1
|
Wang MY, Zhou Y, Li WL, Zhu LQ, Liu D. Friend or foe: Lactate in neurodegenerative diseases. Ageing Res Rev 2024; 101:102452. [PMID: 39127445 DOI: 10.1016/j.arr.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Lactate, a byproduct of glycolysis, was considered as a metabolic waste until identified by studies on the Warburg effect. Increasing evidence elucidates that lactate functions as energy fuel, signaling molecule, and donor for protein lactylation. Altered lactate utilization is a common metabolic feature of the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. This review offers an overview of lactate metabolism from the perspective of production, transportation and clearance, and the role of lactate in neurodegenerative progression, as well as a summary of protein lactylation and the signaling function of lactate in neurodegenerative diseases. Besides, this review delves into the dual roles of changed lactate metabolism during neurodegeneration and explores prospective therapeutic methods targeting lactate. We propose that elucidating the correlation between lactate and neurodegeneration is pivotal for exploring innovative therapeutic interventions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Yu Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wen-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Anilkumar AK, Vij P, Lopez S, Leslie SM, Doxtater K, Khan MM, Yallapu MM, Chauhan SC, Maestre GE, Tripathi MK. Long Non-Coding RNAs: New Insights in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2268. [PMID: 38396946 PMCID: PMC10889599 DOI: 10.3390/ijms25042268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are gradually becoming a burden to society. The adverse effects and mortality/morbidity rates associated with these NDDs are a cause of many healthcare concerns. The pathologic alterations of NDDs are related to mitochondrial dysfunction, oxidative stress, and inflammation, which further stimulate the progression of NDDs. Recently, long non-coding RNAs (lncRNAs) have attracted ample attention as critical mediators in the pathology of NDDs. However, there is a significant gap in understanding the biological function, molecular mechanisms, and potential importance of lncRNAs in NDDs. This review documents the current research on lncRNAs and their implications in NDDs. We further summarize the potential implication of lncRNAs to serve as novel therapeutic targets and biomarkers for patients with NDDs.
Collapse
Affiliation(s)
- Adithya K. Anilkumar
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Puneet Vij
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
| | - Samantha Lopez
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sophia M. Leslie
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Kyle Doxtater
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M. Yallapu
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Gladys E. Maestre
- Department of Neurosciences, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78550, USA
- South Texas Alzheimer’s Disease Research Center, School of Medicine, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA
| | - Manish K. Tripathi
- Medicine and Oncology, ISU, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
3
|
Seyyedin S, Ezzatabadipour M, Nematollahi-Mahani SN. The Role of Various Factors in Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells with a Special Focus on the Physical Stimulants. Curr Stem Cell Res Ther 2024; 19:166-177. [PMID: 36734908 DOI: 10.2174/1574888x18666230124151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Human umbilical cord matrix-derived mesenchymal stem cells (hUCMs) are considered as ideal tools for cell therapy procedures and regenerative medicine. The capacity of these cells to differentiate into neural lineage cells make them potentially important in the treatment of various neurodegenerative diseases. An electronic search was performed in Web of Science, PubMed/MEDLINE, Scopus and Google Scholar databases for articles published from January 1990 to March 2022. This review discusses the current knowledge on the effect of various factors, including physical, chemical and biological stimuli which play a key role in the differentiation of hUCMs into neural and glial cells. Moreover, the currently understood molecular mechanisms involved in the neural differentiation of hUCMs under various environmental stimuli are reviewed. Various stimuli, especially physical stimuli and specifically different light sources, have revealed effects on neural differentiation of mesenchymal stem cells, including hUCMs; however, due to the lack of information about the exact mechanisms, there is still a need to find optimal conditions to promote the differentiation capacity of these cells which in turn can lead to significant progress in the clinical application of hUCMs for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Sajad Seyyedin
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Chen ZS, Ou M, Taylor S, Dafinca R, Peng SI, Talbot K, Chan HYE. Mutant GGGGCC RNA prevents YY1 from binding to Fuzzy promoter which stimulates Wnt/β-catenin pathway in C9ALS/FTD. Nat Commun 2023; 14:8420. [PMID: 38110419 PMCID: PMC10728118 DOI: 10.1038/s41467-023-44215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
The GGGGCC hexanucleotide repeat expansion mutation in the chromosome 9 open reading frame 72 (C9orf72) gene is a major genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). In this study, we demonstrate that the zinc finger (ZF) transcriptional regulator Yin Yang 1 (YY1) binds to the promoter region of the planar cell polarity gene Fuzzy to regulate its transcription. We show that YY1 interacts with GGGGCC repeat RNA via its ZF and that this interaction compromises the binding of YY1 to the FuzzyYY1 promoter sites, resulting in the downregulation of Fuzzy transcription. The decrease in Fuzzy protein expression in turn activates the canonical Wnt/β-catenin pathway and induces synaptic deficits in C9ALS/FTD neurons. Our findings demonstrate a C9orf72 GGGGCC RNA-initiated perturbation of YY1-Fuzzy transcriptional control that implicates aberrant Wnt/β-catenin signalling in C9ALS/FTD-associated neurodegeneration. This pathogenic cascade provides a potential new target for disease-modifying therapy.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Mingxi Ou
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Stephanie Taylor
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Shaohong Isaac Peng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
5
|
Gomes BC, Peixinho N, Pisco R, Gromicho M, Pronto-Laborinho AC, Rueff J, de Carvalho M, Rodrigues AS. Differential Expression of miRNAs in Amyotrophic Lateral Sclerosis Patients. Mol Neurobiol 2023; 60:7104-7117. [PMID: 37531027 PMCID: PMC10657797 DOI: 10.1007/s12035-023-03520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease that affects nerve cells in the brain and spinal cord, causing loss of muscle control, muscle atrophy and in later stages, death. Diagnosis has an average delay of 1 year after symptoms onset, which impairs early management. The identification of a specific disease biomarker could help decrease the diagnostic delay. MicroRNA (miRNA) expression levels have been proposed as ALS biomarkers, and altered function has been reported in ALS pathogenesis. The aim of this study was to assess the differential expression of plasma miRNAs in ALS patients and two control populations (healthy controls and ALS-mimic disorders). For that, 16 samples from each group were pooled, and then 1008 miRNAs were assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). From these, ten candidate miRNAs were selected and validated in 35 ALS patients, 16 ALS-mimic disorders controls and 15 healthy controls. We also assessed the same miRNAs in two different time points of disease progression. Although we were unable to determine a miRNA signature to use as disease or condition marker, we found that miR-7-2-3p, miR-26a-1-3p, miR-224-5p and miR-206 are good study candidates to understand the pathophysiology of ALS.
Collapse
Affiliation(s)
- Bruno Costa Gomes
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | - Nuno Peixinho
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Rita Pisco
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marta Gromicho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Catarina Pronto-Laborinho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria CHULN, Lisboa, Portugal
| | - António Sebastião Rodrigues
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Soumya BS, Shreenidhi VP, Agarwal A, Gandhirajan RK, Dharmarajan A, Warrier S. Unwinding the role of Wnt signaling cascade and molecular triggers of motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Cell Signal 2023; 110:110807. [PMID: 37463628 DOI: 10.1016/j.cellsig.2023.110807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative condition, triggered by various factors causing the degeneration of upper and lower motor neurons, resulting in progressive muscle wasting, paralysis, and death. Multiple in vivo and in vitro models have been established to unravel the molecular events leading to the deterioration of motor neurons in ALS. The canonical and non-canonical Wnt signaling pathway has been implicated to play a crucial role in the progression of neurodegenerative disorders. This review discusses the role of Wnt signaling in the reported causes of ALS such as oxidative stress, mitochondrial dysfunction, autophagy, and apoptosis. Mutations in ALS-associated genes such as SOD1, C9orf72, TDP43, FUS, and OPTN cause an imbalance in neuronal integrity and homeostasis leading to motor neuron demise. Wnt signaling is also observed to play a crucial role in the muscle sparing of oculomotor neurons. The non-canonical Wnt/Ca2+ pathway which regulates intrinsic electrophysiological properties and mobilizes calcium ions to maintain neuronal integrity has been found to be altered in the stem cell-derived ALS model. Thus, the interplay of dysregulated canonical and non-canonical Wnt pathways in multiple motor neuron disease models has shown that Wnt contributes to disease progression indicating it to be utilized as a potential target for ALS.
Collapse
Affiliation(s)
- B S Soumya
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - V P Shreenidhi
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Apoorvaa Agarwal
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India; Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| |
Collapse
|
7
|
Yu H, Xiong M, Zhang Z. The role of glycogen synthase kinase 3 beta in neurodegenerative diseases. Front Mol Neurosci 2023; 16:1209703. [PMID: 37781096 PMCID: PMC10540228 DOI: 10.3389/fnmol.2023.1209703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Neurodegenerative diseases (NDDs) pose an increasingly prevalent threat to the well-being and survival of elderly individuals worldwide. NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and so on. They are characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system and share several cellular and molecular mechanisms, including protein aggregation, mitochondrial dysfunction, gene mutations, and chronic neuroinflammation. Glycogen synthase kinase-3 beta (GSK-3β) is a serine/threonine kinase that is believed to play a pivotal role in the pathogenesis of NDDs. Here we summarize the structure and physiological functions of GSK3β and explore its involvement in NDDs. We also discussed its potential as a therapeutic target.
