1
|
Campaña MB, Perkins MR, McCabe MC, Neumann A, Larson ED, Fantauzzo KA. PDGFRα/β heterodimer activation negatively affects downstream ERK1/2 signaling and cellular proliferation. Nat Commun 2025; 16:4754. [PMID: 40404618 PMCID: PMC12098797 DOI: 10.1038/s41467-025-59938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/09/2025] [Indexed: 05/24/2025] Open
Abstract
The platelet-derived growth factor receptor (PDGFR) family of receptor tyrosine kinases consists of two receptors, PDGFRα and PDGFRβ, that homodimerize and heterodimerize upon ligand binding. Here, we tested the hypothesis that differential internalization and trafficking dynamics of the various PDGFR dimers underlie differences in downstream intracellular signaling and cellular behavior. Using a bimolecular fluorescence complementation approach, we demonstrated that PDGFRα/β heterodimers are rapidly internalized into early endosomes. We showed that PDGFRα/β heterodimer activation does not induce downstream phosphorylation of ERK1/2 and significantly inhibits cell proliferation. Further, we identified MYO1D as a protein that preferentially binds PDGFRα/β heterodimers and demonstrated that knockdown of MYO1D leads to retention of PDGFRα/β heterodimers at the plasma membrane, increased phosphorylation of ERK1/2 and increased cell proliferation. Collectively, our findings impart valuable insight into the molecular mechanisms by which specificity is introduced downstream of PDGFR activation to differentially propagate signaling and generate distinct cellular responses.
Collapse
Affiliation(s)
- Maria B Campaña
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madison R Perkins
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Neumann
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric D Larson
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine A Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Jiang Y, Sachdeva K, Goulbourne CN, Berg MJ, Peddy J, Stavrides PH, Pensalfini A, Pawlik M, Whyte L, Balapal BS, Shivakumar S, Bleiwas C, Smiley JF, Mathews PM, Nixon RA. Increased neuronal expression of the early endosomal adaptor APPL1 leads to endosomal and synaptic dysfunction with cholinergic neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613736. [PMID: 39345644 PMCID: PMC11430014 DOI: 10.1101/2024.09.19.613736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Dysfunction of the endolysosomal system within neurons is a prominent feature of Alzheimer's disease (AD) pathology. Multiple AD-risk factors are known to cause hyper-activity of the early-endosome small GTPase rab5, resulting in neuronal endosomal pathway disruption. APPL1, an important rab5 effector protein, is an interface between endosomal and neuronal function through a rab5-activating interaction with the BACE1-generated C-terminal fragment (βCTF or C99) of the amyloid precursor protein (APP), a pathogenic APP fragment generated within endolysosomal compartments. To better understand the role of APPL1 in the AD endosomal phenotype, we generated a transgenic mouse model over-expressing human APPL1 within neurons (Thy1-APPL1 mice). Consistent with the important endosomal regulatory role of APPL1, Thy1-APPL1 mice have enlarged neuronal early endosomes and increased synaptic endocytosis due to increased rab5 activation. We additionally demonstrate pathological consequences of APPL1 overexpression, including functional changes in hippocampal long-term potentiation (LTP) and long-term depression (LTD), as well as degeneration of the large projection cholinergic neurons of the basal forebrain and impairment of hippocampal-dependent memory. Our findings show that increased neuronal APPL1 levels lead to a cascade of pathological effects within neurons, including early endosomal alterations, synaptic dysfunction, and neurodegeneration. Multiple risk factors and molecular regulators, including APPL1 activity, are known to contribute to the endosomal dysregulation seen in the early stages of AD, and these findings further highlight the shared pathobiology and consequences to a neuron of early endosomal pathway disruption. Significance Statement Dysfunction in the endolysosomal system within neurons is a key feature of Alzheimer's disease (AD). Multiple AD risk factors lead to hyperactivity of the early-endosome GTPase rab5, disrupting neuronal pathways including the cholinergic circuits involved early in memory decline. APPL1, a crucial rab5 effector, connects endosomal and neuronal functions through its interaction with a specific amyloid precursor protein (APP) fragment generated within endosomes. To understand APPL1's role, a transgenic mouse model over-expressing human APPL1 in neurons (Thy1-APPL1 mice) was developed. These mice show enlarged early endosomes and increased synaptic endocytosis due to rab5 activation, resulting in impaired hippocampal long-term potentiation and depression, the degeneration of basal forebrain cholinergic neurons, and memory deficits, highlighting a pathological cascade mediated through APPL1 at the early endosome.
