1
|
Hu D, Kobayashi N, Ohki R. FUCA1: An Underexplored p53 Target Gene Linking Glycosylation and Cancer Progression. Cancers (Basel) 2024; 16:2753. [PMID: 39123480 PMCID: PMC11311387 DOI: 10.3390/cancers16152753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is a difficult-to-cure disease with high worldwide incidence and mortality, in large part due to drug resistance and disease relapse. Glycosylation, which is a common modification of cellular biomolecules, was discovered decades ago and has been of interest in cancer research due to its ability to influence cellular function and to promote carcinogenesis. A variety of glycosylation types and structures regulate the function of biomolecules and are potential targets for investigating and treating cancer. The link between glycosylation and carcinogenesis has been more recently revealed by the role of p53 in energy metabolism, including the p53 target gene alpha-L-fucosidase 1 (FUCA1), which plays an essential role in fucosylation. In this review, we summarize roles of glycan structures and glycosylation-related enzymes to cancer development. The interplay between glycosylation and tumor microenvironmental factors is also discussed, together with involvement of glycosylation in well-characterized cancer-promoting mechanisms, such as the epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and p53-mediated pathways. Glycan structures also modulate cell-matrix interactions, cell-cell adhesion as well as cell migration and settlement, dysfunction of which can contribute to cancer. Thus, further investigation of the mechanistic relationships among glycosylation, related enzymes and cancer progression may provide insights into potential novel cancer treatments.
Collapse
Affiliation(s)
- Die Hu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Naoya Kobayashi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
- Department of NCC Cancer Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
2
|
Zhang SZ, Lobo A, Li PF, Zhang YF. Sialylated glycoproteins and sialyltransferases in digestive cancers: Mechanisms, diagnostic biomarkers, and therapeutic targets. Crit Rev Oncol Hematol 2024; 197:104330. [PMID: 38556071 DOI: 10.1016/j.critrevonc.2024.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Sialic acid (SA), as the ultimate epitope of polysaccharides, can act as a cap at the end of polysaccharide chains to prevent their overextension. Sialylation is the enzymatic process of transferring SA residues onto polysaccharides and is catalyzed by a group of enzymes known as sialyltransferases (SiaTs). It is noteworthy that the sialylation level of glycoproteins is significantly altered when digestive cancer occurs. And this alteration exhibits a close correlation with the progression of these cancers. In this review, from the perspective of altered SiaTs expression levels and changed glycoprotein sialylation patterns, we summarize the pathogenesis of gastric cancer (GC), colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Furthermore, we propose potential early diagnostic biomarkers and prognostic indicators for different digestive cancers. Finally, we summarize the therapeutic value of sialylation in digestive system cancers.
Collapse
Affiliation(s)
- Shao-Ze Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Amara Lobo
- Department of Critical Care Medicine Holy Family Hospital, St Andrew's Road, Bandra (West), Mumbai 400050, India
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
3
|
Guo J, Cheng Q, Li Y, Tian L, Ma D, Li Z, Gao J, Zhu J. Fucosyltransferase 5 Promotes the Proliferative and Migratory Properties of Intrahepatic Cholangiocarcinoma Cells via Regulating Protein Glycosylation Profiles. Clin Med Insights Oncol 2023; 17:11795549231181189. [PMID: 37435017 PMCID: PMC10331077 DOI: 10.1177/11795549231181189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Background The incidence of intrahepatic cholangiocarcinoma (ICC) is increasing globally, and its prognosis has not improved substantially in recent years. Understanding the pathogenesis of ICC may provide a theoretical basis for its treatment. In this study, we investigated the effects and underlying mechanisms of fucosyltransferase 5 (FUT5) on the malignant progression of ICC. Methods FUT5 expression in ICC samples and adjacent nontumor tissues was compared using quantitative real-time polymerase chain reaction and immunohistochemical assays. We performed cell counting kit-8, colony formation, and migration assays to determine whether FUT5 influenced the proliferation and mobility of ICC cells. Finally, mass spectrometry was performed to identify the glycoproteins regulated by FUT5. Results FUT5 mRNA was significantly upregulated in most ICC samples compared with corresponding adjacent nontumor tissues. The ectopic expression of FUT5 promoted the proliferation and migration of ICC cells, whereas FUT5 knockdown significantly suppressed these cellular properties. Mechanistically, we demonstrated that FUT5 is essential for the synthesis and glycosylation of several proteins, including versican, β3 integrin, and cystatin 7, which may serve key roles in the precancer effects of FUT5. Conclusions FUT5 is upregulated in ICC and promotes ICC development by promoting glycosylation of several proteins. Therefore, FUT5 may serve as a therapeutic target for the treatment of ICC.
