1
|
Shan XQ, Zhao L. Enhancing the functionality of mesenchymal stem cells: An attractive treatment strategy for metabolic dysfunction-associated steatotic liver disease? World J Stem Cells 2024; 16:854-859. [PMID: 39493827 PMCID: PMC11525648 DOI: 10.4252/wjsc.v16.i10.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The intrinsic heterogeneity of metabolic dysfunction-associated fatty liver disease (MASLD) and the intricate pathogenesis have impeded the advancement and clinical implementation of therapeutic interventions, underscoring the critical demand for novel treatments. A recent publication by Li et al proposes mesenchymal stem cells as promising effectors for the treatment of MASLD. This editorial is a continuum of the article published by Jiang et al which focuses on the significance of strategies to enhance the functionality of mesenchymal stem cells to improve efficacy in curing MASLD, including physical pretreatment, drug or chemical pretreatment, pretreatment with bioactive substances, and genetic engineering.
Collapse
Affiliation(s)
- Xiao-Qian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
2
|
Yuan M, Hu X, Yao L, Jiang Y, Li L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res Ther 2022; 13:179. [PMID: 35505419 PMCID: PMC9066724 DOI: 10.1186/s13287-022-02858-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation, as an alternative strategy to orthotopic liver transplantation, has been evaluated for treating end-stage liver disease. Although the therapeutic mechanism of MSC transplantation remains unclear, accumulating evidence has demonstrated that MSCs can regenerate tissues and self-renew to repair the liver through differentiation into hepatocyte-like cells, immune regulation, and anti-fibrotic mechanisms. Multiple clinical trials have confirmed that MSC transplantation restores liver function and alleviates liver damage. A sufficient number of MSCs must be home to the target tissues after administration for successful application. However, inefficient homing of MSCs after systemic administration is a major limitation in MSC therapy. Here, we review the mechanisms and clinical application status of MSCs in the treatment of liver disease and comprehensively summarize the molecular mechanisms of MSC homing, and various strategies for promoting MSC homing to improve the treatment of liver disease.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Wang S, Gao S, Li Y, Qian X, Luan J, Lv X. Emerging Importance of Chemokine Receptor CXCR4 and Its Ligand in Liver Disease. Front Cell Dev Biol 2021; 9:716842. [PMID: 34386499 PMCID: PMC8353181 DOI: 10.3389/fcell.2021.716842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily, which together with chemokine ligands form chemokine networks to regulate various cellular functions, immune and physiological processes. These receptors are closely related to cell movement and thus play a vital role in several physiological and pathological processes that require regulation of cell migration. CXCR4, one of the most intensively studied chemokine receptors, is involved in many functions in addition to immune cells recruitment and plays a pivotal role in the pathogenesis of liver disease. Aberrant CXCR4 expression pattern is related to the migration and movement of liver specific cells in liver disease through its cross-talk with a variety of significant cell signaling pathways. An in-depth understanding of CXCR4-mediated signaling pathway and its role in liver disease is critical to identifying potential therapeutic strategies. Current therapeutic strategies for liver disease mainly focus on regulating the key functions of specific cells in the liver, in which the CXCR4 pathway plays a crucial role. Multiple challenges remain to be overcome in order to more effectively target CXCR4 pathway and identify novel combination therapies with existing strategies. This review emphasizes the role of CXCR4 and its important cell signaling pathways in the pathogenesis of liver disease and summarizes the targeted therapeutic studies conducted to date.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Zhang Y, Hu Y, Wang W, Guo Z, Yang F, Cai X, Xiong L. Current Progress in the Endogenous Repair of Intervertebral Disk Degeneration Based on Progenitor Cells. Front Bioeng Biotechnol 2021; 8:629088. [PMID: 33553131 PMCID: PMC7862573 DOI: 10.3389/fbioe.2020.629088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disk (IVD) degeneration is one of the most common musculoskeletal disease. Current clinical treatment paradigms for IVD degeneration cannot completely restore the structural and biomechanical functions of the IVD. Bio-therapeutic techniques focused on progenitor/stem cells, especially IVD progenitor cells, provide promising options for the treatment of IVD degeneration. Endogenous repair is an important self-repair mechanism in IVD that can allow the IVD to maintain a long-term homeostasis. The progenitor cells within IVD play a significant role in IVD endogenous repair. Improving the adverse microenvironment in degenerative IVD and promoting progenitor cell migration might be important strategies for implementation of the modulation of endogenous repair of IVD. Here, we not only reviewed the research status of treatment of degenerative IVD based on IVD progenitor cells, but also emphasized the concept of endogenous repair of IVD and discussed the potential new research direction of IVD endogenous repair.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wentian Wang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zijun Guo
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianyi Cai
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Abstract
Mesenchymal stem cells (MSCs) represent a promising source of cell-based therapies for treatment of a wide variety of injuries and diseases. Their tropism and migration to the damaged sites, which are elicited by cytokines secreted from tissues around pathology, are the prerequisite for tissue repair and regeneration. Better understanding of the elicited-migration of MSCs and discovering conditions that elevate their migration ability, will help to increase their homing to pathologies and improve therapeutic efficacy. It is increasingly recognized that microRNAs are important regulators of cell migration. Here we summarize current understanding of the microRNA-regulated migration of MSCs.
Collapse
|
6
|
Ji S, Wu C, Tong L, Wang L, Zhou J, Chen C, Song Y. Better therapeutic potential of bone marrow-derived mesenchymal stem cells compared with chorionic villi-derived mesenchymal stem cells in airway injury model. Regen Med 2019; 14:165-177. [PMID: 30994416 DOI: 10.2217/rme-2018-0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: To determine the efficiency of mesenchymal stem cells (MSCs) of different sources on airway epithelial cells regeneration and track where and to what extent transplanted MSCs home to injured tissues. Materials & methods: We performed DiO-labeled human bone marrow-derived MSCs (hBMSCs) or human chorionic villi-derived MSCs transplantation studies using naphthalene-induced airway injury animal models. Results: Compared with human chorionic villi-derived MSCs, hBMSCs facilitated airway epithelium regeneration faster and better from day 5 after transplantation; moreover, more transplanted hBMSCs distributed in injured lung tissues at the early stage of postinjury, which was mediated by C-X-C motif chemokine ligand 12. Conclusion: hBMSCs possessed better potential of migration to the damaged lung and promoting the repair of the injured airway epithelium.
