1
|
Patel D, Soni R, Shah J. Decoding the Role of Nuclear Sirtuins in Parkinson's Pathogenesis. ACS Chem Neurosci 2024. [PMID: 39331405 DOI: 10.1021/acschemneuro.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevailing degenerative disease that deals with dopaminergic neuronal loss and deficiency of dopamine in SNpc and striatum. Manifestations primarily include motor symptoms like tremor, rigidity, and akinesia/dyskinesia along with some nonmotor symptoms like GI and olfactory dysfunction. α-Synuclein pathogenesis is the major cause behind progression of PD; however there are many underlying molecular mechanisms behind the pathophysiology of PD. Sirtuins are small molecular deacetylases that have an imperative role in pathology of such neurodegenerative disorders like PD. Sirtuins are majorly classified according to their location; nuclear (SIRT1,7,6), mitochondrial sirtuins (SIRT3-5), and cytosolic (SIRT2). These actively take part in pathological development and possess independent actions. In this review, the role of nuclear sirtuins is individualistically explored for better understanding of PD pathology and development of advanced therapeutics targeting sirtuins.
Collapse
Affiliation(s)
- Dishank Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ritu Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| |
Collapse
|
2
|
DNA methylation regulates Sirtuin 1 expression in osteoarthritic chondrocytes. Adv Med Sci 2023; 68:101-110. [PMID: 36913826 DOI: 10.1016/j.advms.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/03/2022] [Accepted: 02/18/2023] [Indexed: 03/13/2023]
Abstract
PURPOSE Sirtuin 1 (SIRT1) comprises a major anti-aging longevity factor with multiple protective effects on chondrocyte homeostasis. Previous studies have reported that downregulation of SIRT1 is linked to osteoarthritis (OA) progression. In this study, we aimed to investigate the role of DNA methylation on SIRT1 expression regulation and deacetylase activity in human OA chondrocytes. MATERIALS AND METHODS Methylation status of SIRT1 promoter was analyzed in normal and OA chondrocytes using bisulfite sequencing analysis. CCAAT/enhancer binding protein alpha (C/EBPα) binding to SIRT1 promoter was assessed by chromatin immunoprecipitation (ChIP) assay. Subsequently, C/EBPα's interaction with SIRT1 promoter and SIRT1 expression levels were evaluated after treatment of OA chondrocytes with 5-Aza-2'-Deoxycytidine (5-AzadC). Acetylation and nuclear levels of nuclear factor kappa-B p65 subunit (NF-κΒp65) and expression levels of selected OA-related inflammatory mediators, interleukin 1β (IL-1β) and IL-6 and catabolic genes (metalloproteinase-1 (MMP-1) and MMP-9) were evaluated in 5-AzadC-treated OA chondrocytes with or without subsequent transfection with siRNA against SIRT1. RESULTS Hypermethylation of specific CpG dinucleotides on SIRT1 promoter was associated with downregulation of SIRT1 expression in OA chondrocytes. Moreover, we found decreased binding affinity of C/EBPα on the hypermethylated SIRT1 promoter. 5-AzadC treatment restored C/EBPα's transcriptional activity inducing SIRT1 upregulation in OA chondrocytes. Deacetylation of NF-κΒp65 in 5-AzadC-treated OA chondrocytes was prevented by siSIRT1 transfection. Similarly, 5-AzadC-treated OA chondrocytes exhibited decreased expression of IL-1β, IL-6, MMP-1 and MMP-9 which was reversed following 5-AzadC/siSIRT1 treatment. CONCLUSIONS Our results suggest the impact of DNA methylation on SIRT1 suppression in OA chondrocytes contributing to OA pathogenesis.
Collapse
|
3
|
Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Elekhnawy E. SIRT1 pathway in Parkinson's disease: a faraway snapshot but so close. Inflammopharmacology 2023; 31:37-56. [PMID: 36580159 PMCID: PMC9957916 DOI: 10.1007/s10787-022-01125-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Silent information regulator (SIRT) has distinctive enzymatic activities and physiological functions to control cell-cycle progression, gene expression, and DNA stability by targeting histone and non-histone proteins. SIRT1 enhances synaptic formation and synaptic activity, and therefore, can reduce the progression of various degenerative brain diseases including Parkinson's disease (PD). SIRT1 activity is decreased by aging with a subsequent increased risk for the development of degenerative brain diseases. Inhibition of SIRT1 promotes inflammatory reactions since SIRT1 inhibits transcription of nuclear factor kappa B (NF-κB) which also inhibits SIRT1 activation via activation of microRNA and miR-34a which reduce NAD synthesis. SIRT1 is highly expressed in microglia as well as neurons, and has antioxidant and anti-inflammatory effects. Therefore, this review aimed to find the possible role of SIRT1 in PD neuropathology. SIRT1 has neuroprotective effects; therefore, downregulation of SIRT1 during aging promotes p53 expression and may increase the vulnerability of neuronal cell deaths. PD neuropathology is linked with the sequence of inflammatory changes and the release of pro-inflammatory cytokines due to the activation of inflammatory signaling pathways. In addition, oxidative stress, inflammatory disorders, mitochondrial dysfunction, and apoptosis contribute mutually to PD neuropathology. Thus, SIRT1 and SIRT1 activators play a crucial role in the mitigation of PD neuropathology through the amelioration of oxidative stress, inflammatory disorders, mitochondrial dysfunction, apoptosis, and inflammatory signaling pathways.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
4
|
Pang S, Zhang Z, Zhou Y, Zhang J, Yan B. Genetic Variants of SIRT1 Gene Promoter in Type 2 Diabetes. Int J Endocrinol 2023; 2023:6919275. [PMID: 36747995 PMCID: PMC9899147 DOI: 10.1155/2023/6919275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/29/2023] Open
Abstract
Type 2 diabetes (T2D) is a highly heterogeneous and polygenic disease. To date, genetic causes and underlying mechanisms for T2D remain unclear. SIRT1, one member of highly conserved NAD-dependent class III deacetylases, has been implicated in many human diseases. Accumulating evidence indicates that SIRT1 is involved in insulin resistance and impaired pancreatic β-cell function, the two hallmarks of T2D. Thus, we speculated that altered SIRT1 levels, resulting from the genetic variants within its regulatory region of SIRT1 gene, may contribute to the T2D development. In this study, the SIRT1 gene promoter was genetically analyzed in T2D patients (n = 218) and healthy controls (n = 358). A total of 20 genetic variants, including 7 single-nucleotide polymorphisms (SNPs), were identified. Five heterozygous genetic variants (g.4114-15InsA, g.4801G > A, g.4816G > C, g.4934G > T, and g.4963_64Ins17bp) and one SNP (g.4198A > C (rs35706870)) were identified in T2D patients, but in none of the controls. The frequencies of two SNPs (g.4540A > G (rs3740051) (OR: 1.75, 95% CI: 1.24-2.47, P < 0.001 in dominant genetic model) and g.4821G > T (rs35995735)) (OR: 3.58, 95% CI: 1.94-6.60, P < 0.001 in dominant genetic model) were significantly higher in T2D patients. Further association and haplotype analyses confirmed that these two SNPs were strongly linked, contributing to the T2D (OR: 1.442, 95% CI: 1.080-1.927, P < 0.05). Moreover, most of the genetic variants identified in T2D were disease-specific. Taken together, the genetic variants within SIRT1 gene promoter might contribute to the T2D development by altering SIRT1 levels. Underlying molecular mechanism needs to be further explored.