Collapse
Affiliation(s)
- Jingheng Guo
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Yongjian Li
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Lingyu Tian
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Delin Ma
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
- Peking University Institute of Organ
Transplantation, Peking University, Beijing, China
- Peking University Center of Liver
Cancer Diagnosis and Treatment, Peking University, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
- Peking University Institute of Organ
Transplantation, Peking University, Beijing, China
- Peking University Center of Liver
Cancer Diagnosis and Treatment, Peking University, Beijing, China
| |
Collapse
|
4
|
Wang Q, Liao C, Tan Z, Li X, Guan X, Li H, Tian Z, Liu J, An J. FUT6 inhibits the proliferation, migration, invasion, and EGF-induced EMT of head and neck squamous cell carcinoma (HNSCC) by regulating EGFR/ERK/STAT signaling pathway. Cancer Gene Ther 2023; 30:182-191. [PMID: 36151332 DOI: 10.1038/s41417-022-00530-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023]
Abstract
Glycosylation change is one of the landmark events of tumor occurrence and development, and tumor cells may be inhibited by regulating the aberrant expression of glycosyltransferases. Currently, fucosyltransferase VI (FUT6), which is involved in the synthesis of α-1, 3 fucosyl bond, has been detected to be closely associated with multiple tumors, but its function and mechanism in head and neck squamous cell carcinoma (HNSCC) still need further research. In this study, FUT6 knockdown and overexpression strategies were used to investigate the effects of FUT6 on cell proliferation, migration, and invasion, as well as the growth and metastasis of HNSCC in a xenografts mouse model. The protein expression levels of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), Signal Transducer and Activator of Transcription (STAT), protein kinase B (AKT), c-Myc, and epithelial-mesenchymal transition (EMT) markers were determined by western blot analysis. Our research found that the mRNA expression of FUT6 was lower in HNSCC tissues than in normal mucosal epithelial tissues. In Cal-27 and FaDu cells, FUT6 overexpression inhibited cell proliferation, migration and invasion, causing upregulation of ZO-1 and E-cadherin, downregulation of N-cadherin and Vimentin, and finally decreased the phosphorylation levels of EGFR, ERK, STAT, and c-Myc. In HSC-3 cells, knockdown of FUT6 promoted cell proliferation, migration and invasion, downregulating ZO-1 and E-cadherin, upregulating N-cadherin and Vimentin, and increased the phosphorylation levels of EGFR, ERK, STAT, and c-Myc. In the HNSCC xenografts mouse, FUT6 overexpression inhibited tumor growth and metastasis. In summary, FUT6 controls the proliferation, migration, invasion, and EGF-induced EMT of HNSCC by regulating EGFR/ERK/STAT signaling pathway, indicating its potential future therapeutic application for HNSCC.
Collapse
Affiliation(s)
- Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, 563000, Zunyi, Guizhou Province, China
| | - Chengcheng Liao
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, 563000, Zunyi, Guizhou Province, China.,Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou Province, China
| | - Zhangxue Tan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou Province, China
| | - Xiaolan Li
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, 563000, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou Province, China
| | - Hao Li
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou Province, China
| | - Zhongjia Tian
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou Province, China
| | - Jianguo Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, 563000, Zunyi, Guizhou Province, China.
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou Province, China.
| |
Collapse
|
5
|
Zhou Z, Wang T, Du Y, Deng J, Gao G, Zhang J. Identification of a Novel Glycosyltransferase Prognostic Signature in Hepatocellular Carcinoma Based on LASSO Algorithm. Front Genet 2022; 13:823728. [PMID: 35356430 PMCID: PMC8959637 DOI: 10.3389/fgene.2022.823728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/23/2022] [Indexed: 01/10/2023] Open
Abstract
Although many prognostic models have been developed to help determine personalized prognoses and treatments, the predictive efficiency of these prognostic models in hepatocellular carcinoma (HCC), which is a highly heterogeneous malignancy, is less than ideal. Recently, aberrant glycosylation has been demonstrated to universally participate in tumour initiation and progression, suggesting that dysregulation of glycosyltransferases can serve as novel cancer biomarkers. In this study, a total of 568 RNA-sequencing datasets of HCC from the TCGA database and ICGC database were analysed and integrated via bioinformatic methods. LASSO regression analysis was applied to construct a prognostic signature. Kaplan-Meier survival, ROC curve, nomogram, and univariate and multivariate Cox regression analyses were performed to assess the predictive efficiency of the prognostic signature. GSEA and the "CIBERSORT" R package were utilized to further discover the potential biological mechanism of the prognostic signature. Meanwhile, the differential expression of the prognostic signature was verified by western blot, qRT-PCR and immunohistochemical staining derived from the HPA. Ultimately, we constructed a prognostic signature in HCC based on a combination of six glycosyltransferases, whose prognostic value was evaluated and validated successfully in the testing cohort and the validation cohort. The prognostic signature was identified as an independent unfavourable prognostic factor for OS, and a nomogram including the risk score was established and showed the good performance in predicting OS. Further analysis of the underlying mechanism revealed that the prognostic signature may be potentially associated with metabolic disorders and tumour-infiltrating immune cells.