Collapse
|
3
|
Garcia Delgado L, Derome A, Longpré S, Giroux-Dansereau M, Basbous G, Lavoie C, Saucier C, Denault JB. Spatiotemporal regulation of the hepatocyte growth factor receptor MET activity by sorting nexins 1/2 in HCT116 colorectal cancer cells. Biosci Rep 2024; 44:BSR20240182. [PMID: 38836326 PMCID: PMC11196213 DOI: 10.1042/bsr20240182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Cumulative research findings support the idea that endocytic trafficking is crucial in regulating receptor signaling and associated diseases. Specifically, strong evidence points to the involvement of sorting nexins (SNXs), particularly SNX1 and SNX2, in the signaling and trafficking of the receptor tyrosine kinase (RTK) MET in colorectal cancer (CRC). Activation of hepatocyte growth factor (HGF) receptor MET is a key driver of CRC progression. In the present study, we utilized human HCT116 CRC cells with SNX1 and SNX2 genes knocked out to demonstrate that their absence leads to a delay in MET entering early endosomes. This delay results in increased phosphorylation of both MET and AKT upon HGF stimulation, while ERK1/2 (extracellular signal-regulated kinases 1 and 2) phosphorylation remains unaffected. Despite these changes, HGF-induced cell proliferation, scattering, and migration remain similar between the parental and the SNX1/2 knockout cells. However, in the absence of SNX1 and SNX2, these cells exhibit increased resistance to TRAIL-induced apoptosis. This research underscores the intricate relationship between intracellular trafficking, receptor signaling, and cellular responses and demonstrates for the first time that the modulation of MET trafficking by SNX1 and SNX2 is critical for receptor signaling that may exacerbate the disease.
Collapse
Affiliation(s)
- Laiyen Garcia Delgado
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Amélie Derome
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Samantha Longpré
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
| | | | - Ghenwa Basbous
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences
| | - Christine Lavoie
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche Clinique CHUS
| | - Caroline Saucier
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences
- Centre de Recherche Clinique CHUS
| | - Jean-Bernard Denault
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences
| |
Collapse
|
4
|
Campaña MB, Perkins MR, McCabe MC, Neumann A, Larson ED, Fantauzzo KA. PDGFRα/β heterodimer activation negatively affects downstream ERK1/2 signaling and cellular proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573428. [PMID: 38234806 PMCID: PMC10793460 DOI: 10.1101/2023.12.27.573428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The platelet-derived growth factor receptor (PDGFR) family of receptor tyrosine kinases allows cells to communicate with one another by binding to growth factors at the plasma membrane and activating intracellular signaling pathways to elicit responses such as migration, proliferation, survival and differentiation. The PDGFR family consists of two receptors, PDGFRα and PDGFRβ, that dimerize to form PDGFRα homodimers, PDGFRα/β heterodimers and PDGFRβ homodimers. Here, we overcame prior technical limitations in visualizing and purifying PDGFRα/β heterodimers by generating a cell line stably expressing C-terminal fusions of PDGFRα and PDGFRβ with bimolecular fluorescence complementation fragments corresponding to the N-terminal and C-terminal regions of the Venus fluorescent protein, respectively. We found that these receptors heterodimerize relatively quickly in response to PDGF-BB ligand treatment, with a peak of receptor autophosphorylation following 5 minutes of ligand stimulation. Moreover, we demonstrated that PDGFRα/β heterodimers are rapidly internalized into early endosomes, particularly signaling endosomes, where they dwell for extended lengths of time. We showed that PDGFRα/β heterodimer activation does not induce downstream phosphorylation of ERK1/2 and significantly inhibits cell proliferation. Further, we characterized the PDGFR dimer-specific interactome and identified MYO1D as a novel protein that preferentially binds PDGFRα/β heterodimers. We demonstrated that knockdown of MYO1D leads to retention of PDGFRα/β heterodimers at the plasma membrane, resulting in increased phosphorylation of ERK1/2 and increased cell proliferation. Collectively, our findings impart valuable insight into the molecular mechanisms by which specificity is introduced downstream of PDGFR activation to differentially propagate signaling and generate distinct cellular responses.
Collapse
Affiliation(s)
- Maria B. Campaña
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Madison R. Perkins
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maxwell C. McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew Neumann
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric D. Larson
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine A. Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
York HM, Patil A, Moorthi UK, Kaur A, Bhowmik A, Hyde GJ, Gandhi H, Fulcher A, Gaus K, Arumugam S. Rapid whole cell imaging reveals a calcium-APPL1-dynein nexus that regulates cohort trafficking of stimulated EGF receptors. Commun Biol 2021; 4:224. [PMID: 33597720 PMCID: PMC7889693 DOI: 10.1038/s42003-021-01740-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
The endosomal system provides rich signal processing capabilities for responses elicited by growth factor receptors and their ligands. At the single cell level, endosomal trafficking becomes a critical component of signal processing, as exemplified by the epidermal growth factor (EGF) receptors. Activated EGFRs are trafficked to the phosphatase-enriched peri-nuclear region (PNR), where they are dephosphorylated and degraded. The details of the mechanisms that govern the movements of stimulated EGFRs towards the PNR, are not completely known. Here, exploiting the advantages of lattice light-sheet microscopy, we show that EGFR activation by EGF triggers a transient calcium increase causing a whole-cell level redistribution of Adaptor Protein, Phosphotyrosine Interacting with PH Domain And Leucine Zipper 1 (APPL1) from pre-existing endosomes within one minute, the rebinding of liberated APPL1 directly to EGFR, and the dynein-dependent translocation of APPL1-EGF-bearing endosomes to the PNR within ten minutes. The cell spanning, fast acting network that we reveal integrates a cascade of events dedicated to the cohort movement of activated EGF receptors. Our findings support the intriguing proposal that certain endosomal pathways have shed some of the stochastic strategies of traditional trafficking and have evolved processes that provide the temporal predictability that typify canonical signaling.
