1
|
Anthony-Gonda K, Bardhi A, Ray A, Flerin N, Li M, Chen W, Ochsenbauer C, Kappes JC, Krueger W, Worden A, Schneider D, Zhu Z, Orentas R, Dimitrov DS, Goldstein H, Dropulić B. Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model. Sci Transl Med 2020; 11:11/504/eaav5685. [PMID: 31391322 DOI: 10.1126/scitranslmed.aav5685] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/20/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Adoptive immunotherapy using chimeric antigen receptor-modified T cells (CAR-T) has made substantial contributions to the treatment of certain B cell malignancies. Such treatment modalities could potentially obviate the need for long-term antiretroviral drug therapy in HIV/AIDS. Here, we report the development of HIV-1-based lentiviral vectors that encode CARs targeting multiple highly conserved sites on the HIV-1 envelope glycoprotein using a two-molecule CAR architecture, termed duoCAR. We show that transduction with lentiviral vectors encoding multispecific anti-HIV duoCARs confer primary T cells with the capacity to potently reduce cellular HIV infection by up to 99% in vitro and >97% in vivo. T cells are the targets of HIV infection, but the transduced T cells are protected from genetically diverse HIV-1 strains. The CAR-T cells also potently eliminated PBMCs infected with broadly neutralizing antibody-resistant HIV strains, including VRC01/3BNC117-resistant HIV-1. Furthermore, multispecific anti-HIV duoCAR-T cells demonstrated long-term control of HIV infection in vivo and prevented the loss of CD4+ T cells during HIV infection using a humanized NSG mouse model of intrasplenic HIV infection. These data suggest that multispecific anti-HIV duoCAR-T cells could be an effective approach for the treatment of patients with HIV-1 infection.
Collapse
Affiliation(s)
| | - Ariola Bardhi
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alex Ray
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nina Flerin
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mengyan Li
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Weizao Chen
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35294, USA
| | - Winfried Krueger
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Andrew Worden
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Dina Schneider
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Zhongyu Zhu
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Rimas Orentas
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Harris Goldstein
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Boro Dropulić
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA.
| |
Collapse
|
2
|
CD4-Induced Antibodies Promote Association of the HIV-1 Envelope Glycoprotein with CD4-Binding Site Antibodies. J Virol 2016; 90:7822-32. [PMID: 27334589 DOI: 10.1128/jvi.00803-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/14/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The HIV-1 envelope glycoprotein (Env) is a trimer of gp120/gp41 heterodimers that mediates viral entry. Env binds cellular CD4, an association which stabilizes a conformation favorable to its subsequent association with a coreceptor, typically CCR5 or CXCR4. The CD4- and coreceptor-binding sites serve as epitopes for two classes of HIV-1-neutralizing antibodies: CD4-binding site (CD4bs) and CD4-induced (CD4i) antibodies, respectively. Here we observed that, at a fixed total concentration, mixtures of the CD4i antibodies (E51 or 412d) and the CD4bs antibody VRC01 neutralized the HIV-1 isolates 89.6, ADA, SG3, and SA32 more efficiently than either antibody alone. We found that E51, and to a lesser extent 412d and 17b, promoted association of four CD4bs antibodies to the Env trimer but not to monomeric gp120. We further demonstrated that the binding of the sulfotyrosine-binding pocket by CCR5mim2-Ig was sufficient for promoting CD4bs antibody binding to Env. Interestingly, the relationship is not reciprocal: CD4bs antibodies were not as efficient as CD4-Ig at promoting E51 or 412d binding to Env trimer. Consistent with these observations, CD4-Ig, but none of the CD4bs antibodies tested, substantially increased HIV-1 infection of a CD4-negative, CCR5-positive cell line. We conclude that the ability of CD4i antibodies to promote VRC01 association with Env trimers accounts for the increase potency of VRC01 and CD4i antibody mixtures. Our data further suggest that potent CD4bs antibodies avoid inducing Env conformations that bind CD4i antibodies or CCR5. IMPORTANCE Potent HIV-1-neutralizing antibodies can prevent viral transmission and suppress an ongoing infection. Here we show that CD4-induced (CD4i) antibodies, which recognize the conserved coreceptor-binding site of the HIV-1 envelope glycoprotein (Env), can increase the association of Env with potent broadly neutralizing antibodies that recognize the CD4-binding site (CD4bs antibodies). We further show that, unlike soluble forms of CD4, CD4bs antibodies poorly induce envelope glycoprotein conformations that efficiently bind CCR5. This study provides insight into the properties of potent CD4bs antibodies and suggests that, under some conditions, CD4i antibodies can improve their potency. These observations may be helpful to the development of vaccines designed to elicit specific antibody classes.
