1
|
Gupta R, Kadhim MM, Turki Jalil A, Obayes AM, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Tayyib NA, Luo X. Multifaceted role of NF-κB in hepatocellular carcinoma therapy: Molecular landscape, therapeutic compounds and nanomaterial approaches. ENVIRONMENTAL RESEARCH 2023; 228:115767. [PMID: 36966991 DOI: 10.1016/j.envres.2023.115767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
The predominant kind of liver cancer is hepatocellular carcinoma (HCC) that its treatment have been troublesome difficulties for physicians due to aggressive behavior of tumor cells in proliferation and metastasis. Moreover, stemness of HCC cells can result in tumor recurrence and angiogenesis occurs. Another problem is development of resistance to chemotherapy and radiotherapy in HCC cells. Genomic mutations participate in malignant behavior of HCC and nuclear factor-kappaB (NF-κB) has been one of the oncogenic factors in different human cancers that after nuclear translocation, it binds to promoter of genes in regulating their expression. Overexpression of NF-κB has been well-documented in increasing proliferation and invasion of tumor cells and notably, when its expression enhances, it induces chemoresistance and radio-resistance. Highlighting function of NF-κB in HCC can shed some light on the pathways regulating progression of tumor cells. The first aspect is proliferation acceleration and apoptosis inhibition in HCC cells mediated by enhancement in expression level of NF-κB. Moreover, NF-κB is able to enhance invasion of HCC cells via upregulation of MMPs and EMT, and it triggers angiogenesis as another step for increasing spread of tumor cells in tissues and organs. When NF-κB expression enhances, it stimulates chemoresistance and radio-resistance in HCC cells and by increasing stemness and population of cancer-stem cells, it can provide the way for recurrence of tumor. Overexpression of NF-κB mediates therapy resistance in HCC cells and it can be regulated by non-coding RNAs in HCC. Moreover, inhibition of NF-κB by anti-cancer and epigenetic drugs suppresses HCC tumorigenesis. More importantly, nanoparticles are considered for suppressing NF-κB axis in cancer and their prospectives and results can also be utilized for treatment of HCC. Nanomaterials are promising factors in treatment of HCC and by delivery of genes and drugs, they suppress HCC progression. Furthermore, nanomaterials provide phototherapy in HCC ablation.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, District-Mathura, U. P., India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm al- Qura University, Makkah, Saudi Arabia
| | - Xuanming Luo
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
2
|
Gui Z, Zhang Y, Zhang A, Xia W, Jia Z. CARMA3: A potential therapeutic target in non-cancer diseases. Front Immunol 2022; 13:1057980. [PMID: 36618379 PMCID: PMC9815110 DOI: 10.3389/fimmu.2022.1057980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Caspase recruitment domain and membrane-associated guanylate kinase-like protein 3 (CARMA3) is a scaffold protein widely expressed in non-hematopoietic cells. It is encoded by the caspase recruitment domain protein 10 (CARD10) gene. CARMA3 can form a CARMA3-BCL10-MALT1 complex by recruiting B cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), thereby activating nuclear factor-κB (NF-κB), a key transcription factor that involves in various biological responses. CARMA3 mediates different receptors-dependent signaling pathways, including G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). Inappropriate expression and activation of GPCRs and/or RTKs/CARMA3 signaling lead to the pathogenesis of human diseases. Emerging studies have reported that CARMA3 mediates the development of various types of cancers. Moreover, CARMA3 and its partners participate in human non-cancer diseases, including atherogenesis, abdominal aortic aneurysm, asthma, pulmonary fibrosis, liver fibrosis, insulin resistance, inflammatory bowel disease, and psoriasis. Here we provide a review on its structure, regulation, and molecular function, and further highlight recent findings in human non-cancerous diseases, which will provide a novel therapeutic target.
Collapse
Affiliation(s)
- Zhen Gui
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China,Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| |
Collapse
|
3
|
Chang TY, Wu CT, Sheu ML, Yang RS, Liu SH. CARMA3 Promotes Colorectal Cancer Cell Motility and Cancer Stemness via YAP-Mediated NF-κB Activation. Cancers (Basel) 2021; 13:cancers13235946. [PMID: 34885061 PMCID: PMC8657120 DOI: 10.3390/cancers13235946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary CARMA3 is overexpressed in most cancers, and its expression is positively associated with poor prognosis. In this study, we evaluated the detailed mechanisms of CARMA3-mediated CRC metastasis. We found that overexpression of CARMA3 induced the expression of YAP and NF-κB activation, then elicited EMT induction to enhance cell migration and invasion. We demonstrate for the first time that YAP is a critical downstream regulator of CARMA3 in CRC. Our findings reveal a regulation axis between CARMA3 and Hippo oncoprotein YAP and further support the potential role of CARMA3 in the metastasis and cancer stemness of CRC. Abstract CARD-recruited membrane-associated protein 3 (CARMA3) is overexpressed in various cancers and is associated with cancer cell proliferation, metastasis, and tumor progression; however, the underlying mechanisms of CARMA3 in colorectal cancer (CRC) metastasis remain unclear. Here, we found that higher CARMA3 expression was correlated with poor overall survival and metastasis in CRC patients from the TNMplot database and Human Tissue Microarray staining. Elevating CARMA3 expression promoted cell proliferation, epithelial-mesenchymal transition (EMT) induction, migration/invasion abilities, sphere formation, and cancer stem cell markers expression. Knockdown of CARMA3 decreased these processes via the EMT-related transcription factor Slug. Moreover, CARMA3 depletion significantly reduced tumor growth in mice that were consistent with the in vitro results. CRC migration/invasion could be regulated by CARMA3/YAP/Slug signaling axis using genetic inhibition of Yes-associated protein (YAP). Interestingly, CARMA3 induced activation of nuclear factor (NF)-κB through YAP expression, contributing to upregulation of Slug. YAP expression positively correlated with CARMA3, NF-κB, and Slug gene expression and poor clinical outcomes in CRC patients. Our findings demonstrate for the first time that CARMA3 plays an important role in CRC progression, which may serve as a potential diagnostic biomarker and candidate therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Ting-Yu Chang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan;
- Master Program for Food and Drug Safety, China Medical University, Taichung 406040, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Rong-Sen Yang
- Department of Orthopedics, National Taiwan University Hospital, Taipei 10051, Taiwan
- Correspondence: (R.-S.Y.); (S.-H.L.)
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 10051, Taiwan
- Correspondence: (R.-S.Y.); (S.-H.L.)
| |
Collapse
|
4
|
Engel B, Laschtowitz A, Janik MK, Junge N, Baumann U, Milkiewicz P, Taubert R, Sebode M. Genetic aspects of adult and pediatric autoimmune hepatitis: A concise review. Eur J Med Genet 2021; 64:104214. [PMID: 33812046 DOI: 10.1016/j.ejmg.2021.104214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Autoimmune Hepatitis (AIH) is a heterogenous, mostly chronic liver disease that affects people of all age groups, women more often than men. The aim of therapy is to prevent cirrhosis, as it mainly accounts for liver-related mortality in patients with AIH. Rates of remission are high in patients with AIH, but life-long immunosuppressive therapy is required. AIH is hypothesized to originate from immunologic reactivity targeted against mostly unknown self-antigens, potentially triggered by viral infections among other factors. While AIH does not follow a Mendelian inheritance pattern, part of the risk of developing AIH or worse disease course, is attributed to specific genetic risk factors. Major associations for the risk of development of AIH were found for HLA-DRB1*03:01 and HLA-DRB1*04:01 in adult AIH in the only genome-wide association study on AIH. However, other potential risk loci in SH2B3, CARD10 and KIR genes were described. This review covers the current knowledge on genetic risk factors in adult and pediatric AIH.