Collapse
Affiliation(s)
- H. M. York
- grid.1002.30000 0004 1936 7857Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC Australia
| | - A. Patil
- grid.1002.30000 0004 1936 7857Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC Australia
| | - U. K. Moorthi
- grid.1002.30000 0004 1936 7857Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC Australia
| | - A. Kaur
- grid.1005.40000 0004 4902 0432Single Molecule Science, University of New South Wales, Sydney, Australia
| | - A. Bhowmik
- grid.1005.40000 0004 4902 0432Single Molecule Science, University of New South Wales, Sydney, Australia
| | | | - H. Gandhi
- grid.1002.30000 0004 1936 7857Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC Australia
| | - A. Fulcher
- grid.1002.30000 0004 1936 7857Monash Micro Imaging, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC Australia
| | - K. Gaus
- grid.1005.40000 0004 4902 0432Single Molecule Science, University of New South Wales, Sydney, Australia ,grid.1005.40000 0004 4902 0432ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - S. Arumugam
- grid.1002.30000 0004 1936 7857Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC Australia ,grid.1005.40000 0004 4902 0432Single Molecule Science, University of New South Wales, Sydney, Australia ,grid.1005.40000 0004 4902 0432ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| |
Collapse
|
6
|
Chen Y, Zhang W, Chen B, Liu Y, Dong Y, Xu A, Hao Q. Crystal Structure of Human APPL BAR-PH Heterodimer Reveals a Flexible Dimeric BAR curve: Implication in Mutual Regulation of Endosomal Targeting. Biochem J 2020; 477:BCJ20200438. [PMID: 33258922 DOI: 10.1042/bcj20200438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
The APPL (adaptor proteins containing pleckstrin homology domain, phosphotyrosine binding domain and a leucine zipper motif) family consists of two isoforms, APPL1 and APPL2. By binding to curved plasma membrane, these adaptor proteins associate with multiple transmembrane receptors and recruit various downstream signaling components. They are involved in the regulation of signaling pathways evoked by a variety of extracellular stimuli, such as adiponectin, insulin, FSH (follicle stimulating hormone), EGF (epidermal growth factor). And they play important roles in cell proliferation, apoptosis, glucose uptake, insulin secretion and sensitivity. However, emerging evidence suggests that APPL1 and APPL2 perform different or even opposite functions and the underlying mechanism remains unclear. As APPL proteins can either homodimerize or heterodimerize in vivo, we hypothesized that heterodimerization of APPL proteins might account for the mechanism. By solving the crystal structure of APPL1-APPL2 BAR-PH heterodimer, we find that the overall structure is crescent-shaped with a longer curvature radius of 76 Å, compared to 55 Å of the APPL1 BAR-PH homodimer. However, there is no significant difference of the curvature between APPL BAR-PH heterodimer and APPL2 homodimer. The data suggest that the APPL1 BAR-PH homodimer, APPL2 BAR-PH homodimer and APPL1/APPL2 BAR-PH heterodimer may bind to endosomes of different sizes. Different positive charge distribution is observed on the concave surface of APPL BAR-PH heterodimer than the homodimers, which may change the affinity of membrane association and subcellular localization. Collectively, APPL2 may regulate APPL1 function through altering the preference of endosome binding by heterodimerization.