Collapse
|
3
|
Wan C, Sun J, Chen W, Yuan X, Chong H, Prabakaran P, Dimitrov DS, He Y. Epitope mapping of M36, a human antibody domain with potent and broad HIV-1 inhibitory activity. PLoS One 2013; 8:e66638. [PMID: 23776690 PMCID: PMC3679054 DOI: 10.1371/journal.pone.0066638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/08/2013] [Indexed: 01/01/2023] Open
Abstract
M36 is the first member of a novel class of potent HIV-1 entry inhibitors based on human engineered antibody domains (eAds). It exhibits broad inhibitory activity suggesting that its CD4-induced epitope is highly conserved. Here, we describe fine mapping of its epitope by using several approaches. First, a panel of mimotopes was affinity-selected from a random peptide library and potential m36-binding residues were computationally predicted. Second, homology modeling of m36 and molecular docking of m36 onto gp120 revealed potentially important residues in gp120-m36 interactions. Third, the predicted contact residues were verified by site-directed mutagenesis. Taken together, m36 epitope comprising three discontinuous sites including six key gp120 residues (Site C1: Thr123 and Pro124; Site C3: Glu370 and Ile371; Site C4: Met426 and Trp427) were identified. In the 3D structure of gp120, the sites C1 and C4 are located in the bridging sheet and the site C3 is within the β15-α3 excursion, which play essential roles for the receptor- and coreceptor-binding and are major targets of neutralizing antibodies. Based on these results we propose a precise localization of the m36 epitope and suggest a mechanism of its broad inhibitory activity which could help in the development of novel HIV-1 therapeutics based on eAds.
Collapse
Affiliation(s)
- Chao Wan
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianping Sun
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weizao Chen
- Protein Interactions Group, CCRNP, CCR, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Xiaohui Yuan
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ponraj Prabakaran
- Protein Interactions Group, CCRNP, CCR, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Dimiter S. Dimitrov
- Protein Interactions Group, CCRNP, CCR, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
4
|
Chen W, Ying T, Dimitrov DS. Antibody-based candidate therapeutics against HIV-1: implications for virus eradication and vaccine design. Expert Opin Biol Ther 2013; 13:657-71. [PMID: 23293858 DOI: 10.1517/14712598.2013.761969] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The currently available anti-HIV-1 drugs can control the infection but do not eradicate the virus. Their long-term use can lead to side effects and resistance to therapy. Therefore, eradication of the virus has been a major goal of research. Biological therapeutics including broadly neutralizing monoclonal antibodies (bnAbs) are promising tools to reach this goal. They could also help design novel vaccine immunogens potentially capable of eliciting bnAbs targeting the HIV-1 envelope glycoproteins (Envs). AREAS COVERED We review HIV-1 bnAbs and their potential as candidate prophylactics and therapeutics used individually, in combination, or as bispecific fusion proteins. We also discuss their potential use in the 'activation-elimination' approach for HIV-1 eradication in infected patients receiving antiretroviral treatment as well as current vaccine design efforts based on understanding of interactions of candidate vaccine immunogens with matured bnAbs and their putative germline predecessors, and related antibody maturation pathways. EXPERT OPINION Exploration of HIV-1 bnAbs has provided and will continue to provide useful knowledge that helps develop novel types of biotherapeutics and vaccines. It is possible that bnAb-based candidate therapeutics could help eradicate HIV-1. Development of vaccine immunogens capable of eliciting potent bnAbs in humans remains a fundamental challenge.
Collapse
Affiliation(s)
- Weizao Chen
- National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Protein Interactions Group, Miller Drive, Building 469, Room 144, Frederick, MD 21702, USA.
| | | | | |
Collapse
|