Collapse
Affiliation(s)
- Honglu Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Ramakrishna K, Nalla LV, Naresh D, Venkateswarlu K, Viswanadh MK, Nalluri BN, Chakravarthy G, Duguluri S, Singh P, Rai SN, Kumar A, Singh V, Singh SK. WNT-β Catenin Signaling as a Potential Therapeutic Target for Neurodegenerative Diseases: Current Status and Future Perspective. Diseases 2023; 11:89. [PMID: 37489441 PMCID: PMC10366863 DOI: 10.3390/diseases11030089] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Wnt/β-catenin (WβC) signaling pathway is an important signaling pathway for the maintenance of cellular homeostasis from the embryonic developmental stages to adulthood. The canonical pathway of WβC signaling is essential for neurogenesis, cell proliferation, and neurogenesis, whereas the noncanonical pathway (WNT/Ca2+ and WNT/PCP) is responsible for cell polarity, calcium maintenance, and cell migration. Abnormal regulation of WβC signaling is involved in the pathogenesis of several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and spinal muscular atrophy (SMA). Hence, the alteration of WβC signaling is considered a potential therapeutic target for the treatment of neurodegenerative disease. In the present review, we have used the bibliographical information from PubMed, Google Scholar, and Scopus to address the current prospects of WβC signaling role in the abovementioned neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Lakshmi Vineela Nalla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Dumala Naresh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, IIT BHU, Varanasi 221005, India
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Guntupalli Chakravarthy
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Sajusha Duguluri
- Department of Biotechnology, Bharathi Institute of Higher Education and Research, Chennai 600073, India
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Kumar
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Veer Singh
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
9
|
Valori CF, Sulmona C, Brambilla L, Rossi D. Astrocytes: Dissecting Their Diverse Roles in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2023; 12:1450. [PMID: 37296571 PMCID: PMC10252425 DOI: 10.3390/cells12111450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders often co-occurring in the same patient, a feature that suggests a common origin of the two diseases. Consistently, pathological inclusions of the same proteins as well as mutations in the same genes can be identified in both ALS/FTD. Although many studies have described several disrupted pathways within neurons, glial cells are also regarded as crucial pathogenetic contributors in ALS/FTD. Here, we focus our attention on astrocytes, a heterogenous population of glial cells that perform several functions for optimal central nervous system homeostasis. Firstly, we discuss how post-mortem material from ALS/FTD patients supports astrocyte dysfunction around three pillars: neuroinflammation, abnormal protein aggregation, and atrophy/degeneration. Furthermore, we summarize current attempts at monitoring astrocyte functions in living patients using either novel imaging strategies or soluble biomarkers. We then address how astrocyte pathology is recapitulated in animal and cellular models of ALS/FTD and how we used these models both to understand the molecular mechanisms driving glial dysfunction and as platforms for pre-clinical testing of therapeutics. Finally, we present the current clinical trials for ALS/FTD, restricting our discussion to treatments that modulate astrocyte functions, directly or indirectly.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72072 Tübingen, Germany
- Department of Neuropathology, University of Tübingen, 72076 Tübingen, Germany
| | - Claudia Sulmona
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
10
|
FUS-ALS hiPSC-derived astrocytes impair human motor units through both gain-of-toxicity and loss-of-support mechanisms. Mol Neurodegener 2023; 18:5. [PMID: 36653804 PMCID: PMC9847053 DOI: 10.1186/s13024-022-00591-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Astrocytes play a crucial, yet not fully elucidated role in the selective motor neuron pathology in amyotrophic lateral sclerosis (ALS). Among other responsibilities, astrocytes provide important neuronal homeostatic support, however this function is highly compromised in ALS. The establishment of fully human coculture systems can be used to further study the underlying mechanisms of the dysfunctional intercellular interplay, and has the potential to provide a platform for revealing novel therapeutic entry points. METHODS In this study, we characterised human induced pluripotent stem cell (hiPSC)-derived astrocytes from FUS-ALS patients, and incorporated these cells into a human motor unit microfluidics model to investigate the astrocytic effect on hiPSC-derived motor neuron network and functional neuromuscular junctions (NMJs) using immunocytochemistry and live-cell recordings. FUS-ALS cocultures were systematically compared to their CRISPR-Cas9 gene-edited isogenic control systems. RESULTS We observed a dysregulation of astrocyte homeostasis, which resulted in a FUS-ALS-mediated increase in reactivity and secretion of inflammatory cytokines. Upon coculture with motor neurons and myotubes, we detected a cytotoxic effect on motor neuron-neurite outgrowth, NMJ formation and functionality, which was improved or fully rescued by isogenic control astrocytes. We demonstrate that ALS astrocytes have both a gain-of-toxicity and loss-of-support function involving the WNT/β-catenin pathway, ultimately contributing to the disruption of motor neuron homeostasis, intercellular networks and NMJs. CONCLUSIONS Our findings shine light on a complex, yet highly important role of astrocytes in ALS, and provides further insight in to their pathological mechanisms.
Collapse
|
11
|
Sileo P, Simonin C, Melnyk P, Chartier-Harlin MC, Cotelle P. Crosstalk between the Hippo Pathway and the Wnt Pathway in Huntington's Disease and Other Neurodegenerative Disorders. Cells 2022; 11:cells11223631. [PMID: 36429058 PMCID: PMC9688160 DOI: 10.3390/cells11223631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hippo pathway consists of a cascade of kinases that controls the phosphorylation of the co-activators YAP/TAZ. When unphosphorylated, YAP and TAZ translocate into the nucleus, where they mainly bind to the TEAD transcription factor family and activate genes related to cell proliferation and survival. In this way, the inhibition of the Hippo pathway promotes cell survival, proliferation, and stemness fate. Another pathway can modulate these processes, namely the Wnt/β-catenin pathway that is indeed involved in cellular functions such as proliferation and cell survival, as well as apoptosis, growth, and cell renewal. Wnt signaling can act in a canonical or noncanonical way, depending on whether β-catenin is involved in the process. In this review, we will focus only on the canonical Wnt pathway. It has emerged that YAP/TAZ are components of the β-catenin destruction complex and that there is a close relationship between the Hippo pathway and the canonical Wnt pathway. Furthermore, recent data have shown that both of these pathways may play a role in neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, or Amyotrophic Lateral Sclerosis. Thus, this review analyzes the Hippo pathway and the Wnt pathway, their crosstalk, and their involvement in Huntington's disease, as well as in other neurodegenerative disorders. Altogether, these data suggest possible therapeutic approaches targeting key players of these pathways.
Collapse
Affiliation(s)
- Pasquale Sileo
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
| | - Clémence Simonin
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- Centre de Référence Maladie de Huntington, CHU Lille, F-59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- Correspondence: (M.-C.C.-H.); (P.C.)
| | - Philippe Cotelle
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- ENSCL-Centrale Lille, CS 90108, F-59652 Villeneuve d’Ascq, France
- Correspondence: (M.-C.C.-H.); (P.C.)
| |
Collapse
|
12
|
Luttik K, Tejwani L, Ju H, Driessen T, Smeets CJLM, Edamakanti CR, Khan A, Yun J, Opal P, Lim J. Differential effects of Wnt-β-catenin signaling in Purkinje cells and Bergmann glia in spinocerebellar ataxia type 1. Proc Natl Acad Sci U S A 2022; 119:e2208513119. [PMID: 35969780 PMCID: PMC9407543 DOI: 10.1073/pnas.2208513119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease characterized by progressive ataxia and degeneration of specific neuronal populations, including Purkinje cells (PCs) in the cerebellum. Previous studies have demonstrated a critical role for various evolutionarily conserved signaling pathways in cerebellar patterning, such as the Wnt-β-catenin pathway; however, the roles of these pathways in adult cerebellar function and cerebellar neurodegeneration are largely unknown. In this study, we found that Wnt-β-catenin signaling activity was progressively enhanced in multiple cell types in the adult SCA1 mouse cerebellum, and that activation of this signaling occurs in an ataxin-1 polyglutamine (polyQ) expansion-dependent manner. Genetic manipulation of the Wnt-β-catenin signaling pathway in specific cerebellar cell populations revealed that activation of Wnt-β-catenin signaling in PCs alone was not sufficient to induce SCA1-like phenotypes, while its activation in astrocytes, including Bergmann glia (BG), resulted in gliosis and disrupted BG localization, which was replicated in SCA1 mouse models. Our studies identify a mechanism in which polyQ-expanded ataxin-1 positively regulates Wnt-β-catenin signaling and demonstrate that different cell types have distinct responses to the enhanced Wnt-β-catenin signaling in the SCA1 cerebellum, underscoring an important role of BG in SCA1 pathogenesis.
Collapse
Affiliation(s)
- Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
| | - Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
| | - Hyoungseok Ju
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
| | - Terri Driessen
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
| | | | | | | | - Joy Yun
- Yale College, New Haven, CT 06510
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
13
|
Hawkins S, Namboori SC, Tariq A, Blaker C, Flaxman C, Dey NS, Henley P, Randall A, Rosa A, Stanton LW, Bhinge A. Upregulation of β-catenin due to loss of miR-139 contributes to motor neuron death in amyotrophic lateral sclerosis. Stem Cell Reports 2022; 17:1650-1665. [PMID: 35750046 PMCID: PMC9287677 DOI: 10.1016/j.stemcr.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motor neurons (MNs). There are no effective treatments and patients usually die within 2-5 years of diagnosis. Emerging commonalities between familial and sporadic cases of this complex multifactorial disorder include disruption to RNA processing and cytoplasmic inclusion bodies containing TDP-43 and/or FUS protein aggregates. Both TDP-43 and FUS have been implicated in RNA processing functions, including microRNA biogenesis, transcription, and splicing. In this study, we explore the misexpression of microRNAs in an iPSC-based disease model of FUS ALS. We identify the downregulation of miR-139, an MN-enriched microRNA, in FUS and sporadic ALS MN. We discover that miR-139 downregulation leads to the activation of canonical WNT signaling and demonstrate that the WNT transcriptional mediator β-catenin is a major driver of MN degeneration in ALS. Our results highlight the importance of homeostatic RNA networks in ALS.