Collapse
Affiliation(s)
- Bastian Engel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany.
| | - Alena Laschtowitz
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Maciej K Janik
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Norman Junge
- Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Ulrich Baumann
- Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland; Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Marcial Sebode
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| |
Collapse
|
5
|
Mellett M. Regulation and dysregulation of CARD14 signalling and its physiological consequences in inflammatory skin disease. Cell Immunol 2020; 354:104147. [DOI: 10.1016/j.cellimm.2020.104147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/17/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
|
6
|
Liu X, Zhang X, Bi J, Li Z, Zhang Z, Kong C. Caspase recruitment domain family member 10 regulates carbamoyl phosphate synthase 1 and promotes cancer growth in bladder cancer cells. J Cell Mol Med 2019; 23:8128-8138. [PMID: 31565867 PMCID: PMC6850932 DOI: 10.1111/jcmm.14683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer, which can be divided into non‐muscle‐invasive and muscle‐invasive bladder cancer, is the most common urinary cancer in the United States. Caspase recruitment domain family member 10 (CARD10), also named CARD‐containing MAGUK protein 3 (CARMA3), is a member of the CARMA family and may activate the nuclear factor kappa B (NF‐κB) pathway. We utilized RNA sequencing and metabolic mass spectrometry to identify the molecular and metabolic feature of CARD10. The signalling pathway of CARD10 was verified by Western blotting analysis and functional assays. RNA sequencing and metabolic mass spectrometry of CARD10 knockdown identified the metabolic enzyme carbamoyl phosphate synthase 1 (CPS1) in the urea cycle as the downstream gene regulated by CARD10. We confirmed that CARD10 affected cell proliferation and nucleotide metabolism through regulating CPS1. We indicated that CARD10 promote bladder cancer growth via CPS1 and maybe a potential therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Xi Liu
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaotong Zhang
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jianbin Bi
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhenhua Li
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhe Zhang
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Man X, Liu T, Jiang Y, Zhang Z, Zhu Y, Li Z, Kong C, He J. Silencing of CARMA3 inhibits bladder cancer cell migration and invasion via deactivating β-catenin signaling pathway. Onco Targets Ther 2019; 12:6309-6322. [PMID: 31496734 PMCID: PMC6693424 DOI: 10.2147/ott.s191502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/02/2019] [Indexed: 02/03/2023] Open
Abstract
Background Bladder cancer (BC) is the ninth most common cancer and the fourteenth leading death worldwide. CARD-containing MAGUK 3 (CARMA3) protein is a novel scaffold protein known to activate NF-κB pathway and is overexpressed in BC tissues. Purpose The objective of this study was to identify how CARMA3 affects the metastasis of BC cells via the β-catenin signaling pathway. Materials and methods In the present study, 5637 and T24 BC cells with stable low expression of CARMA3 were established, and their migratory and invasive capabilities were further evaluated by wound-healing and transwell assay. The activity and expression of β-catenin were determined by Luciferase assay and immunofluoresence staining. The mRNA and protein expression levels of CARMA3, matrix metallopeptidase (MMP) 9 and MMP2 were detected by quantitative real-time PCR (qRT-PCR) and Western blot analysis. The nude mouse tumor xenograft model was established for in vivo study. Results By comparison to the control cells, CARMA3-silenced cells acquired a less aggressive phenotype: decreased migration and invasion. More importantly, we confirmed that CARM3 knockdown could inhibit β-catenin mRNA and protein expression and activity, and reduce the expression and/or activity of matrix metallopeptidase (MMP) 9, MMP2 and C-myc. Also, CARM3 silencing increased E-cadherin expression and attenuated the expression of β-catenin. Moreover, we demonstrated that β-catenin overexpression reversed the inhibiting effect of CARMA3 silencing on cell invasion and migration. Furthermore, our study illustrated that knockdown of CARMA3 suppressed BC cells xenograft tumor growth in nude mice. Conclusion We demonstrated that CARMA3 contributes to the malignant phenotype of BC cells at least by activating β-catenin signaling pathway, and it may serve as a therapeutic target for clinic treatment in BC.
Collapse
Affiliation(s)
- Xiaojun Man
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Tao Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Zhenhua Li
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Institute of Urology, Department of Urology, China Medical University, Shenyang 110001, People's Republic of China
| | - Jiani He
- Breast Division, Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|
8
|
Jia XP, Chen XZ, Lou QB, Zhou ZF, Gao L, Zhou PF. Sevoflurane regulates CARMA3 to inhibit migration and invasion of gastric cancer cells by targeting NF-κB signaling pathway. Shijie Huaren Xiaohua Zazhi 2019; 27:220-227. [DOI: 10.11569/wcjd.v27.i4.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of sevoflurane on cell migration and invasion in gastric cancer (GC) cells, and to explore the underlying mechanism.
METHODS After SGC7901 cells were transfected with siCARMA3 (siCARMA3 group), siControl (NC group), pcDNA 3.1-CARMA3 (CARMA3 group), or pcDNA 3.1 (vector group) by liposome method, the expression of CARMA3 mRNA in cells was detected by qRT-PCR, and the protein expression of CARMA3, p-p65, and p65 was detected by Western blot.
RESULTS Compared with the control group, sevoflurane inhibited the migration and invasion of GC cells and down-regulated the expression of CARMA3. Silencing of CARMA3 inhibited the migration and invasion of GC cells, while overexpression of CARMA3 promoted the migration and invasion of GC cells. CARMA3 targeted the NF-κB pathway. Thus, sevoflurane regulated CARMA3 to inhibit migration and invasion of GC cells by targeting the NF-κB pathway.
CONCLUSION Sevoflurane could inhibit the migration and invasion of GC cells via mechanisms that may be related to the regulation of CARMA3 to target the NF-κB pathway. This finding will provide a basis for clinical treatment of GC with sevoflurane.
Collapse
Affiliation(s)
- Xiu-Ping Jia
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Xiao-Zhen Chen
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Qun-Bin Lou
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Zhen-Feng Zhou
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Liang Gao
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Peng-Fei Zhou
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
9
|
Zhang X, Liu X, Jing Z, Bi J, Li Z, Liu X, Li J, Li Z, Zhang Z, Kong C. The circINTS4/miR-146b/CARMA3 axis promotes tumorigenesis in bladder cancer. Cancer Gene Ther 2019; 27:189-202. [PMID: 30723269 DOI: 10.1038/s41417-019-0085-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/03/2019] [Accepted: 01/12/2019] [Indexed: 11/09/2022]
Abstract
Accumulating evidence shows that circular RNAs (circRNAs) function as microRNA sponges that regulate gene expression in the progression of human cancers. However, the roles of circRNAs and functional miRNA sponges in bladder cancer (BC) remain largely unknown. In the present study, we applied bioinformatics methods and hypothesised that miR-146b may target the 3'-untranslated region (UTR) of CARMA3 mRNA and circINTS4 may serve as a sponge for miR-146b in BC tumorigenesis. Expression of circINTS4 was significantly increased in miR-146b-downregulated BC tissues and cell lines compared to adjacent normal tissues. Furthermore, circINTS4 was found to control multiple pathological processes, including cell proliferation and migration, the cell cycle and apoptosis. Regarding the mechanism, circINTS4 directly bound to miR-146b to inhibit its activity of targeting the 3'-UTR of CARMA3 mRNA. In addition, circINTS4 could activate the NF-kB signalling pathway and suppress the P38 MAPK signalling pathway in a CARMA3-mediated manner in BC cells. In summary, the circINTS4/miR-146b/CARMA3 axis might serve as a promising therapeutic target for BC intervention.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xi Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zhifei Jing
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zeliang Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xiankui Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zhenhua Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
10
|
McAuley JR, Freeman TJ, Ekambaram P, Lucas PC, McAllister-Lucas LM. CARMA3 Is a Critical Mediator of G Protein-Coupled Receptor and Receptor Tyrosine Kinase-Driven Solid Tumor Pathogenesis. Front Immunol 2018; 9:1887. [PMID: 30158935 PMCID: PMC6104486 DOI: 10.3389/fimmu.2018.01887] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
The CARMA–Bcl10–MALT1 (CBM) signalosome is an intracellular protein complex composed of a CARMA scaffolding protein, the Bcl10 linker protein, and the MALT1 protease. This complex was first recognized because the genes encoding its components are targeted by mutation and chromosomal translocation in lymphoid malignancy. We now know that the CBM signalosome plays a critical role in normal lymphocyte function by mediating antigen receptor-dependent activation of the pro-inflammatory, pro-survival NF-κB transcription factor, and that deregulation of this signaling complex promotes B-cell lymphomagenesis. More recently, we and others have demonstrated that a CBM signalosome also operates in cells outside of the immune system, including in several solid tumors. While CARMA1 (also referred to as CARD11) is expressed primarily within lymphoid tissues, the related scaffolding protein, CARMA3 (CARD10), is more widely expressed and participates in a CARMA3-containing CBM complex in a variety of cell types. The CARMA3-containing CBM complex operates downstream of specific G protein-coupled receptors (GPCRs) and/or growth factor receptor tyrosine kinases (RTKs). Since inappropriate expression and activation of GPCRs and/or RTKs underlies the pathogenesis of several solid tumors, there is now great interest in elucidating the contribution of CARMA3-mediated cellular signaling in these malignancies. Here, we summarize the key discoveries leading to our current understanding of the role of CARMA3 in solid tumor biology and highlight the current gaps in our knowledge.