Collapse
Affiliation(s)
- Shuchao Pang
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Zhengjun Zhang
- Division of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yu Zhou
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jie Zhang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Dongcheng, Beijing 100730, China
| | - Bo Yan
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
5
|
SRT1720 as an SIRT1 activator for alleviating paraquat-induced models of Parkinson's disease. Redox Biol 2022; 58:102534. [DOI: 10.1016/j.redox.2022.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
|
6
|
Afzaal A, Rehman K, Kamal S, Akash MSH. Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions. J Biochem Mol Toxicol 2022; 36:e23047. [PMID: 35297126 DOI: 10.1002/jbt.23047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Sirtuins (SIRT1-7) are distinct histone deacetylases (HDACs) whose activity is determined by cellular metabolic status andnicotinamide adenine dinucleotide (NAD+ ) levels. HDACs of class III are the members of the SIRT's protein family. SIRTs are the enzymes that modulate mitochondrial activity and energy metabolism. SIRTs have been linked to a number of clinical and physiological operations, such as energy responses to low-calorie availability, aging, stress resistance, inflammation, and apoptosis. Mammalian SIRT2 orthologs have been identified as SIRT1-7 that are found in several subcellular sections, including the cytoplasm (SIRT1, 2), mitochondrial matrix (SIRT3, 4, 5), and the core (SIRT1, 2, 6, 7). For their deacetylase or ADP-ribosyl transferase action, all SIRTs require NAD+ and are linked to cellular energy levels. Evolutionarily, SIRT1 is related to yeast's SIRT2 as well as received primary attention in the circulatory system. An endogenous protein, SIRT1 is involved in the development of heart failure and plays a key role in cell death and survival. SIRT2 downregulation protects against ischemic-reperfusion damage. Increase in human longevity is caused by an increase in SIRT3 expression. Cardiomyocytes are also protected by SIRT3 from oxidative damage and aging, as well as suppressing cardiac hypertrophy. SIRT4 and SIRT5 perform their roles in the heart. SIRT6 has also been linked to a reduction in heart hypertrophy. SIRT7 is known to be involved in the regulation of stress responses and apoptosis in the heart.
Collapse
Affiliation(s)
- Ammara Afzaal
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
7
|
Onaolapo OJ, Odeniyi AO, Onaolapo AY. Parkinson's Disease: Is there a Role for Dietary and Herbal Supplements? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 20:343-365. [PMID: 33602107 DOI: 10.2174/1871527320666210218082954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's Disease (PD) is characterised by degeneration of the neurons of the nigrostriatal dopaminergic pathway of the brain. The pharmacological cornerstone of PD management is mainly the use of dopamine precursors, dopamine receptor agonists, and agents that inhibit the biochemical degradation of dopamine. While these drugs initially provide relief to the symptoms and improve the quality of life of the patients, progression of the underlying pathological processes, such as oxidative stress and neuroinflammation (which have been strongly associated with PD and other neurodegenerative disorders), eventually reduce their benefits, making further benefits achievable, only at high doses due to which the magnitude and frequency of side-effects are amplified. Also, while it is becoming obvious that mainstream pharmacological agents may not always provide the much-needed answer, the question remains what succour can nature provide through dietary supplements, nutraceuticals and herbal remedies? This narrative review examines current literature for evidence of the possible roles (if any) of nutraceuticals, dietary supplements and herbal remedies in the prevention or management of PD by examining how these compounds could modulate key factors and pathways that are crucial to the pathogenesis and/or progression of PD. The likely limitations of this approach and its possible future roles in PD prevention and management are also considered.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Ademola O Odeniyi
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
8
|
Pukhalskaia AE, Diatlova AS, Linkova NS, Kvetnoy IM. Sirtuins: Role in the Regulation of Oxidative Stress and the Pathogenesis of Neurodegenerative Diseases. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:164-174. [DOI: 10.1007/s11055-022-01217-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/23/2020] [Accepted: 09/28/2020] [Indexed: 01/03/2025]
|
9
|
Saygisever K, Faikoglu G, Celik H, Ugur SA, Gokhan Akk A, Kelicen-Ug P, Ozyazgan S. Effect of Three PDEIs on Neuroprotective and Autophagy Proteins in vitro AD Model. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.169.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Sherin F, Gomathy S, Antony S. Sirtuin3 in Neurological Disorders. Curr Drug Res Rev 2020; 13:140-147. [PMID: 33290206 DOI: 10.2174/2589977512666201207200626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/16/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Sirtuins are NAD+ dependent enzymes that have a predominant role in neurodegenerative disorders and also regulate the inflammatory process, protein aggregation, etc. The relation between Sirtuins with that of the nervous system and neurodegeneration are widely studied consequently. Sirtuins have a strong role in metabolic syndrome in mitochondria also. The activities of Sirtuins can be altered by using small molecules that would be developed into drugs and it is proven that manipulation of SIRT1 activity influences neurodegenerative disease models. They are especially thrilling since using small molecules, which would be developed into a drug, it is feasible to alter the activities of sirtuins. Different functions of Sirtuins are depended upon their subcellular localization. In this review paper, we are discussing different Sirtuins, differential expression of sirtuins, and expression of sirtuin in the brain and briefly about sirtuin3 (SIRT3).