Collapse
Affiliation(s)
- Shimeng Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chaomin Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai 201700, China
| | - Lin Tong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Linlin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai 201700, China.,Shanghai Public Health Clinical Center, Shanghai 201508, China.,National Clinical Research Center for Aging & Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
7
|
Dong X, Zhong N, Fang Y, Cai Q, Lu M, Lu Q. MicroRNA 27b-3p Modulates SYK in Pediatric Asthma Induced by Dust Mites. Front Pediatr 2018; 6:301. [PMID: 30406061 PMCID: PMC6204538 DOI: 10.3389/fped.2018.00301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 09/25/2018] [Indexed: 01/09/2023] Open
Abstract
The PI3K-AKT pathway is known to regulate cytokines in dust mite-induced pediatric asthma. However, the underlying molecular steps involved are not clear. In order to clarify further the molecular steps, this study investigated the expression of certain genes and the involvement of miRNAs in the PI3K-AKT pathway, which might affect the resultant cytokine-secretion. in-vivo and in-vitro ELISA, qRT-PCR and microarrays analyses were used in this study. A down-expression of miRNA-27b-3p in dust mite induced asthma group (group D) was found by microarray analysis. This was confirmed by qRT-PCR that found the miRNA-27b-3p transcripts that regulated the expression of SYK and EGFR were also significantly decreased (p < 0.01) in group D. The transcript levels of the SYK and PI3K genes were higher, while those of EGFR were lower in the former group. Meanwhile, we found significant differences in plasma concentrations of some cytokines between the dust mite-induced asthma subjects and the healthy controls. On the other hand, this correlated with the finding that the transcripts of SYK and its downstream PI3K were decreased in HBE transfected with miRNA-27b-3p, but were increased in HBE transfected with the inhibitor in vitro. Our results indicate that the differential expression of the miRNAs in dust mite-induced pediatric asthma may regulate their target gene SYK and may have an impact on the PI3K-AKT pathway associated with the production of cytokines. These findings should add new insight into the pathogenesis of pediatric asthma.
Collapse
Affiliation(s)
- Xiaoyan Dong
- Department of Pulmonary, Shanghai Children's Hospital, Shanghai, China
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, China
- Shanghai Children's Hospital, Shanghai, China
| | - Nanbert Zhong
- Shanghai Children's Hospital, Shanghai, China
- Department of Human Genetics, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
- Chinese Alliance of Translational Medicine for Maternal and Children's Health, Beijing, China
- Peking University Center of Medical Genetics, Peking University Health Science Centre, Beijing, China
| | - Yudan Fang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, China
- Shanghai Children's Hospital, Shanghai, China
| | - Qin Cai
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai, China
- Shanghai Children's Hospital, Shanghai, China
| | - Min Lu
- Department of Pulmonary, Shanghai Children's Hospital, Shanghai, China
- Shanghai Children's Hospital, Shanghai, China
| | - Quan Lu
- Department of Pulmonary, Shanghai Children's Hospital, Shanghai, China
- Shanghai Children's Hospital, Shanghai, China
| |
Collapse
|
8
|
Wang X, Ye X, Ji J, Wang J, Xu B, Zhang Q, Ming J, Liu X. MicroRNA‑155 targets myosin light chain kinase to inhibit the migration of human bone marrow‑derived mesenchymal stem cells. Int J Mol Med 2018; 42:1585-1592. [PMID: 29901087 DOI: 10.3892/ijmm.2018.3718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 05/31/2018] [Indexed: 11/06/2022] Open
Abstract
Toll‑like receptors (TLRs) are expressed in human bone marrow‑derived mesenchymal stromal cells (BM‑MSCs). The activation of TLRs is important in the proliferation, differ-entiation, migration and hematopoiesis‑supporting functions of BM‑MSCs. MicroRNAs (miRNAs) are involved in various biological functions by mediating mRNA degradation or inhibiting the translation of target genes. Our previous study confirmed that TLRs regulate the migration ability of BM‑MSCs. It was also identified that multiple miRNAs were regulated by TLRs. In view of this, it was hypothesized that TLR‑regulated miRNAs may be important in regulating the migration of BM‑MSCs. The migration ability of BM‑MSCs was evaluated following transfection of the cells with the mimics or antagonists of miRNA (miR)‑27b, miR‑146a, miR‑155 and miR‑154. miR‑155 significantly inhibited cell migration. Myosin light chain kinase (MYLK) was identified as the direct target of miR‑155 in BM‑MSCs, which was further investigated using the luciferase reporter assay. However, miR‑155 did not affect the expression of upstream proteins of the RhoA pathway controlling the activity of MYLK, suggesting that miR‑155 directly suppressed the expression of MYLK without affecting the RhoA pathway. These results may facilitate the development and clinical use of BM‑MSCs in terms of their migration.
Collapse
Affiliation(s)
- Xingbing Wang
- Department of Hematology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Xu Ye
- Department of Hematology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Jingjuan Ji
- Reproductive Medicine Center, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Jian Wang
- Department of Hematology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Bo Xu
- Reproductive Medicine Center, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Qian Zhang
- Department of Hematology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Jing Ming
- Department of Hematology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Xin Liu
- Department of Hematology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
9
|
Cheng D, Chen Y, Lu C, Qian Y, Lv Z. Preliminary profiling of microRNA in the normal and regenerating liver of Chiloscyllium plagiosum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:60-67. [PMID: 28822868 DOI: 10.1016/j.cbd.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/30/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022]
Abstract
Liver is a vital organ present in animals for detoxification, protein synthesis, digestion and other functions and its powerful regenerative capacity is well known. C. plagiosum is an abundant fish that is representative of the cartilaginous class in the southeast coastal region of China and its liver accounts for >70% of the fish's visceral weight and contains many bioactive substances. MicroRNAs (microRNAs) play important roles in a wide range of biological processes in eukaryotes, including cell proliferation, differentiation, apoptosis. However, microRNAs in response to liver regeneration has not been well studied. This study aimed to identify the microRNAs that participate in liver regeneration and other liver-related diseases and to improve our understanding of the mechanisms of liver regeneration in sharks. To this end, normal and regenerating liver tissues from C. plagiosum were harvested 0, 3, 6, 12 and 24h after partial hepatectomy (pH) and were sequenced using the Illumina/Solexa platform. In total, 309 known microRNAs and 590 novel microRNAs were identified in C. plagiosum. There were many microRNAs differentially expressed in the normal and regenerating livers between time points. Using target prediction and GO analysis, most of the differentially expressed microRNAs were assigned to functional categories that may be involved in regulating liver regeneration, such as cell proliferation, differentiation and apoptosis. The microRNA expression profile of liver regeneration will pave the way for the development of effective strategies to fight against liver disease and other related disease.
