old. Three algorithms (geNorm, NormFinder, and BestKeeper) were used to determine the most optimal reference gene. The results showed that PPIA exhibited the most stable expression during senescence, while the widely used ACTB exhibited the lowest stability. We also confirmed that different reference genes lead to different evaluations of senescence markers. Our work ensures that results obtained from senescence studies of hAD-MSCs will be appropriately evaluated in both basic research and clinical trials.
Collapse
Affiliation(s)
- Xiaodong Su
- 1 Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences , Beijing, People's Republic of China
| | - Xinglei Yao
- 1 Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences , Beijing, People's Republic of China .,2 State Key Laboratory of Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, People's Republic of China
| | - Zhao Sun
- 3 Department of Oncology, School of Basic Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing, People's Republic of China
| | - Qin Han
- 1 Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences , Beijing, People's Republic of China
| | - Robert Chunhua Zhao
- 1 Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences , Beijing, People's Republic of China
| |
Collapse
|
28
|
Lazarev VF, Nikotina AD, Semenyuk PI, Evstafyeva DB, Mikhaylova ER, Muronetz VI, Shevtsov MA, Tolkacheva AV, Dobrodumov AV, Shavarda AL, Guzhova IV, Margulis BA. Small molecules preventing GAPDH aggregation are therapeutically applicable in cell and rat models of oxidative stress. Free Radic Biol Med 2016; 92:29-38. [PMID: 26748070 DOI: 10.1016/j.freeradbiomed.2015.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/01/2015] [Accepted: 12/19/2015] [Indexed: 11/18/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the most abundant targets of the oxidative stress. Oxidation of the enzyme causes its inactivation and the formation of intermolecular disulfide bonds, and leads to the accumulation of GAPDH aggregates and ultimately to cell death. The aim of this work was to reveal the ability of chemicals to break the described above pathologic linkage by inhibiting GAPDH aggregation. Using the model of oxidative stress based on SK-N-SH human neuroblastoma cells treated with hydrogen peroxide, we found that lentivirus-mediated down- or up-regulation of GAPDH content caused inhibition or enhancement of the protein aggregation and respectively reduced or increased the level of cell death. To reveal substances that are able to inhibit GAPDH aggregation, we developed a special assay based on dot ultrafiltration using the collection of small molecules of plant origin. In the first round of screening, five compounds were found to possess anti-aggregation activity as established by ultrafiltration and dynamic light scattering; some of the substances efficiently inhibited GAPDH aggregation in nanomolar concentrations. The ability of the compounds to bind GAPDH molecules was proved by the drug affinity responsive target stability assay, molecular docking and differential scanning calorimetry. Results of experiments with SK-N-SH human neuroblastoma treated with hydrogen peroxide show that two substances, RX409 and RX426, lowered the degree of GAPDH aggregation and reduced cell death by 30%. Oxidative injury was emulated in vivo by injecting of malonic acid into the rat brain, and we showed that the treatment with RX409 or RX426 inhibited GAPDH-mediated aggregation in the brain, reduced areas of the injury as proved by magnetic resonance imaging, and augmented the behavioral status of the rats as established by the "beam walking" test. In conclusion, the data show that two GAPDH binders could be therapeutically relevant in the treatment of injuries stemming from hard oxidative stress.
Collapse
Affiliation(s)
- Vladimir F Lazarev
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia.
| | - Alina D Nikotina
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Pavel I Semenyuk
- Belozersky Institute of Physico-Chemical Biology of Moscow State University, 119992 Moscow, Russia
| | - Diana B Evstafyeva
- Belozersky Institute of Physico-Chemical Biology of Moscow State University, 119992 Moscow, Russia
| | - Elena R Mikhaylova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology of Moscow State University, 119992 Moscow, Russia
| | - Maxim A Shevtsov
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Anastasia V Tolkacheva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Anatoly V Dobrodumov
- Institute of Macromolecular Compounds Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Alexey L Shavarda
- Komarov Botanical Institute Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| |
Collapse
|
29
|
Wang J, Wang J, Song W, Yang X, Zong W, Liu R. Molecular mechanism investigation of the neutralization of cadmium toxicity by transferrin. Phys Chem Chem Phys 2016; 18:3536-44. [DOI: 10.1039/c5cp06100h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular docking results of the CdCl2–transferrin complex: the preferred binding sites in transferrin are labelled as sites H1–H4 and E1–E16.