Collapse
Affiliation(s)
- Farhath Sherin
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty,. India
| | - S Gomathy
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty,. India
| | - Shanish Antony
- Department of Pharmacy, Govt. Medical College of Pharmaceutical Sciences, Kerala University of Health Sciences, Kottayam, . India
| |
Collapse
|
11
|
Li X, Feng Y, Wang XX, Truong D, Wu YC. The Critical Role of SIRT1 in Parkinson's Disease: Mechanism and Therapeutic Considerations. Aging Dis 2020; 11:1608-1622. [PMID: 33269110 PMCID: PMC7673849 DOI: 10.14336/ad.2020.0216] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/16/2020] [Indexed: 12/13/2022] Open
Abstract
Silence information regulator 1 (SIRT1), a member of the sirtuin family, targets histones and many non-histone proteins and participates in various physiological functions. The enzymatic activity of SIRT1 is decreased in patients with Parkinson’s disease (PD), which may reduce their ability to resist neuronal damage caused by various neurotoxins. As far as we know, SIRT1 can induce autophagy by regulating autophagy related proteins such as AMP-activated protein kinase, light chain 3, mammalian target of rapamycin, and forkhead transcription factor 1. Furthermore, SIRT1 can regulate mitochondrial function and inhibit oxidative stress mainly by maintaining peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in a deacetylated state and thus maintaining a constant level of PGC-1α. Other studies have demonstrated that SIRT1 may play a role in the pathophysiology of PD by regulating neuroinflammation. SIRT1 deacetylases nuclear factor-kappa B and thus reduces its transcriptional activity, inhibits inducible nitric oxide synthase expression, and decreases tumor necrosis factor-alpha and interleukin-6 levels. SIRT1 can also upregulate heat shock protein 70 by deacetylating heat shock factor 1 to increase the degradation of α-synuclein oligomers. Few studies have focused on the relationship between SIRT1 single nucleotide polymorphisms and PD risk, so this topic requires further research. Based on the neuroprotective effects of SIRT1 on PD, many in vitro and in vivo experiments have demonstrated that some SIRT1 activators, notably resveratrol, have potential neuroprotective effects against dopaminergic neuronal damage caused by various neurotoxins. Thus, SIRT1 plays a critical role in PD development and might be a potential target for PD therapy.
Collapse
Affiliation(s)
- Xuan Li
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ya Feng
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xi-Xi Wang
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daniel Truong
- 2The Truong Neurosciences Institute, Orange Coast Memorial Medical Center, Fountain Valley, CA, USA.,3Department of Neurosciences and Psychiatry, University of California, Riverside, CA, USA
| | - Yun-Cheng Wu
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
12
|
Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front Neurosci 2020; 14:863. [PMID: 32982666 PMCID: PMC7483585 DOI: 10.3389/fnins.2020.00863] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disease in which environmental conditions and several genes play an important role in the development of this disease. Obesity is associated with neurodegenerative diseases (Alzheimer, Parkinson, and Huntington diseases) and with neurodevelopmental diseases (autism disorder, schizophrenia, and fragile X syndrome). Some of the environmental conditions that lead to obesity are physical activity, alcohol consumption, socioeconomic status, parent feeding behavior, and diet. Interestingly, some of these environmental conditions are shared with neurodegenerative and neurodevelopmental diseases. Obesity impairs neurodevelopment abilities as memory and fine-motor skills. Moreover, maternal obesity affects the cognitive function and mental health of the offspring. The common biological mechanisms involved in obesity and neurodegenerative/neurodevelopmental diseases are insulin resistance, pro-inflammatory cytokines, and oxidative damage, among others, leading to impaired brain development or cell death. Obesogenic environmental conditions are not the only factors that influence neurodegenerative and neurodevelopmental diseases. In fact, several genes implicated in the leptin-melanocortin pathway (LEP, LEPR, POMC, BDNF, MC4R, PCSK1, SIM1, BDNF, TrkB, etc.) are associated with obesity and neurodegenerative and neurodevelopmental diseases. Moreover, in the last decades, the discovery of new genes associated with obesity (FTO, NRXN3, NPC1, NEGR1, MTCH2, GNPDA2, among others) and with neurodegenerative or neurodevelopmental diseases (APOE, CD38, SIRT1, TNFα, PAI-1, TREM2, SYT4, FMR1, TET3, among others) had opened new pathways to comprehend the common mechanisms involved in these diseases. In conclusion, the obesogenic environmental conditions, the genes, and the interaction gene-environment would lead to a better understanding of the etiology of these diseases.