Collapse
Affiliation(s)
- Dandan Cheng
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Yanna Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Conger Lu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Yuezhong Qian
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Zhengbing Lv
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| |
Collapse
|
10
|
Liepelt A, Tacke F. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. Am J Physiol Gastrointest Liver Physiol 2016; 311:G203-9. [PMID: 27313175 DOI: 10.1152/ajpgi.00193.2016] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/09/2016] [Indexed: 01/31/2023]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is constitutively expressed in healthy liver. However, its expression increases following acute or chronic liver injury. Liver sinusoidal endothelial cells (LSEC), hepatic stellate cells (HSC), and malignant hepatocytes are important sources of SDF-1/CXCL12 in liver diseases. CXCL12 is able to activate two chemokine receptors with different downstream signaling pathways, CXCR4 and CXCR7. CXCR7 expression is relevant on LSEC, while HSC, mesenchymal stem cells, and tumor cells mainly respond via CXCR4. Here, we summarize recent developments in the field of liver diseases involving this chemokine and its receptors. SDF-1-dependent signaling contributes to modulating acute liver injury and subsequent tissue regeneration. By activating HSC and recruiting mesenchymal cells from bone marrow, CXCL12 can promote liver fibrosis progression, while CXCL12-CXCR7 interactions endorse proregenerative responses in chronic injury. Moreover, the SDF-1 pathway is linked to development of hepatocellular carcinoma (HCC) by promoting tumor growth, angiogenesis, and HCC metastasis. High hepatic CXCR4 expression has been suggested as a biomarker indicating poor prognosis of HCC patients. Tumor-infiltrating myeloid-derived suppressor cells (MDSC) also express CXCR4 and migrate toward CXCL12. Thus CXCL12 inhibition might not only directly block HCC growth but also modulate the tumor microenvironment (angiogenesis, MDSC), thereby sensitizing HCC patients to conventional or emerging novel cancer therapies (e.g., sorafenib, regorafenib, nivolumab, pembrolizumab). We herein summarize the current knowledge on the complex interplay between CXCL12 and CXCR4/CXCR7 in liver diseases and discuss approaches on the therapeutic targeting of these axes in hepatitis, fibrosis, and liver cancer.
Collapse
Affiliation(s)
- Anke Liepelt
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
11
|
Mesenchymal Stem/Stromal Cells in Liver Fibrosis: Recent Findings, Old/New Caveats and Future Perspectives. Stem Cell Rev Rep 2016; 11:586-97. [PMID: 25820543 DOI: 10.1007/s12015-015-9585-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are progenitors which share plastic-adherence capacity and cell surface markers but have different properties according to their cell and tissue sources and to culture conditions applied. Many recent publications suggest that MSCs can differentiate into hepatic-like cells, which can be a consequence of either a positive selection of rare in vivo pluripotent cells or of the original plasticity of some cells contributing to MSC cultures. A possible role of MSCs in hereditary transmission of obesity and/or diabetes as well as properties of MSCs regarding immunomodulation, cell fusion and exosome release capacities are discussed according to recent literature. Limitations in methods used to track MSCs in vivo especially in the context of liver cirrhosis are addressed as well as strategies explored to enhance their migratory, survival and proliferation properties, which are known to be relevant for their future clinical use. Current knowledge regarding mechanisms involved in liver cirrhosis amelioration mediated by naïve and genetically modified MSCs as well as the effects of applying preconditioning and combined strategies to improve their therapeutic effects are evaluated. Finally, first reports of GMP guidelines and biosafety issues in MSCs applications are discussed.
Collapse
|
12
|
Yao S. MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biol Proced Online 2016; 18:8. [PMID: 26966421 PMCID: PMC4785656 DOI: 10.1186/s12575-016-0037-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 01/07/2023] Open
Abstract
Stem cells are unspecialized/undifferentiated cells that exist in embryos and adult tissues or can be converted from somatic differentiated cells. Use of stem cells for tissue regeneration and tissue engineering has been a cornerstone of the regenerative medicine. Stem cells are also believed to exist in cancer tissues, namely cancer stem cells (CSCs). Growing evidence suggests that CSCs are the culprit of cancer dormancy, progression and recurrence, and thus have recently received great attention. MicroRNAs (miRNAs) are a group of short, non-coding RNAs that regulate expression of a wide range of genes at a post-transcriptional manner. They are emerging as key regulators of stem cell behaviors. This mini review summarizes the basic biogenesis and mode of actions of miRNAs, recent progress and discoveries of miRNAs in cellular reprogramming, stem cell differentiation and cellular communication, as well as miRNAs in CSCs. Some potential of miRNAs in future biomedical applications and research pertaining to stem cells are briefly discussed.
Collapse
Affiliation(s)
- Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803 USA
| |
Collapse
|
13
|
Guedes JR, Santana I, Cunha C, Duro D, Almeida MR, Cardoso AM, de Lima MCP, Cardoso AL. MicroRNA deregulation and chemotaxis and phagocytosis impairment in Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2015; 3:7-17. [PMID: 27239545 PMCID: PMC4879648 DOI: 10.1016/j.dadm.2015.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Introduction Mononuclear phagocytes play a critical role during Alzheimer's disease (AD) pathogenesis due to their contribution to innate immune responses and amyloid beta (Aβ) clearance mechanisms. Methods Blood-derived monocytes (BDMs) and monocyte-derived macrophages (MDMs) were isolated from blood of AD, mild cognitive impairment (MCI) patients, and age-matched healthy controls for molecular and phenotypic comparisons. Results The chemokine/chemokine receptor CCL2/CCR2 axis was impaired in BDMs from AD and MCI patients, causing a deficit in cell migration. Changes were also observed in MDM-mediated phagocytosis of Aβ fibrils, correlating with alterations in the expression and processing of the triggering receptor expressed on myeloid cells 2 (TREM2). Finally, immune-related microRNAs (miRNAs), including miR-155, -154, -200b, -27b, and -128, were found to be differentially expressed in these cells. Discussion This work provides evidence that chemotaxis and phagocytosis, two crucial innate immune functions, are impaired in AD and MCI patients. Correlations with miRNA levels suggest an epigenetic contribution to systemic immune dysfunction in AD.