Collapse
Affiliation(s)
- Zhiyang Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Wang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yao Du
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junping Deng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ge Gao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiangnan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
7
|
Park S, Lim JM, Chun JN, Lee S, Kim TM, Kim DW, Kim SY, Bae DJ, Bae SM, So I, Kim HG, Choi JY, Jeon JH. Altered expression of fucosylation pathway genes is associated with poor prognosis and tumor metastasis in non‑small cell lung cancer. Int J Oncol 2019; 56:559-567. [PMID: 31894325 PMCID: PMC6959459 DOI: 10.3892/ijo.2019.4953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022] Open
Abstract
Fucosylation is a post‑translational modification that attaches fucose residues to protein‑ or lipid‑bound oligosaccharides. Certain fucosylation pathway genes are aberrantly expressed in several types of cancer, including non‑small cell lung cancer (NSCLC), and this aberrant expression is associated with poor prognosis in patients with cancer. However, the molecular mechanism by which these fucosylation pathway genes promote tumor progression has not been well‑characterized. The present study analyzed public microarray data obtained from NSCLC samples. Multivariate analysis revealed that altered expression of fucosylation pathway genes, including fucosyltransferase 1 (FUT1), FUT2, FUT3, FUT6, FUT8 and GDP‑L‑fucose synthase (TSTA3), correlated with poor survival in patients with NSCLC. Inhibition of FUTs by 2F‑peracetyl‑fucose (2F‑PAF) suppressed transforming growth factor β (TGFβ)‑mediated Smad3 phosphorylation and nuclear translocation in NSCLC cells. In addition, wound‑healing and Transwell migration assays demonstrated that 2F‑PAF inhibited TGFβ‑induced NSCLC cell migration and invasion. Furthermore, in vivo bioluminescence imaging analysis revealed that 2F‑PAF attenuated the metastatic capacity of NSCLC cells. These results may help characterize the oncogenic role of fucosylation in NSCLC biology and highlight its potential for developing cancer therapeutics.
Collapse
Affiliation(s)
- Soonbum Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jin-Muk Lim
- Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sanghoon Lee
- Department of Biochemistry, University of
Utah School of Medicine, Salt Lake City, UT 84112‑5650, USA
| | - Tae Min Kim
- Seoul National University Cancer Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Dong-Wan Kim
- Seoul National University Cancer Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05535, Republic of Korea
| | - Dong-Jun Bae
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05535, Republic of Korea
| | - Sang-Mun Bae
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05535, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hong-Gee Kim
- Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Yeob Choi
- Seoul National University Cancer Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
8
|
Keeley TS, Yang S, Lau E. The Diverse Contributions of Fucose Linkages in Cancer. Cancers (Basel) 2019; 11:E1241. [PMID: 31450600 PMCID: PMC6769556 DOI: 10.3390/cancers11091241] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Fucosylation is a post-translational modification of glycans, proteins, and lipids that is responsible for many biological processes. Fucose conjugation via α(1,2), α(1,3), α(1,4), α(1,6), and O'- linkages to glycans, and variations in fucosylation linkages, has important implications for cancer biology. This review focuses on the roles that fucosylation plays in cancer, specifically through modulation of cell surface proteins and signaling pathways. How L-fucose and serum fucosylation patterns might be used for future clinical diagnostic, prognostic, and therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Tyler S Keeley
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
- University of South Florida Cancer Biology Graduate Program, Tampa, FL 33602, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA.
| |
Collapse
|
9
|
Shan M, Yang D, Dou H, Zhang L. Fucosylation in cancer biology and its clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:93-119. [PMID: 30905466 DOI: 10.1016/bs.pmbts.2019.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fucosylation is the process of transferring fucose from GDP-fucose to their substrates, which includes certain proteins, N- and O-linked glycans in glycoprotein or glycolipids, by fucosyltransferases in all mammalian cells. Fucosylated glycans play vital role in selectin-mediated leukocyte extravasation, lymphocyte homing, and pathogen-host interactions, whereas fucosylated proteins are essential for signaling transduction in numerous ontogenic events. Aberrant fucosylation due to the availability of high energy donor GDP-fucose, abnormal expression of FUTs and/or α-fucosidase, and the availability of their substrates leads to different fucosylated glycan or protein structures. Accumulating evidence demonstrates that aberrant fucosylation plays important role in all aspects of cancer biology. In this review, we will summarize the current knowledge about fucosylation in different physiological and pathological processes with a focus on their roles not only in cancer cell proliferation, invasion, and metastasis but also in tumor immune surveillance. Furthermore, the clinical potential and applications of fucosylation in cancer diagnosis and treatment will also be discussed.
Collapse
Affiliation(s)
- Ming Shan
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huaiqian Dou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Comprehensive N-glycan profiles of hepatocellular carcinoma reveal association of fucosylation with tumor progression and regulation of FUT8 by microRNAs. Oncotarget 2018; 7:61199-61214. [PMID: 27533464 PMCID: PMC5308645 DOI: 10.18632/oncotarget.11284] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/09/2016] [Indexed: 01/13/2023] Open
Abstract
Glycosylation has significant effects on cancer progression. Fucosylation is one of the most important glycosylation events involved in hepatocellular carcinoma (HCC). Here, we compared N-glycan profiles of liver tumor tissues and adjacent tissues of 27 HCC patients to reveal the association between fucosylation and HCC progression, as well as verified the potential role of miRNA in regulating fucosylation. Mass spectrometry (MS) analysis showed pronounced differences of the N-glycosylation patterns and fucosylated N-glycans between the adjacent and tumor tissues. Different fucosyltransferase (FUT) genes were also identified in adjacent and tumor tissues, and two HCC cell lines with different metastatic potential. High-level expression of FUT8 was detected in tumor tissues and highly metastatic HCC cells. Altered levels of FUT8 in HCC cell lines significantly linked to the malignant behaviors of proliferation and invasion in vitro. Furthermore, using microRNA array, we identified FUT8 as one of the miR-26a, miR-34a and miR-146a-targeted genes. An inverse correlation was revealed between the expression levels of FUT8 and these miRNAs. Luciferase reporter assay demonstrated these miRNAs specifically interacted with the 3′UTR of FUT8 and subsequently down-regulated FUT8 expression-level. The forced expression of these miRNAs was able to induce a decrease in FUT8 levels and thereby to suppress HCC cells progression. Altogether, our results indicate that fucosylated N-glycan and FUT8 levels can be used as markers for evaluating HCC progression, as well as miRNAs may be involved in inhibition of fucosylation machinery through targeting FUT8.