Collapse
Affiliation(s)
- María Teresa Flores-Dorantes
- Laboratorio de Biología Molecular y Farmacogenómica, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Yael Efren Díaz-López
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
13
|
Investigation of the Effect of the SIRT1 Gene Polymorphisms in Parkinson's Disease. ANADOLU KLINIĞI TIP BILIMLERI DERGISI 2020. [DOI: 10.21673/anadoluklin.702828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Lee IH. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp Mol Med 2019; 51:1-11. [PMID: 31492861 PMCID: PMC6802627 DOI: 10.1038/s12276-019-0302-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence has indicated that sirtuins are key components of diverse physiological processes, including metabolism and aging. Sirtuins confer protection from a wide array of metabolic and age-related diseases, such as cancer, cardiovascular and neurodegenerative diseases. Recent studies have also suggested that sirtuins regulate autophagy, a protective cellular process for homeostatic maintenance in response to environmental stresses. Here, we describe various biological and pathophysiological processes regulated by sirtuin-mediated autophagy, focusing on cancer, heart, and liver diseases, as well as stem cell biology. This review also emphasizes key molecular mechanisms by which sirtuins regulate autophagy. Finally, we discuss novel insights into how new therapeutics targeting sirtuin and autophagy may potentially lead to effective strategies to combat aging and aging-related diseases.
Collapse
Affiliation(s)
- In Hye Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
15
|
Xu J, Jackson CW, Khoury N, Escobar I, Perez-Pinzon MA. Brain SIRT1 Mediates Metabolic Homeostasis and Neuroprotection. Front Endocrinol (Lausanne) 2018; 9:702. [PMID: 30532738 PMCID: PMC6265504 DOI: 10.3389/fendo.2018.00702] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Sirtuins are evolutionarily conserved proteins that use nicotinamide adenine dinucleotide (NAD+) as a co-substrate in their enzymatic reactions. There are seven proteins (SIRT1-7) in the human sirtuin family, among which SIRT1 is the most conserved and characterized. SIRT1 in the brain, in particular, within the hypothalamus, plays crucial roles in regulating systemic energy homeostasis and circadian rhythm. Apart from this, SIRT1 has also been found to mediate beneficial effects in neurological diseases. In this review, we will first summarize how SIRT1 in the brain relates to obesity, type 2 diabetes, and circadian synchronization, and then we discuss the neuroprotective roles of brain SIRT1 in the context of cerebral ischemia and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jing Xu
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charlie W. Jackson
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nathalie Khoury
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Iris Escobar
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
16
|
Fujita Y, Yamashita T. Sirtuins in Neuroendocrine Regulation and Neurological Diseases. Front Neurosci 2018; 12:778. [PMID: 30416425 PMCID: PMC6213750 DOI: 10.3389/fnins.2018.00778] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Silent information regulator 1 (SIRT1) is a mammalian homolog of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin family. Sirtuin was originally studied as the lifespan-extending gene, silent information regulator 2 (SIRT2) in budding yeast. There are seven mammalian homologs of sirtuin (SIRT1–7), and SIRT1 is the closest homolog to SIRT2. SIRT1 modulates various key targets via deacetylation. In addition to histones, these targets include transcription factors, such as forkhead box O (FOXO), Ku70, p53, NF-κB, PPAR-gamma co-activator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor γ (PPARγ). SIRT1 has many biological functions, including aging, cell survival, differentiation, and metabolism. Genetic and physiological analyses in animal models have shown beneficial roles for SIRT1 in the brain during both development and adulthood. Evidence from in vivo and in vitro studies have revealed that SIRT1 regulates the cellular fate of neural progenitors, axon elongation, dendritic branching, synaptic plasticity, and endocrine function. In addition to its importance in physiological processes, SIRT1 has also been implicated in protection of neurons from degeneration in models of neurological diseases, such as traumatic brain injury and Alzheimer’s disease. In this review, we focus on the role of SIRT1 in the neuroendocrine system and neurodegenerative diseases. We also discuss the potential therapeutic implications of targeting the sirtuin pathway.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
17
|
Disruption of the Circadian Clock Alters Antioxidative Defense via the SIRT1-BMAL1 Pathway in 6-OHDA-Induced Models of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4854732. [PMID: 29849897 PMCID: PMC5932489 DOI: 10.1155/2018/4854732] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is known to involve circadian dysfunction and oxidative stress. Although antioxidative defense is regulated by the molecular circadian clock, few studies have examined their function in PD and their regulation by silent information regulator 1 (SIRT1). We hypothesize that reduced antioxidative activity in models of PD results from dysfunction of the molecular circadian clock via the SIRT1 pathway. We treated rats and SH-SY5Y cells with 6-hydroxydopamine (6-OHDA) and measured the expression of core circadian clock and associated nuclear receptor genes using real-time quantitative PCR as well as levels of SIRT1, brain and muscle Arnt-like protein 1 (BMAL1), and acetylated BMAL1 using Western blotting. We found that 6-OHDA treatment altered the expression patterns of clock and antioxidative molecules in vivo and in vitro. We also detected an increased ratio of acetylated BMAL1:BMAL1 and a decreased level of SIRT1. Furthermore, resveratrol, an activator of SIRT1, decreased the acetylation of BMAL1 and inhibited its binding with CRY1, thereby reversing the impaired antioxidative activity induced by 6-OHDA. These results suggest that a dysfunctional circadian clock contributes to an abnormal antioxidative response in PD via a SIRT1-dependent BMAL1 pathway.