Collapse
Affiliation(s)
- Jing Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- China–America CRC for Environment & Health
- Shandong Province
| | - Jinhu Wang
- College of Chemistry Chemical Engineering and Material Science
- Zaozhuang University
- Zaozhuang
- China
| | - Wei Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- China–America CRC for Environment & Health
- Shandong Province
| | - Xinping Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- China–America CRC for Environment & Health
- Shandong Province
| | - Wansong Zong
- College of Population
- Resources and Environment
- Shandong Normal University
- Jinan 250014
- P. R. China
| | - Rutao Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- China–America CRC for Environment & Health
- Shandong Province
| |
Collapse
|
30
|
Phadke M, Krynetskaia N, Mishra A, Barrero C, Merali S, Gothe SA, Krynetskiy E. Disruption of NAD(+) binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions. World J Biol Chem 2015; 6:366-78. [PMID: 26629320 PMCID: PMC4657119 DOI: 10.4331/wjbc.v6.i4.366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/01/2015] [Accepted: 09/29/2015] [Indexed: 02/05/2023] Open
Abstract
AIM To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and mobility of GAPDH in cancer cells treated with chemotherapeutic agents. METHODS We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters (diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching (FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD(+) cofactor binding. RESULTS Using MALDI-TOF analysis, we identified novel phosphorylation sites within the NAD(+) binding center of GAPDH at Y94, S98, and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH, we demonstrated accumulation of phospho-T99-GAPDH in the nuclear fractions of A549, HCT116, and SW48 cancer cells after cytotoxic stress. We performed site-mutagenesis, and estimated enzymatic properties, intranuclear distribution, and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD(+) binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD(+) (Km = 741 ± 257 μmol/L in T99I vs 57 ± 11.1 µmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD(+) binding with GAPDH. FRAP (fluorescence recovery after photo bleaching) analysis showed that mutations in NAD(+) binding center of GAPDH abrogated its intranuclear interactions. CONCLUSION Our results suggest an important functional role of phosphorylated amino acids in the NAD(+) binding center in GAPDH interactions with its intranuclear partners.
Collapse
|
31
|
Quesada MP, Jones J, Rodríguez-Lozano FJ, Moraleda JM, Martinez S. Novel aberrant genetic and epigenetic events in Friedreich's ataxia. Exp Cell Res 2015; 335:51-61. [PMID: 25929520 DOI: 10.1016/j.yexcr.2015.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/21/2022]
Abstract
It is generally accepted that Friedreich's ataxia (FRDA) is caused by a deficiency in frataxin expression, a mitochondrial protein involved in iron homeostasis, which mainly affects the brain, dorsal root ganglia of the spinal cord, heart and in certain cases the pancreas. However, there is little knowledge as to other possible genes that may be affected in this disorder, and which can contribute to its complexity. In the current study we compared human periodontal ligament cells gene expression of healthy individuals and FRDA patients. The expression of active-caspase 3, as well as other apoptosis-related genes, was increased in the FRDA cells. Furthermore, iron-sulphur cluster genes, as well as oxidative stress-related genes were overexpressed in FRDA. Moreover, brain-derived neurotrophic factor, neuregulin 1 and miR-132 were all upregulated. These three genes are capable of regulating the expression of each other. Interestingly, when the cells from FRDA patients were co-cultured in the presence of idebenone and deferiprone, caspase expression decreased while antioxidant gene expression, as well as frataxin expression, increased. Regarding epigenetic mechanisms, the frataxin gene was hypermethylated, compared to the healthy counterparts, in the upstream GAA repetitive region. Of the three DNA methyltransferases, DNMT1 but not DNMT3׳s gene expression was higher in FRDA cells. In conclusion, our data show that FRDA cells present altered expression of genes related to cell cycle, oxidative stress and iron homeostasis which may be implicated in the increased apoptotic levels. Also, the altered expression is in a certain degree normalized in the presence of idebenone and deferiprone.