Collapse
Affiliation(s)
- J Randall McAuley
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tanner J Freeman
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Prasanna Ekambaram
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Peter C Lucas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Linda M McAllister-Lucas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Gong X, Liu J, Zhang X, Dong F, Liu Y, Wang P. Rab11 Functions as an Oncoprotein via Nuclear Factor kappa B (NF-κB) Signaling Pathway in Human Bladder Carcinoma. Med Sci Monit 2018; 24:5093-5101. [PMID: 30032159 PMCID: PMC6067026 DOI: 10.12659/msm.911454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Elevated expression of Rab11 has been reported in different human cancers, including human bladder carcinoma. This study, we investigated the biological effects and mechanism of Rab11 overexpression in human bladder carcinoma for the first time. Material/Methods Rab11 expression in bladder cancer tissues was detected using immunohistochemistry and Western blot analysis. Then, Rab11 expression was inhibited in T24 cells and it was overexpressed in BIU-87 cells. The effects of Rab11 perturbations on cell growth rate and invasion were analyzed by CCK8, cell cycle assay, and matrix gel invasion assay. MMP-9, cyclin E, and cyclin D1 levels were studied using Western blot and qPCR. NF-κB activity was studied by luciferase assay. Results High expression of Rab11 was detected in 41.5% (66/159) of tumor specimens. We found a significant correlation between high Rab11 expression and depth of tumor invasion (P=0.004). Rab11 overexpression was observed to promote the growth rate and invasiveness of cancer cells through upregulation of MMP9, cyclin E, and cyclin D1 levels. Rab11 overexpression further elevated NF-κB reporter activity and enhanced p-IκB expression. Use of BAY 11-7082, a noted NF-κB inhibitor, partially abolished overexpression of MMP9 and cyclin D1 by Rab11. Conclusions Our research proved that high Rab11 expression enhances cellular multiplication and invasiveness of bladder cancer, possibly by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xue Gong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jia Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xiling Zhang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Fengming Dong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yili Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ping Wang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (mainland)
| |
Collapse
|
12
|
Ghanbari M, Iglesias AI, Springelkamp H, van Duijn CM, Ikram MA, Dehghan A, Erkeland SJ, Klaver CCW, Meester-Smoor MA. A Genome-Wide Scan for MicroRNA-Related Genetic Variants Associated With Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2017; 58:5368-5377. [PMID: 29049738 PMCID: PMC6110129 DOI: 10.1167/iovs.17-22410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To identify microRNAs (miRNAs) involved in primary open-angle glaucoma (POAG), using genetic data. MiRNAs are small noncoding RNAs that posttranscriptionally regulate gene expression. Genetic variants in miRNAs or miRNA-binding sites within gene 3'-untranslated regions (3'UTRs) are expected to affect miRNA function and contribute to disease risk. Methods Data from the recent genome-wide association studies on intraocular pressure, vertical cup-to-disc ratio (VCDR), cupa area and disc area were used to investigate the association of miRNAs with POAG endophenotypes. Putative targets of the associated miRNAs were studied according to their association with POAG and tested in cell line by transfection experiments for regulation by the miRNAs. Results Of 411 miRNA variants, rs12803915:A/G in the terminal loop of pre-miR-612 and rs2273626:A/C in the seed sequence of miR-4707 were significantly associated with VCDR and cup area (P values < 1.2 × 10-4). The first variant is demonstrated to increase the miR-612 expression. We showed that the second variant does not affect the miR-4707 biogenesis, but reduces the binding of miR-4707-3p to CARD10, a gene known to be involved in glaucoma. Moreover, of 72,052 miRNA-binding-site variants, 47 were significantly associated with four POAG endophenotypes (P value < 6.9 × 10-6). Of these, we highlighted 10 variants that are more likely to affect miRNA-mediated gene regulation in POAG. These include rs3217992 and rs1063192, which have been shown experimentally to affect miR-138-3p- and miR-323b-5p-mediated regulation of CDKN2B. Conclusions We identified a number of miRNAs that are associated with POAG endophenotypes. The identified miRNAs and their target genes are candidates for future studies on miRNA-related therapies for POAG.