Collapse
|
18
|
Hedya SA, Safar MM, Bahgat AK. Cilostazol Mediated Nurr1 and Autophagy Enhancement: Neuroprotective Activity in Rat Rotenone PD Model. Mol Neurobiol 2018; 55:7579-7587. [DOI: 10.1007/s12035-018-0923-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
19
|
Mitochondrial Respiration in Intact Peripheral Blood Mononuclear Cells and Sirtuin 3 Activity in Patients with Movement Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9703574. [PMID: 29081897 PMCID: PMC5610844 DOI: 10.1155/2017/9703574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Mitochondrial dysfunction is considered a unifying pathophysiological explanation for movement disorders. Sirtuin 3 (SIRT3) exhibits deacetylase activity and antioxidant properties. The aim of the study was to analyze the mitochondrial respiration in peripheral blood mononuclear cells (PBMCs) and the SIRT3 activity in patients with movement disorders. METHODS Mitochondrial respiration was analyzed in intact PBMCs using the ROUTINE, LEAK, electron transfer system (ETS), and residual oxygen consumption (ROX) protocol by means of high-resolution respirometry. The SIRT3 expression and PBMC activity were measured using fluorometry. Ultrasound measurements of the echogenicity of the substantia nigra and the diameter of the 3rd ventricle were also performed. RESULTS Patients with movement disorders exhibited a lower ROUTINE respiration than controls (P = 0.0237). Reduced oxygen fluxes in the LEAK (P = 0.033) and ROX (P = 0.0486) states were observed in patients with movement disorders compared with controls. Decreased ROUTINE respiration (P = 0.007) and oxygen flux in the LEAK state (P = 0.0203) were observed in patients with PD with substantia nigra hyperechogenicity compared with controls. Decreased SIRT 3 deacetylase activity was found in patients with movement disorders. CONCLUSION Impaired mitochondrial respiration in intact PBMCs was associated with inhibited SIRT3 activity and neurodegeneration measures evaluated using ultrasound in patients with PD.
Collapse
|
20
|
Kouloulia S, Lazaridou M, Christopoulos TK, Ioannou PC. Multi-allele dipstick assay for visual genotyping of four novel SIRT1 gene variant alleles as candidate biomarkers for sporadic Parkinson disease. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2252-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Jęśko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders. Neurochem Res 2016; 42:876-890. [PMID: 27882448 PMCID: PMC5357501 DOI: 10.1007/s11064-016-2110-y] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Sirtuins (SIRT1-SIRT7) are unique histone deacetylases (HDACs) whose activity depends on NAD+ levels and thus on the cellular metabolic status. SIRTs regulate energy metabolism and mitochondrial function. They orchestrate the stress response and damage repair. Through these functions sirtuins modulate the course of aging and affect neurodegenerative diseases. SIRTSs interact with multiple signaling proteins, transcription factors (TFs) and poly(ADP-ribose) polymerases (PARPs) another class of NAD+-dependent post-translational protein modifiers. The cross-talk between SIRTs TFs and PARPs is a highly promising research target in a number of brain pathologies. This review describes updated results on sirtuins in brain aging/neurodegeneration. It focuses on SIRT1 but also on the roles of mitochondrial SIRTs (SIRT3, 4, 5) and on SIRT6 and SIRT2 localized in the nucleus and in cytosol, respectively. The involvement of SIRTs in regulation of insulin-like growth factor signaling in the brain during aging and in Alzheimer's disease was also focused. Moreover, we analyze the mechanism(s) and potential significance of interactions between SIRTs and several TFs in the regulation of cell survival and death. A critical view is given on the application of SIRT activators/modulators in therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| | - Przemysław Wencel
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland.
| | - Joanna B Strosznajder
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| |
Collapse
|
22
|
Buler M, Andersson U, Hakkola J. Who watches the watchmen? Regulation of the expression and activity of sirtuins. FASEB J 2016; 30:3942-3960. [PMID: 27591175 DOI: 10.1096/fj.201600410rr] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023]
Abstract
Sirtuins (SIRT1-7) are a family of nicotine adenine dinucleotide (NAD+)-dependent enzymes that catalyze post-translational modifications of proteins. Together, they regulate crucial cellular functions and are traditionally associated with aging and longevity. Dysregulation of sirtuins plays an important role in major diseases, including cancer and metabolic, cardiac, and neurodegerative diseases. They are extensively regulated in response to a wide range of stimuli, including nutritional and metabolic challenges, inflammatory signals or hypoxic and oxidative stress. Each sirtuin is regulated individually in a tissue- and cell-specific manner. The control of sirtuin expression involves all the major points of regulation, including transcriptional and post-translational mechanisms and microRNAs. Collectively, these mechanisms control the protein levels, localization, and enzymatic activity of sirtuins. In many cases, the regulators of sirtuin expression are also their substrates, which lead to formation of intricate regulatory networks and extensive feedback loops. In this review, we highlight the mechanisms mediating the physiologic and pathologic regulation of sirtuin expression and activity. We also discuss the consequences of this regulation on sirtuin function and cellular physiology.-Buler, M., Andersson, U., Hakkola, J. Who watches the watchmen? Regulation of the expression and activity of sirtuins.