Collapse
Affiliation(s)
- Sophie Hawkins
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Seema C Namboori
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ammarah Tariq
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Catherine Blaker
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Christine Flaxman
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Nidhi S Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Peter Henley
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Andrew Randall
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Alessandro Rosa
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Lawrence W Stanton
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Akshay Bhinge
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
14
|
Jiang X, Liu J, Guan Y, Zhao Z, Meng F, Wang X, Gao X, Zhou F, Chen Y, Wang X. The mechanism of the WNT5A and FZD4 receptor mediated WNT/β–catenin pathway in the degeneration of ALS spinal cord motor neurons. Biochem Biophys Res Commun 2022; 609:23-30. [DOI: 10.1016/j.bbrc.2022.03.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
|
15
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Ma R, Kutchy NA, Chen L, Meigs DD, Hu G. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders. Neurobiol Dis 2022; 163:105607. [PMID: 34979259 PMCID: PMC9280856 DOI: 10.1016/j.nbd.2021.105607] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders are characterized by the progressive loss of structure and function of the brain as a consequence of progressive degeneration and/or death of nerve cells. Aging is a major risk factor for brain disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Various cellular and molecular events have been shown to play a role in the progress of neurodegenerative diseases. Emerging studies suggest that primary cilia could be a key regulator in brain diseases. The primary cilium is a singular cellular organelle expressed on the surface of many cell types, such as astrocytes and neurons in the mature brain. Primary cilia detect extracellular cues, such as Sonic Hedgehog (SHH) protein, and transduce these signals into cells to regulate various signaling pathways. Abnormalities in ciliary length and frequency (ratio of ciliated cells) have been implicated in various human diseases, including brain disorders. This review summarizes current findings and thoughts on the role of primary cilia and ciliary signaling pathways in aging and age-related brain disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, Grenada
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong 515063, China; Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong 515063, China
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
17
|
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7:3. [PMID: 34980884 PMCID: PMC8724284 DOI: 10.1038/s41392-021-00762-6] [Citation(s) in RCA: 1099] [Impact Index Per Article: 366.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Collapse
|
18
|
Potential Roles of the WNT Signaling Pathway in Amyotrophic Lateral Sclerosis. Cells 2021; 10:cells10040839. [PMID: 33917816 PMCID: PMC8068170 DOI: 10.3390/cells10040839] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
The WNT signaling pathway plays an important role in the physiological and pathophysiological processes of the central nervous system and the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We reviewed the literature pertinent to WNT/β–catenin signaling in ALS from cellular studies, animal models, and human clinical trials. WNT, WNT receptors, and other components of the WNT signaling pathway are expressed in both ALS patients and transgenic mice, and are involved in the pathogenesis of ALS. Studies have shown that abnormal activation of the WNT/β–catenin signaling pathway is related to neuronal degeneration and glial cell proliferation. WNT/Ca2+ signaling is associated with the pro–inflammatory phenotype of microglia; data on the muscle skeletal receptor Tyr kinase receptor in superoxide dismutase–1–G93A mice indicate that gene therapy is necessary for successful treatment of ALS. The varying profiles of lipoprotein receptor–related protein 4 antibodies in different ethnic groups suggest that individual treatment and multifactorial personalized approaches may be necessary for effective ALS therapy. In conclusion, the WNT signaling pathway is important to the ALS disease process, making it a likely therapeutic target.
Collapse
|
19
|
Guo W, Vandoorne T, Steyaert J, Staats KA, Van Den Bosch L. The multifaceted role of kinases in amyotrophic lateral sclerosis: genetic, pathological and therapeutic implications. Brain 2021; 143:1651-1673. [PMID: 32206784 PMCID: PMC7296858 DOI: 10.1093/brain/awaa022] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis is the most common degenerative disorder of motor neurons in adults. As there is no cure, thousands of individuals who are alive at present will succumb to the disease. In recent years, numerous causative genes and risk factors for amyotrophic lateral sclerosis have been identified. Several of the recently identified genes encode kinases. In addition, the hypothesis that (de)phosphorylation processes drive the disease process resulting in selective motor neuron degeneration in different disease variants has been postulated. We re-evaluate the evidence for this hypothesis based on recent findings and discuss the multiple roles of kinases in amyotrophic lateral sclerosis pathogenesis. We propose that kinases could represent promising therapeutic targets. Mainly due to the comprehensive regulation of kinases, however, a better understanding of the disturbances in the kinome network in amyotrophic lateral sclerosis is needed to properly target specific kinases in the clinic.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Tijs Vandoorne
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Jolien Steyaert
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Kim A Staats
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, USA
| | - Ludo Van Den Bosch
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
20
|
Chandrasekharan B, Montllor-Albalate C, Colin AE, Andersen JL, Jang YC, Reddi AR. Cu/Zn Superoxide Dismutase (Sod1) regulates the canonical Wnt signaling pathway. Biochem Biophys Res Commun 2021; 534:720-726. [PMID: 33218686 PMCID: PMC7785591 DOI: 10.1016/j.bbrc.2020.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/04/2020] [Indexed: 01/20/2023]
Abstract
Cu/Zn Superoxide Dismutase (Sod1) catalyzes the disproportionation of cytotoxic superoxide radicals (O2•-) into oxygen (O2) and hydrogen peroxide (H2O2), a key signaling molecule. In Saccharomyces cerevisiae, we previously discovered that Sod1 participates in an H2O2-mediated redox signaling circuit that links nutrient availability to the control of energy metabolism. In response to glucose and O2, Sod1-derived H2O2 stabilizes a pair of conserved plasma membrane kinases - yeast casein kinase 1 and 2 (Yck1/2) - that signal glycolytic growth and the repression of respiration. The Yck1/2 homolog in humans, casein kinase 1-γ (CK1γ), is an integral component of the Wingless and Int-1 (Wnt) signaling pathway, which is essential for regulating cell fate and proliferation in early development and adult tissue and is dysregulated in many cancers. Herein, we establish the conservation of the SOD1/YCK1 redox signaling axis in humans by finding that SOD1 regulates CK1γ expression in human embryonic kidney 293 (HEK293) cells and is required for canonical Wnt signaling and Wnt-dependent cell proliferation.
Collapse
Affiliation(s)
- Bindu Chandrasekharan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Alyson E Colin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
21
|
Vieira JR, Shah B, Ruiz de Almodovar C. Cellular and Molecular Mechanisms of Spinal Cord Vascularization. Front Physiol 2020; 11:599897. [PMID: 33424624 PMCID: PMC7793711 DOI: 10.3389/fphys.2020.599897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
During embryonic central nervous system (CNS) development, the neural and the vascular systems communicate with each other in order to give rise to a fully functional and mature CNS. The initial avascular CNS becomes vascularized by blood vessel sprouting from different vascular plexus in a highly stereotypical and controlled manner. This process is similar across different regions of the CNS. In particular for the developing spinal cord (SC), blood vessel ingression occurs from a perineural vascular plexus during embryonic development. In this review, we provide an updated and comprehensive description of the cellular and molecular mechanisms behind this stereotypical and controlled patterning of blood vessels in the developing embryonic SC, identified using different animal models. We discuss how signals derived from neural progenitors and differentiated neurons guide the SC growing vasculature. Lastly, we provide a perspective of how the molecular mechanisms identified during development could be used to better understand pathological situations.
Collapse
Affiliation(s)
- Jose Ricardo Vieira
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
22
|
Serafino A, Giovannini D, Rossi S, Cozzolino M. Targeting the Wnt/β-catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opin Drug Discov 2020; 15:803-822. [PMID: 32281421 DOI: 10.1080/17460441.2020.1746266] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Wnt/β-catenin signaling is an evolutionarily conserved pathway having a crucial role in embryonic and adult life. Specifically, the Wnt/β-catenin axis is pivotal to the development and homeostasis of the nervous system, and its dysregulation has been associated with various neurological disorders, including neurodegenerative diseases. Therefore, this signaling pathway has been proposed as a potential therapeutic target against neurodegeneration. AREAS COVERED This review focuses on the role of Wnt/β-catenin pathway in the pathogenesis of neurodegenerative diseases, including Parkinson's, Alzheimer's Diseases and Amyotrophic Lateral Sclerosis. The evidence showing that defects in the signaling might be involved in the development of these diseases, and the pharmacological approaches tested so far, are discussed. The possibilities that this pathway offers in terms of new therapeutic opportunities are also considered. EXPERT OPINION The increasing interest paid to the role of Wnt/β-catenin pathway in the onset of neurodegenerative diseases demonstrates how targeting this signaling for therapeutic purposes could be a great opportunity for both neuroprotection and neurorepair. Without overlooking some licit concerns about drug safety and delivery to the brain, there is growing and more convincing evidence that restoring this signaling in neurodegenerative diseases may strongly increase the chance to develop disease-modifying treatments for these brain pathologies.