Collapse
|
11
|
Jia L, Luo S, Ren X, Li Y, Hu J, Liu B, Zhao L, Shan Y, Zhou H. miR-182 and miR-135b Mediate the Tumorigenesis and Invasiveness of Colorectal Cancer Cells via Targeting ST6GALNAC2 and PI3K/AKT Pathway. Dig Dis Sci 2017; 62:3447-3459. [PMID: 29030743 DOI: 10.1007/s10620-017-4755-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Metastasis is a leading cause of cancer-related death including colorectal cancer (CRC). MicroRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Aberrant sialylation is closely associated with malignant phenotype of tumor cells, including invasiveness and metastasis. AIM This study aimed to investigate the association of miR-182 and miR-135b with proliferation and invasion by targeting sialyltransferase ST6GALNAC2 in CRC cells and explore the potential molecular mechanism. METHODS We measured the levels of miR-182, miR-135b, and ST6GALNAC2 in a series of CRC cell lines and tissues using real-time PCR. Bioinformatics analysis and luciferase reporter assay were performed to test the direct binding of miR-182 and miR-135b to the target gene ST6GALNAC2. We also analyzed the possible role of miR-182/-135b on colony formation, wound healing, invasion, and tube formation. RESULTS The expression of miR-182 and miR-135b was higher in tumor tissues compared to adjacent noncancerous tissues of CRC patients, as well as up-regulated in SW620 cells than in SW480 cells with different metastatic potential. By applying bioinformatics analysis and luciferase reporter assay, we identified ST6GALNAC2 as the direct target of miR-182/-135b. Furthermore, miR-182/-135b inhibited significantly ST6GALNAC2 expression, and consistently, ST6GALNAC2 mediated migration, adhesion, invasion, proliferation, and tumor angiogenesis in CRC cell lines. Additionally, PI3K/AKT signaling pathway was regulated by miR-182/135b, which was partially blocked by altered level of ST6GALNAC2 in CRC. CONCLUSIONS The miR-182/-135b/ST6GALNAC2/PI3K/AKT axis may serve as a predictive biomarker and a potential therapeutic target in CRC treatment.
Collapse
Affiliation(s)
- Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
| | - Shihua Luo
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
- Department of Traumatology, Shanghai Ruijin Hospital, Jiaotong University, Shanghai, 200025, China
| | - Xiang Ren
- College of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Jialei Hu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Huimin Zhou
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| |
Collapse
|
12
|
Liu C, Liang X, Wang J, Zheng Q, Zhao Y, Khan MN, Liu S, Yan Q. Protein O-fucosyltransferase 1 promotes trophoblast cell proliferation through activation of MAPK and PI3K/Akt signaling pathways. Biomed Pharmacother 2017; 88:95-101. [PMID: 28103512 DOI: 10.1016/j.biopha.2017.01.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Protein O-fucosylation is an important glycosylation modification and plays an important role in embryonic development. Protein O-fucosyltransferase 1 (poFUT1) is an essential enzyme that catalyzes the synthesis of protein O-fucosylation. Our previous studies showed that poFUT1 promoted trophoblast cell migration and invasion at the fetal-maternal interface, but the role of poFUT1 in trophoblast cells proliferation remains unclear. Here, immunohistochemistry data showed that poFUT1 and PCNA levels were decreased in abortion patient's trophoblasts compared with women with normal pregnancies. Our results also showed that poFUT1 promoted trophoblast cell proliferation by CCK-8 assay and cell cycle analysis. PoFUT1 increased the phosphorylation of ERK1/2, p38 MAPK, and PI3K/Akt, while inhibitors of ERK1/2(PD98059), p38 MAPK(SB203580), and PI3K (LY294002) prevented ERK1/2, p38 MAPK, and Akt phosphorylation. Moreover, poFUT1 stimulation of trophoblast cells proliferation correlated with increased cell cycle progression by promoting cells into S-phase. The underlying mechanism involved increased cyclin D1, cyclin E, CDK 2, CDK 4, and pRb expression and decreased levels of the cyclin-dependent kinase inhibitors p21 and p27, which were blocked by inhibitors of the upstream signaling molecules MAPK and PI3K/Akt. In conclusion, poFUT1 promotes trophoblast cell proliferation by activating MAPK and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Anaesthesia, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China; Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China
| | - Xiaohua Liang
- Dalian Blood Center, Dalian 116001, People's Republic of China
| | - Jiao Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China
| | - Qin Zheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China
| | - Yue Zhao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China
| | - Muhammad Noman Khan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China.