Collapse
Affiliation(s)
- Marcin Buler
- Drug Safety and Metabolism, AstraZeneca R&D, Göteborg, Sweden
| | - Ulf Andersson
- Drug Safety and Metabolism, AstraZeneca R&D, Göteborg, Sweden
| | - Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; and .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
23
|
Chen Z, Zhai Y, Zhang W, Teng Y, Yao K. Single Nucleotide Polymorphisms of the Sirtuin 1 (SIRT1) Gene are Associated With age-Related Macular Degeneration in Chinese Han Individuals: A Case-Control Pilot Study. Medicine (Baltimore) 2015; 94:e2238. [PMID: 26656366 PMCID: PMC5008511 DOI: 10.1097/md.0000000000002238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To investigate whether 3 variants in sirtuin 1 (SIRT1) gene contributed differently in patients with age-related macular degeneration (AMD) in a Chinese Han population.We conducted a case-control study in a group of Chinese patients with AMD (n = 253) and contrasted the results against a control group (n = 292). Three single nucleotide polymorphisms (SNPs) of SIRT1 gene including rs12778366, rs3740051, and rs4746720 were genotyped using improved multiplex ligase detection reaction. The association between targeted SNPs and AMD was then analyzed by codominant, dominant, recessive, and allelic models.The genotyping data of rs12778366, rs3740051, and rs4746720 revealed significant deviations from Hardy-Weinberg equilibrium tests in the AMD group but not in the control group.We detected significantly differences of rs12778366 allele distribution between 2 groups in recessive and codominant model (P < 0.05). Homozygous carriers of the risk allele C displayed a higher chance of developing AMD (P = 0.036, odds ratio = 3.227; 95% confidence interval: 1.015-10.265).Our study, for the first time, raises the possibility that genetic variations of SIRT1 could be implicated in the pathophysiology of AMD in the Chinese Han population.
Collapse
Affiliation(s)
- Zhiqing Chen
- From the Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China (ZC, YZ, YT, KY); Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China (ZC, YZ, YT, KY); and Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China (WZ)
| | | | | | | | | |
Collapse
|
24
|
Sirtuins and proteolytic systems: implications for pathogenesis of synucleinopathies. Biomolecules 2015; 5:735-57. [PMID: 25946078 PMCID: PMC4496694 DOI: 10.3390/biom5020735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
Insoluble and fibrillar forms of α-synuclein are the major components of Lewy bodies, a hallmark of several sporadic and inherited neurodegenerative diseases known as synucleinopathies. α-Synuclein is a natural unfolded and aggregation-prone protein that can be degraded by the ubiquitin-proteasomal system and the lysosomal degradation pathways. α-Synuclein is a target of the main cellular proteolytic systems, but it is also able to alter their function further, contributing to the progression of neurodegeneration. Aging, a major risk for synucleinopathies, is associated with a decrease activity of the proteolytic systems, further aggravating this toxic looping cycle. Here, the current literature on the basic aspects of the routes for α-synuclein clearance, as well as the consequences of the proteolytic systems collapse, will be discussed. Finally, particular focus will be given to the sirtuins’s role on proteostasis regulation, since their modulation emerged as a promising therapeutic strategy to rescue cells from α-synuclein toxicity. The controversial reports on the potential role of sirtuins in the degradation of α-synuclein will be discussed. Connection between sirtuins and proteolytic systems is definitely worth of further studies to increase the knowledge that will allow its proper exploration as new avenue to fight synucleinopathies.
Collapse
|
25
|
Morató L, Ruiz M, Boada J, Calingasan NY, Galino J, Guilera C, Jové M, Naudí A, Ferrer I, Pamplona R, Serrano M, Portero-Otín M, Beal MF, Fourcade S, Pujol A. Activation of sirtuin 1 as therapy for the peroxisomal disease adrenoleukodystrophy. Cell Death Differ 2015; 22:1742-53. [PMID: 25822341 DOI: 10.1038/cdd.2015.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/16/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress and mitochondrial failure are prominent factors in the axonal degeneration process. In this study, we demonstrate that sirtuin 1 (SIRT1), a key regulator of the mitochondrial function, is impaired in the axonopathy and peroxisomal disease X-linked adrenoleukodystrophy (X-ALD). We have restored SIRT1 activity using a dual strategy of resveratrol treatment or by the moderate transgenic overexpression of SIRT1 in a X-ALD mouse model. Both strategies normalized redox homeostasis, mitochondrial respiration, bioenergetic failure, axonal degeneration and associated locomotor disabilities in the X-ALD mice. These results indicate that the reactivation of SIRT1 may be a valuable strategy to treat X-ALD and other axonopathies in which the control of redox and energetic homeostasis is impaired.