Collapse
Affiliation(s)
- Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Daniela Giovannini
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Simona Rossi
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| |
Collapse
|
23
|
Chen C, Zhong X, Smith DK, Tai W, Yang J, Zou Y, Wang LL, Sun J, Qin S, Zhang CL. Astrocyte-Specific Deletion of Sox2 Promotes Functional Recovery After Traumatic Brain Injury. Cereb Cortex 2020; 29:54-69. [PMID: 29161339 DOI: 10.1093/cercor/bhx303] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022] Open
Abstract
Injury to the adult brain induces activation of local astrocytes, which serves as a compensatory response that modulates tissue damage and recovery. However, the mechanism governing astrocyte activation during brain injury remains largely unknown. Here we provide in vivo evidence that SOX2, a transcription factor critical for stem cells and brain development, is also required for injury-induced activation of adult cortical astrocytes. Genome-wide chromatin immunoprecipitation-seq analysis of mouse cortical tissues reveals that SOX2 binds to regulatory regions of genes associated with signaling pathways that control glial cell activation, such as Nr2e1, Mmd2, Wnt7a, and Akt2. Astrocyte-specific deletion of Sox2 in adult mice greatly diminishes glial response to controlled cortical impact injury and, most unexpectedly, dampens injury-induced cortical loss and benefits behavioral recovery of mice after injury. Together, these results uncover an essential role of SOX2 in somatic cells under pathological conditions and indicate that SOX2-dependent astrocyte activation could be targeted for functional recovery after traumatic brain injury.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Xiaoling Zhong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Derek K Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Jianjing Yang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Yuhua Zou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Jiahong Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Song Qin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Center of Neural Injury and Repair, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, China
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| |
Collapse
|
24
|
Yang D, Li S, Duan X, Ren J, Liang S, Yakoumatos L, Kang Y, Uriarte SM, Shang J, Li W, Wang H. TLR4 induced Wnt3a-Dvl3 restrains the intensity of inflammation and protects against endotoxin-driven organ failure through GSK3β/β-catenin signaling. Mol Immunol 2020; 118:153-164. [PMID: 31884387 PMCID: PMC7035959 DOI: 10.1016/j.molimm.2019.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Accumulating evidence suggests a regulatory role of Wnt proteins in innate immune responses. However, the effects of Wnt3a signaling on TLR4-mediated inflammatory responses are controversial and the signaling crosstalk between TLR4 and Wnt3a remains uncertain. METHODS Gain- and Loss- of function approaches were utilized to determine the function of Wnt3a signaling in TLR4-mediated inflammatory responses. Cytokine production at protein and mRNA levels and phosphorylation of signaling molecules were measured by ELISA, qRT-PCR, and Western Blot, respectively. Endotoxemia mouse model was employed to assess the effect of Wnt3a on systemic inflammatory cytokine levels and neutrophil infiltration. RESULTS LPS stimulation leads to an increase of Wnt3a expression and its downstream molecule, Dvl3, in primary monocytes. Inhibition or silence of Wnt3a or Dvl3 significantly increases the production of pro-inflammatory cytokines (IL-12, IL-6, TNFα), robustly reduces β-catenin accumulation, and enhances the phosphorylation of NF-κB P65 and its DNA binding activity. These results were confirmed by multiple gain- and loss- of function approaches including specific siRNA and ectopic expression of Dvl3, GSK3β, and β-catenin in monocytes. Moreover, in vivo relevance was established in a murine endotoxin model, in which Wnt3a inhibition enhances the inflammatory responses by augmenting the systemic pro-inflammatory cytokine levels and neutrophil infiltration. CONCLUSIONS TLR4 activation promotes Wnt3a-Dvl3 signaling, which acts as rheostats to restrain the intensity of inflammation through regulating GSK3β-β-catenin signaling and NF-κB activity. GENERAL SIGNIFICANCE Wnt3a-Dvl3-β-catenin signaling axis could be a potential interventional target for manipulating the direction and intensity of inflammatory responses.
Collapse
Affiliation(s)
- Dongqiang Yang
- Department of Infectious Diseases, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - ShuJian Li
- Department of Neurology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Xiaoxian Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Junling Ren
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, VA, USA
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Yi Kang
- Department of Infectious Diseases, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Jia Shang
- Department of Infectious Diseases, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Wei Li
- Department of Neurology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, VA, USA.
| |
Collapse
|
25
|
Gonzalez-Fernandez C, González P, Rodríguez FJ. New insights into Wnt signaling alterations in amyotrophic lateral sclerosis: a potential therapeutic target? Neural Regen Res 2020; 15:1580-1589. [PMID: 32209757 PMCID: PMC7437582 DOI: 10.4103/1673-5374.276320] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder characterized by upper and lower motor neuron degeneration, which leads to progressive paralysis of skeletal muscles and, ultimately, respiratory failure between 2–5 years after symptom onset. Unfortunately, currently accepted treatments for amyotrophic lateral sclerosis are extremely scarce and only provide modest benefit. As a consequence, a great effort is being done by the scientific community in order to achieve a better understanding of the different molecular and cellular processes that influence the progression and/or outcome of this neuropathological condition and, therefore, unravel new potential targets for therapeutic intervention. Interestingly, a growing number of experimental evidences have recently shown that, besides its well-known physiological roles in the developing and adult central nervous system, the Wnt family of proteins is involved in different neuropathological conditions, including amyotrophic lateral sclerosis. These proteins are able to modulate, at least, three different signaling pathways, usually known as canonical (β-catenin dependent) and non-canonical (β-catenin independent) signaling pathways. In the present review, we aim to provide a general overview of the current knowledge that supports the relationship between the Wnt family of proteins and its associated signaling pathways and amyotrophic lateral sclerosis pathology, as well as their possible mechanisms of action. Altogether, the currently available knowledge suggests that Wnt signaling modulation might be a promising therapeutic approach to ameliorate the histopathological and functional deficits associated to amyotrophic lateral sclerosis, and thus improve the progression and outcome of this neuropathology.
Collapse
Affiliation(s)
| | - Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Toledo, Spain
| | | |
Collapse
|
26
|
Abstract
Motor neuron disorders are highly debilitating and mostly fatal conditions for which only limited therapeutic options are available. To overcome this limitation and develop more effective therapeutic strategies, it is critical to discover the pathogenic mechanisms that trigger and sustain motor neuron degeneration with the greatest accuracy and detail. In the case of Amyotrophic Lateral Sclerosis (ALS), several genes have been associated with familial forms of the disease, whilst the vast majority of cases develop sporadically and no defined cause can be held responsible. On the contrary, the huge majority of Spinal Muscular Atrophy (SMA) occurrences are caused by loss-of-function mutations in a single gene, SMN1. Although the typical hallmark of both diseases is the loss of motor neurons, there is increasing awareness that pathological lesions are also present in the neighbouring glia, whose dysfunction clearly contributes to generating a toxic environment in the central nervous system. Here, ALS and SMA are sequentially presented, each disease section having a brief introduction, followed by a focussed discussion on the role of the astrocytes in the disease pathogenesis. Such a dissertation is substantiated by the findings that built awareness on the glial involvement and how the glial-neuronal interplay is perturbed, along with the appraisal of this new cellular site for possible therapeutic intervention.
Collapse
|
27
|
González-Fernández C, Gonzalez P, Andres-Benito P, Ferrer I, Rodríguez FJ. Wnt Signaling Alterations in the Human Spinal Cord of Amyotrophic Lateral Sclerosis Cases: Spotlight on Fz2 and Wnt5a. Mol Neurobiol 2019; 56:6777-6791. [PMID: 30924074 DOI: 10.1007/s12035-019-1547-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with no cure, and elucidation of the mechanisms mediating neuronal death in this neuropathology is crucial to develop effective treatments. It has recently been demonstrated in animal models that the Wnt family of proteins is involved in this neuropathology, although its potential involvement in case of humans is almost unknown. We analyzed the expression of Wnt signaling components in healthy and ALS human spinal cords by quantitative RT-PCR, and we found that most Wnt ligands, modulators, receptors, and co-receptors were expressed in healthy controls. Moreover, we observed clear alterations in the mRNA expression of different components of this family of proteins in human spinal cord tissue from ALS cases. Specifically, we detected a significant increase in the mRNA levels of Wnt3, Wnt4, Fz2, and Fz8, together with several non-significant increases in the mRNA expression of other genes such as Wnt2b, Wnt5a, Fz3, Lrp5, and sFRP3. Based on these observations and on previous reports of studies performed in animal models, we evaluated with immunohistochemistry the protein expression patterns of Fz2 and Fz5 receptors and their main ligand Wnt5a in control samples and ALS cases. No substantial changes were observed in Fz5 protein expression pattern in ALS samples. However, we detected an increase in the amount of Fz2+ astrocytes in the borderline between gray and white matter at the ventral horn in ALS samples. Finally, Wnt5a expression was observed in neurons and astrocytes in both control and ALS samples, although Wnt5a immunolabeling in astroglial cells was significantly increased in ALS spinal cords in the same region where changes in Fz2 were observed. Altogether, these observations strongly suggest that the Wnt family of proteins, and more specifically Fz2 and Wnt5a, might be involved in human ALS pathology.