Collapse
Affiliation(s)
- Joana R Guedes
- Doctoral Programme in Experimental Biology and Biomedicine, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Memory Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Catarina Cunha
- Memory Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Diana Duro
- Memory Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria R Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria C Pedroso de Lima
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana L Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Pourrajab F, Vakili Zarch A, Hekmatimoghaddam S, Zare-Khormizi MR. MicroRNAs; easy and potent targets in optimizing therapeutic methods in reparative angiogenesis. J Cell Mol Med 2015; 19:2702-14. [PMID: 26416208 PMCID: PMC4687703 DOI: 10.1111/jcmm.12669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The age‐related senescence of adult tissues is associated with the decreased level of angiogenic capability and with the development of a degenerative disease such as atherosclerosis which thereafter result in the deteriorating function of multiple systems. Findings indicate that tissue senescence not only diminishes repair processes but also promotes atherogenesis, serving as a double‐edged sword in the development and prognosis of ischaemia‐associated diseases. Evidence evokes microRNAs (miRNAs) as molecular switchers that underlie cellular events in different tissues. Here, miRNAs would promote new potential targets for optimizing therapeutic methods in blood flow recovery to the ischaemic area. Effectively beginning an ischaemia therapy, a more characteristic of miRNA changes in adult tissues is prerequisite and in the forefront. It may also be a preliminary phase in treatment strategies by stem cell‐based therapy.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Clinical Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abbas Vakili Zarch
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
15
|
Heldring N, Mäger I, Wood MJA, Le Blanc K, Andaloussi SEL. Therapeutic Potential of Multipotent Mesenchymal Stromal Cells and Their Extracellular Vesicles. Hum Gene Ther 2015; 26:506-17. [PMID: 26153722 DOI: 10.1089/hum.2015.072] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The therapeutic potential of mesenchymal stromal cells (MSCs) is evident by the number of new and ongoing trials targeting an impressive variety of conditions. In bone and cartilage repair, MSCs are expected to replace the damaged tissue, while in other therapies they modulate a therapeutic response by the secretion of bioactive molecules. MSCs possess a phenotypic plasticity and harbor an arsenal of bioactive molecules that can be released upon sensing signals in the local milieu either directly or packaged in extracellular vesicles (EVs). The reported paracrine effects comprise many of the important functions of MSCs, including supporting hematopoietic stem cells in the bone marrow, promoting angiogenesis, and modulating the immune system. The major drawback in MSC therapy is the incomplete understanding of cell fate following systemic administration as well as the mechanisms by which these cells correct disease. In this review we discuss what is known about MSC engraftment, hemocompatibility, and immunomodulation, as well as the potential of bringing the MSC-EV field toward a clinical translation.
Collapse
Affiliation(s)
- Nina Heldring
- 1 Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Imre Mäger
- 2 Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,3 Institute of Technology, University of Tartu , Tartu, Estonia
| | - Matthew J A Wood
- 2 Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Katarina Le Blanc
- 1 Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Samir E L Andaloussi
- 1 Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,2 Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
SDF-1/CXCR4 Axis Promotes MSCs to Repair Liver Injury Partially through Trans-Differentiation and Fusion with Hepatocytes. Stem Cells Int 2015; 2015:960387. [PMID: 26300925 PMCID: PMC4537768 DOI: 10.1155/2015/960387] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
MSCs have become a popular target for developing end-stage liver therapies. In this study, two models of bone marrow chimeric mice were used to construct the liver failure models. Then it was found that MSCs can transdifferentiate into hepatocyte-like cells and these hepatocyte-like cells can significantly express albumin. Furthermore it was also found that MSCs can fuse with the hepatocytes and these cells had the proliferation activity. However, the percentage of transdifferentiation was significantly higher than fusion. So it was considered that MSCs which transdifferentiated into hepatocyte-likes cells played important roles for repairing the injuring liver function.
Collapse
|
17
|
Jiang Y, Duan Y, Zhou H. MicroRNA-27a directly targets KRAS to inhibit cell proliferation in esophageal squamous cell carcinoma. Oncol Lett 2014; 9:471-477. [PMID: 25436011 PMCID: PMC4246996 DOI: 10.3892/ol.2014.2701] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 09/22/2014] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNA that negatively regulate gene expression levels by binding to the 3′-untranslated region of specific target mRNAs. To investigate the role of miR-27a in esophageal squamous cell carcinoma (ESCC), TargetScan software was used to predict the target gene of miR-27a. Kirsten rat sarcoma viral oncogene homolog (KRAS), which has been implicated as a regulator of cell proliferation, differentiation and transformation, was identified as a potential target gene of miR-27a and, thus, was the focus of the present study. Luciferase activity in cells transfected with miR-27a mimics was 48% lower when compared with that of the miRNA-negative control. Furthermore, expression levels of the K-ras protein were reduced by ≤50% in cells cotransfected with an expression vector containing miR-27a and miR-27a binding sequences, when compared with the control. The expression level of miR-27a was significantly lower in ESCC cell lines and tissues when compared with healthy esophageal epithelial cells and tissues. However, the expression level of the target gene, KRAS was upregulated and ESCC cell proliferation was significantly inhibited following miR-27a mimic or small interfering K-ras transfection. In conclusion, the present study demonstrated that the expression level of miR-27a was low in ESCC and that miR-27a directly targets the KRAS gene, resulting in inhibited cell proliferation in esophageal cancer.