Collapse
Affiliation(s)
- Yujie Chen
- University of Hong Kong, Hong Kong, China
| | - Wen Zhang
- University of Hong Kong, Hong Kong, China
| | - Bin Chen
- University of Hong Kong, Hong Kong, China
| | - Ying Liu
- Institute of High Energy Physics, CAS, Beijing, China
| | - Yuhui Dong
- Institute of High Energy Physics, CAS, Beijing, China
| | - Aimin Xu
- University of Hong Kong, Hong Kong, China
| | - Quan Hao
- University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Redpath GMI, Betzler VM, Rossatti P, Rossy J. Membrane Heterogeneity Controls Cellular Endocytic Trafficking. Front Cell Dev Biol 2020; 8:757. [PMID: 32850860 PMCID: PMC7419583 DOI: 10.3389/fcell.2020.00757] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Endocytic trafficking relies on highly localized events in cell membranes. Endocytosis involves the gathering of protein (cargo/receptor) at distinct plasma membrane locations defined by specific lipid and protein compositions. Simultaneously, the molecular machinery that drives invagination and eventually scission of the endocytic vesicle assembles at the very same place on the inner leaflet of the membrane. It is membrane heterogeneity - the existence of specific lipid and protein domains in localized regions of membranes - that creates the distinct molecular identity required for an endocytic event to occur precisely when and where it is required rather than at some random location within the plasma membrane. Accumulating evidence leads us to believe that the trafficking fate of internalized proteins is sealed following endocytosis, as this distinct membrane identity is preserved through the endocytic pathway, upon fusion of endocytic vesicles with early and sorting endosomes. In fact, just like at the plasma membrane, multiple domains coexist at the surface of these endosomes, regulating local membrane tubulation, fission and sorting to recycling pathways or to the trans-Golgi network via late endosomes. From here, membrane heterogeneity ensures that fusion events between intracellular vesicles and larger compartments are spatially regulated to promote the transport of cargoes to their intracellular destination.
Collapse
Affiliation(s)
- Gregory M I Redpath
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,The ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Verena M Betzler
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Pascal Rossatti
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
8
|
Integration of GPCR Signaling and Sorting from Very Early Endosomes via Opposing APPL1 Mechanisms. Cell Rep 2018; 21:2855-2867. [PMID: 29212031 PMCID: PMC5732320 DOI: 10.1016/j.celrep.2017.11.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/18/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023] Open
Abstract
Endocytic trafficking is a critical mechanism for cells to decode complex signaling pathways, including those activated by G-protein-coupled receptors (GPCRs). Heterogeneity in the endosomal network enables GPCR activity to be spatially restricted between early endosomes (EEs) and the recently discovered endosomal compartment, the very early endosome (VEE). However, the molecular machinery driving GPCR activity from the VEE is unknown. Using luteinizing hormone receptor (LHR) as a prototype GPCR for this compartment, along with additional VEE-localized GPCRs, we identify a role for the adaptor protein APPL1 in rapid recycling and endosomal cAMP signaling without impacting the EE-localized β2-adrenergic receptor. LHR recycling is driven by receptor-mediated Gαs/cAMP signaling from the VEE and PKA-dependent phosphorylation of APPL1 at serine 410. Receptor/Gαs endosomal signaling is localized to microdomains of heterogeneous VEE populations and regulated by APPL1 phosphorylation. Our study uncovers a highly integrated inter-endosomal communication system enabling cells to tightly regulate spatially encoded signaling. GPCRs that internalize to very early endosomes (VEEs) require APPL1 to recycle Receptor recycling is driven by cAMP/PKA to phosphorylate serine 410 on APPL1 cAMP signaling from GPCRs, such as LHR, occurs from distinct VEE microdomains APPL1 limits VEE cAMP signaling via opposing mechanisms required for GPCR sorting
Collapse
|
9
|
Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB J 2017; 31:2729-2743. [PMID: 28663518 DOI: 10.1096/fj.201700359] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA; .,Department of Psychiatry and Department of Cell Biology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
10
|
APPL1 is a multifunctional endosomal signaling adaptor protein. Biochem Soc Trans 2017; 45:771-779. [PMID: 28620038 DOI: 10.1042/bst20160191] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 11/17/2022]
Abstract
Endosomal adaptor proteins are important regulators of signaling pathways underlying many biological processes. These adaptors can integrate signals from multiple pathways via localization to specific endosomal compartments, as well as through multiple protein-protein interactions. One such adaptor protein that has been implicated in regulating signaling pathways is the adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (APPL1). APPL1 localizes to a subset of Rab5-positive endosomes through its Bin-Amphiphysin-Rvs and PH domains, and it coordinates signaling pathways through its interaction with many signaling receptors and proteins through its PTB domain. This review discusses our current understanding of the role of APPL1 in signaling and trafficking, as well as highlights recent work into the function of APPL1 in cell migration and adhesion.