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, People's Republic of China
| |
Collapse
|
13
|
Sun M, Zhao X, Liang L, Pan X, Lv H, Zhao Y. Sialyltransferase ST3GAL6 mediates the effect of microRNA-26a on cell growth, migration, and invasion in hepatocellular carcinoma through the protein kinase B/mammalian target of rapamycin pathway. Cancer Sci 2017; 108:267-276. [PMID: 27906498 PMCID: PMC5329153 DOI: 10.1111/cas.13128] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022] Open
Abstract
Aberrant sialylation profiles on the cell surface have been recognized for their potential diagnostic value in identifying the regulation of tumor properties in several cancers, including hepatocellular carcinoma (HCC). Recently, increasing evidence has suggested that the deregulation of microRNA (miRNA) is a common feature in human cancers. In this study, we found obvious upregulation of sialyltransferase ST3GAL6 both in HCC cell lines and in tissue samples. The altered expression of ST3GAL6 was found to correlate with cell proliferation, migration, and invasion ability in HCC. Further investigation showed that miR-26a negatively regulated ST3GAL6, inducing the suppression of cell proliferation, migration, and invasion in vitro. Moreover, we identified the protein kinase B/mammalian target of rapamycin (Akt/mTOR) pathway as the target of ST3GAL6 based on Western blot analysis. Analysis of a xenograft mouse model showed that miR-26a significantly reduced tumor growth by suppressing activation of the Akt/mTOR pathway by directly targeting ST3GAL6. In conclusion, these data indicate that ST3GAL6 promotes cell growth, migration, and invasion and mediates the effect of miR-26a through the Akt/mTOR signaling pathway in HCC.
Collapse
Affiliation(s)
- Mingming Sun
- Department of General SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xuzi Zhao
- School of Basic Medical SciencesHebei Medical UniversityShijiazhuangChina
| | - Leilei Liang
- Department of General SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xufeng Pan
- Department of General SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Hao Lv
- Department of OrthopedicsThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yongfu Zhao
- Department of General SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
14
|
Darebna P, Novak P, Kucera R, Topolcan O, Sanda M, Goldman R, Pompach P. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring. J Proteomics 2016; 153:44-52. [PMID: 27646713 DOI: 10.1016/j.jprot.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/22/2016] [Accepted: 09/08/2016] [Indexed: 12/17/2022]
Abstract
Alternations in the glycosylation of proteins have been described in connection with several cancers, including hepatocellular carcinoma (HCC) and colorectal cancer. Analytical tools, which use combination of liquid chromatography and mass spectrometry, allow precise and sensitive description of these changes. In this study, we use MRM and FT-ICR operating in full-MS scan, to determine ratios of intensities of specific glycopeptides in HCC, colorectal cancer, and liver metastasis of colorectal cancer. Haptoglobin, hemopexin and complement factor H were detected after albumin depletion and the N-linked glycopeptides with fucosylated glycans were compared with their non-fucosylated forms. In addition, sialylated forms of an O-linked glycopeptide of hemopexin were quantified in the same samples. We observe significant increase in fucosylation of all three proteins and increase in bi-sialylated O-glycopeptide of hemopexin in HCC of hepatitis C viral (HCV) etiology by both LC-MS methods. The results of the MRM and full-MS scan FT-ICR analyses provide comparable quantitative readouts in spite of chromatographic, mass spectrometric and data analysis differences. Our results suggest that both workflows allow adequate relative quantification of glycopeptides and suggest that HCC of HCV etiology differs in glycosylation from colorectal cancer and liver metastasis of colorectal cancer. SIGNIFICANCE The article compares N- and O-glycosylation of several serum proteins in different diseases by a fast and easy sample preparation procedure in combination with high resolution Fourier transform ion cyclotron resonance mass spectrometry. The results show successful glycopeptides relative quantification in a complex peptide mixture by the high resolution instrument and the detection of glycan differences between the different types of cancer diseases. The presented method is comparable to conventional targeted MRM approach but allows additional curation of the data.
Collapse
Affiliation(s)
- Petra Darebna
- Department of Biochemistry, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Petr Novak
- Institute of Microbiology v.v.i., Czech Academy of Sciences, Prague, Czech Republic; Department of Biochemistry, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Radek Kucera
- Laboratory of Immunoanalysis, Faculty Hospital in Pilsen, Pilsen, Czech Republic
| | - Ondrej Topolcan
- Laboratory of Immunoanalysis, Faculty Hospital in Pilsen, Pilsen, Czech Republic
| | - Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Petr Pompach
- Institute of Microbiology v.v.i., Czech Academy of Sciences, Prague, Czech Republic; Department of Biochemistry, Faculty of Sciences, Charles University, Prague, Czech Republic.