Collapse
Affiliation(s)
- Carlos González-Fernández
- Molecular Neurology Group, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071, Toledo, Spain
| | - Pau Gonzalez
- Molecular Neurology Group, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071, Toledo, Spain
| | - Pol Andres-Benito
- Department of Pathology and Experimental Therapeutics, Service of Pathologic Anatomy, IDIBELL-Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, Service of Pathologic Anatomy, IDIBELL-Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Francisco Javier Rodríguez
- Molecular Neurology Group, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
28
|
Miller SJ, Glatzer JC, Hsieh YC, Rothstein JD. Cortical astroglia undergo transcriptomic dysregulation in the G93A SOD1 ALS mouse model. J Neurogenet 2018; 32:322-335. [PMID: 30398075 PMCID: PMC6444185 DOI: 10.1080/01677063.2018.1513508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
Astroglia are the most abundant glia cell in the central nervous system, playing essential roles in maintaining homeostasis. Key functions of astroglia include, but are not limited to, neurotransmitter recycling, ion buffering, immune modulation, neurotrophin secretion, neuronal synaptogenesis and elimination, and blood-brain barrier maintenance. In neurological diseases, it is well appreciated that astroglia play crucial roles in the disease pathogenesis. In amyotrophic lateral sclerosis (ALS), a motor neuron degenerative disease, astroglia in the spinal cord and cortex downregulate essential transporters, among other proteins, that exacerbate disease progression. Spinal cord astroglia undergo dramatic transcriptome dysregulation. However, in the cortex, it has not been well studied what effects glia, especially astroglia, have on upper motor neurons in the pathology of ALS. To begin to shed light on the involvement and dysregulation that astroglia undergo in ALS, we isolated pure grey-matter cortical astroglia and subjected them to microarray analysis. We uncovered a vast number of genes that show dysregulation at end-stage in the ALS mouse model, G93A SOD1. Many of these genes play essential roles in ion homeostasis and the Wnt-signaling pathway. Several of these dysregulated genes are common in ALS spinal cord astroglia, while many of them are unique. This database serves as an approach for understanding the significance of dysfunctional genes and pathways in cortical astroglia in the context of motor neuron disease, as well as determining regional astroglia heterogeneity, and providing insight into ALS pathogenesis.
Collapse
Affiliation(s)
- Sean J. Miller
- Dept. of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Cellular and Molecular Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD 21205
| | - Jenna C. Glatzer
- Dept. of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Cellular and Molecular Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD 21205
| | - Yi-chun Hsieh
- Dept. of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD 21205
| | - Jeffrey D. Rothstein
- Dept. of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Cellular and Molecular Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD 21205
- Dept. of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
29
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington's disease. Rev Neurosci 2018; 29:547-555. [PMID: 29303786 DOI: 10.1515/revneuro-2017-0075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
Neurodegenerative cells are the sites of numerous metabolic and energetic abnormalities with abnormalities in energy production. Energy is the primary determinant of neuronal viability. In neurodegenerative cells, metabolic enzymes are modified by the dysregulation of the canonical WNT/β-catenin pathway. In amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), WNT/β-catenin pathway is upregulated. We focused this review on the hypothesis of aerobic glycolysis stimulated by the upregulation of WNT/β-catenin pathway in ALS and HD. Upregulation of WNT/β-catenin pathway induces aerobic glycolysis, named Warburg effect, through activation of glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1 (PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactate dehydrogenase kinase-A (LDH-A), and inactivation of pyruvate dehydrogenase complex (PDH). Aerobic glycolysis consists of a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production compared with oxidative phosphorylation because of the shunt of the TCA cycle. Dysregulation of energetic metabolism promotes cell death and disease progression in ALD and HD. Aerobic glycolysis regulation is an attractive mechanism for developing therapeutic interventions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratoire de Mathématiques et Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.,CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
30
|
Vallée A. [Aerobic glycolysis activation through canonical WNT/β-catenin pathway in ALS]. Med Sci (Paris) 2018; 34:326-330. [PMID: 29658475 DOI: 10.1051/medsci/20183404013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Energy is the major determinant of neuronal viability. We focus our synthesis on the hypothesis of the development of aerobic glycolysis by the stimulation of the canonical WNT/β-catenin pathway in amyotrophic lateral sclerosis (ALS). The stimulation of the canonical WNT/β-catenin pathway induces the activation of aerobic glycolysis, also called Warburg effect, via the stimulation of glycolytic enzymes such as Glut (glucose transporter), PKM2 (pyruvate kinase M2), PDK1 (pyruvate dehydrogenase kinase 1), LDH-A (lactate dehydrogenase A) and MCT-1 (monocarboxylate transporter 1). The aerobic glycolysis consists to a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production than oxidative phosphorylation due to the shunt of the TCA cycle. Dysregulation of cellular energy metabolism promotes cell death and participates to the progression of ALS. Controlling the expression of the canonical WNT/β-catenin signaling pathway is an attractive strategy to regulate aerobic glycolysis initiation and the progression of ALS.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratoire de mathématiques et applications (LMA), UMR CNRS 7348, CHU de Poitiers, Université de Poitiers, 2, rue de la Milèterie, 86021 Poitiers, France
| |
Collapse
|
31
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway-PPAR Gamma, Energy Metabolism and Circadian Rhythms. Neuromolecular Med 2018; 20:174-204. [PMID: 29572723 DOI: 10.1007/s12017-018-8486-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
Entropy production rate is increased by several metabolic and thermodynamics abnormalities in neurodegenerative diseases (NDs). Irreversible processes are quantified by changes in the entropy production rate. This review is focused on the opposing interactions observed in NDs between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In amyotrophic lateral sclerosis and Huntington's disease, WNT/beta-catenin pathway is upregulated, whereas PPAR gamma is downregulated. In Alzheimer's disease and Parkinson's disease, WNT/beta-catenin pathway is downregulated while PPAR gamma is upregulated. The dysregulation of the canonical WNT/beta-catenin pathway is responsible for the modification of thermodynamics behaviors of metabolic enzymes. Upregulation of WNT/beta-catenin pathway leads to aerobic glycolysis, named Warburg effect, through activated enzymes, such as glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactic dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). Downregulation of WNT/beta-catenin pathway leads to oxidative stress and cell death through inactivation of Glut, PKM2, PDK1, MCT-1, LDH-A but activation of PDH. In addition, in NDs, PPAR gamma is dysregulated, whereas it contributes to the regulation of several key circadian genes. NDs show many dysregulation in the mediation of circadian clock genes and so of circadian rhythms. Thermodynamics rhythms operate far-from-equilibrium and partly regulate interactions between WNT/beta-catenin pathway and PPAR gamma. In NDs, metabolism, thermodynamics and circadian rhythms are tightly interrelated.
Collapse
Affiliation(s)
- Alexandre Vallée
- DRCI, Hôpital Foch, Suresnes, France.
- LMA (Laboratoire de Mathématiques et Applications) CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- DRCI, Hôpital Foch, Suresnes, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
32
|
Zhou F, Zhang C, Guan Y, Chen Y, Lu Q, Jie L, Gao H, Du H, Zhang H, Liu Y, Wang X. Screening the expression characteristics of several miRNAs in G93A-SOD1
transgenic mouse: altered expression of miRNA-124 is associated with astrocyte differentiation by targeting Sox2 and Sox9. J Neurochem 2017; 145:51-67. [DOI: 10.1111/jnc.14229] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Fenghua Zhou
- Department of Pathology; Weifang Medical University; Weifang Shandong China
| | - Caixia Zhang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yingjun Guan
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yanchun Chen
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Qiang Lu
- Department of Pathology; Weifang Medical University; Weifang Shandong China
| | - Linlin Jie
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Hailing Gao
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Hongmei Du
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Haoyun Zhang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yongxin Liu
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Xin Wang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
33
|
De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis 2017; 105:283-299. [PMID: 28235672 PMCID: PMC5536153 DOI: 10.1016/j.nbd.2017.02.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Kurt J De Vos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Majid Hafezparast
- Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
34
|
Wang Q, Liu H, Wang Q, Zhou F, Liu Y, Zhang Y, Ding H, Yuan M, Li F, Chen Y. Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9. PLoS One 2017; 12:e0180558. [PMID: 28665975 PMCID: PMC5493424 DOI: 10.1371/journal.pone.0180558] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/16/2017] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma (OS) is an aggressive bone tumor, and proto-oncogene c-Fos is involved in this lethal disease. However, the role and molecular mechanism of c-Fos in the development and progression of OS remain enigmatic. As one of the Wnt family members, Wnt2 is closely associated with the development of several malignant tumors. In the present study, the expression of c-Fos, Wnt2, and its receptor Fzd9 in human OS tissues, MG63 OS cell line, and human osteoblast hFOB 1.19 cell line was detected by Western blot analysis, immunohistochemical staining, or reverse transcription-polymerase chain reaction. The role of c-Fos in the OS was clarified by treating MG63 cells with small interfering RNA to knockdown c-Fos. Then, cell migration and invasion were assayed by transwell assays and wound healing assay; cell proliferation was assayed by MTS method and 5-ethynyl-2'-deoxyuridine DNA proliferation in vitro detection; cell apoptosis was assayed by flow cytometric method. Co-immunoprecipitation kit was used to confirm the relationship between c-Fos and Wnt2/Fzd9. We found that the expression of c-Fos, Wnt2, and Fzd9 protein was distinctly higher in human OS tissues than that in the adjacent non-cancerous tissues, and their expression in the MG63 OS cell line was markedly increased compared with that in the human osteoblast hFOB 1.19 cell line. Knockdown of c-Fos inhibited the proliferation, migration, and invasion of MG63 cells, and promoted the apoptosis of MG63 cells. Moreover, knockdown of c-Fos inhibited the expression of Wnt2 and Fzd9 mRNA and protein. Our data enforced the evidence that knockdown of c-Fos inhibited cell proliferation, migration, and invasion, and promoted the apoptosis of OS cells accompanied by altered expression of Wnt2 and Fzd9. These findings offer new clues for OS development and progression, and c-Fos may be a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Qiaozhen Wang
- Department of Human Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Huancai Liu
- Affiliated hospital, Weifang Medical University, Weifang, Shandong, China
| | - Qing Wang
- Department of Human Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Fenghua Zhou
- Department of Pathology, Weifang Medical University, Weifang, Shandong, China
| | - Yongxin Liu
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Yawen Zhang
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Haoyu Ding
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Meng Yuan
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Fengjie Li
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Yanchun Chen
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
- * E-mail:
| |
Collapse
|
35
|
Xu W, Lau YH, Fischer G, Tan YS, Chattopadhyay A, de la Roche M, Hyvönen M, Verma C, Spring DR, Itzhaki LS. Macrocyclized Extended Peptides: Inhibiting the Substrate-Recognition Domain of Tankyrase. J Am Chem Soc 2017; 139:2245-2256. [PMID: 28084734 PMCID: PMC5358875 DOI: 10.1021/jacs.6b10234] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Indexed: 12/25/2022]
Abstract
We report a double-click macrocyclization approach for the design of constrained peptide inhibitors having non-helical or extended conformations. Our targets are the tankyrase proteins (TNKS), poly(ADP-ribose) polymerases (PARP) that regulate Wnt signaling by targeting Axin for degradation. TNKS are deregulated in many different cancer types, and inhibition of TNKS therefore represents an attractive therapeutic strategy. However, clinical development of TNKS-specific PARP catalytic inhibitors is challenging due to off-target effects and cellular toxicity. We instead targeted the substrate-recognition domain of TNKS, as it is unique among PARP family members. We employed a two-component strategy, allowing peptide and linker to be separately engineered and then assembled in a combinatorial fashion via click chemistry. Using the consensus substrate-peptide sequence as a starting point, we optimized the length and rigidity of the linker and its position along the peptide. Optimization was further guided by high-resolution crystal structures of two of the macrocyclized peptides in complex with TNKS. This approach led to macrocyclized peptides with submicromolar affinities for TNKS and high proteolytic stability that are able to disrupt the interaction between TNKS and Axin substrate and to inhibit Wnt signaling in a dose-dependent manner. The peptides therefore represent a promising starting point for a new class of substrate-competitive inhibitors of TNKS with potential for suppressing Wnt signaling in cancer. Moreover, by demonstrating the application of the double-click macrocyclization approach to non-helical, extended, or irregularly structured peptides, we greatly extend its potential and scope, especially given the frequency with which such motifs mediate protein-protein interactions.