Collapse
|
11
|
Liu Z, Xiao T, Peng X, Li G, Hu F. APPLs: More than just adiponectin receptor binding proteins. Cell Signal 2017; 32:76-84. [PMID: 28108259 DOI: 10.1016/j.cellsig.2017.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/31/2022]
Abstract
APPLs (adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif) are multifunctional adaptor proteins that bind to various membrane receptors, nuclear factors and signaling proteins to regulate many biological activities and processes, such as cell proliferation, chromatin remodeling, endosomal trafficking, cell survival, cell metabolism and apoptosis. APPL1, one of the APPL isoforms, was the first identified protein and interacts directly with adiponectin receptors to mediate adiponectin signaling to enhance lipid oxidation and glucose uptake. APPLs also act on insulin signaling pathways and are important mediators of insulin sensitization. Based on recent findings, this review highlights the critical roles of APPLs, particularly APPL1 and its isoform partner APPL2, in mediating adiponectin, insulin, endosomal trafficking and other signaling pathways. A deep understanding of APPLs and their related signaling pathways may potentially lead to therapeutic and interventional treatments for obesity, diabetes, cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhuoying Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ting Xiao
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaoyu Peng
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
12
|
CMTM7 knockdown increases tumorigenicity of human non-small cell lung cancer cells and EGFR-AKT signaling by reducing Rab5 activation. Oncotarget 2016; 6:41092-107. [PMID: 26528697 PMCID: PMC4747392 DOI: 10.18632/oncotarget.5732] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/19/2015] [Indexed: 12/20/2022] Open
Abstract
The dysregulation of epidermal growth factor receptor (EGFR) signaling has been well documented to contribute to the progression of non-small cell lung cancer (NSCLC), the leading cause of cancer death in the world. EGF-stimulated EGFR activation induces receptor internalization and degradation, which plays an important role in EGFR signaling. This process is frequently deregulated in cancer cells, leading to enhanced EGFR levels and signaling. Our previous study on CMTM7 is only limited to a brief description of the relationship of overexpressed CMTM7 with EGFR-AKT signaling. The biological functions of endogenous CMTM7 and its molecular mechanism remained unclear. In this study, we show that the stable knockdown of CMTM7 augments the malignant potential of NSCLC cells and enhances EGFR-AKT signaling by decreasing EGFR internalization and degradation. Mechanistically, CMTM7 knockdown reduces the activation of Rab5, a protein known to be required for early endosome fusion. In NSCLC, the loss of CMTM7 would therefore serve to sustain aberrant EGFR-mediated oncogenic signaling. Together, our findings highlight the role of CMTM7 in the regulation of EGFR signaling in tumor cells, revealing CMTM7 as a novel molecule related to Rab5 activation.
Collapse
|
13
|
Saleh AJ, Soltani BM, Dokanehiifard S, Medlej A, Tavalaei M, Mowla SJ. Experimental verification of a predicted novel microRNA located in human PIK3CA gene with a potential oncogenic function in colorectal cancer. Tumour Biol 2016; 37:14089-14101. [PMID: 27511117 DOI: 10.1007/s13277-016-5264-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
PI3K/AKT signaling is involved in cell survival, proliferation, and migration. In this pathway, PI3Kα enzyme is composed of a regulatory protein encoded by p85 gene and a catalytic protein encoded by PIK3CA gene. Human PIK3CA locus is amplified in several cancers including lung and colorectal cancer (CRC). Therefore, microRNAs (miRNAs) that are encoded within the PIK3CA gene might have a role in cancer development. Here, we report a novel microRNA named PIK3CA-miR1 (EBI accession no. LN626315), which is located within PIK3CA gene. A DNA segment corresponding to PIK3CA-premir1 sequence was transfected in human cell lines that resulted in generation of mature exogenous PIK3CA-miR1. Following the overexpression of PIK3CA-miR1, its predicted target genes (APPL1 and TrkC) were significantly downregulated in the CRC-originated HCT116 and SW480 cell lines, detected by qRT-PCR. Then, dual luciferase assay supported the interaction of PIK3CA-miR1 with APPL1 and TrkC transcripts. Endogenous PIK3CA-miR1 expression was also detected in several cell lines (highly in HCT116 and SW480) and highly in CRC specimens. Consistently, overexpression of PIK3CA-premir1 in HCT116 and SW480 cells resulted in significant reduction of the sub-G1 cell distribution and apoptotic cell rate, as detected by flowcytometry, and resulted in increased cell proliferation, as detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PIK3CA-miR1 overexpression also resulted in Wnt signaling upregulation detected by Top/Fop assay. Overall, accumulative evidences indicated the presence of a bona fide novel onco-miRNA encoded within the PIK3CA oncogene, which is highly expressed in colorectal cancer and has a survival effect in CRC-originated cells.
Collapse
Affiliation(s)
- Ali Jason Saleh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sadat Dokanehiifard
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdallah Medlej
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Javad Mowla
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Kim S, Sato Y, Mohan PS, Peterhoff C, Pensalfini A, Rigoglioso A, Jiang Y, Nixon RA. Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer's disease. Mol Psychiatry 2016; 21:707-16. [PMID: 26194181 PMCID: PMC4721948 DOI: 10.1038/mp.2015.97] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
β-Amyloid precursor protein (APP) and its cleaved products are strongly implicated in Alzheimer's disease (AD). Endosomes are highly active APP processing sites, and endosome anomalies associated with upregulated expression of early endosomal regulator, rab5, are the earliest known disease-specific neuronal response in AD. Here, we show that the rab5 effector APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif) mediates rab5 overactivation in Down syndrome (DS) and AD, which is caused by elevated levels of the β-cleaved carboxy-terminal fragment of APP (βCTF). βCTF recruits APPL1 to rab5 endosomes, where it stabilizes active GTP-rab5, leading to pathologically accelerated endocytosis, endosome swelling and selectively impaired axonal transport of rab5 endosomes. In DS fibroblasts, APPL1 knockdown corrects these endosomal anomalies. βCTF levels are also elevated in AD brain, which is accompanied by abnormally high recruitment of APPL1 to rab5 endosomes as seen in DS fibroblasts. These studies indicate that persistent rab5 overactivation through βCTF-APPL1 interactions constitutes a novel APP-dependent pathogenic pathway in AD.
