1
|
White MJV, Ozkan M, Medellin JEG, Solanki A, Hubbell JA. Inhibition of Talin2 dedifferentiates myofibroblasts and reverses lung and kidney fibrosis. Sci Rep 2025; 15:18010. [PMID: 40410300 PMCID: PMC12102334 DOI: 10.1038/s41598-025-00939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/02/2025] [Indexed: 05/25/2025] Open
Abstract
Fibrosis is involved in 45% of deaths in the United States, and no treatment exists to reverse progression of the disease. To find novel targets for fibrosis therapeutics, we developed a model for the differentiation of monocytes to myofibroblasts that allowed us to screen for proteins involved in myofibroblast differentiation. Inhibition of a novel protein target generated by our model, talin2, reduces myofibroblast-specific morphology, α-smooth muscle actin content, and collagen I content and lowers the pro-fibrotic secretome of myofibroblasts. We find that knockdown of talin2 de-differentiates myofibroblasts and reverses bleomycin-induced lung fibrosis in mice, and further that Tln2-/- mice are resistant to bleomycin-induced lung fibrosis and resistant to unilateral ureteral obstruction-induced kidney fibrosis. Talin2 inhibition is thus a potential treatment for reversing lung and kidney fibroses.
Collapse
Affiliation(s)
- Michael J V White
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Melis Ozkan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | | | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, 11201, New York, United States.
- Departments of Biology and Chemistry, Faculty of Arts and Sciences, New York University, New York, 10012, New York, United States.
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, 10016, New York, United States.
| |
Collapse
|
2
|
Samaržija I, Lukiyanchuk V, Lončarić M, Rac-Justament A, Stojanović N, Gorodetska I, Kahya U, Humphries JD, Fatima M, Humphries MJ, Fröbe A, Dubrovska A, Ambriović-Ristov A. The extracellular matrix component perlecan/HSPG2 regulates radioresistance in prostate cancer cells. Front Cell Dev Biol 2024; 12:1452463. [PMID: 39149513 PMCID: PMC11325029 DOI: 10.3389/fcell.2024.1452463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Radiotherapy of prostate cancer (PC) can lead to the acquisition of radioresistance through molecular mechanisms that involve, in part, cell adhesion-mediated signaling. To define these mechanisms, we employed a DU145 PC model to conduct a comparative mass spectrometry-based proteomic analysis of the purified integrin nexus, i.e., the cell-matrix junction where integrins bridge assembled extracellular matrix (matrisome components) to adhesion signaling complexes (adhesome components). When parental and radioresistant cells were compared, the expression of integrins was not changed, but cell radioresistance was associated with extensive matrix remodeling and changes in the complement of adhesion signaling proteins. Out of 72 proteins differentially expressed in the parental and radioresistant cells, four proteins were selected for functional validation based on their correlation with biochemical recurrence-free survival. Perlecan/heparan sulfate proteoglycan 2 (HSPG2) and lysyl-like oxidase-like 2 (LOXL2) were upregulated, while sushi repeat-containing protein X-linked (SRPX) and laminin subunit beta 3 (LAMB3) were downregulated in radioresistant DU145 cells. Knockdown of perlecan/HSPG2 sensitized radioresistant DU145 RR cells to irradiation while the sensitivity of DU145 parental cells did not change, indicating a potential role for perlecan/HSPG2 and its associated proteins in suppressing tumor radioresistance. Validation in androgen-sensitive parental and radioresistant LNCaP cells further supported perlecan/HSPG2 as a regulator of cell radiosensitivity. These findings extend our understanding of the interplay between extracellular matrix remodeling and PC radioresistance and signpost perlecan/HSPG2 as a potential therapeutic target and biomarker for PC.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vasyl Lukiyanchuk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Marija Lončarić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Anja Rac-Justament
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Uğur Kahya
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jonathan D Humphries
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mahak Fatima
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Anna Dubrovska
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium, Partner Site Dresden and German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
3
|
Wang Y, Huang H, Weng H, Jia C, Liao B, Long Y, Yu F, Nie Y. Talin mechanotransduction in disease. Int J Biochem Cell Biol 2024; 166:106490. [PMID: 37914021 DOI: 10.1016/j.biocel.2023.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Talin protein (Talin 1/2) is a mechanosensitive cytoskeleton protein. The unique structure of the Talin plays a vital role in transmitting mechanical forces. Talin proteins connect the extracellular matrix to the cytoskeleton by linking to integrins and actin, thereby mediating the conversion of mechanical signals into biochemical signals and influencing disease progression as potential diagnostic indicators, therapeutic targets, and prognostic indicators of various diseases. Most studies in recent years have confirmed that mechanical forces also have a crucial role in the development of disease, and Talin has been found to play a role in several diseases. Still, more studies need to be done on how Talin is involved in mechanical signaling in disease. This review focuses on the mechanical signaling of Talin in disease, aiming to summarize the mechanisms by which Talin plays a role in disease and to provide references for further studies.