Collapse
Affiliation(s)
- Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Genetics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adriana I Iglesias
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Henriët Springelkamp
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Abbas Dehghan
- Department of Epidemiology & Biostatistics, Imperial College London, London, United Kingdom
| | - Stefan J Erkeland
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Radbound University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Magda A Meester-Smoor
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
13
|
Zhang R, Zhao J, Xu J, Jiao DX, Wang J, Gong ZQ, Jia JH. Andrographolide suppresses proliferation of human colon cancer SW620 cells through the TLR4/NF-κB/MMP-9 signaling pathway. Oncol Lett 2017; 14:4305-4310. [PMID: 28943944 DOI: 10.3892/ol.2017.6669] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Modern pharmacological research has revealed that andrographolide has various functions, including anti-bacterial, anti-inflammatory and anti-viral effects, immunoregulation, treating cardiovascular and cerebrovascular diseases, and prevention and treatment of alcoholic liver injury. The present study investigated whether andrographolide suppresses the proliferation of human colon cancer cell through the Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB/matrix metalloproteinase-9 (MMP-9) signaling pathway. The MTT assay and lactate dehydrogenase assay were used to evaluate the anticancer effects of andrographolide on cell proliferation and cytotoxicity in human colon cancer SW620 cells. Flow cytometry was used to analyze the anticancer effects of andrographolide on apoptosis by Annexin V-fluorescein isothiocyanate/propidium iodide kit. The effects of andrographolide on the activity of caspase-3/9 were measured using ELISA. Western blot analysis was also used to analyze the protein expression of TLR4, myeloid differentiation primary response gene 88 (MyD88), NF-κB-p65 and MMP-9. In the present study, it was found that andrographolide suppressed the cell proliferation, augmented cytotoxicity, evoked cell apoptosis and activated caspase-3/9 activities in human colon cancer SW620 cells. The results revealed that the anti-proliferation effects of andrographolide on the SW620 cells was associated with the inhibition of TLR4, MyD88, NF-κB-p65 and MMP-9 signaling activation. The results suggest that andrographolide is a promising drug for treatment of human colon cancer via suppression of the TLR4/NF-κB/MMP-9 signaling pathway.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jian Zhao
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jian Xu
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - De-Xin Jiao
- Department of Radiotherapy, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jian Wang
- Department of Radiotherapy, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Zhi-Qiang Gong
- Department of Radiotherapy, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jian-Hui Jia
- Department of Radiotherapy, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
14
|
Zhou T, Souzeau E, Sharma S, Siggs OM, Goldberg I, Healey PR, Graham S, Hewitt AW, Mackey DA, Casson RJ, Landers J, Mills R, Ellis J, Leo P, Brown MA, MacGregor S, Burdon KP, Craig JE. Rare variants in optic disc area gene CARD10 enriched in primary open-angle glaucoma. Mol Genet Genomic Med 2016; 4:624-633. [PMID: 27896285 PMCID: PMC5118207 DOI: 10.1002/mgg3.248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/08/2016] [Accepted: 08/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified association of common alleles with primary open-angle glaucoma (POAG) and its quantitative endophenotypes near numerous genes. This study aims to determine whether rare pathogenic variants in these disease-associated genes contribute to POAG. METHODS Participants fulfilled strict inclusion criteria of advanced POAG at a young age of diagnosis. Myocilin mutation carriers were excluded using direct sequencing. Whole exome sequencing was performed on 187 glaucoma cases and 103 local screened nonglaucoma controls then joint-called with exomes of 993 previously sequenced Australian controls. GWAS-associated genes were assessed for enrichment of rare predicted pathogenic variants in POAG. Significantly enriched genes were compared against Exome Aggregation Consortium (ExAC) public control. RESULTS Eighty-six GWAS disease or trait-associated glaucoma genes were captured and sequenced. CARD10 showed enrichment after Bonferroni correction for rare variants in glaucoma cases (OR = 13.2, P = 6.94 × 10-5) with mutations identified in 4.28% of our POAG cohort compared to 0.27% in controls. CARD10 was significantly associated with optic disc parameters in previous GWAS. The whole GWAS gene set showed no enrichment in POAG overall (OR = 1.12, P = 0.51). CONCLUSION We report here an enrichment of rare predicted pathogenic coding variants within a GWAS-associated locus in POAG (CARD10). These findings indicate that both common and rare pathogenic coding variants in CARD10 may contribute to POAG pathogenesis.
Collapse
Affiliation(s)
- Tiger Zhou
- Department of Ophthalmology Flinders University Adelaide SA Australia
| | | | - Shiwani Sharma
- Department of Ophthalmology Flinders University Adelaide SA Australia
| | - Owen M Siggs
- Department of Ophthalmology Flinders University Adelaide SA Australia
| | - Ivan Goldberg
- Discipline of OphthalmologyUniversity of SydneySydneyNSWAustralia; Glaucoma UnitSydney Eye HospitalSydneyNSWAustralia
| | - Paul R Healey
- Discipline of Ophthalmology University of Sydney Sydney NSW Australia
| | - Stuart Graham
- Discipline of Ophthalmology University of Sydney Sydney NSW Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research University of Tasmania Hobart TAS Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science Lions Eye Institute University of Western Australia Perth WA Australia
| | - Robert J Casson
- Discipline of Ophthalmology & Visual Sciences University of Adelaide Adelaide SA Australia
| | - John Landers
- Department of Ophthalmology Flinders University Adelaide SA Australia
| | - Richard Mills
- Department of Ophthalmology Flinders University Adelaide SA Australia
| | - Jonathan Ellis
- Diamantina Institute Translational Research Institute Princess Alexandra Hospital University of Queensland Woolloongabba QLD Australia
| | - Paul Leo
- Diamantina Institute Translational Research Institute Princess Alexandra Hospital University of Queensland Woolloongabba QLD Australia
| | - Matthew A Brown
- Diamantina Institute Translational Research Institute Princess Alexandra Hospital University of Queensland Woolloongabba QLD Australia
| | - Stuart MacGregor
- Statistical Genetics QIMR Berghofer Medical Research Institute Royal Brisbane Hospital Brisbane QLD Australia
| | - Kathryn P Burdon
- Department of OphthalmologyFlinders UniversityAdelaideSAAustralia; Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTASAustralia
| | - Jamie E Craig
- Department of Ophthalmology Flinders University Adelaide SA Australia
| |
Collapse
|
15
|
Tan ST, Liu SY, Wu B. TRIM29 Overexpression Promotes Proliferation and Survival of Bladder Cancer Cells through NF-κB Signaling. Cancer Res Treat 2016; 48:1302-1312. [PMID: 26987391 PMCID: PMC5080803 DOI: 10.4143/crt.2015.381] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
Purpose TRIM29 overexpression has been reported in several human malignancies and showed correlation with cancer cell malignancy. The aim of the current study is to examine its clinical significance and biological roles in human bladder cancer tissues and cell lines. Materials and Methods A total of 102 cases of bladder cancer tissues were examined for TRIM29 expression by immunohistochemistry. siRNA and plasmid transfection were performed in 5637 and BIU-87 cell lines. Cell Counting Kit-8, flow cytometry, western blot, and real-time polymerase chain reaction were performed to examine its biological roles and mechanism in bladder cancer cells. Results We found that TRIM29 overexpression showed correlation with invading depth (p=0.0087). Knockdown of TRIM29 expression in bladder cancer cell line 5637 inhibited cell growth rate and cell cycle transition while its overexpression in BIU-87 cells accelerated cell proliferation and cell cycle progression. TRIM29 overexpression also inhibited cell apoptosis induced by cisplatin. In addition, we demonstrated that TRIM29 depletion decreased while its overexpression led to upregulated expression of cyclin D1, cyclin E, and Bcl-2. We also showed that TRIM29 knockdown inhibited protein kinase C (PKC) and nuclear factor κB (NF-κB) signaling while its overexpression stimulated the PKC and NF-κB pathways. BAY 11-7082 (NF-κB inhibitor) partly attenuated the effect of TRIM29 on expression of cyclin and Bcl-2. Treatment with PKC inhibitor staurosporine resulted in ameliorated TRIM29 induced activation of NF-κB. Conclusion The current study demonstrated that TRIM29 upregulates cyclin and Bcl family proteins level to facilitate malignant cell growth and inhibit drug-induced apoptosis in bladder cancer, possibly through PKC–NF-κB signaling pathways.
Collapse
Affiliation(s)
- Shu-Tao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sheng-Ye Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Rab23 is overexpressed in human bladder cancer and promotes cancer cell proliferation and invasion. Tumour Biol 2015; 37:8131-8. [PMID: 26715272 DOI: 10.1007/s13277-015-4590-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022] Open
Abstract
Rab23 overexpression has been implicated in several human cancers. However, its expression pattern and biological roles in human bladder cancer have not been elucidated. In this study, we examined Rab23 expression in 93 bladder cancer specimens and analyzed its correlation with clinicopathological parameters. We found that Rab23 was overexpressed in 45 of 93 (48.3 %) cancer specimens. Significant association was found between Rab23 overexpression and tumor invasion depth (p = 0.0027). Rab23 overexpression also negatively correlated with FGFR3 protein expression (p = 0.021). We found that Rab23 expression was lower in normal bladder transitional cell line SV-HUC-1 than in bladder cancer cell lines BIU-87, 5637, and T24. We knocked down Rab23 expression in T24 cancer cells and transfected a Rab23 plasmid in the BIU-87 cell line. Rab23 depletion inhibited cell growth rate and invasion, while its overexpression resulted in increased cell growth and invasion. In addition, we demonstrated that Rab23 depletion decreased and its transfection upregulated expression of cyclin E, c-myc, and MMP-9. Furthermore, we showed that Rab23 knockdown inhibited NF-κB signaling and its overexpression upregulated NF-κB signaling. BAY 11-7082 (NF-κB inhibitor) partly inhibited the effect of Rab23 on cyclin E and MMP-9 expression. In conclusion, the present study demonstrated that Rab23 overexpression facilitates malignant cell growth and invasion in bladder cancer through the NF-κB pathway.