Collapse
Affiliation(s)
- Yuzhi Jiang
- Department of Radiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yuting Duan
- Department of Radiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Haibin Zhou
- Department of Thoracic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
18
|
Morita M, Chen J, Fujino M, Kitazawa Y, Sugioka A, Zhong L, Li XK. Identification of microRNAs involved in acute rejection and spontaneous tolerance in murine hepatic allografts. Sci Rep 2014; 4:6649. [PMID: 25323448 PMCID: PMC5377586 DOI: 10.1038/srep06649] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/19/2014] [Indexed: 12/28/2022] Open
Abstract
Graft acceptance without the need for immunosuppressive drugs is the ultimate goal of transplantation therapy. In murine liver transplantation, allografts are accepted across major histocompatibility antigen complex barriers without the use of immunosuppressive drugs and constitute a suitable model for research on immunological rejection and tolerance. MicroRNA (miRNA) has been known to be involved in the immunological responses. In order to identify mRNAs in spontaneous liver allograft tolerance, miRNA expression in hepatic allografts was examined using this transplantation model. According to the graft pathological score and function, miR-146a, 15b, 223, 23a, 27a, 34a and 451 were upregulated compared with the expression observed in the syngeneic grafts. In contrast, miR-101a, 101b and 148a were downregulated. Our results demonstrated the alteration of miRNAs in the allografts and may indicate the role of miRNAs in the induction of tolerance after transplantation. Furthermore, our data suggest that monitoring the graft expression of novel miRNAs may allow clinicians to differentiate between rejection and tolerance. A better understanding of the tolerance inducing mechanism observed in murine hepatic allografts may provide a therapeutic strategy for attenuating allograft rejection.
Collapse
Affiliation(s)
- Miwa Morita
- 1] Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo [2] Department of Surgery, Fujita Health University School of Medicine, Aichi, Japan
| | - Jiajie Chen
- 1] Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo [2] Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Masayuki Fujino
- 1] Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo [2] AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yusuke Kitazawa
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo
| | - Atsushi Sugioka
- Department of Surgery, Fujita Health University School of Medicine, Aichi, Japan
| | - Liang Zhong
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo
| |
Collapse
|
19
|
Xu X, Xie G, Hu Y, Li X, Huang P, Zhang H. Neural differentiation of mesenchymal stem cells influences their chemotactic responses to stromal cell-derived factor-1α. Cell Mol Neurobiol 2014; 34:1047-58. [PMID: 25038638 PMCID: PMC11488909 DOI: 10.1007/s10571-014-0082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/01/2014] [Indexed: 01/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are proposed as a promising source for cell-based therapies in neural disease. Although increasing numbers of studies have been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic response and the differentiation status of these cells is still unclear. In the present study, we demonstrated that MSCs in varying neural differentiation states display various chemotactic responses to stromal cell-derived factor-1α (SDF-1α). The chemotactic responses of MSCs under different differentiation stages in response to SDF-1α were analyzed by Boyden chamber, and the results showed that cells of undifferentiation, 24-h preinduction, 5-h induction, and 18-h maintenance states displayed a stronger chemotactic response to SDF-1α, while 48-h maintenance did not. Further, we found that the phosphorylation levels of PI3K/Akt, ERK1/2, SAPK/JNK, and p38MAPK are closely related to the differentiation states of MSCs subjected to SDF-1α, and finally, inhibition of SAPK/JNK signaling significantly attenuates SDF-1α-stimulated transfilter migration of MSCs of undifferentiation, 24-h preinduction, 18-h maintenance, and 48-h maintenance, but not MSCs of 5-h induction. Meanwhile, interference with PI3K/Akt, p38MAPK, or ERK1/2 signaling prevents only cells at certain differentiation state from migrating in response to SDF-1α. Collectively, these results demonstrate that MSCs in varying neural differentiation states have different migratory capacities, thereby illuminating optimization of the therapeutic potential of MSCs to be used for neural regeneration after injury.
Collapse
Affiliation(s)
- Xiaojing Xu
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Guiqin Xie
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Ya’nan Hu
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Xianyang Li
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Ping Huang
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| | - Huanxiang Zhang
- Jiangsu Key Laboratory of Stem Cell Research, Department of Cell Biology, Medical College of Soochow University, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123 China
| |
Collapse
|
20
|
Huang Z, Shi T, Zhou Q, Shi S, Zhao R, Shi H, Dong L, Zhang C, Zeng K, Chen J, Zhang J. miR-141 Regulates colonic leukocytic trafficking by targeting CXCL12β during murine colitis and human Crohn's disease. Gut 2014; 63:1247-57. [PMID: 24000293 DOI: 10.1136/gutjnl-2012-304213] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Emerging evidence suggests that microRNA (miRNA)-mediated gene regulation influences a variety of autoimmune disease processes, including Crohn's disease (CD), but the biological function of miRNAs in CD remains unclear. We examine miRNA level in colon tissues and study the potential functions of miRNAs that regulate pathological genes during the inflammation process. DESIGN miRNA levels were assayed in the inflamed colon of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced and IL-10 knockout (KO) chronic colitis mice and CD patients by microarray or qRT-PCR. The influence of differently expressed miR-141 on its putative target genes, CXCL12β, and leukocyte migration was investigated in colonic epithelia cells, colitis models and CD patients. The role of miR-141 was further studied in the experimental colitis mice by intracolonic administration of miR-141 precursors or inhibitors. RESULTS An inverse correlation between miR-141 and CXCL12β/total-CXCL12 was observed predominantly in the epithelial cells of the inflamed colons from colitic mice and CD patients. Further study demonstrated that miR-141 directly regulated CXCL12β expression and CXCL12β-mediated leukocyte migration. Upregulation or downregulation of miR-141 in the TNBS-induced or IL-10 KO colitic colon regulated leukocyte infiltration and alleviated or aggravated experimental colitis, respectively. Additionally, colonic overexpression of CXCL12β abolished the therapeutic effect of miR-141 in TNBS-induced colitis. CONCLUSIONS This study showed that the pathway of miR-141 targeting CXCL12β is a possible mechanism underlying inflammatory cell trafficking during colonic inflammation process. Inhibiting colonic CXCL12β expression and blocking colonic immune cell recruitment by using miRNA precursors represents a promising approach that may be valuable for CD treatment.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tongguo Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Song Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ran Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hao Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chenyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ke Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Shin JH, Park YM, Kim DH, Moon GJ, Bang OY, Ohn T, Kim HH. Ischemic brain extract increases SDF-1 expression in astrocytes through the CXCR2/miR-223/miR-27b pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:826-36. [PMID: 24999035 DOI: 10.1016/j.bbagrm.2014.06.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 11/30/2022]
Abstract
Ischemic cerebral stroke is one of the leading global causes of mortality and morbidity. Ischemic preconditioning (IPC) refers to a sublethal ischemia and resulting in tolerance to subsequent severe ischemic injury. Although several pathways are reportedly involved in IPC-mediated neuroprotection, the functional role of astrocytes is not fully understood. Stromal cell-derived factor-1 (SDF-1), a CXC chemokine produced mainly in astrocytes, is a ligand for chemokine receptor CXCR4. SDF-1 is reported to play a critical role in neuroprotection after stroke by mediating the migration of neuronal progenitor cells. We hypothesized that stimuli derived from ischemic brain were involved in the protective effects of IPC. To investigate this hypothesis, the mechanism in which ischemic brain extract (IBE) induced SDF-1 expression was investigated in C6 astrocytoma cells. IBE treatment of C6 cells increased SDF-1 expression compared to that in untreated or normal brain extract (NBE)-treated cells by downregulating SDF-1 targeting miRNA, miR-27b. MiR-223 was inversely upregulated in IBE-treated cells; overexpression of miR-223 decreased the expression of miR-27b by suppressing IKKα expression. Analysis of cytokine array data revealed an IBE associated enhanced expression of CINC-1 (CXCL1) and LIX1 (CXCL5). Knockdown or inhibition of their receptor, CXCR2, abolished IBE-mediated increased expression of SDF-1. These results were confirmed in primary cultured astrocytes. Taken together, the data demonstrate that IBE-elicited signals increase SDF-1 expression through the CXCR2/miR-223/miR-27b pathway in C6 astrocytoma cells and primary astrocytes, supporting the view that increased expression of SDF-1 by ischemic insults is a possible mechanism underlying therapeutic application of IPC.