Collapse
Affiliation(s)
- Mari Paz Quesada
- Neuroscience Institute, Miguel Hernandez University (UMH-CSIC), San Juan, Alicante, Spain; IMIB-Arrixaca and Centro de Investigación Biomédica en Red en el Área de Salud Mental (CIBERSAM), University of Murcia, Murcia, Spain
| | - Jonathan Jones
- Neuroscience Institute, Miguel Hernandez University (UMH-CSIC), San Juan, Alicante, Spain
| | | | - Jose M Moraleda
- Hematology Department, Hematopoietic Transplant and Cellular Therapy Unit, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, Spain
| | - Salvador Martinez
- Neuroscience Institute, Miguel Hernandez University (UMH-CSIC), San Juan, Alicante, Spain; IMIB-Arrixaca and Centro de Investigación Biomédica en Red en el Área de Salud Mental (CIBERSAM), University of Murcia, Murcia, Spain.
| |
Collapse
|
32
|
You J, Lin L, Liu Q, Zhu T, Xia K, Su T. The correlation between the expression of differentiated embryo-chondrocyte expressed gene l and oral squamous cell carcinoma. Eur J Med Res 2014; 19:21. [PMID: 24758579 PMCID: PMC4011512 DOI: 10.1186/2047-783x-19-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/31/2014] [Indexed: 11/10/2022] Open
Abstract
Background This study aims to explore the correlation between expression of differentiated embryo-chondrocyte expressed gene l (DEC1) and oral squamous cell carcinoma (OSCC), which could provide the reference for treatment and prognosis assessment of OSCC. Methods The expression of DEC1 in tissues from 56 primary OSCC patients and 20 normal oral mucosa samples were detected using real-time polymerase chain reaction and immunohistochemical methods, respectively. Results The results showed that the positive expression rate of DEC1 in the OSCC group was significantly higher than that in the normal group (P <0.05); further, the expression of DEC1 in different OSCC groups was statistically significant (P <0.05). The expression of DEC1 in the 1-year recurrence OSCC group was significantly higher than other groups. The expression of DEC1 in the 3-years no recurrence OSCC group was the lowest. Conclusions The expression of DEC1 was associated with the incidence of OSCC and there was a negative correlation between the expression of DEC1 and the prognosis of OSCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Tong Su
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central-South University, Changsha 410008, China.
| |
Collapse
|
33
|
Ow JR, Tan YH, Jin Y, Bahirvani AG, Taneja R. Stra13 and Sharp-1, the Non-Grouchy Regulators of Development and Disease. Curr Top Dev Biol 2014; 110:317-38. [DOI: 10.1016/b978-0-12-405943-6.00009-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Han W, Shi M, Spivack SD. Site-specific methylated reporter constructs for functional analysis of DNA methylation. Epigenetics 2013; 8:1176-87. [PMID: 24004978 DOI: 10.4161/epi.26195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Methods to experimentally alter and functionally evaluate cytosine methylation in a site-specific manner have proven elusive. We describe a site-specific DNA methylation method, using synthetically methylated primers and high fidelity PCR coupled with ligation of reporter constructs. We applied this method to introduce methylated cytosines into fragments of the respective DAPK and RASSF1A promoters that had been cloned into luciferase reporters. We found that methylation of 3-7 residue CpG clusters that were 5' adjacent to the transcription start site (TSS) of the DAPK gene produced up to a 54% decrease in promoter activity (p<0.01). Similarly, for RASSF1A promoter reporter constructs, the methylation of either of two clusters of four CpGs each, but not an intervening cluster, produced a 63% decrease in promoter activity (p<0.01), suggesting that precise mCpG position is crucial, and factors other than simple proximity to the TSS are at play. Chromatin immunoprecipitation analysis of these reporter constructs demonstrated that transcription factor Oct-1 and Sp1 preferentially bound the unmethylated vs. methylated DAPK or RASSF1A promoter reporter constructs at the functional CpG sites. Histone H1, hnRNP1, and MeCP2 showed preferential binding to methylated sequence at functional sites in these reporter constructs, as well as highly preferential (> 8-80-fold) binding to native methylated vs. unmethylated chromatin. These results suggest that: (1) site-specific, precision DNA methylation of a reporter construct can be used for functional analysis of commonly observed gene promoter methylation patterns; (2) the reporter system contains key elements of the endogenous chromatin machinery.