Collapse
Affiliation(s)
- Yingzi Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Haozhong Huang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Huimin Weng
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Chunsen Jia
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China
| | - Yongmei Nie
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China.
| |
Collapse
|
4
|
Lončarić M, Stojanović N, Rac-Justament A, Coopmans K, Majhen D, Humphries JD, Humphries MJ, Ambriović-Ristov A. Talin2 and KANK2 functionally interact to regulate microtubule dynamics, paclitaxel sensitivity and cell migration in the MDA-MB-435S melanoma cell line. Cell Mol Biol Lett 2023; 28:56. [PMID: 37460977 PMCID: PMC10353188 DOI: 10.1186/s11658-023-00473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Focal adhesions (FAs) are integrin-containing, multi-protein structures that link intracellular actin to the extracellular matrix and trigger multiple signaling pathways that control cell proliferation, differentiation, survival and motility. Microtubules (MTs) are stabilized in the vicinity of FAs through interaction with the components of the cortical microtubule stabilizing complex (CMSC). KANK (KN motif and ankyrin repeat domains) family proteins within the CMSC, KANK1 or KANK2, bind talin within FAs and thus mediate actin-MT crosstalk. We previously identified in MDA-MB-435S cells, which preferentially use integrin αVβ5 for adhesion, KANK2 as a key molecule enabling the actin-MT crosstalk. KANK2 knockdown also resulted in increased sensitivity to MT poisons, paclitaxel (PTX) and vincristine and reduced migration. Here, we aimed to analyze whether KANK1 has a similar role and to distinguish which talin isoform binds KANK2. METHODS The cell model consisted of human melanoma cell line MDA-MB-435S and stably transfected clone with decreased expression of integrin αV (3αV). For transient knockdown of talin1, talin2, KANK1 or KANK2 we used gene-specific siRNAs transfection. Using previously standardized protocol we isolated integrin adhesion complexes. SDS-PAGE and Western blot was used for protein expression analysis. The immunofluorescence analysis and live cell imaging was done using confocal microscopy. Cell migration was analyzed with Transwell Cell Culture Inserts. Statistical analysis using GraphPad Software consisted of either one-way analysis of variance (ANOVA), unpaired Student's t-test or two-way ANOVA analysis. RESULTS We show that KANK1 is not a part of the CMSC associated with integrin αVβ5 FAs and its knockdown did not affect the velocity of MT growth or cell sensitivity to PTX. The talin2 knockdown mimicked KANK2 knockdown i.e. led to the perturbation of actin-MT crosstalk, which is indicated by the increased velocity of MT growth and increased sensitivity to PTX and also reduced migration. CONCLUSION We conclude that KANK2 functionally interacts with talin2 and that the mechanism of increased sensitivity to PTX involves changes in microtubule dynamics. These data elucidate a cell-type-specific role of talin2 and KANK2 isoforms and we propose that talin2 and KANK2 are therefore potential therapeutic targets for improved cancer therapy.
Collapse
Affiliation(s)
- Marija Lončarić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Anja Rac-Justament
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Kaatje Coopmans
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jonathan D Humphries
- Department of Life Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
5
|
Rap1 controls epiblast morphogenesis in sync with the pluripotency states transition. Dev Cell 2022; 57:1937-1956.e8. [PMID: 35998584 DOI: 10.1016/j.devcel.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023]
Abstract
The complex architecture of the murine fetus originates from a simple ball of pluripotent epiblast cells, which initiate morphogenesis upon implantation. In turn, this establishes an intermediate state of tissue-scale organization of the embryonic lineage in the form of an epithelial monolayer, where patterning signals delineate the body plan. However, how this major morphogenetic process is orchestrated on a cellular level and synchronized with the developmental progression of the epiblast is still obscure. Here, we identified that the small GTPase Rap1 plays a critical role in reshaping the pluripotent lineage. We found that Rap1 activity is controlled via Oct4/Esrrb input and is required for the transmission of polarization cues, which enables the de novo epithelialization and formation of tricellular junctions in the epiblast. Thus, Rap1 acts as a molecular switch that coordinates the morphogenetic program in the embryonic lineage, in sync with the cellular states of pluripotency.