Collapse
Affiliation(s)
- Jin Hee Shin
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, South Korea; Samsung Biomedical Research Institute, Institute for Future Medicine, Samsung Medical Center, Seoul 135-710, South Korea
| | - Young Mi Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, South Korea; Samsung Biomedical Research Institute, Institute for Future Medicine, Samsung Medical Center, Seoul 135-710, South Korea
| | - Dong Hee Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, South Korea
| | - Gyeong Joon Moon
- Samsung Biomedical Research Institute, Institute for Future Medicine, Samsung Medical Center, Seoul 135-710, South Korea; Medical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | - Oh Young Bang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, South Korea; Department of Neurology, Samsung Medical Center, Seoul 135-710, South Korea
| | - Takbum Ohn
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju 501-759, South Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, South Korea; Samsung Biomedical Research Institute, Institute for Future Medicine, Samsung Medical Center, Seoul 135-710, South Korea.
| |
Collapse
|
22
|
Clark EA, Kalomoiris S, Nolta JA, Fierro FA. Concise review: MicroRNA function in multipotent mesenchymal stromal cells. Stem Cells 2014; 32:1074-82. [PMID: 24860868 PMCID: PMC10668871 DOI: 10.1002/stem.1623] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multipotent mesenchymal stromal cells (MSCs) are ideal candidates for different cellular therapies due to their simple isolation, extensive expansion potential, and low immunogenicity. For various therapeutic approaches, such as bone and cartilage repair, MSCs are expected to contribute by direct differentiation to replace the damaged tissue, while many other applications rely on the secretion of paracrine factors which modulate the immune response and promote angiogenesis. MicroRNAs (miRNAs), which target messenger RNA for cleavage or translational repression, have recently been shown to play critical functions in MSC to regulate differentiation, paracrine activity, and other cellular properties such as proliferation, survival, and migration. The global miRNA expression profile of MSC varies according to the tissue of origin, species, and detection methodology, while also certain miRNAs are consistently found in all types of MSC. The function in MSC of more than 60 different miRNAs has been recently described, which is the subject of this review. A special emphasis is given to miRNAs that have demonstrated a function in MSC in vivo. We also present in detail miRNAs with overlapping effects (i.e., common target genes) and discuss future directions to deepen our understanding of miRNA biology in MSC. These recent discoveries have opened the possibility of modulating miRNAs in MSC, in order to enhance their proregenerative, therapeutic potential.
Collapse
|
23
|
Martin HC, Wani S, Steptoe AL, Krishnan K, Nones K, Nourbakhsh E, Vlassov A, Grimmond SM, Cloonan N. Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biol 2014; 15:R51. [PMID: 24629056 PMCID: PMC4053950 DOI: 10.1186/gb-2014-15-3-r51] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/19/2014] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs (miRNAs) bind to mRNAs and target them for translational inhibition or transcriptional degradation. It is thought that most miRNA-mRNA interactions involve the seed region at the 5′ end of the miRNA. The importance of seed sites is supported by experimental evidence, although there is growing interest in interactions mediated by the central region of the miRNA, termed centered sites. To investigate the prevalence of these interactions, we apply a biotin pull-down method to determine the direct targets of ten human miRNAs, including four isomiRs that share centered sites, but not seeds, with their canonical partner miRNAs. Results We confirm that miRNAs and their isomiRs can interact with hundreds of mRNAs, and that imperfect centered sites are common mediators of miRNA-mRNA interactions. We experimentally demonstrate that these sites can repress mRNA activity, typically through translational repression, and are enriched in regions of the transcriptome bound by AGO. Finally, we show that the identification of imperfect centered sites is unlikely to be an artifact of our protocol caused by the biotinylation of the miRNA. However, the fact that there was a slight bias against seed sites in our protocol may have inflated the apparent prevalence of centered site-mediated interactions. Conclusions Our results suggest that centered site-mediated interactions are much more frequent than previously thought. This may explain the evolutionary conservation of the central region of miRNAs, and has significant implications for decoding miRNA-regulated genetic networks, and for predicting the functional effect of variants that do not alter protein sequence.