Collapse
Affiliation(s)
- Wenshu Xu
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Yu Heng Lau
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Gerhard Fischer
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Yaw Sing Tan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix 138671, Singapore
| | - Anasuya Chattopadhyay
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Marc de la Roche
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Chandra Verma
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix 138671, Singapore
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang
Drive 637551, Singapore
- Department
of Biological Sciences, National University
of Singapore, 14 Science
Drive 4 117543, Singapore
| | - David R. Spring
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Laura S. Itzhaki
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
36
|
Gao L, Zhao M, Li P, Kong J, Liu Z, Chen Y, Huang R, Chu J, Quan J, Zeng R. Glycogen synthase kinase 3 (GSK3)-inhibitor SB216763 promotes the conversion of human umbilical cord mesenchymal stem cells into neural precursors in adherent culture. Hum Cell 2017; 30:11-22. [PMID: 27604750 DOI: 10.1007/s13577-016-0146-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
Abstract
The ability to generate neural progenitor cells from human umbilical cord mesenchymal stem cells (hUC-MSCs) has provided an option to treat neurodegenerative diseases. To establish a method for this purpose, we characterized the early neural markers of hUC-MSCs-derived cells under different conditions. We found that neither the elimination of signals for alternative fate nor N2 supplement was sufficient to differentiate hUC-MSCs into neural precursor cells, but the GSK3 inhibitor SB216763 could promote an efficient neural commitment of hUC-MSCs. The results indicated that Wnt/β-catenin might play an important role during the early neural differentiation of hUC-MSCs. Here, we report a method for hUC-MSCs to commit efficiently into a neural fate within a short period of time. This protocol provides an efficient method for hUC-MSCs-based neural regeneration.
Collapse
Affiliation(s)
- Liyang Gao
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Mingyan Zhao
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Peng Li
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Junchao Kong
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhijun Liu
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yonghua Chen
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Rui Huang
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Chu
- Stem Cell Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juanhua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Rong Zeng
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
37
|
Gonzalez-Fernandez C, Arevalo-Martin A, Paniagua-Torija B, Ferrer I, Rodriguez FJ, Garcia-Ovejero D. Wnts Are Expressed in the Ependymal Region of the Adult Spinal Cord. Mol Neurobiol 2016; 54:6342-6355. [PMID: 27722925 DOI: 10.1007/s12035-016-0132-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022]
Abstract
The Wnt family of proteins plays key roles during central nervous system development and in several physiological processes during adulthood. Recently, experimental evidence has linked Wnt-related genes to regulation and maintenance of stem cells in the adult neurogenic niches. In the spinal cord, the ependymal cells surrounding the central canal form one of those niches, but little is known about their Wnt expression patterns. Using microdissection followed by TaqMan® low-density arrays, we show here that the ependymal regions of young, mature rats and adult humans express several Wnt-related genes, including ligands, conventional and non-conventional receptors, co-receptors, and soluble inhibitors. We found 13 genes shared between rats and humans, 4 exclusively expressed in rats and 9 expressed only in humans. Also, we observed a reduction with age on spontaneous proliferation of ependymal cells in rats paralleled by a decrease in the expression of Fzd1, Fzd8, and Fzd9. Our results suggest a role for Wnts in the regulation of the adult spinal cord neurogenic niche and provide new data on the specific differences in this region between humans and rodents.
Collapse
Affiliation(s)
- Carlos Gonzalez-Fernandez
- Laboratory of Molecular Neurology, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Beatriz Paniagua-Torija
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, Serveid'AnatomiaPatològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Francisco J Rodriguez
- Laboratory of Molecular Neurology, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
38
|
Gonzalez P, Rodríguez FJ. Analysis of the expression of the Wnt family of proteins and its modulatory role on cytokine expression in non activated and activated astroglial cells. Neurosci Res 2016; 114:16-29. [PMID: 27562517 DOI: 10.1016/j.neures.2016.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 12/23/2022]
Abstract
Despite the essential functions of astrocytes and the emerging relevance of the Wnt family of proteins in the CNS under physiological and pathological conditions, the astroglial expression of this family of proteins and its potential modulatory role on astroglial activation is almost unknown. Thus, we have evaluated the expression of all Wnt ligands, receptors and regulators, and the activation state of Wnt-related signaling pathways in non-activated and differentially activated astroglial cultures. We found that numerous Wnt ligands, receptors and regulators were expressed in non-activated astrocytes, while the Wnt-dependent pathways were constitutively active. Moreover, the expression of most detectable Wnt-related molecules and the activity of the Wnt-dependent pathways suffered post-activation variations which frequently depended on the activation system. Finally, the analysis of the effects exerted by Wnt1 and 5a on the astroglial expression of prototypical genes related to astroglial activation showed that both Wnt ligands increased the astroglial expression of interleukin 1β depending on the experimental context, while did not modulate tumor necrosis factor α, interleukin 6, transforming growth factor β1 and glial fibrillary acidic protein expression. These results strongly suggest that the Wnt family of proteins is involved in how astrocytes modulate and respond to the physiological and pathological CNS.
Collapse
Affiliation(s)
- Pau Gonzalez
- Laboratory of Molecular Neurology, National Hospital for Paraplegics, Finca la Peraleda s/n, 45071 Toledo, Spain.
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, National Hospital for Paraplegics, Finca la Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
39
|
Lecarpentier Y, Vallée A. Opposite Interplay between PPAR Gamma and Canonical Wnt/Beta-Catenin Pathway in Amyotrophic Lateral Sclerosis. Front Neurol 2016; 7:100. [PMID: 27445967 PMCID: PMC4923074 DOI: 10.3389/fneur.2016.00100] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/15/2016] [Indexed: 12/12/2022] Open
Abstract
The opposite interplay between peroxisome proliferator-activated receptor gamma (PPAR gamma) and Wnt/beta-catenin signaling has led to the categorization of neurodegenerative diseases (NDs) as either NDs in which PPAR gamma is downregulated while the canonical Wnt/beta-catenin pathway is upregulated [amyotrophic lateral sclerosis (ALS), Parkinson's disease, Huntington's disease, multiple sclerosis, Friedreich's ataxia] or NDs in which PPAR gamma is upregulated while the canonical Wnt/beta-catenin signaling is downregulated (bipolar disorder, schizophrenia, Alzheimer's disease). ALS, a common adult-onset debilitating ND, is characterized by a chronic and progressive degeneration of upper and lower motor neurons resulting in muscular atrophy, paralysis, and ultimately death. The intent of this review is to provide an analysis of the integration of these two opposed systems, i.e., canonical Wnt/beta-catenin and PPAR gamma, in ALS. Understanding this integration may aid in the development of novel ALS therapies. Although the canonical Wnt/beta-catenin pathway is upregulated in ALS, riluzole, an enhancer of the canonical Wnt signaling, is classically prescribed in this disease in humans. However, studies carried out on ALS transgenic mice have shown beneficial effects after treatment by PPAR gamma agonists partly due to their anti-inflammatory effects.
Collapse
Affiliation(s)
| | - Alexandre Vallée
- CHU Amiens Picardie, Université Picardie Jules Verne, Amiens, France; Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France
| |
Collapse
|
40
|
Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci 2016; 158:78-88. [PMID: 27370940 DOI: 10.1016/j.lfs.2016.06.024] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/20/2016] [Accepted: 06/26/2016] [Indexed: 01/06/2023]
Abstract
The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about.