Collapse
|
6
|
Abstract
Thrombocytopoiesis is a complex process beginning at the level of hematopoietic stem cells, which ultimately generate megakaryocytes, large marrow cells with a distinctive morphology, and then, through a process of terminal maturation, megakaryocytes shed thousands of platelets into the circulation. This process is controlled by intrinsic and extrinsic factors. Emerging data indicate that an important intrinsic control on the late stages of thrombopoiesis is exerted by integrins, a family of transmembrane receptors composed of one α and one β subunit. One β subunit expressed by megakaryocytes is the β1 integrin, the role of which in the regulation of platelet formation is beginning to be clarified. Here, we review recent data indicating that activation of β1 integrin by outside-in and inside-out signaling regulates the interaction of megakaryocytes with the endosteal niche, which triggers their maturation, while its inactivation by galactosylation determines the migration of these cells to the perivascular niche, where they complete their terminal maturation and release platelets in the bloodstream. Furthermore, β1 integrin mediates the activation of transforming growth factor β (TGF-β), a protein produced by megakaryocytes that may act in an autocrine fashion to halt their maturation and affect the composition of their surrounding extracellular matrix. These findings suggest that β1 integrin could be a therapeutic target for inherited and acquired disorders of platelet production.
Collapse
Affiliation(s)
- Maria Mazzarini
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Italy
| | - Paola Verachi
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Rome, Italy
| | - Anna Rita Migliaccio
- University Campus Biomedico, Rome, Italy
- Myeloproliferative Neoplasm-Research Consortium, New York, NY, USA
| |
Collapse
|
7
|
Al-Yafeai Z, Pearson BH, Peretik JM, Cockerham ED, Reeves KA, Bhattarai U, Wang D, Petrich BG, Orr AW. Integrin affinity modulation critically regulates atherogenic endothelial activation in vitro and in vivo. Matrix Biol 2020; 96:87-103. [PMID: 33157226 DOI: 10.1016/j.matbio.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
While vital to platelet and leukocyte adhesion, the role of integrin affinity modulation in adherent cells remains controversial. In endothelial cells, atheroprone hemodynamics and oxidized lipoproteins drive an increase in the high affinity conformation of α5β1 integrins in endothelial cells in vitro, and α5β1 integrin inhibitors reduce proinflammatory endothelial activation to these stimuli in vitro and in vivo. However, the importance of α5β1 integrin affinity modulation to endothelial phenotype remains unknown. We now show that endothelial cells (talin1 L325R) unable to induce high affinity integrins initially adhere and spread but show significant defects in nascent adhesion formation. In contrast, overall focal adhesion number, area, and composition in stably adherent cells are similar between talin1 wildtype and talin1 L325R endothelial cells. However, talin1 L325R endothelial cells fail to induce high affinity α5β1 integrins, fibronectin deposition, and proinflammatory responses to atheroprone hemodynamics and oxidized lipoproteins. Inducing the high affinity conformation of α5β1 integrins in talin1 L325R endothelial cells suggest that NF-κB activation and maximal fibronectin deposition require both integrin activation and other integrin-independent signaling. In endothelial-specific talin1 L325R mice, atheroprone hemodynamics fail to promote inflammation and macrophage recruitment, demonstrating a vital role for integrin activation in regulating endothelial phenotype.