Collapse
|
24
|
Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. BIOMED RESEARCH INTERNATIONAL 2013; 2013:151679. [PMID: 24369528 PMCID: PMC3863471 DOI: 10.1155/2013/151679] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/20/2013] [Accepted: 10/20/2013] [Indexed: 12/17/2022]
Abstract
To evaluate the potential therapeutic effect of the infusion of hMSCs for the correction of liver injuries, we performed total body radiation exposure of NOD/SCID mice. After irradiation, mir-27b level decreases in liver, increasing the directional migration of hMSCs by upregulating SDF1α. A significant increase in plasmatic transaminases levels, apoptosis process in the liver vascular system, and in oxidative stress were observed. hMSC injection induced a decrease in transaminases levels and oxidative stress, a disappearance of apoptotic cells, and an increase in Nrf2, SOD gene expression, which might reduce ROS production in the injured liver. Engrafted hMSCs expressed cytokeratin CK18 and CK19 and AFP genes indicating possible hepatocyte differentiation. The presence of hMSCs expressing VEGF and Ang-1 in the perivascular region, associated with an increased expression of VEGFr1, r2 in the liver, can confer a role of secreting cells to hMSCs in order to maintain the endothelial function. To explain the benefits to the liver of hMSC engraftment, we find that hMSCs secreted NGF, HGF, and anti-inflammatory molecules IL-10, IL1-RA contributing to prevention of apoptosis, increasing cell proliferation in the liver which might correct liver dysfunction. MSCs are potent candidates to repair and protect healthy tissues against radiation damages.
Collapse
|
25
|
Study of microRNAs related to the liver regeneration of the whitespotted bamboo shark, Chiloscyllium plagiosum. BIOMED RESEARCH INTERNATIONAL 2013; 2013:795676. [PMID: 24151623 PMCID: PMC3789328 DOI: 10.1155/2013/795676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/28/2013] [Indexed: 12/23/2022]
Abstract
To understand the mechanisms of liver regeneration better to promote research examining liver diseases and marine biology, normal and regenerative liver tissues of Chiloscyllium plagiosum were harvested 0 h and 24 h after partial hepatectomy (PH) and used to isolate small RNAs for miRNA sequencing. In total, 91 known miRNAs and 166 putative candidate (PC) miRNAs were identified for the first time in Chiloscyllium plagiosum. Through target prediction and GO analysis, 46 of 91 known miRNAs were screened specially for cellular proliferation and growth. Differential expression levels of three miRNAs (xtr-miR-125b, fru-miR-204, and hsa-miR-142-3p_R-1) related to cellular proliferation and apoptosis were measured in normal and regenerating liver tissues at 0 h, 6 h, 12 h, and 24 h using real-time PCR. The expression of these miRNAs showed a rising trend in regenerative liver tissues at 6 h and 12 h but exhibited a downward trend compared to normal levels at 24 h. Differentially expressed genes were screened in normal and regenerating liver tissues at 24 h by DDRT-PCR, and ten sequences were identified. This study provided information regarding the function of genes related to liver regeneration, deepened the understanding of mechanisms of liver regeneration, and resulted in the addition of a significant number of novel miRNAs sequences to GenBank.
Collapse
|
26
|
Shu L, Zhang H, Boyce B, Xing L. Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration. J Bone Miner Res 2013; 28:1925-35. [PMID: 23553732 PMCID: PMC3749248 DOI: 10.1002/jbmr.1938] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/01/2013] [Accepted: 03/20/2013] [Indexed: 01/09/2023]
Abstract
Ubiquitin E3 ligase-mediated protein degradation promotes proteasomal degradation of key positive regulators of osteoblast functions. For example, the E3 ligases--SMAD-specific E3 ubiquitin protein ligase 1 (Smurf1), Itch, and WW domain-containing E3 ubiquitin protein ligase 1 (Wwp1)--promote degradation of Runt-related transcription factor 2 (Runx2), transcription factor jun-B (JunB), and chemokine (C-X-C) receptor type 4 (CXCR-4) proteins to inhibit their functions. However, the role of E3 ligases in age-associated bone loss is unknown. We found that the expression level of Wwp1, but not Smurf1 or Itch, was significantly increased in CD45-negative (CD45(-)) bone marrow-derived mesenchymal stem cells from 6-month-old and 12-month-old wild-type (WT) mice. Wwp1 knockout (Wwp1(-/-)) mice developed increased bone mass as they aged, associated with increased bone formation rates and normal bone resorption parameters. Bone marrow stromal cells (BMSCs) from Wwp1(-/-) mice formed increased numbers and areas of alkaline phosphatase(+) and Alizarin red(+) nodules and had increased migration potential toward chemokine (C-X-C motif) ligand 12 (CXCL12) gradients. Runx2, JunB, and CXCR-4 protein levels were significantly increased in Wwp1(-/-) BMSCs. Wwp1(-/-) BMSCs had increased amount of ubiquitinated JunB protein, but Runx2 ubiquitination was no change. Knocking down JunB in Wwp1(-/-) BMSCs returned Runx2 protein levels to that in WT cells. Thus, Wwp1 negatively regulates osteoblast functions by affecting both their migration and differentiation. Mechanisms designed to decrease Wwp1 levels in BMSCs may represent a new approach to prevent the decrease in osteoblastic bone formation associated with aging.
Collapse
Affiliation(s)
| | | | | | - Lianping Xing
- Correspondence to: Lianping Xing, Department of Pathology and Laboratory Medicine, 601 Elmwood Ave, Box 626, Rochester, NY 14642, USA. Phone (585) 273-4090, Fax (585) 756-4468,
| |
Collapse
|
27
|
Lü MH, Hu CJ, Chen L, Peng X, Chen J, Hu JY, Teng M, Liang GP. miR-27b represses migration of mouse MSCs to burned margins and prolongs wound repair through silencing SDF-1a. PLoS One 2013; 8:e68972. [PMID: 23894385 PMCID: PMC3718818 DOI: 10.1371/journal.pone.0068972] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 05/22/2013] [Indexed: 01/09/2023] Open
Abstract
Background Interactions between stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 are crucial for the recruitment of mesenchymal stem cells (MSCs) from bone marrow (BM) reservoirs to damaged tissues for repair during alarm situations. MicroRNAs are differentially expressed in stem cell niches, suggesting a specialized role in stem cell regulation. Here, we gain insight into the molecular mechanisms involved in regulating SDF-1α. Methods MSCs from green fluorescent protein transgenic male mice were transfused to irradiated recipient female C57BL/6 mice, and skin burn model of bone marrow-chimeric mice were constructed. Six miRNAs with differential expression in burned murine skin tissue compared to normal skin tissue were identified using microarrays and bioinformatics. The expression of miR-27b and SDF-1α was examined in burned murine skin tissue using quantitative real-time PCR (qPCR) and immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA). The Correlation of miR-27b and SDF-1α expression was analyzed by Pearson analysis Correlation. miRNAs suppressed SDF-1α protein expression by binding directly to its 3′UTR using western blot and luciferase reporter assay. The importance of miRNAs in MSCs chemotaxis was further estimated by decreasing SDF-1α in vivo and in vitro. Results miR-23a, miR-27a and miR-27b expression was significantly lower in the burned skin than in the normal skin (p<0.05). We also found that several miRNAs suppressed SDF-1α protein expression, while just miR-27a and miR-27b directly bound to the SDF-1α 3′UTR. Moreover, the forced over-expression of miR-27a and miR-27b significantly reduced the directional migration of mMSCs in vitro. However, only miR-27b in burn wound margins significantly inhibited the mobilization of MSCs to the epidermis. Conclusion miR-27b may be a unique signature of the stem cell niche in burned mouse skin and can suppress the directional migration of mMSCs by targeting SDF-1α by binding directly to its 3′UTR.