Collapse
Affiliation(s)
- Rosaliana Libro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
41
|
González-Fernández C, Mancuso R, del Valle J, Navarro X, Rodríguez FJ. Wnt Signaling Alteration in the Spinal Cord of Amyotrophic Lateral Sclerosis Transgenic Mice: Special Focus on Frizzled-5 Cellular Expression Pattern. PLoS One 2016; 11:e0155867. [PMID: 27192435 PMCID: PMC4871528 DOI: 10.1371/journal.pone.0155867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis is a chronic neurodegenerative disease characterized by progressive paralysis due to degeneration of motor neurons by unknown causes. Recent evidence shows that Wnt signaling is involved in neurodegenerative processes, including Amyotrophic Lateral Sclerosis. However, to date, little is known regarding the expression of Wnt signaling components in this fatal condition. In the present study we used transgenic SOD1G93A mice to evaluate the expression of several Wnt signaling components, with special focus on Frizzled-5 cellular expression alteration along disease progression. FINDINGS Based on previous studies demonstrating the expression of Wnts and their transcriptional regulation during Amyotrophic lateral sclerosis development, we have analyzed the mRNA expression of several Wnt signaling components in the spinal cord of SOD1G93A transgenic mice at different stages of the disease by using real time quantitative PCR analysis. Strikingly, one of the molecules that seemed not to be altered at mRNA level, Frizzled-5, showed a clear up-regulation at late stages in neurons, as evidenced by immunofluorescence assays. Moreover, increased Frizzled-5 appears to correlate with a decrease in NeuN signal in these cells, suggesting a correlation between neuronal affectation and the increased expression of this receptor. CONCLUSIONS Our data suggest the involvement of Wnt signaling pathways in the pathophysiology of Amyotrophic Lateral Sclerosis and, more specifically, the implication of Frizzled-5 receptor in the response of neuronal cells against neurodegeneration. Nevertheless, further experimental studies are needed to shed light on the specific role of Frizzled-5 and the emerging but increasing Wnt family of proteins research field as a potential target for this neuropathology.
Collapse
Affiliation(s)
| | - Renzo Mancuso
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Jaume del Valle
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | | |
Collapse
|
42
|
Wang H, Graves MW, Zhou H, Gu Z, Lamont RJ, Scott DA. 2-Amino-4-(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine is an anti-inflammatory TLR-2, -4 and -5 response mediator in human monocytes. Inflamm Res 2015; 65:61-9. [PMID: 26613980 DOI: 10.1007/s00011-015-0891-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/13/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE AND DESIGN To elucidate the influence of 2-amino-4-(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine (AMBMP), a canonical Wnt/β-catenin pathway activator, on the inflammatory response of TLR-engaged innate cells in vitro. MATERIAL OR SUBJECT Primary human monocytes. TREATMENT AMPMB (0-10 μM), LPS (0-1.0 μg/ml), Pam3CSK4, FSL-1, or S. typhimurium flagellin (0-0.25 μg/ml). METHODS TLR-induced cytokine release (TNF, IL-6, IL-12 p40) was monitored by ELISA while Wnt-related signals (GSK3β, p65, IκB, β-catenin) were assessed by Western blot, pharmaceutical inhibition and gene silencing. RESULTS AMBMP induced the rapid phosphorylation of NFκB p65 at Ser(536) and abrogated total IκB, accompanied by a subsequent increase in pro-inflammatory cytokine production (TNF, IL-6, IL-12 p40) in otherwise naive monocytes. However, in TLR2, -4 and -5-engaged monocytes, AMBMP-suppressed cytokine production. In the context of LPS stimulation, this occurred concomitant with the phosphorylative inactivation of GSK3β at Ser(9), β-catenin accumulation and abrogation of NFκB p65 phosphorylation. AMBMP-mediated suppression of the TLR4 -induced inflammatory response was reversed by two pharmaceutical Wnt/β-catenin pathway inhibitors, IWP-2 and PNU-74654 and by Wnt3a silencing. CONCLUSIONS Herein, we show that AMBMP induces canonical Wnt signaling events and acts as a suppressor of inflammation in surface TLR-engaged primary human monocytes.
Collapse
Affiliation(s)
- Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville, 501 South Preston Street, Louisville, KY, 40292, USA.
| | - Mark W Graves
- Department of Oral Immunology and Infectious Diseases, University of Louisville, 501 South Preston Street, Louisville, KY, 40292, USA.
| | - Huaxin Zhou
- Department of Oral Immunology and Infectious Diseases, University of Louisville, 501 South Preston Street, Louisville, KY, 40292, USA.
| | - Zhen Gu
- Department of Oral Immunology and Infectious Diseases, University of Louisville, 501 South Preston Street, Louisville, KY, 40292, USA.
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, 501 South Preston Street, Louisville, KY, 40292, USA.
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville, 501 South Preston Street, Louisville, KY, 40292, USA.
| |
Collapse
|
43
|
Li W, Fotinos A, Wu Q, Chen Y, Zhu Y, Baranov S, Tu Y, Zhou EW, Sinha B, Kristal BS, Wang X. N-acetyl-l-tryptophan delays disease onset and extends survival in an amyotrophic lateral sclerosis transgenic mouse model. Neurobiol Dis 2015; 80:93-103. [DOI: 10.1016/j.nbd.2015.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/25/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022] Open
|
44
|
Meister S, Storck SE, Hameister E, Behl C, Weggen S, Clement AM, Pietrzik CU. Expression of the ALS-causing variant hSOD1(G93A) leads to an impaired integrity and altered regulation of claudin-5 expression in an in vitro blood-spinal cord barrier model. J Cereb Blood Flow Metab 2015; 35:1112-21. [PMID: 25853911 PMCID: PMC4640277 DOI: 10.1038/jcbfm.2015.57] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 02/05/2015] [Accepted: 03/12/2015] [Indexed: 11/09/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive paralysis due to the loss of primary and secondary motor neurons. Mutations in the Cu/Zn-superoxide dismutase (SOD1) gene are associated with familial ALS and to date numerous hypotheses for ALS pathology exist including impairment of the blood-spinal cord barrier. In transgenic mice carrying mutated SOD1 genes, a disrupted blood-spinal cord barrier as well as decreased levels of tight junction (TJ) proteins ZO-1, occludin, and claudin-5 were detected. Here, we examined TJ protein levels and barrier function of primary blood-spinal cord barrier endothelial cells of presymptomatic hSOD1(G93A) mice and bEnd.3 cells stably expressing hSOD1(G93A). In both cellular systems, we observed reduced claudin-5 levels and a decreased transendothelial resistance (TER) as well as an increased apparent permeability. Analysis of the β-catenin/AKT/forkhead box protein O1 (FoxO1) pathway and the FoxO1-regulated activity of the claudin-5 promoter revealed a repression of the claudin-5 gene expression in hSOD1(G93A) cells, which was depended on the phosphorylation status of FoxO1. These results strongly indicate that mutated SOD1 affects the expression and localization of TJ proteins leading to impaired integrity and breakdown of the blood-spinal cord barrier.
Collapse
Affiliation(s)
- Sabrina Meister
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Steffen E Storck
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Erik Hameister
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christian Behl
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich Heine University, Duesseldorf, Germany
| | - Albrecht M Clement
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
45
|
Patel AK, Surapaneni K, Yi H, Nakamura REI, Karli SZ, Syeda S, Lee T, Hackam AS. Activation of Wnt/β-catenin signaling in Muller glia protects photoreceptors in a mouse model of inherited retinal degeneration. Neuropharmacology 2014; 91:1-12. [PMID: 25486619 DOI: 10.1016/j.neuropharm.2014.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 11/18/2022]
Abstract
The canonical Wnt/β-catenin ("Wnt") pathway is an essential signaling cascade in the embryonic central nervous system (CNS) that regulates neuronal differentiation and survival. Loss of Wnt signaling in developing and adult tissue has been implicated in numerous CNS diseases, but the precise role of Wnt in regulating neuronal survival, and how its absence could lead to disease, is not understood. In this study, we investigated the effect of Wnt activation on neuronal survival in the adult retina, and identified cellular and molecular mediators. Pan-retinal Wnt signaling activation using Wnt3a induced functional and morphological rescue of photoreceptor neurons in the rd10 mouse model of retinal degeneration. Furthermore, Wnt activation using constitutively active β-catenin specifically targeted to Muller glia increased photoreceptor survival and reduced markers of glial and neuronal remodeling. Wnt-induced photoreceptor protection was associated with elevated levels of the prosurvival protein Stat3, and was reduced by shRNA-mediated knock-down of Stat3, indicating cross-talk between survival pathways. Therefore, these data increase our understanding of the role of Wnt signaling in the retina, and identify radial Muller glia as important cellular mediators of Wnt activity.
Collapse
Affiliation(s)
- Amit K Patel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Krishna Surapaneni
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Hyun Yi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Rei E I Nakamura
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Sapir Z Karli
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Sarah Syeda
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Tinthu Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA.
| |
Collapse
|
46
|
Mühling T, Duda J, Weishaupt JH, Ludolph AC, Liss B. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca(2+) transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice. Front Cell Neurosci 2014; 8:353. [PMID: 25452714 PMCID: PMC4231948 DOI: 10.3389/fncel.2014.00353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/08/2014] [Indexed: 12/13/2022] Open
Abstract
Disturbances in Ca2+ homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS), a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca2+ homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs) from a common ALS mouse model, the endstage superoxide dismutase SOD1G93A transgenic mouse, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca2+ uptake capacity and elevated Ca2+ extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca2+ transporters in individual, choline-acetyltransferase (ChAT) positive hMNs from wildtype (WT) and endstage SOD1G93A mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1G93A mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca2+ transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca2+ transporters MCU/MICU1, Letm1, and UCP2 in remaining hMNs from endstage SOD1G93A mice. These higher expression-levels of mitochondrial Ca2+ transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na+/Ca2+ exchanger NCX1 were also about 2-fold higher in hMNs from SOD1G93A mice. Thus, pharmacological stimulation of Ca2+ transporters in highly vulnerable hMNs might offer a neuroprotective strategy for ALS.