| |
Collapse
|
15
|
Li N, Liu Y, Miao Y, Zhao L, Zhou H, Jia L. MicroRNA-106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer. IUBMB Life 2016; 68:764-75. [PMID: 27519168 DOI: 10.1002/iub.1541] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/16/2016] [Indexed: 12/29/2022]
Abstract
It is demonstrated that the maladjustment of microRNA (miRNA) plays significant roles in the occurrence and development of tumors. MicroRNA-106b-5p (miR-106b), a carcinogenic miRNA, is identified as a dysregulated miRNA in human breast cancer. In this article, the expression levels of miR-106b were discovered to be particularly higher in breast cancer tissues than that in the corresponding adjacent tissues. Accordingly, miR-106b was higher expressed in the breast cancer cell lines compared with that in the normal breast cell lines. Moreover, according to the data previously reported, increased expression of miR-106b was significantly associated with advanced clinical stages and poor prognosis in breast cancer. Fucosyltransferase 6 (FUT6), a member of the fucosyltransferase (FUT) family, was found to have a reduced expression in tissues or cells with higher level of miR-106b in breast cancer. Additionally, down-regulation of miR-106b increased the expression of FUT6 and resulted in an obvious decrease of cell migration, invasion, and proliferation in MDA-MB-231 cells. Furthermore, over-expressed FUT6 reversed the impacts of up-regulated miR-106b on cell migration, invasion, and proliferation in MCF-7 cells, indicating that FUT6 might be directly targeted by miR-106b and serve as therapeutic targets for breast cancer. In brief, our results strongly showed that the low expression of FUT6 regulated by miR-106b contributed to cell migration, invasion, and proliferation in human breast cancer. © 2016 IUBMB Life, 68(9):764-775, 2016.
Collapse
Affiliation(s)
- Nana Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Yuejian Liu
- Department of Central Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
| | - Yuan Miao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| |
Collapse
|
16
|
Zhao L, Feng X, Song X, Zhou H, Zhao Y, Cheng L, Jia L. miR-493-5p attenuates the invasiveness and tumorigenicity in human breast cancer by targeting FUT4. Oncol Rep 2016; 36:1007-15. [PMID: 27375041 DOI: 10.3892/or.2016.4882] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/15/2016] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is a leading cause of cancer-related mortality among women. Altered fucosylation was found to be closely associated with tumorigenesis and metastasis of breast cancer. MicroRNAs (miRNAs) are important regulators of cell proliferation and metastasis, and aberrant miRNA expression has been observed in breast cancer. The present study aimed to evaluate the level of fucosyltransferase IV (FUT4) and miR-493-5p in breast cancer and investigate their relationship. In the present study, we demonstrated the differential expressional profiles of FUT4 and miR‑493-5p in 29 clinical breast cancer tissues, matched adjacent tissue samples and two breast carcinoma cell lines (MCF-7 and MDA-MB-231). Briefly, altered expression levels of FUT4 modified the invasive activities and tumorigenicity of the MCF-7 and MDA-MB-231 cells. Further study demonstrated that miR-493-5p plays a role as a suppressor in breast cancer cell invasion and tumorigenicity. Moreover, the expression levels of miR-493-5p were inversely proportional to those of FUT4 both at the mRNA and protein levels. Luciferase reporter assays confirmed that miR‑493-5p bound to the 3'-untranslated (3'-UTR) region of FUT4, and inhibited the expression of FUT4 in breast cancer cells. Taken together, our data suggest that FUT4 may have a potential role in the treatment of breast cancer, as well as miR-493-5p is a novel regulator of invasiveness and tumorigenicity of breast cancer cells through targeting FUT4. The miR-493-5p/FUT4 pathway has therapeutic potential in breast cancer.
Collapse
Affiliation(s)
- Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaobin Feng
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaobo Song
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yongfu Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Lei Cheng
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
17
|
Vasconcelos-Dos-Santos A, Oliveira IA, Lucena MC, Mantuano NR, Whelan SA, Dias WB, Todeschini AR. Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Developing of Drugs Against Cancer. Front Oncol 2015; 5:138. [PMID: 26161361 PMCID: PMC4479729 DOI: 10.3389/fonc.2015.00138] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer cells depend on altered metabolism and nutrient uptake to generate and keep the malignant phenotype. The hexosamine biosynthetic pathway is a branch of glucose metabolism that produces UDP-GlcNAc and its derivatives, UDP-GalNAc and CMP-Neu5Ac and donor substrates used in the production of glycoproteins and glycolipids. Growing evidence demonstrates that alteration of the pool of activated substrates might lead to different glycosylation and cell signaling. It is already well established that aberrant glycosylation can modulate tumor growth and malignant transformation in different cancer types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are becoming prominent targets for anti-tumor drugs. This review describes three classes of glycosylation, O-GlcNAcylation, N-linked, and mucin type O-linked glycosylation, involved in tumor progression, their biosynthesis and highlights the available inhibitors as potential anti-tumor drugs.