Collapse
Affiliation(s)
- Weiguo Han
- Pulmonary Medicine; Albert Einstein College of Medicine; Bronx, NY USA
| | - Miao Shi
- Pulmonary Medicine; Albert Einstein College of Medicine; Bronx, NY USA
| | - Simon D Spivack
- Pulmonary Medicine; Albert Einstein College of Medicine; Bronx, NY USA; Genetics; Albert Einstein College of Medicine; Bronx, NY USA
| |
Collapse
|
35
|
Cytotoxicity of chemotherapeutic agents in glyceraldehyde-3-phosphate dehydrogenase-depleted human lung carcinoma A549 cells with the accelerated senescence phenotype. Anticancer Drugs 2013; 24:366-74. [PMID: 23377192 DOI: 10.1097/cad.0b013e32835e3378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays a central role in glycolysis. Because cancer cells rely on aerobic glycolysis rather than oxidative phosphorylation, GAPDH-depleting agents have a therapeutic potential to impede cancer cell proliferation. Knockdown of GAPDH by RNA interference induced the accelerated senescent phenotype in A549 cells, suggesting that GAPDH is a potential molecular target for combination chemotherapy. The cytotoxic effects of a panel of anticancer drugs, 5-fluorouracil, 5-fluorouridine, 5-fluorodeoxyuridine, 6-thioguanine, cytarabine, fludarabine, cladribine, clofarabine, 2-chloroadenosine, and doxorubicin, were assessed in GAPDH-depleted A549 cells using a cell proliferation assay. GAPDH-depleted A549 cells, when compared with control cells, exhibited increased chemoresistance to several antimetabolite agents including cytarabine [inhibitory concentration 50 (IC50) 1.7±0.3 vs. 0.03±0.02 μmol/l], 2-chloroadenosine (IC50 7.1±1.8 vs. 1.5±0.6 μmol/l), 6-thioguanine (IC50 7.5±1.6 vs. 1.4±0.5 μmol/l), 5-fluorouracil (IC50 13.2±2.5 vs. 3.0±0.7 μmol/l), and 5-fluorodeoxyuridine (IC50 >100 vs. 3.7±0.9 μmol/l), which we designated as group A agents. In contrast, GAPDH-deficient and GAPDH-proficient cells were equally sensitive to group B agents including doxorubicin (IC50 0.05±0.02 vs. 0.04±0.02 μmol/l), fludarabine (IC50 18.5±2.3 vs. 15.7±2.8 μmol/l), 5-fluorouridine (IC50 0.1±0.03 vs. 0.1±0.03 μmol/l), clofarabine (IC50 0.7±0.3 vs. 0.5±0.3 μmol/l), and cladribine (IC50 0.5±0.1 vs. 0.5±0.2 μmol/l). After treatment with group B agents at concentrations equivalent to 7-10-fold the IC50 value, the fraction of apoptotic cells in GAPDH-depleted, senescent A549 cells was similar to that in GAPDH-proficient cells. Our study identified the antimetabolite drugs active in senescent cells that can be used in combination with GAPDH inhibitors in cancer treatment. GAPDH-targeted combination therapy is a novel strategy to control the proliferation of tumor cells.