Collapse
|
17
|
Xia ZX, Li ZX, Zhang M, Sun LM, Zhang QF, Qiu XS. CARMA3 regulates the invasion, migration, and apoptosis of non-small cell lung cancer cells by activating NF-кB and suppressing the P38 MAPK signaling pathway. Exp Mol Pathol 2015; 100:353-60. [PMID: 26526492 DOI: 10.1016/j.yexmp.2015.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 11/19/2022]
Abstract
In our previous study, CARMA3 overexpression in lung cancer cells promoted cell proliferation and invasion; however, the mechanism underlying the role of CARMA3 in cancer cell invasion remained unclear. In the present study, knockdown of CARMA3 in A549 and H1299 cells suppressed cell invasion and migration, and downregulated matrix metalloprotease 9 expression at the protein and mRNA levels, as shown by Western blotting and real-time PCR. CARMA3 knockdown increased cell apoptosis, as shown by flow cytometry, increased the mRNA and protein expression levels of Bax and Caspase3, and downregulated Bcl-2 in A549 and H1299 cells. Phosphorylated P38 levels increased and NF-кB activation decreased following knockdown of CARMA3. SB203580, a P38 MAPK inhibitor, activated NF-кB, increased cell migration, and inhibited cell apoptosis after knockdown of CARMA3 compared to knockdown of CARMA3 without SB203580. These findings indicate that CARMA3 may suppress the activation of the P38 MAPK signaling pathway to regulate invasion, migration and apoptosis of lung cancer cells by activating NF-кB (P65) in the nucleus.
Collapse
Affiliation(s)
- Z X Xia
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China; Department of Pathology, Center Hospital of Wuhan City, Wuhan, Hubei, China
| | - Z X Li
- Department of Radiology, the First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - M Zhang
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, Liaoning, China
| | - L M Sun
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Q F Zhang
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - X S Qiu
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
18
|
Chang YW, Chiu CF, Lee KY, Hong CC, Wang YY, Cheng CC, Jan YH, Huang MS, Hsiao M, Ma JT, Su JL. CARMA3 Represses Metastasis Suppressor NME2 to Promote Lung Cancer Stemness and Metastasis. Am J Respir Crit Care Med 2015; 192:64-75. [PMID: 25906011 DOI: 10.1164/rccm.201411-1957oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE CARD-recruited membrane-associated protein 3 (CARMA3) is a novel scaffold protein that regulates nuclear factor (NF)-κB activation; however, the underlying mechanism of CARMA3 in lung cancer stemness and metastasis remains largely unknown. OBJECTIVES To investigate the molecular mechanisms underlying the involvement of CARMA3 in non-small cell lung cancer progression. METHODS The expression levels of CARMA3 and NME2 in a cohort of patients with lung cancer (n = 91) were examined by immunohistochemistry staining and assessed by Kaplan-Meier survival analysis. The effects of CARMA3, microRNA-182 (miR-182), and NME2 on cancer stemness and metastasis were measured in vitro and in vivo. Chromatin immunoprecipitation and luciferase reporter assays were performed to determine the mechanisms of NF-κB-driven miR-182 expression and NME2 regulation. MEASUREMENTS AND MAIN RESULTS We observed that CARMA3 inversely correlated with NME2 expression in patients with lung cancer (Pearson correlation coefficient: R = -0.24; P = 0.022). NME2 levels were significantly decreased in tumor tissues compared with adjacent normal lung tissues (P < 0.001), and patients with lung cancer with higher levels of NME2 had longer survival outcomes (overall survival, P < 0.01; disease-free survival, P < 0.01). Mechanistically, CARMA3 promoted cell motility by reducing the level of NME2 through the NF-κB/miR-182 pathway and by increasing cancer stem cell properties and metastasis in lung cancer. CONCLUSIONS We identified a novel mechanism of CARMA3 in lung cancer stemness and metastasis through the negative regulation of NME2 by NF-κB-dependent induction of miR-182. Our findings provide an attractive strategy for targeting the CARMA3/NF-κB/miR-182 pathway as a potential treatment for lung cancer.
Collapse
Affiliation(s)
- Yi-Wen Chang
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.,2 Graduate Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,3 Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Feng Chiu
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Kang-Yun Lee
- 4 Department of Internal Medicine, School of Medicine, College of Medicine, and.,5 Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chen Hong
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Yun Wang
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ching-Chia Cheng
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Hua Jan
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Shyan Huang
- 6 Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael Hsiao
- 3 Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jui-Ti Ma
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jen-Liang Su
- 1 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.,7 Graduate Institute of Cancer Biology, College of Medicine, China Medical University, Taichung, Taiwan.,8 Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan; and.,9 Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
19
|
Zhang S, Zhang C, Liu W, Zheng W, Zhang Y, Wang S, Huang D, Liu X, Bai Z. MicroRNA-24 upregulation inhibits proliferation, metastasis and induces apoptosis in bladder cancer cells by targeting CARMA3. Int J Oncol 2015; 47:1351-60. [PMID: 26252200 DOI: 10.3892/ijo.2015.3117] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/08/2015] [Indexed: 01/11/2023] Open
Abstract
Increasing evidence has confirmed that dysregulation of microRNAs (miRNAs) can contribute to the progression and metastasis of human tumors. Previous studied have shown dysregulation of miR-24 in a variety of tumors. However, the roles of miR-24 in human bladder cancer have not been well clarified. Therefore, we investigated the biological functions and molecular mechanisms of miR-24 in human bladder cancer cell lines, evaluating whether it could be a therapeutic biomarker of bladder cancer in the future. In our study, we found that miR-24 is downregulated in human bladder cancer cell lines. Moreover, the low level of miR-24 was associated with increased expression of CARMA3 in bladder cancer cells. Upregulation of miR-24 significantly inhibited proliferation, arrested cell cycle and induced apoptosis in bladder cancer cells. In addition, invasion and epithelial to mesenchymal transition (EMT) of bladder cancer cells was suppressed by overexpressing miR-24. Bioinformatics analysis predicted that the CARMA3 was a potential target gene of miR-24. Further study by luciferase reporter assay demonstrated that miR-24 could directly target CARMA3. Overexpression of CARMA3 in bladder cancer cells transfected with miR-24 mimic partially reversed the inhibitory effect of miR-24. In conclusion, miR-24 inhibited cell proliferation, invasion and EMT in bladder cancer cells by downregulation of CARMA3, and that downregulation of CARMA3 was essential for the miR-24-inhibited cell proliferation, invasion and EMT in bladder cancer cells.