Collapse
Affiliation(s)
- L Morató
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER) ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - M Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER) ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - J Boada
- Experimental Medicine Department, University of Lleida-IRBLleida, 25008 Lleida, Spain
| | - N Y Calingasan
- Department of Neurology and Neuroscience, Weill Cornell Medical College, 1006 New York, USA
| | - J Galino
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER) ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - C Guilera
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER) ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - M Jové
- Experimental Medicine Department, University of Lleida-IRBLleida, 25008 Lleida, Spain
| | - A Naudí
- Experimental Medicine Department, University of Lleida-IRBLleida, 25008 Lleida, Spain
| | - I Ferrer
- Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED) ISCIII, Spain
| | - R Pamplona
- Experimental Medicine Department, University of Lleida-IRBLleida, 25008 Lleida, Spain
| | - M Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - M Portero-Otín
- Experimental Medicine Department, University of Lleida-IRBLleida, 25008 Lleida, Spain
| | - M F Beal
- Department of Neurology and Neuroscience, Weill Cornell Medical College, 1006 New York, USA
| | - S Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER) ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - A Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER) ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
26
|
Uversky VN. Intrinsically disordered proteins and their (disordered) proteomes in neurodegenerative disorders. Front Aging Neurosci 2015; 7:18. [PMID: 25784874 PMCID: PMC4345837 DOI: 10.3389/fnagi.2015.00018] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 12/14/2022] Open
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida Tampa, FL, USA ; Biology Department, Faculty of Science, King Abdulaziz University Jeddah, Saudi Arabia ; Institute for Biological Instrumentation, Russian Academy of Sciences Pushchino, Russia ; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences St. Petersburg, Russia
| |
Collapse
|
27
|
Functional sequence variants within the SIRT1 gene promoter in indirect inguinal hernia. Gene 2014; 546:1-5. [DOI: 10.1016/j.gene.2014.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 12/17/2022]
|
28
|
SIRT1 promoter polymorphisms as clinical modifiers on systemic lupus erythematosus. Mol Biol Rep 2014; 41:4233-9. [DOI: 10.1007/s11033-014-3294-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 02/13/2014] [Indexed: 01/11/2023]
|
29
|
Wang T, Wang B. Association between Glutathione S-transferase M1/Glutathione S-transferase T1 polymorphisms and Parkinson's disease: a meta-analysis. J Neurol Sci 2013; 338:65-70. [PMID: 24382428 DOI: 10.1016/j.jns.2013.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/03/2013] [Accepted: 12/10/2013] [Indexed: 01/28/2023]
Abstract
The Glutathione S-transferase M1 (GSTM1) and Glutathione S-transferase T1 (GSTT1) genes have been studied extensively as potential candidate genes for the risk of Parkinson's disease (PD). However, direct evidence from genetic association studies remains inconclusive. In order to address this issue, we performed an updated and refined meta-analysis to determine the effect of GSTM1 and GSTT1 polymorphisms on Parkinson's disease. A fixed-effect model was utilized to calculate the combined odds ratio (OR), OR of different ethnicities, and 95% confidence intervals (CIs). Potential publication bias was estimated. Homogeneity of the included studies was also evaluated. The pooled OR was 1.13 [95% CI (1.03, 1.24)] and 0.96 [95% CI (0.82, 1.12)] for GSTM1 and GSTT1 polymorphisms, respectively. Analysis according to different races found no association between GSTM1/GSTT1 polymorphisms and PD risks except for GSTM1 variant in Caucasians, which showed a weak correlation (OR 1.16 [95% CI (1.04, 1.29), I squared=6.2%, p=0.384]). Neither publication bias nor heterogeneity was found among the included studies. The results of this meta-analysis suggest that GSTM1 polymorphism is weakly associated with the risk of PD in Caucasians whereas GSTT1 polymorphism is not a PD risk factor.
Collapse
Affiliation(s)
- Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, PR China.
| |
Collapse
|
30
|
Anderson G, Maes M. Neurodegeneration in Parkinson's disease: interactions of oxidative stress, tryptophan catabolites and depression with mitochondria and sirtuins. Mol Neurobiol 2013; 49:771-83. [PMID: 24085563 DOI: 10.1007/s12035-013-8554-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022]
Abstract
The biological underpinnings to the etiology and course of neurodegeneration in Parkinson's disease are an area of extensive research that has yet to produce an early biological marker or disease-slowing or preventative treatment. Recent conceptualizations of Parkinson's disease have integrated immuno-inflammation and oxidative and nitrosative stress occurring in depression, somatization and peripheral inflammation into the course of Parkinson's disease. We review the data showing the importance of immuno-inflammatory processes and oxidative and nitrosative stress in such classically conceived 'comorbidities', suggesting that lifetime, prodromal and concurrent depression and somatization may be intricately involved in the etiology and course of Parkinson's disease, rather than psychiatric comorbidities. This produces a longer term developmental perspective of Parkinson's disease, which incorporates tryptophan catabolites (TRYCATs), lipid peroxidation, sirtuins, cyclic adenosine monophosphate, aryl hydrocarbon receptor, and circadian genes. This integrates wider bodies of data pertaining to neuronal loss in Parkinson's disease, emphasizing how these interact with susceptibility genes to drive changes in mitochondria, blood-brain barrier permeability and intercellular signalling. We review this data here in the context of neurodegeneration in Parkinson's disease and to the future directions indicated for slowing disease progression.
Collapse
|
31
|
Jesús S, Gómez-Garre P, Carrillo F, Cáceres-Redondo MT, Huertas-Fernández I, Bernal-Bernal I, Bonilla-Toribio M, Vargas-González L, Carballo M, Mir P. Genetic association of sirtuin genes and Parkinson's disease. J Neurol 2013; 260:2237-41. [PMID: 23719790 DOI: 10.1007/s00415-013-6970-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/03/2013] [Accepted: 05/15/2013] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by both genetic and environmental factors. Sirtuins are highly-conserved, NAD-dependent class III deacetylases that regulate a variety of cellular functions. Most of the known sirtuins have been involved in animal models of neurodegenerative disorders, such as PD. Although seven sirtuin family members have been identified (SIRT1-SIRT7) the relationship between sirtuins and PD in humans has not been established. Our aim was to investigate the association between sirtuin genes and risk of PD. We included 326 PD patients and 371 controls from southern Spain. Forty-one single nucleotide polymorphisms (SNPs) in sirtuin genes were genotyped in order to determine whether they were related to the risk of PD. These SNPs included Tag-SNPs, coding non-synonymous SNPs and SNPs affecting activity of microRNA binding sites. No relationship was found between these SNPs in sirtuin genes and PD. Our data indicate that variations in sirtuin genes do not affect the risk for PD, at least in our population.