Collapse
Affiliation(s)
| | - Isadora A Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Miguel Clodomiro Lucena
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Natalia Rodrigues Mantuano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Stephen A Whelan
- Department of Biochemistry, Cardiovascular Proteomics Center, Boston University School of Medicine , Boston, MA , USA
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| |
Collapse
|
18
|
Ryoo H, Ryu J, Lee C. Transcriptional Downregulation by Nucleotide Substitution with the Minor Allele of rs3760776 Located in the Promoter of FUT6 Gene. Biochem Genet 2015; 53:72-8. [PMID: 25962326 DOI: 10.1007/s10528-015-9673-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/15/2015] [Indexed: 11/25/2022]
Abstract
We examined the promoter activity of an association signal in an upstream region of the gene encoding fucosyltransferae 6 (FUT6) identified from a recent genomewide association study for the N-glycan level. The luciferase assay using reporter constructs with T and C alleles at rs3760776 revealed differential promoter activity. The amount of luciferin expressed with the C allele corresponded to that without the reporter construct (P > 0.05). On the other hand, the expression was dramatically reduced with the T allele (P < 0.05). The difference in transcriptional activity between the two alleles was confirmed by an electrophoretic mobility shift assay. It demonstrated that the promoter with a T allele had a stronger binding affinity to nuclear factors than that with the C allele. We concluded that the T allele of rs3760776 might repress the transcription of the FUT6 gene. Further studies are warranted to understand its underlying mechanism and its influence on susceptibility to potential diseases.
Collapse
Affiliation(s)
- Hyunju Ryoo
- School of Systems Biomedical Science, Soongsil University, 511 Sangdo-dong, Dongjak-gu, Seoul, Korea
| | | | | |
Collapse
|
19
|
Milde-Langosch K, Karn T, Schmidt M, zu Eulenburg C, Oliveira-Ferrer L, Wirtz RM, Schumacher U, Witzel I, Schütze D, Müller V. Prognostic relevance of glycosylation-associated genes in breast cancer. Breast Cancer Res Treat 2014; 145:295-305. [PMID: 24737166 DOI: 10.1007/s10549-014-2949-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/02/2014] [Indexed: 01/05/2023]
Abstract
Glycosylation of cellular proteins has important impact on their stability and functional properties, and glycan structures strongly influence cell adhesion. Many enzymes are involved in glycoconjugate synthesis and degradation, but there is only limited information about their role in breast cancer progression. Therefore, we retrieved RNA expression data of 202 glycosylation genes generated by microarray analysis (Affymetrix HG-U133A) in a cohort of 194 mammary carcinomas with long-term follow-up information. After univariate and multivariate Cox regression analysis, genes with independent prognostic value were identified. These were further analysed by Kaplan-Meier analysis and log-rank tests, and their prognostic value was validated in a second cohort of 200 tumour samples from patients without systemic therapy. In our first cohort, we identified 24 genes with independent prognostic value, coding for sixteen anabolic and eight catabolic enzymes. Functionally, these genes are involved in all important glycosylation pathways, namely O-glycosylation, N-glycosylation, O-fucosylation, synthesis of glycosaminoglycans and glycolipids. Eighteen genes also showed prognostic significance in chemotherapy-treated patients. In the second cohort, six of the 24 relevant genes were of prognostic significance (FUT1, FUCA1, POFUT1, MAN1A1, RPN1 and DPM1), whereas a trend was observed for three additional probesets (GCNT4, ST3GAL6 and UGCG). In a stratified analysis of molecular subtypes combining both cohorts, great differences appeared suggesting a predominant role of N-glycosylation in luminal cancers and O-glycosylation in triple-negative ones. Correlations of gene expression with metastases of various localizations point to a role of glycan structures in organ-specific metastatic spread. Our results indicate that various glycosylation reactions influence progression and metastasis of breast cancer and might thus represent potential therapeutic targets.
Collapse
Affiliation(s)
- Karin Milde-Langosch
- Department of Gynecology, University Hospital Hamburg-Eppendorf, Hamburg, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhu J, Wang Y, Yu Y, Wang Z, Zhu T, Xu X, Liu H, Hawke D, Zhou D, Li Y. Aberrant fucosylation of glycosphingolipids in human hepatocellular carcinoma tissues. Liver Int 2014; 34:147-60. [PMID: 23902602 DOI: 10.1111/liv.12265] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/20/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUNDS & AIMS Glycosylation promoting or inhibiting tumour cell invasion and metastasis is of crucial importance in current cancer research. Tumour-associated carbohydrate antigens are predominantly expressed on the tumour cell surface. Glycosphingolipids (GSLs) are members of the family. To perform glycosphingolipidomic assays on neutral GSLs obtained from solid hepatocellular carcinoma (HCC) tissues and paired peritumoural tissues by linear ion trap quadrupole-electrospray ionization mass spectrometry. METHODS Qualitative and quantitative analysis of fucosylated neutral GSLs was performed in the positive ion mode on the LTQ-XL mass spectrometer and MALDI-TOF-MS. RESULTS A group of fucosylated neutral GSLs in HCC was found to be expressed higher in the tumour tissues, as their proportion in total cellular GSLs was 3.3-fold higher in the tumour tissues than in the peritumoural tissues (P < 0.01). Moreover, qualitative analysis of the aberrant fucosylated GSLs were completed, and seven types of fucosylated GSLs that contained terminal Fuca2Gal- structure were identified by mass spectrometry. CONCLUSIONS Our results may lead to improved immunotherapy of HCC and contribute to understanding the role of aberrant fucosylated GSLs in the development and progress of HCC in following studies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, Tumor-Associated, Carbohydrate/analysis