Collapse
Affiliation(s)
- Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital, Xiangya School of Medicine Central South University, Haikou Municipal People's Hospital, Haikou 570208, P.R. China
| | - Chong Zhang
- Department of Urology, Affiliated Haikou Hospital, Xiangya School of Medicine Central South University, Haikou Municipal People's Hospital, Haikou 570208, P.R. China
| | - Wei Liu
- Clinical Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Wenwen Zheng
- Central Laboratory, Affiliated Haikou Hospital, Xiangya School of Medicine Central South University, Haikou Municipal People's Hospital, Haikou 570208, P.R. China
| | - Yingai Zhang
- Central Laboratory, Affiliated Haikou Hospital, Xiangya School of Medicine Central South University, Haikou Municipal People's Hospital, Haikou 570208, P.R. China
| | - Shunlan Wang
- Central Laboratory, Affiliated Haikou Hospital, Xiangya School of Medicine Central South University, Haikou Municipal People's Hospital, Haikou 570208, P.R. China
| | - Denggao Huang
- Central Laboratory, Affiliated Haikou Hospital, Xiangya School of Medicine Central South University, Haikou Municipal People's Hospital, Haikou 570208, P.R. China
| | - Xi Liu
- Central Laboratory, Affiliated Haikou Hospital, Xiangya School of Medicine Central South University, Haikou Municipal People's Hospital, Haikou 570208, P.R. China
| | - Zhiming Bai
- Department of Urology, Affiliated Haikou Hospital, Xiangya School of Medicine Central South University, Haikou Municipal People's Hospital, Haikou 570208, P.R. China
| |
Collapse
|
20
|
Yerlikaya A, Okur E, Tarık Baykal A, Acılan C, Boyacı İ, Ulukaya E. Data for a proteomic analysis of p53-independent induction of apoptosis by bortezomib. Data Brief 2015. [PMID: 26217687 PMCID: PMC4459767 DOI: 10.1016/j.dib.2014.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This data article contains data related to the research article entitled, “A proteomic analysis of p53-independent induction of apoptosis by bortezomib in 4T1 breast cancer cell line” by Yerlikaya et al. [1]. The research article presented 2-DE and nLC-MS/MS based proteomic analysis of proteasome inhibitor bortezomib-induced changes in the expression of cellular proteins. The report showed that GRP78 and TCEB2 were over-expressed in response to treatment with bortezomib for 24 h. In addition, the report demonstrated that Hsp70, the 26S proteasome non-ATPase regulatory subunit 14 and sequestosome 1 were increased at least 2 fold in p53-deficient 4T1 cells. The data here show for the first time the increased expressions of Card10, Dffb, Traf3 and Trp53bp2 in response to inhibition of the 26S proteasome. The information presented here also shows that both Traf1 and Xiap (a member of IAPs) are also downregulated simultaneously upon proteasomal inhibition. The increases in the level of Card10 and Trp53bp2 proteins were verified by Western blot analysis in response to varying concentrations of bortezomib for 24 h.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Dumlupınar University, Faculty of Medicine, Department of Medical Biology, Kütahya, Turkey
| | - Emrah Okur
- Dumlupınar University, Art and Science Faculty, Department of Biology, Kütahya, Turkey
| | - Ahmet Tarık Baykal
- İstanbul Medipol University, Medical School, Department of Medical Biochemistry, İstanbul, Turkey
| | - Ceyda Acılan
- TÜBİTAK, MAM, Genetic Engineering and Biotechnology Department, Gebze, Kocaeli, Turkey
| | - İhsan Boyacı
- İstanbul Medipol University, Vatan Clinic, İstanbul, 34214, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Uludağ University, Bursa, Turkey
| |
Collapse
|
21
|
de Boer YS, van Gerven NMF, Zwiers A, Verwer BJ, van Hoek B, van Erpecum KJ, Beuers U, van Buuren HR, Drenth JPH, den Ouden JW, Verdonk RC, Koek GH, Brouwer JT, Guichelaar MMJ, Vrolijk JM, Kraal G, Mulder CJJ, van Nieuwkerk CMJ, Fischer J, Berg T, Stickel F, Sarrazin C, Schramm C, Lohse AW, Weiler-Normann C, Lerch MM, Nauck M, Völzke H, Homuth G, Bloemena E, Verspaget HW, Kumar V, Zhernakova A, Wijmenga C, Franke L, Bouma G. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology 2014; 147:443-52.e5. [PMID: 24768677 DOI: 10.1053/j.gastro.2014.04.022] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/17/2014] [Accepted: 04/09/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Autoimmune hepatitis (AIH) is an uncommon autoimmune liver disease of unknown etiology. We used a genome-wide approach to identify genetic variants that predispose individuals to AIH. METHODS We performed a genome-wide association study of 649 adults in The Netherlands with AIH type 1 and 13,436 controls. Initial associations were further analyzed in an independent replication panel comprising 451 patients with AIH type 1 in Germany and 4103 controls. We also performed an association analysis in the discovery cohort using imputed genotypes of the major histocompatibility complex region. RESULTS We associated AIH with a variant in the major histocompatibility complex region at rs2187668 (P = 1.5 × 10(-78)). Analysis of this variant in the discovery cohort identified HLA-DRB1*0301 (P = 5.3 × 10(-49)) as a primary susceptibility genotype and HLA-DRB1*0401 (P = 2.8 × 10(-18)) as a secondary susceptibility genotype. We also associated AIH with variants of SH2B3 (rs3184504, 12q24; P = 7.7 × 10(-8)) and CARD10 (rs6000782, 22q13.1; P = 3.0 × 10(-6)). In addition, strong inflation of association signal was found with single-nucleotide polymorphisms associated with other immune-mediated diseases, including primary sclerosing cholangitis and primary biliary cirrhosis, but not with single-nucleotide polymorphisms associated with other genetic traits. CONCLUSIONS In a genome-wide association study, we associated AIH type 1 with variants in the major histocompatibility complex region, and identified variants of SH2B3and CARD10 as likely risk factors. These findings support a complex genetic basis for AIH pathogenesis and indicate that part of the genetic susceptibility overlaps with that for other immune-mediated liver diseases.
Collapse
Affiliation(s)
- Ynto S de Boer
- Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Nicole M F van Gerven
- Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Antonie Zwiers
- Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bart J Verwer
- Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bart van Hoek
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karel J van Erpecum
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Henk R van Buuren
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jannie W den Ouden
- Department of Gastroenterology and Hepatology, Haga Hospital, The Hague, The Netherlands
| | - Robert C Verdonk
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands; Department of Gastroenterology and Hepatology, St Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Ger H Koek
- Department of Gastroenterology and Hepatology, University Medical Center Maastricht, Maastricht, The Netherlands
| | - Johannes T Brouwer
- Department of Gastroenterology and Hepatology, Reinier de Graaf Hospital, Delft, The Netherlands
| | - Maureen M J Guichelaar
- Department of Gastroenterology and Hepatology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Jan M Vrolijk
- Department of Gastroenterology and Hepatology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Georg Kraal
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Chris J J Mulder
- Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Carin M J van Nieuwkerk
- Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Janett Fischer
- Department of Internal Medicine, Neurology and Dermatology, Medical Clinic of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| | - Thomas Berg
- Department of Internal Medicine, Neurology and Dermatology, Medical Clinic of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| | - Felix Stickel
- Department of Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | | | - Christoph Schramm
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Markus M Lerch
- Department of Internal Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Elisabeth Bloemena
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Hein W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vinod Kumar
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Gerd Bouma
- Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Scudiero I, Vito P, Stilo R. The three CARMA sisters: so different, so similar: a portrait of the three CARMA proteins and their involvement in human disorders. J Cell Physiol 2014; 229:990-7. [PMID: 24375035 DOI: 10.1002/jcp.24543] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/17/2013] [Indexed: 12/11/2022]
Abstract
Initially identified by their ability to modulate the functional activity of BCL10, the three CARMA proteins, CARMA1, -2, and -3, have recently themselves taken a leading role on the stage of molecular medicine. Although considered for some time as simple ancillary proteins, increasingly accumulating recent data evidently indicate a role of primary importance for these three proteins in the pathophysiology of several human tumors and inflammatory disorders. In fact, recent scientific literature clearly establishes that CARMA1 is one of the most mutated genes in a subtype of B-cell lymphoma and, at the same time, responsible for some rare human immunodeficiency conditions. On the other hand, mutations in CARMA2 are responsible for the hereditary transmission of some inflammatory disorders of the skin, including familial psoriasis and ptiriasis; whereas expression of CARMA3 appears to be deregulated in different human tumors. Here we describe and summarize the mutations found in the genes coding for the three CARMA proteins in these different human pathological conditions, and offer an interpretation of the molecular mechanisms from which arise the biological outcomes in which these proteins are involved.