Collapse
Affiliation(s)
- S Kim
- Cellular and Molecular Biology Training Program, New York University School of Medicine, New York, NY, USA
| | - Y Sato
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - P S Mohan
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA,Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - C Peterhoff
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - A Pensalfini
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - A Rigoglioso
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Y Jiang
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA,Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - R A Nixon
- Center for Dementia Research, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA,Department of Psychiatry, New York University School of Medicine, New York, NY, USA,Department of Cell Biology, New York University School of Medicine, New York, NY, USA,Center for Dementia Research, Nathan S Kline Institute, New York University School of Medicine, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA. E-mail:
| |
Collapse
|
15
|
Zhai JS, Song JG, Zhu CH, Wu K, Yao Y, Li N. Expression of APPL1 is correlated with clinicopathologic characteristics and poor prognosis in patients with gastric cancer. ACTA ACUST UNITED AC 2016; 23:e95-e101. [PMID: 27122990 DOI: 10.3747/co.23.2775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although appl1 is overexpressed in many cancers, its status in gastric cancer (gc) is not known. In the present study, we used relevant pathologic and clinical data to investigate appl1 expression in patients with gc. METHODS In 47 gc and 27 non-gc surgical specimens, immunohistochemistry was used to detect the expression of appl1, and reverse-transcriptase polymerase chain reaction (rt-pcr) was used to detect messenger rna (mrna). A scatterplot visualized the relationship between survival time and mrna expression in gc patients. The log-rank test and other survival statistics were used to determine the association of appl1 expression with the pathologic features of the cancer and clinical outcomes. RESULTS In gc, appl1 was expressed in 28 of 47 specimens (59.6%), and in non-gc, it was expressed in 7 of 23 specimens (30.4%, p < 0.05). The expression of mrna in gc was 0.82 [95% confidence interval (ci): 0.78 to 0.86], and in non-gc, it was 0.73 (95% ci: 0.69 to 0.77; p < 0.05). Immunohistochemistry demonstrated that, in gc, appl1 expression was correlated with depth of infiltration (p = 0.005), lymph node metastasis (p = 0.017), and TNM stage (p = 0.022), but not with pathologic type (p = 0.41). Testing by rt-pcr demonstrated that, in gc, appl1 mrna expression was correlated with depth of infiltration (p = 0.042), lymph node metastasis (p = 0.031), and TNM stage (p = 0.04), but again, not with pathologic type (p = 0.98). The correlation coefficient between survival time and mrna expression was -0.83 (p < 0.01). Overexpression of appl1 protein (hazard ratio: 3.88; 95% ci: 1.07 to 14.09) and mrna (hazard ratio: 4.23; 95% ci: 3.09 to 15.11) was a risk factor for death in patients with gc. CONCLUSIONS Expression of appl1 is increased in gc. Overexpression is prognostic for a lethal outcome.
Collapse
Affiliation(s)
- J S Zhai
- Postgraduate Team, Chinese pla General Hospital, Medical School of Chinese pla, Beijing, P.R.C.;; Department of Gastroenterology, Chinese pla 309 Hospital, Beijing, P.R.C
| | - J G Song
- Department of Gastroenterology, Chinese pla 309 Hospital, Beijing, P.R.C
| | - C H Zhu
- Department of Gastroenterology, Chinese pla 309 Hospital, Beijing, P.R.C
| | - K Wu
- Department of Gastroenterology, Chinese pla 309 Hospital, Beijing, P.R.C
| | - Y Yao
- Department of Gastroenterology, Chinese pla 309 Hospital, Beijing, P.R.C
| | - N Li
- Postgraduate Team, Chinese pla General Hospital, Medical School of Chinese pla, Beijing, P.R.C.;; Department of Gastroenterology, Chinese pla 309 Hospital, Beijing, P.R.C
| |
Collapse
|
16
|
Johnson IRD, Parkinson-Lawrence EJ, Shandala T, Weigert R, Butler LM, Brooks DA. Altered endosome biogenesis in prostate cancer has biomarker potential. Mol Cancer Res 2014; 12:1851-62. [PMID: 25080433 DOI: 10.1158/1541-7786.mcr-14-0074] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Prostate cancer is the second most common form of cancer in males, affecting one in eight men by the time they reach the age of 70 years. Current diagnostic tests for prostate cancer have significant problems with both false negatives and false positives, necessitating the search for new molecular markers. A recent investigation of endosomal and lysosomal proteins revealed that the critical process of endosomal biogenesis might be altered in prostate cancer. Here, a panel of endosomal markers was evaluated in prostate cancer and nonmalignant cells and a significant increase in gene and protein expression was found for early, but not late endosomal proteins. There was also a differential distribution of early endosomes, and altered endosomal traffic and signaling of the transferrin receptors (TFRC and TFR2) in prostate cancer cells. These findings support the concept that endosome biogenesis and function are altered in prostate cancer. Microarray analysis of a clinical cohort confirmed the altered endosomal gene expression observed in cultured prostate cancer cells. Furthermore, in prostate cancer patient tissue specimens, the early endosomal marker and adaptor protein APPL1 showed consistently altered basement membrane histology in the vicinity of tumors and concentrated staining within tumor masses. These novel observations on altered early endosome biogenesis provide a new avenue for prostate cancer biomarker investigation and suggest new methods for the early diagnosis and accurate prognosis of prostate cancer. IMPLICATIONS This discovery of altered endosome biogenesis in prostate cancer may lead to novel biomarkers for more precise cancer detection and patient prognosis.