Collapse
Affiliation(s)
- Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/Instituto de Biomedicina de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li MX, Sun XM, Zhang LZ, Wang J, Huang YZ, Sun YJ, Hu SR, Lan XY, Lei CZ, Chen H. A novel c.-274C>G polymorphism in bovine SIRT1 gene contributes to diminished promoter activity and is associated with increased body size. Anim Genet 2013; 44:584-7. [PMID: 23647079 DOI: 10.1111/age.12048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 01/06/2023]
Abstract
SIRT1, a mammalian homologue for yeast silent information regulator 2 (SIR2), is a NAD(+) -dependent deacetylase that belongs to the class III histone deacetylases. It plays an important role in diverse cellular processes, including stress resistance, mitochondrial function, suppression of inflammation and DNA repair. In this study, we screened and identified a novel polymorphism (c.-274C>G) in the SIRT1 promoter region. In silico prediction reveals that this SNP is in the core of cell cycle-dependent element (CDE)-binding motif. Interestingly, the G allele abolished a CDE-binding site, which suggested its functional significance. In the luciferase assay system, we found that the G allele-containing construct displayed a strikingly lower promoter activity compared with the C allele, which may downregulate SIRT1 expression levels. Additionally, we observed a significant association between the c.-274C>G polymorphism and growth traits in Nanyang cattle, suggesting that anomalous transcription factor-based repression of SIRT1 may increase bovine fat mass and body size.
Collapse
Affiliation(s)
- Ming-xun Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Paraíso AF, Mendes KL, Santos SHS. Brain activation of SIRT1: role in neuropathology. Mol Neurobiol 2013; 48:681-9. [PMID: 23615921 DOI: 10.1007/s12035-013-8459-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/09/2013] [Indexed: 01/27/2023]
Abstract
Sirtuins (SIRTs) are a family of regulatory proteins of genetic information with a high degree of conservation among species. The SIRTs are heavily involved in several physiological functions including control of gene expression, metabolism, and aging. SIRT1 has been the most studied sirtuin and plays important role in the prevention and progression of neurodegenerative diseases acting in different pathways of proteins involved in brain function. SIRT1 activation regulates important genes that also exert neuroprotective actions such as p53, nuclear factor kappa B, peroxisome proliferator-activated receptor-gamma (PPARγ), PPARγ coactivator-1α, liver X receptor, and forkhead box O. It is well established in literature that growing population aging, oxidative stress, inflammation, and genetic factors are important conditions to development of neurodegenerative disorders. However, the exact pathophysiological mechanisms leading to these diseases remain obscure. The sirtuins show strong potential to become valuable predictive and prognostic markers for diseases and as therapeutic targets for the treatment of a variety of neurodegenerative disorders. In this context, the aim of the current review is to present an actual view of the potential role of SIRT1 in modulating the interaction between target genes and neurodegenerative diseases on the brain.
Collapse
Affiliation(s)
- Alanna Fernandes Paraíso
- Laboratory of Health Science, Postgraduate Program in Health Science, State University of Montes Claros (Unimontes), Av. Cula Mangabeira, 562-Santo Expedito, Montes Claros, Minas Gerais, 39401-001, Brazil
| | | | | |
Collapse
|
34
|
Shan J, Pang S, Wanyan H, Xie W, Qin X, Yan B. Genetic analysis of the SIRT1 gene promoter in ventricular septal defects. Biochem Biophys Res Commun 2012; 425:741-5. [DOI: 10.1016/j.bbrc.2012.07.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/26/2012] [Indexed: 01/17/2023]
|
35
|
Cui Y, Wang H, Chen H, Pang S, Wang L, Liu D, Yan B. Genetic analysis of the SIRT1 gene promoter in myocardial infarction. Biochem Biophys Res Commun 2012; 426:232-6. [PMID: 22935421 DOI: 10.1016/j.bbrc.2012.08.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/15/2012] [Indexed: 12/13/2022]
Abstract
Myocardial infarction (MI) is a restrictive phenotype of coronary artery disease. To date, a group of genes and genetic loci have been associated to MI. However, the genetic causes and underlying molecular mechanisms for MI remain largely unknown. SIRT1, one of highly conserved NAD-dependent class III deacetylases, has been involved in several cellular processes and implicated in human diseases. Autophagy is one of major cellular degradative pathways, which plays important roles in lipid metabolism. Recent studies have shown that SIRT1 deacetylates autophagy-related genes, and the expressions of autophagic genes are altered in MI patients. Accordingly, we hypothesized that SIRT1 may be linked to the MI pathogenesis. In this study, the SIRT1 gene promoter were genetically analyzed in large cohorts of MI patients (n = 327) and controls (n = 358). The results showed that six single-nucleotide polymorphisms and 14 sequence variants were identified. Among these, five novel heterozygous variants (g.69643743Ins, g.69643840Ins, g.69643903G > C, g.69644235G > C and g.69644353G > T) and one single-nucleotide polymorphism (rs35706870) were identified in MI patients, but in none of controls. Moreover, five novel heterozygous variants (g.69643672G > A, g.69644226C > T, g.69644278A > G, g.69644408G > A and g.69644408G > T) were only found in controls. The rest variants were found in MI patients and controls with similar frequencies. Taken together, the variants identified in MI patients may alter the transcriptional activities of SIRT1 gene promoter, which may change SIRT1 levels, contributing to the MI pathogenesis as a risk factor.
Collapse
Affiliation(s)
- Yinghua Cui
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | | | | | | | | | | | | |
Collapse
|