Collapse
|
23
|
Du S, Jia L, Zhang Y, Fang L, Zhang X, Fan Y. CARMA3 is upregulated in human pancreatic carcinoma, and its depletion inhibits tumor proliferation, migration, and invasion. Tumour Biol 2014; 35:5965-70. [PMID: 24633921 DOI: 10.1007/s13277-014-1791-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 02/24/2014] [Indexed: 01/05/2023] Open
Abstract
Elevated CARMA3 expression has been reported to be involved in tumor progression of several cancer types. In the present study, we examined the expression pattern of CARMA3 protein and its biological roles in human pancreatic carcinoma. Using immunohistochemistry, we checked CARMA3 protein expression in 95 pancreatic ductal carcinoma specimens. We found that CARMA3 was overexpressed in 34 of 95 (35.8 %) specimens. A significant association was observed between CARMA3 overexpression with histological grade (p=0.0099) and nodal status (p=0.0126). To further explore its biological roles, we knocked down CARMA3 expression in CAPAN2 cell line using small interfering RNA (siRNA). MTT growth assay, wound healing assay, and Transwell assay showed that CARMA3 depletion inhibited cell proliferation, migration, and invasion. We also showed that CARMA3 depletion inhibited EGF-induced nuclear factor-kappaB (NF-κB) activation and its target genes' expression. The effect of CARMA3 depletion on NF-κB signaling was significantly reduced in Bcl10-depleted cells. In conclusion, CARMA3 is overexpressed in pancreatic cancer and regulates malignant cell growth, invasion, and NF-κB signaling, which was dependent on its association with Bcl10.
Collapse
Affiliation(s)
- Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Chaoyang District, Beijing, 100029, China
| | | | | | | | | | | |
Collapse
|
24
|
Crebanine, an aporphine alkaloid, sensitizes TNF-α-induced apoptosis and suppressed invasion of human lung adenocarcinoma cells A549 by blocking NF-κB-regulated gene products. Tumour Biol 2014; 35:8615-24. [PMID: 24867094 DOI: 10.1007/s13277-014-1998-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/22/2014] [Indexed: 01/01/2023] Open
Abstract
Crebanine is an alkaloid known to exhibit anticancer, but its mechanism is not well understood. Besides, the nuclear factor-kappa B (NF-κB) transcription factor has been correlated with inflammation, carcinogenesis, tumor cell survival, invasion, and angiogenesis. In this study, we investigated the effects of crebanine on tumor necrosis factor alpha (TNF-α)-induced NF-κB activation and the expression of NF-κB-regulated gene products. We found that crebanine reduced the cell proliferation of lung, ovarian, and breast cancer cells. Crebanine also potentiated TNF-α-induced apoptosis which correlated with the suppression of the gene products linked to cell survival, B cell lymphoma-extra large, and proliferation, cyclin D1. In addition, crebanine affected TNF-α-induced activation of caspase-8, caspase-3, and poly(ADP-ribose) polymerase cleavage, indicating that the apoptotic effects of TNF-α were enhanced by crebanine. Moreover, crebanine reduced TNF-α-induced A549 cell invasion and migration. Furthermore, crebanine suppressed the TNF-α-mediated expression of proteins that involved cancer cell invasion (matrix metalloproteinase 9 urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor and intercellular adhesion molecule 1) and angiogenesis (COX-2 and VEGF), all of which are known to be regulated by NF-κB. We also demonstrated that TNF-α induced NF-κB DNA-binding activity, which was inhibited by crebanine. Moreover, crebanine suppressed the TNF-α-induced degradation of inhibitor of NF-κB alpha (IκBa), which led to reduced NF-κB translocation to the nucleus. Taken together, our results demonstrated that crebanine reduced TNF-α-induced cancer cell proliferation, invasion, and survival by suppressing NF-κB activity and expression profile of its downstream genes.
Collapse
|
25
|
Xie C, Han Y, Fu L, Li Q, Qiu X, Wang E. Overexpression of CARMA3 is associated with advanced tumor stage, cell cycle progression, and cisplatin resistance in human epithelial ovarian cancer. Tumour Biol 2014; 35:7957-64. [PMID: 24833094 DOI: 10.1007/s13277-014-2070-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/06/2014] [Indexed: 11/24/2022] Open
Abstract
CARD recruited membrane associated protein 3 (CARMA3) overexpression has been found in several human cancers. However, its expression pattern and biological roles in human ovarian cancers are not clear. In this study, we examined the expression pattern of CARMA3 in 101 ovarian cancer specimens. We found that 52 (51.5 %) showed CARMA3 overexpression. CARMA3 overexpression positively correlated with tumor histology and advanced FIGO stage. CARMA3 depletion in ovarian cancer cell lines A2780 and HO8910 inhibited ovarian cancer cell proliferation and blocked cell cycle progression. CARMA3 depletion also sensitized ovarian cancer cells to cisplatin-induced cytotoxicity. In addition, Western blot showed that CARMA3 depletion downregulated cyclin D1, cyclin E, and Bcl-2 levels. In conclusion, our data provides evidence that CARMA3 is overexpressed in ovarian cancers and associated with advanced stage. CARMA3 regulates the ovarian cancer cell proliferation, cell cycle progression, and chemoresistance.
Collapse
Affiliation(s)
- Chengyao Xie
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Bei'er Road 92, Heping District, Shenyang, Liaoning Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Wang L, Qian L, Li X, Yan J. MicroRNA-195 inhibits colorectal cancer cell proliferation, colony-formation and invasion through targeting CARMA3. Mol Med Rep 2014; 10:473-8. [PMID: 24787958 DOI: 10.3892/mmr.2014.2178] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/07/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miR)‑195 has been reported to be a tumor suppressor. Downregulation of miR‑195 has been shown to correlate with lymph node metastasis and poor prognosis in colorectal cancer. However, the specific regulatory role of miR‑195 in colorectal cancer cells is yet to be elucidated. In the present study, miR‑195 expression was significantly reduced in colorectal cancer tissues. Furthermore, CARMA3 was identified as a novel target of miR‑195, which was observed to be upregulated in colorectal cancer. In addition, downregulation of miR‑195 increased CARMA3 protein expression, whereas miR‑195 upregulation suppressed CARMA3 protein expression in SW480 and HT29 colorectal cancer cells. Moreover, overexpression of miR‑195 downregulated cell proliferation, colony‑formation and invasion in SW480 and HT29 cells, which was reversed upon CARMA3 overexpression. In conclusion, the findings of the present study suggest that miR‑195 has a suppressive role in colorectal cancer cells through directly targeting CARMA3. Therefore, CARMA3 may be a potential target for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ling Wang
- The Second Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Liyuan Qian
- The Second Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaorong Li
- The Second Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jin Yan
- Department of Nursing, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
27
|
Clinical significance and biological roles of CARMA3 in human bladder carcinoma. Tumour Biol 2014; 35:4131-6. [PMID: 24443255 DOI: 10.1007/s13277-013-1540-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022] Open
Abstract
Caspase recruitment domain and membrane-associated guanylate kinase-like domain protein 3 (CARMA3) was reported as an oncoprotein overexpressed in several cancers. The expression pattern of CARMA3 and its clinical significance in human bladder cancer have not been well characterized. In the present study, CARMA3 expression was analyzed in 90 archived bladder cancer specimens using immunohistochemistry, and the correlation between CARMA3 expression and clinicopathological parameters was evaluated. We found that CARMA3 was overexpressed in 35 of 90 (38.8%) bladder cancer specimens. Significant association was observed between CARMA3 overexpression with tumor status (p = 0.081) and tumor grade (p = 0.027). To further explore the biological functions of CARMA3 in bladder cancer, we depleted CARMA3 in T24 and 5637 cell lines using small interfering RNA (siRNA). Using cell counting kit-8 (CCK8) assay and colony formation assay, we were able to show that CARMA3 depletion inhibited cell proliferation and colony number. Further study demonstrated that CARMA3 depletion decreased an expression of nuclear factor kappa B (NF-κB) targets cyclin D1 and Bcl-2 expression, as well as IκB phosphorylation. Luciferase reporter assay showed that CARMA3 depletion could downregulate NF-κB reporter activity. In conclusion, CARMA3 is overexpressed in bladder cancer and regulates malignant cell growth and NF-κB signaling, which makes CARMA3 a candidate therapeutic target for bladder cancer.