Collapse
Affiliation(s)
- Mu-Han Lü
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Chang-Jiang Hu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Ling Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xi Peng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Jian Chen
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
- * E-mail: (JC); (G-PL)
| | - Jiong-Yu Hu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Miao Teng
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Guang-Ping Liang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
- * E-mail: (JC); (G-PL)
| |
Collapse
|
28
|
CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair. J Surg Res 2013; 183:427-34. [DOI: 10.1016/j.jss.2013.01.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/16/2012] [Accepted: 01/10/2013] [Indexed: 12/29/2022]
|
29
|
Cao J, Cai J, Huang D, Han Q, Yang Q, Li T, Ding H, Wang Z. miR-335 represents an invasion suppressor gene in ovarian cancer by targeting Bcl-w. Oncol Rep 2013; 30:701-6. [PMID: 23708561 DOI: 10.3892/or.2013.2482] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/17/2013] [Indexed: 11/06/2022] Open
Abstract
microRNAs (miRNAs) are a class of non-coding small RNAs that bind to target mRNAs, usually resulting in post-transcriptional repression by translational inhibition or target degradation. mRNAs can function as tumor suppressors or oncogenes (also referred to as oncomirs) in human tumors. Although aberrant expression of miR-335 has been reported in ovarian cancer, whether it is an active participant or a mere bystander remains unknown. To clarify its role in ovarian carcinogenesis, we first examined the relative expression of miR-335 in 17 normal ovarian tissues and 4 ovarian cancer cell lines using qPCR. We found that miR-335 was downregulated in the ovarian cancer cell lines relative to normal ovarian epithelium tissues. In vitro, overexpression of miR-335 suppressed cell migration and invasion and resulted in depolymerization of F-actin in ovarian cancer cell lines, but exhibited a negligible effect on cell proliferation. B-cell CLL/lymphoma 2 like 2 (Bcl-w or BCL2L2), a pro-survival member of the Bcl-2 protein family, was identified as a potential target of miR-335 according to the results of bioinformatic analysis, and the expression of Bcl-w and its effector matrix metalloproteinase-2 (MMP‑2) was downregulated after transfection with miR-335 mimics. In addition, ectopic Bcl-w could almost fully nullify the effect of miR-335 overexpression on ovarian cancer cell migration and invasion. These findings indicate that the tiny genome product, miR-335, whose lack of expression brings about the abnormal accumulation of Bcl-w and subsequent unchecked cell invasion in ovarian cancer, may help us to understand one of the many steps ovarian cells take on their way toward the acquisition of malignant phenotypes and miR-335 may be a promising predictor of survival.
Collapse
Affiliation(s)
- Jin Cao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen KD, Goto S, Hsu LW, Lin TY, Nakano T, Lai CY, Chang YC, Weng WT, Kuo YR, Wang CC, Cheng YF, Ma YY, Lin CC, Chen CL. Identification of miR-27b as a novel signature from the mRNA profiles of adipose-derived mesenchymal stem cells involved in the tolerogenic response. PLoS One 2013; 8:e60492. [PMID: 23613728 PMCID: PMC3628792 DOI: 10.1371/journal.pone.0060492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/26/2013] [Indexed: 12/31/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (adipose-derived MSCs, ASCs) possess the ability to differentiate into multiple tissue types and have immune-modulatory properties similar to those of MSCs from other origins. However, the regulation of the MSC-elicited immune-modulatory activity by specific microRNA (miRNA) mechanisms remains unexplored. Gene expression profiling with knowledge-based functional enrichment analysis is an appropriate approach for unraveling these mechanisms. This tool can be used to examine the transcripts and miRNA regulators that differentiate the rat tolerogenic orthotopic liver transplantation (OLT; DA liver into PVG) and rejection OLT (DA liver into LEW) models. In both models, the rejection reaction was observed on postoperative day 7∼14 (rejection phase) but was overcome only by the PVG recipients. Thus, the global gene expression patterns of ASCs from spontaneously tolerant (PVG) and acute rejecting (LEW) rats in response to LPS activation were compared. In this study, we performed miRNA enrichment analysis based on the analysis of pathway, gene ontology (GO) terms and transcription factor binding site (TFBS) motif annotations. We found that the top candidate, miR-27, was specifically enriched and had the highest predicted frequency. We also identified a greater than 3-fold increase of miR-27b expression in the ASCs of tolerant recipients (DA to PVG) compared to those of rejecting recipients (DA to LEW) during the rejection phase in the rat OLT model. Furthermore, our data showed that miR-27b knockdown has a positive influence on the allosuppressive activity that inhibits T-cell proliferation. We found that miR-27 knockdown significantly induced the expression of CXCL12 in cultured ASCs and the expression of CXCL12 was responsible for the miR-27b antagomir-mediated inhibition of T-cell proliferation. These results, which through a series of comprehensive miRNA enrichment analyses, might be relevant for stem cell-based therapeutic applications in immunosuppressive function using ASCs.
Collapse
Affiliation(s)
- Kuang-Den Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shigeru Goto
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Iwao Hospital, Yufuin, Japan
| | - Li-Wen Hsu
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yang Lin
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Toshiaki Nakano
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Yun Lai
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Chen Chang
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Teng Weng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yur-Ren Kuo
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Chi Wang
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Fan Cheng
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Ying Ma
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Che Lin
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Long Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|