Collapse
|
36
|
Wang D, Moothart DR, Lowy DR, Qian X. The expression of glyceraldehyde-3-phosphate dehydrogenase associated cell cycle (GACC) genes correlates with cancer stage and poor survival in patients with solid tumors. PLoS One 2013; 8:e61262. [PMID: 23620736 PMCID: PMC3631177 DOI: 10.1371/journal.pone.0061262] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is often used as a stable housekeeping marker for constant gene expression. However, the transcriptional levels of GAPDH may be highly up-regulated in some cancers, including non-small cell lung cancers (NSCLC). Using a publically available microarray database, we identified a group of genes whose expression levels in some cancers are highly correlated with GAPDH up-regulation. The majority of the identified genes are cell cycle-dependent (GAPDH Associated Cell Cycle, or GACC). The up-regulation pattern of GAPDH positively associated genes in NSCLC is similar to that observed in cultured fibroblasts grown under conditions that induce anti-senescence. Data analysis demonstrated that up-regulated GAPDH levels are correlated with aberrant gene expression related to both glycolysis and gluconeogenesis pathways. Down-regulation of fructose-1,6-bisphosphatase (FBP1) in gluconeogenesis in conjunction with up-regulation of most glycolytic genes is closely related to high expression of GAPDH in the tumors. The data presented demonstrate that up-regulation of GAPDH positively associated genes is proportional to the malignant stage of various tumors and is associated with an unfavourable prognosis. Thus, this work suggests that GACC genes represent a potential new signature for cancer stage identification and disease prognosis.
Collapse
|
37
|
Menendez JA, Cufí S, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Vellon L, Vazquez-Martin A. Metformin and the ATM DNA damage response (DDR): accelerating the onset of stress-induced senescence to boost protection against cancer. Aging (Albany NY) 2012; 3:1063-77. [PMID: 22170748 PMCID: PMC3249452 DOI: 10.18632/aging.100407] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
By activating the ataxia telangiectasia mutated (ATM)-mediated DNA Damage Response (DDR), the AMPK agonist metformin might sensitize cells against further damage, thus mimicking the precancerous stimulus that induces an intrinsic barrier against carcinogenesis. Herein, we present the new hypothesis that metformin might function as a tissue sweeper of pre-malignant cells before they gain stem cell/tumor initiating properties. Because enhanced glycolysis (the Warburg effect) plays a causal role in the gain of stem-like properties of tumor-initiating cells by protecting them from the pro-senescent effects of mitochondrial respiration-induced oxidative stress, metformin's ability to disrupt the glycolytic metabotype may generate a cellular phenotype that is metabolically protected against immortalization. The bioenergetic crisis imposed by metformin, which may involve enhanced mitochondrial biogenesis and oxidative stress, can lower the threshold for cellular senescence by pre-activating an ATM-dependent pseudo-DDR. This allows an accelerated onset of cellular senescence in response to additional oncogenic stresses. By pushing cancer cells to use oxidative phosphorylation instead of glycolysis, metformin can rescue cell surface major histocompatibility complex class I (MHC-I) expression that is downregulated by oncogenic transformation, a crucial adaptation of tumor cells to avoid the adaptive immune response by cytotoxic T-lymphocytes (CTLs). Aside from restoration of tumor immunosurveillance at the cell-autonomous level, metformin can activate a senescence-associated secretory phenotype (SASP) to reinforce senescence growth arrest, which might trigger an immune-mediated clearance of the senescent cells in a non-cell-autonomous manner. By diminishing the probability of escape from the senescence anti-tumor barrier, the net effect of metformin should be a significant decrease in the accumulation of dysfunctional, pre-malignant cells in tissues, including those with the ability to initiate tumors. As life-long or late-life removal of senescent cells has been shown to prevent or delay the onset or progression of age-related disorders, the tissue sweeper function of metformin may inhibit the malignant/metastatic progression of pre-malignant/senescent tumor cells and increase the human lifespan.
Collapse
Affiliation(s)
- Javier A Menendez
- Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia, Spain.
| | | | | | | | | | | | | |
Collapse
|