Collapse
|
28
|
Genetic aberrations in imatinib-resistant dermatofibrosarcoma protuberans revealed by whole genome sequencing. PLoS One 2013; 8:e69752. [PMID: 23922791 PMCID: PMC3726773 DOI: 10.1371/journal.pone.0069752] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/12/2013] [Indexed: 12/23/2022] Open
Abstract
Dermatofibrosarcoma protuberans (DFSP) is a very rare soft tissue sarcoma. DFSP often reveals a specific chromosome translocation, t(17;22)(q22;q13), which results in the fusion of collagen 1 alpha 1 (COL1A1) gene and platelet-derived growth factor-B (PDGFB) gene. The COL1A1-PDGFB fusion protein activates the PDGFB receptor and resultant constitutive activation of PDGFR receptor is essential in the pathogenesis of DFSP. Thus, blocking PDGFR receptor activation with imatinib has shown promising activity in the treatment of advanced and metastatic DFSP. Despite the success with targeted agents in cancers, acquired drug resistance eventually occurs. Here, we tried to identify potential drug resistance mechanisms against imatinib in a 46-year old female with DFSP who initially responded well to imatinib but suffered rapid disease progression. We performed whole-genome sequencing of both pre-treatment and post-treatment tumor tissue to identify the mutational events associated with imatinib resistance. No significant copy number alterations, insertion, and deletions were identified during imatinib treatment. Of note, we identified newly emerged 8 non-synonymous somatic mutations of the genes (ACAP2, CARD10, KIAA0556, PAAQR7, PPP1R39, SAFB2, STARD9, and ZFYVE9) in the imatinib-resistant tumor tissue. This study revealed diverse possible candidate mechanisms by which imatinib resistance to PDGFRB inhibition may arise in DFSP, and highlights the usefulness of whole-genome sequencing in identifying drug resistance mechanisms and in pursuing genome-directed, personalized anti-cancer therapy.
Collapse
|
29
|
Feng X, Miao G, Han Y, Xu Y. CARMA3 is overexpressed in human glioma and promotes cell invasion through MMP9 regulation in A172 cell line. Tumour Biol 2013; 35:149-54. [PMID: 23893382 DOI: 10.1007/s13277-013-1018-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/11/2013] [Indexed: 11/29/2022] Open
Abstract
Caspase recruitment domain-containing membrane-associated guanylate kinase protein 10 or CARMA3 (CARD10) is a recently characterized oncoprotein involved in the progression of several human malignancies. The present study aims to investigate the expression pattern and biological roles of CARMA3 protein in human glioma. CARMA3 expression was analyzed in 97 glioma specimens using immunohistochemistry. We observed negative staining in normal astrocytes and positive staining of CARMA3 in 25 out of 97 (25.8%) glioma samples. Overexpression of CARMA3 correlated with tumor grade (p < 0.001). Small interfering RNA knockdown was performed in A172 cell line with relatively high CARMA3 expression. Using colony formation assay and Matrigel invasion assay, we showed that CARMA3 depletion in A172 cell line inhibited cell proliferation and cell invasion. In addition, mRNA and protein levels of matrix metallopeptidase 9 (MMP9) were downregulated, indicating CARMA3 might regulate invasion through MMP9. In conclusion, CARMA3 serves as an oncoprotein in human glioma by regulating cell invasion, possibly through MMP9 regulation.
Collapse
Affiliation(s)
- Xingjun Feng
- Department of Neurosurgery, General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, China,
| | | | | | | |
Collapse
|
30
|
Wu GL, Yuan JL, Huang XD, Rong JF, Zhang LX, Liu YP, Wang FL. Evaluating the expression of CARMA3 as a prognostic tumor marker in renal cell carcinoma. Tumour Biol 2013; 34:3431-5. [PMID: 23771851 DOI: 10.1007/s13277-013-0917-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022] Open
Abstract
Increased expression of CARMA3 has been reported to be involved in tumorigenesis and tumor progression of several cancer types. The aim of our study is to investigate the prognostic role of CARMA3 expression in patients with renal cell carcinoma (RCC). Real-time quantitative PCR was performed to detect CARMA3 mRNA expression level in 31 paired samples of RCC and adjacent noncancerous renal tissues. Subsequently, extensive immunohistochemistry was performed to detect CARMA3 protein expression in 114 RCC cases. Clinicopathological data for these patients were evaluated. The prognostic significance was assessed using the Kaplan-Meier survival estimates and log-rank tests. CARMA3 mRNA expression was significantly higher in RCC tissues compared with adjacent noncancerous renal tissues (3.525 ± 1.233 vs. 1.512 ± 0.784, P < 0.001). In addition, high CARMA3 expression in RCC tissues was significantly associated with tumor size (P = 0.026), histological differentiation (P = 0.039), tumor stage (P = 0.006), and the presence of metastasis (P < 0.001). Moreover, Kaplan-Meier analysis showed that patients with high CARMA3 expression also had a significantly poorer prognosis than those with low CARMA3 expression (log-rank test, P < 0.001). Furthermore, multivariate analysis illustrated that CARMA3 overexpression might be an independent prognostic indicator for the survival of patients with RCC. In conclusion, this work shows that CARMA3 may serve as a novel and prognostic marker for RCC and play a role during the development and progression of the disease.
Collapse
Affiliation(s)
- Guang-Li Wu
- Department of Nephrology, Bethune International Peace Hospital of People's Liberation Army (PLA), No. 398, Zhongshan West Rd., Shijiazhuang, 050082, Hebei Province, China,
| | | | | | | | | | | | | |
Collapse
|
31
|
NF-κB in colorectal cancer. J Mol Med (Berl) 2013; 91:1029-37. [PMID: 23636511 DOI: 10.1007/s00109-013-1045-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/28/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide, responsible for more than half a million deaths annually. CRC is a multistep process that entails the accumulation of genetic/epigenetic aberrations, which lead to the simultaneous failure of protective mechanisms and the activation of tumorigenic pathways. In most cases of CRC a deregulation of the Wnt-signaling pathway is required. The transcription factor nuclear factor κB (NF-κB) has been recognized as a key player in the initiation and propagation of CRC. Under physiological conditions, NF-κB orchestrates the inflammatory process and participates in the modulation of various steps of cell cycle and survival. It is normally kept in an inactive state in the cytoplasm by binding to a group of inhibitory proteins. Upon receipt of a signal, its inhibitor is phosphorylated and proteolytically degraded and NF-κB is actively translocated to the nucleus, where it facilitates target-gene transcription. Recent experimental data reveal the important role of NF-κB in tumor cells as well as in the surrounding "cancerous" and reactive microenvironment. Various tumor cell-derived and contextual cues feed constantly this vicious circuitry sustaining inflammation and promoting proliferation, angiogenesis, invasion and eventually metastasis. Therefore NF-κB along with its upstream and downstream network presents a rational target for therapeutic interventions. Numerous small molecules, inhibitory peptides, antisense RNAs, natural compounds, as well as gene therapy strategies interfere with multiple steps of the NF-κΒ signaling cascade. The design of NF-κΒ-targeted treatment may aid the efforts towards the pursuit of more efficient therapeutic measures devoid of severe systemic side-effects.
Collapse
|