Collapse
Affiliation(s)
- Ian R D Johnson
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Emma J Parkinson-Lawrence
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Tetyana Shandala
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | | | - Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia. Adelaide Prostate Cancer Research Centre, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
17
|
Hennig J, McShane MP, Cordes N, Eke I. APPL proteins modulate DNA repair and radiation survival of pancreatic carcinoma cells by regulating ATM. Cell Death Dis 2014; 5:e1199. [PMID: 24763056 PMCID: PMC4001316 DOI: 10.1038/cddis.2014.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/12/2022]
Abstract
Despite intensive multimodal therapies, the overall survival rate of patients with ductal adenocarcinoma of the pancreas is still poor. The chemo- and radioresistance mechanisms of this tumor entity remain to be determined in order to develop novel treatment strategies. In cancer, endocytosis and membrane trafficking proteins are known to be utilized and they also critically regulate essential cell functions like survival and proliferation. On the basis of these data, we evaluated the role of the endosomal proteins adaptor proteins containing pleckstrin homology domain, phosphotyrosine binding domain and a leucine zipper motif (APPL)1 and 2 for the radioresistance of pancreatic carcinoma cells. Here, we show that APPL2 expression in pancreatic cancer cells is upregulated after irradiation and that depletion of APPL proteins by small interfering RNA (siRNA) significantly reduced radiation survival in parallel to impairing DNA double strand break (DSB) repair. In addition, APPL knockdown diminished radiogenic hyperphosphorylation of ataxia telangiectasia mutated (ATM). Activated ATM and APPL1 were also shown to interact after irradiation, suggesting that APPL has a more direct role in the phosphorylation of ATM. Double targeting of APPL proteins and ATM caused similar radiosensitization and concomitant DSB repair perturbation to that observed after depletion of single proteins, indicating that ATM is the central modulator of APPL-mediated effects on radiosensitivity and DNA repair. These data strongly suggest that endosomal APPL proteins contribute to the DNA damage response. Whether targeting of APPL proteins is beneficial for the survival of patients with pancreatic adenocarcinoma remains to be elucidated.
Collapse
Affiliation(s)
- J Hennig
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - M P McShane
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - N Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - I Eke
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| |
Collapse
|
18
|
Wang C, Li X, Mu K, Li L, Wang S, Zhu Y, Zhang M, Ryu J, Xie Z, Shi D, Zhang WJ, Dong LQ, Jia W. Deficiency of APPL1 in mice impairs glucose-stimulated insulin secretion through inhibition of pancreatic beta cell mitochondrial function. Diabetologia 2013; 56:1999-2009. [PMID: 23793716 PMCID: PMC4556236 DOI: 10.1007/s00125-013-2971-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/28/2013] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Adaptor protein, phosphotyrosine interaction, pleckstrin homology domain and leucine zipper containing 1 (APPL1) is an adapter protein that positively mediates adiponectin signalling. Deficiency of APPL1 in the target tissues of insulin induces insulin resistance. We therefore aimed, in the present study, to determine its role in regulating pancreatic beta cell function. METHODS A hyperglycaemic clamp test was performed to determine insulin secretion in APPL1 knockout (KO) mice. Glucose- and adiponectin-induced insulin release was measured in islets from APPL1 KO mice or INS-1(832/13) cells with either APPL1 knockdown or overproduction. RT-PCR and western blotting were conducted to analyse gene expression and protein abundance. Oxygen consumption rate (OCR), ATP production and mitochondrial membrane potential were assayed to evaluate mitochondrial function. RESULTS APPL1 is highly expressed in pancreatic islets, but its levels are decreased in mice fed a high-fat diet and db/db mice compared with controls. Deletion of the Appl1 gene leads to impairment of both the first and second phases of insulin secretion during hyperglycaemic clamp tests. In addition, glucose-stimulated insulin secretion (GSIS) is significantly decreased in islets from APPL1 KO mice. Conversely, overproduction of APPL1 leads to an increase in GSIS in beta cells. In addition, expression levels of several genes involved in insulin production, mitochondrial biogenesis and mitochondrial OCR, ATP production and mitochondrial membrane potential are reduced significantly in APPL1-knockdown beta cells. Moreover, suppression or overexproduction of APPL1 inhibits or stimulates adiponectin-potentiated GSIS in beta cells, respectively. CONCLUSIONS/INTERPRETATION Our study demonstrates the roles of APPL1 in regulating GSIS and mitochondrial function in pancreatic beta cells, which implicates APPL1 as a therapeutic target in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Chen Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaShanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Xiaowen Li
- Diabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaShanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Kaida Mu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaShanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Ling Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shihong Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaShanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Yunxia Zhu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaShanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaShanghai Key Laboratory of Diabetes Mellitus, Shanghai, People’s Republic of China
| | - Jiyoon Ryu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Zhifang Xie
- Department of Pathophysiology, Second Military Medical University, Shanghai, People’s Republic of China
| | - Dongyun Shi
- Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
| | - Weiping J. Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, People’s Republic of China
| | - Lily Q. Dong
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, People’s Republic of ChinaDiabetes Institute, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
19
|
Pyrzynska B, Banach-Orlowska M, Teperek-Tkacz M, Miekus K, Drabik G, Majka M, Miaczynska M. Multifunctional protein APPL2 contributes to survival of human glioma cells. Mol Oncol 2012; 7:67-84. [PMID: 22989406 PMCID: PMC3553582 DOI: 10.1016/j.molonc.2012.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 12/01/2022] Open
Abstract
Some endocytic proteins have recently been shown to play a role in tumorigenesis. In this study, we demonstrate that APPL2, an adapter protein with known endocytic functions, is upregulated in 40% cases of glioblastoma multiforme, the most common and aggressive cancer of the central nervous system. The silencing of APPL2 expression by small interfering RNAs (siRNAs) in glioma cells markedly reduces cell survival under conditions of low growth factor availability and enhances apoptosis (measured by executor caspase activity). Long‐term depletion of APPL2 by short hairpin RNAs (shRNAs), under regular growth factor availability, suppresses the cell transformation abilities, assessed by inhibited colony formation in soft agar and by reduced xenograft tumor growth in vivo. At the molecular level, the negative effect of APPL2 knockdown on cell survival is not due to the alterations in AKT or GSK3β activities which were reported to be modulated by APPL proteins. Instead, we attribute the reduced cell survival upon APPL2 depletion to the changes in gene expression, in particular to the upregulation of apoptosis‐related genes, such as UNC5B (a proapoptotic dependence receptor) and HRK (harakiri, an activator of apoptosis, which antagonizes anti‐apoptotic function of Bcl2). In support of this notion, the loss of glioma cell survival upon APPL2 knockdown can be rescued either by an excess of netrin‐1, the prosurvival ligand of UNC5B or by simultaneous silencing of HRK. Consistently, APPL2 overexpression reduces expression of HRK and caspase activation in cells treated with apoptosis inducers, resulting in the enhancement of cell viability. This prosurvival activity of APPL2 is independent of its endosomal localization. Cumulatively, our data indicate that a high level of APPL2 protein might enhance glioblastoma growth by maintaining low expression level of genes responsible for cell death induction. APPL2 protein levels are elevated in 40% cases of glioblastoma multiforme. Overexpression of APPL2 exhibits cytoprotective effects in glioma cells. APPL2 depletion reduces survival and transformation abilities of glioma cells. Silencing of APPL2 promotes expression of proapoptotic genes HRK and UNC5B.
Collapse
Affiliation(s)
- Beata Pyrzynska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang Y, Song M, Chen XF, Meng Y. Expression of adaptor protein containing PH domain, PTB domain and leucine zipper motif 1 in colorectal carcinogenesis. Shijie Huaren Xiaohua Zazhi 2012; 20:253-258. [DOI: 10.11569/wcjd.v20.i3.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between expression of adaptor protein containing PH domain, PTB domain and leucine zipper motif 1(APPL1) and clinicopathological parameters of colorectal cancer.
METHODS: Expression of APPL1 protein and mRNA in 35 surgical specimens of colorectal carcinoma (CRC) and 27 normal colorectal tissue specimens was detected by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR), respectively.
RESULTS: The expression of APPL1 in CRC was significantly higher than that in normal mucosa. APPL1 expression was correlated with histological differentiation, lymph node metastasis and TNM stage (all P < 0.05), but not with sex, age, or tumor size (all P > 0.05) in patients with CRC.
CONCLUSION: The expression of APPL1 protein is increased in CRC. APPL1 protein expression is closely related with tumor differentiation, lymph node metastasis and TNM stage in patients with colorectal cancer. APPL1 may be a novel therapeutic target for CRC.
Collapse
|