- Carcinoma, Hepatocellular/chemistry
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Ceramides/analysis
- Ceramides/chemistry
- Female
- Fucosyltransferases/genetics
- Glycosylation
- Humans
- Liver Neoplasms/chemistry
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Male
- Middle Aged
- Molecular Structure
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Up-Regulation
- Galactoside 2-alpha-L-fucosyltransferase
Collapse
Affiliation(s)
- Jian Zhu
- Laboratory of Cellular and Molecular Tumor Immunology, Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
FUT family mediates the multidrug resistance of human hepatocellular carcinoma via the PI3K/Akt signaling pathway. Cell Death Dis 2013; 4:e923. [PMID: 24232099 PMCID: PMC3847326 DOI: 10.1038/cddis.2013.450] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023]
Abstract
The fucosyltransferase (FUT) family is the key enzymes in cell-surface antigen synthesis during various biological processes such as tumor multidrug resistance (MDR). The aim of this work was to analyze the alteration of FUTs involved in MDR in human hepatocellular carcinoma (HCC) cell lines. Using mass spectrometry (MS) analysis, the composition profiling of fucosylated N-glycans differed between drug-resistant BEL7402/5-FU (BEL/FU) cells and the sensitive line BEL7402. Further analysis of the expressional profiles of the FUT family in three pairs of parental and chemoresistant human HCC cell lines showed that FUT4, FUT6 and FUT8 were predominant expressed in MDR cell lines. The altered levels of FUT4, FUT6 and FUT8 were responsible for changed drug-resistant phenotypes of BEL7402 and BEL/FU cells both in vitro and in vivo. In addition, regulating FUT4, FUT6 or FUT8 expression markedly modulated the activity of the phosphoinositide 3 kinase (PI3K)/Akt signaling pathway and MDR-related protein 1 (MRP1) expression. Inhibition of the PI3K/Akt pathway by its specific inhibitor wortmannin, or by Akt small interfering RNA (siRNA), resulted in decreased MDR of BEL/FU cells, partly through the downregulation of MRP1. Taken together, our results suggest that FUT4-, FUT6- or FUT8-mediated MDR in human HCC is associated with the activation of the PI3K/Akt pathway and the expression of MRP1, but not of P-gp, indicating a possible novel mechanism by which the FUT family regulates MDR in human HCC.
Collapse
|
22
|
Hottin A, Wright DW, Steenackers A, Delannoy P, Dubar F, Biot C, Davies GJ, Behr JB. α-L-Fucosidase Inhibition by Pyrrolidine-Ferrocene Hybrids: Rationalization of Ligand-Binding Properties by Structural Studies. Chemistry 2013; 19:9526-33. [DOI: 10.1002/chem.201301001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 12/22/2022]
|
23
|
Tu Z, Lin YN, Lin CH. Development of fucosyltransferase and fucosidase inhibitors. Chem Soc Rev 2013; 42:4459-75. [PMID: 23588106 DOI: 10.1039/c3cs60056d] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L-Fucose-containing glycoconjugates are essential for a myriad of physiological and pathological activities, such as inflammation, bacterial and viral infections, tumor metastasis, and genetic disorders. Fucosyltransferases and fucosidases, the main enzymes involved in the incorporation and cleavage of L-fucose residues, respectively, represent captivating targets for therapeutic treatment and diagnosis. We herein review the important breakthroughs in the development of fucosyltransferase and fucosidase inhibitors. To demonstrate how the synthesized small molecules interact with the target enzymes, i.e. delineation of the structure-activity relationship, we cover the reaction mechanisms and resolved X-ray crystal structures, discuss how this information guides the design of enzyme inhibitors, and explain how the molecules were optimized to achieve satisfying potency and selectivity.
Collapse
Affiliation(s)
- Zhijay Tu
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | | | | |
Collapse
|
24
|
Li J, King MR. Adhesion receptors as therapeutic targets for circulating tumor cells. Front Oncol 2012; 2:79. [PMID: 22837985 PMCID: PMC3402858 DOI: 10.3389/fonc.2012.00079] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/07/2012] [Indexed: 12/12/2022] Open
Abstract
Metastasis contributes to >90% of cancer-associated mortality. Though primary tumors can be removed by surgical resection or chemo/radiotherapy, metastatic disease is a great challenge to treatment due to its systemic nature. As metastatic “seeds,” circulating tumor cells (CTCs) are believed to be responsible for dissemination from a primary tumor to anatomically distant organs. Despite the possibility of physical trapping of CTCs in microvessels, recent advances have provided insights into the involvement of a variety of adhesion molecules on CTCs. Such adhesion molecules facilitate direct interaction with the endothelium in specific tissues or indirectly through leukocytes. Importantly, significant progress has been made in understanding how these receptors confer enhanced invasion and survival advantage during hematogenous circulation of CTCs through recruitment of macrophages, neutrophils, platelets, and other cells. This review highlights the identification of novel adhesion molecules and how blocking their function can compromise successful seeding and colonization of CTCs in new microenvironment. Encouraged by existing diagnostic tools to identify and isolate CTCs, strategic targeting of these adhesion molecules to deliver conventional chemotherapeutics or novel apoptotic signals is discussed for the neutralization of CTCs in the circulation.
Collapse
Affiliation(s)
- Jiahe Li
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | | |
Collapse
|