Collapse
Affiliation(s)
- Tobias Mühling
- Department of Applied Physiology, Institute of Applied Physiology, Ulm University Ulm, Germany
| | - Johanna Duda
- Department of Applied Physiology, Institute of Applied Physiology, Ulm University Ulm, Germany
| | | | | | - Birgit Liss
- Department of Applied Physiology, Institute of Applied Physiology, Ulm University Ulm, Germany
| |
Collapse
|
47
|
McLoon LK, Harandi VM, Brännström T, Andersen PM, Liu JX. Wnt and extraocular muscle sparing in amyotrophic lateral sclerosis. Invest Ophthalmol Vis Sci 2014; 55:5482-96. [PMID: 25125606 DOI: 10.1167/iovs.14-14886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The extraocular muscles (EOM) and their motor neurons are spared in amyotrophic lateral sclerosis (ALS). In limb muscle, axon retraction from the neuromuscular junctions occurs early in the disease. Wnts, a conserved family of secreted signaling molecules, play a critical role in neuromuscular junction formation. This is the first study to examine Wnt signaling for its potential involvement in maintenance of normal morphology in EOM in ALS. METHODS Extraocular muscle and limb muscle axons, neuromuscular junctions, and myofibers from control, aging, and ALS subjects and the SOD1(G93A) mouse model of ALS were quantified for their expression of Wnt1, Wnt3a, Wnt5a, Wnt7a, and β-catenin. RESULTS All four Wnt isoforms were expressed in most axon profiles in all human EOM. Significantly fewer were positive for Wnt1, Wnt3a, and Wnt7a in the human limb muscles. Similar differential patterns in Wnt myofiber expression were also seen except in the case of Wnt7a, where expression was elevated. In the SOD1(G93A) mouse, all four Wnt isoforms were significantly decreased in the neuromuscular junctions at the terminal stage compared to values in age-matched controls. β-Catenin was activated in a subset of myofibers in EOM and limb muscle in all subjects. CONCLUSIONS The differences in expression of Wnts in EOM and limb muscle, particularly at the neuromuscular junction level, suggest that they play a role in the pathophysiology of ALS. Collectively, the data support a role for signaling of Wnts in the preservation of the EOM in ALS and their dysregulation and the subsequent development of pathology in the ALS limb muscles.
Collapse
Affiliation(s)
- Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Vahid M Harandi
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Thomas Brännström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
48
|
de Oliveira GP, Maximino JR, Maschietto M, Zanoteli E, Puga RD, Lima L, Carraro DM, Chadi G. Early gene expression changes in skeletal muscle from SOD1(G93A) amyotrophic lateral sclerosis animal model. Cell Mol Neurobiol 2014; 34:451-62. [PMID: 24442855 PMCID: PMC11488915 DOI: 10.1007/s10571-014-0029-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by loss of motor neurons. Familial ALS is strongly associated to dominant mutations in the gene for Cu/Zn superoxide dismutase (SOD1). Recent evidences point to skeletal muscle as a primary target in the ALS mouse model. Wnt/PI3 K signaling pathways and epithelial-mesenchymal transition (EMT) have important roles in maintenance and repair of skeletal muscle. Wnt/PI3 K pathways and EMT gene expression profile were investigated in gastrocnemius muscle from SOD1(G93A) mouse model and age-paired wild-type control in the presymptomatic ages of 40 and 80 days aiming the early neuromuscular abnormalities that precede motor neuron death in ALS. A customized cDNA microarray platform containing 326 genes of Wnt/PI3 K and EMT was used and results revealed eight up-regulated (Loxl2, Pik4ca, Fzd9, Cul1, Ctnnd1, Snf1lk, Prkx, Dner) and nine down-regulated (Pik3c2a, Ripk4, Id2, C1qdc1, Eif2ak2, Rac3, Cds1, Inppl1, Tbl1x) genes at 40 days, and also one up-regulated (Pik3ca) and five down-regulated (Cd44, Eef2 k, Fzd2, Crebbp, Piki3r1) genes at 80 days. Also, protein-protein interaction networks grown from the differentially expressed genes of 40 and 80 days old mice have identified Grb2 and Src genes in both presymptomatic ages, thus playing a potential central role in the disease mechanisms. mRNA and protein levels for Grb2 and Src were found to be increased in 80 days old ALS mice. Gene expression changes in the skeletal muscle of transgenic ALS mice at presymptomatic periods of disease gave further evidence of early neuromuscular abnormalities that precede motor neuron death. The results were discussed in terms of initial triggering for neuronal degeneration and muscle adaptation to keep function before the onset of symptoms.
Collapse
Affiliation(s)
- Gabriela P. de Oliveira
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 2nd Floor, Room 2119, São Paulo, 01246-903 Brazil
| | - Jessica R. Maximino
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 2nd Floor, Room 2119, São Paulo, 01246-903 Brazil
| | - Mariana Maschietto
- Laboratory of Genomics and Molecular Biology - CIPE, A.C. Camargo Hospital, São Paulo, Brazil
| | - Edmar Zanoteli
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 2nd Floor, Room 2119, São Paulo, 01246-903 Brazil
| | - Renato D. Puga
- Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, SP Brazil
| | - Leandro Lima
- Laboratory of Genomics and Molecular Biology - CIPE, A.C. Camargo Hospital, São Paulo, Brazil
| | - Dirce M. Carraro
- Laboratory of Genomics and Molecular Biology - CIPE, A.C. Camargo Hospital, São Paulo, Brazil
| | - Gerson Chadi
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 2nd Floor, Room 2119, São Paulo, 01246-903 Brazil
| |
Collapse
|
49
|
Papa M, De Luca C, Petta F, Alberghina L, Cirillo G. Astrocyte-neuron interplay in maladaptive plasticity. Neurosci Biobehav Rev 2014; 42:35-54. [PMID: 24509064 DOI: 10.1016/j.neubiorev.2014.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/03/2014] [Accepted: 01/28/2014] [Indexed: 12/21/2022]
Abstract
The complexity of neuronal networks cannot only be explained by neuronal activity so neurobiological research in the last decade has focused on different components of the central nervous system: the glia. Glial cells are fundamental elements for development and maintenance of physiological brain work. New data confirm that glia significantly influences neuronal communication through specific molecules, named "gliotransmitters", and their related receptors. This new approach to the traditional model of the way synapses work is also supported by changes occurring in pathological conditions, such as neurodegenerative diseases or toxic/traumatic injury to nervous system. Experimental models have revealed that glial cells are the starting point of damage progression that subsequently involves neurons. The "bedside to bench" approach has demonstrated that clinical phenotypes are strictly related to neuronal death, however it is conceivable that the disease begins earlier, years before clinical onset. This temporal gap is necessary to determine complex changes in the neuro-glial network organization and produce a "maladaptive plasticity". We review the function of glial cells in health and disease, pointing the putative mechanisms of maladaptive plasticity, suggesting that glial cells may represent a fascinating therapeutic target to prevent irreversible neuronal cell death.
Collapse
Affiliation(s)
- Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138 Naples, Italy; SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy.
| | - Ciro De Luca
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138 Naples, Italy
| | - Federica Petta
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138 Naples, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy; SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Giovanni Cirillo
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138 Naples, Italy
| |
Collapse
|
50
|
Tury A, Tolentino K, Zou Y. Altered expression of atypical PKC and Ryk in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Dev Neurobiol 2014; 74:839-50. [PMID: 24123880 DOI: 10.1002/dneu.22137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/09/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive paralysis due to the selective death of motor neurons of unknown causes. Increasing evidence indicates that Wnt signaling is altered in ALS. In this study, we focused on two non-canonical Wnt signaling components, atypical PKC (aPKC) and a Wnt receptor, Ryk, in a mouse model of ALS, SOD1 (G93A). aPKC mediates Wnt signaling to regulate growth cone guidance, axon differentiation and cell survival. Ryk is a Wnt repulsive receptor that regulates axon guidance and inhibits regeneration after spinal cord injury. aPKC expression was increased in motor neurons of the lumbar spinal cord in SOD1 (G93A) mice at both early and late stages. Interestingly, aPKC was co-localized with SOD1 in motor neuron cell bodies and extracellular aggregates, and aPKC-containing extracellular aggregates increased with disease progression. Biochemical fractionation showed that aPKC protein level was increased in the detergent-insoluble protein fraction in SOD1 (G93A) mice at late stage but decreased in the detergent-soluble fraction at symptomatic stage. These results suggest that aPKC may be sequestered in SOD1 aggregates, impairing its ability to protect motor neurons from death. Ryk expression was also increased in the motor neurons and the white matter in the ventral lumbar spinal cord of mutant SOD1 mice with a peak at early stage. These observations indicate that Wnt/aPKC and Wnt/Ryk signaling are altered in SOD1 (G93A) mice, suggesting that changed Wnt signaling may contribute to neurodegeneration in ALS.
Collapse
Affiliation(s)
- Anna Tury
- University of California, San Diego, Division of Biological Sciences, Section of Neurobiology, 9500 Gilman Drive, La Jolla, California, 92093
| | | | | |
Collapse
|