Collapse
Affiliation(s)
- Zaki Al-Yafeai
- Departments of Molecular and Cellular Physiology, LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Brenna H Pearson
- Departments of Molecular and Cellular Physiology, LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Jonette M Peretik
- Pathology and Translational Pathobiology,LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Elizabeth D Cockerham
- Pathology and Translational Pathobiology,LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Kaylea A Reeves
- Pathology and Translational Pathobiology,LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Umesh Bhattarai
- Departments of Molecular and Cellular Physiology, LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Dongdong Wang
- Pathology and Translational Pathobiology,LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Brian G Petrich
- Department of Pediatrics, Shreveport, LA, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - A Wayne Orr
- Departments of Molecular and Cellular Physiology, LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States.; Cell Biology and Anatomy,LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States.; Pathology and Translational Pathobiology,LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States.; Department of Pathology and Translational Pathobiology, 1501 Kings Hwy, Biomedical Research Institute, Rm. 6-21, LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States.
| |
Collapse
|
8
|
Kukkurainen S, Azizi L, Zhang P, Jacquier MC, Baikoghli M, von Essen M, Tuukkanen A, Laitaoja M, Liu X, Rahikainen R, Orłowski A, Jänis J, Määttä JAE, Varjosalo M, Vattulainen I, Róg T, Svergun D, Cheng RH, Wu J, Hytönen VP, Wehrle-Haller B. The F1 loop of the talin head domain acts as a gatekeeper in integrin activation and clustering. J Cell Sci 2020; 133:jcs239202. [PMID: 33046605 PMCID: PMC10679385 DOI: 10.1242/jcs.239202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Integrin activation and clustering by talin are early steps of cell adhesion. Membrane-bound talin head domain and kindlin bind to the β integrin cytoplasmic tail, cooperating to activate the heterodimeric integrin, and the talin head domain induces integrin clustering in the presence of Mn2+ Here we show that kindlin-1 can replace Mn2+ to mediate β3 integrin clustering induced by the talin head, but not that induced by the F2-F3 fragment of talin. Integrin clustering mediated by kindlin-1 and the talin head was lost upon deletion of the flexible loop within the talin head F1 subdomain. Further mutagenesis identified hydrophobic and acidic motifs in the F1 loop responsible for β3 integrin clustering. Modeling, computational and cysteine crosslinking studies showed direct and catalytic interactions of the acidic F1 loop motif with the juxtamembrane domains of α- and β3-integrins, in order to activate the β3 integrin heterodimer, further detailing the mechanism by which the talin-kindlin complex activates and clusters integrins. Moreover, the F1 loop interaction with the β3 integrin tail required the newly identified compact FERM fold of the talin head, which positions the F1 loop next to the inner membrane clasp of the talin-bound integrin heterodimer.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sampo Kukkurainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Pingfeng Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Marie-Claude Jacquier
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Mo Baikoghli
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Magdaléna von Essen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Anne Tuukkanen
- EMBL Hamburg c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Mikko Laitaoja
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Xiaonan Liu
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Rolle Rahikainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Adam Orłowski
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Juha A E Määttä
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Markku Varjosalo
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Computational Physics Laboratory, Tampere University, FI-33520 Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Computational Physics Laboratory, Tampere University, FI-33520 Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Dmitri Svergun
- EMBL Hamburg c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
9
|
Kelley CF, Litschel T, Schumacher S, Dedden D, Schwille P, Mizuno N. Phosphoinositides regulate force-independent interactions between talin, vinculin, and actin. eLife 2020; 9:e56110. [PMID: 32657269 PMCID: PMC7384861 DOI: 10.7554/elife.56110] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022] Open
Abstract
Focal adhesions (FA) are large macromolecular assemblies which help transmit mechanical forces and regulatory signals between the extracellular matrix and an interacting cell. Two key proteins talin and vinculin connecting integrin to actomyosin networks in the cell. Both proteins bind to F-actin and each other, providing a foundation for network formation within FAs. However, the underlying mechanisms regulating their engagement remain unclear. Here, we report on the results of in vitro reconstitution of talin-vinculin-actin assemblies using synthetic membrane systems. We find that neither talin nor vinculin alone recruit actin filaments to the membrane. In contrast, phosphoinositide-rich membranes recruit and activate talin, and the membrane-bound talin then activates vinculin. Together, the two proteins then link actin to the membrane. Encapsulation of these components within vesicles reorganized actin into higher-order networks. Notably, these observations were made in the absence of applied force, whereby we infer that the initial assembly stage of FAs is force independent. Our findings demonstrate that the local membrane composition plays a key role in controlling the stepwise recruitment, activation, and engagement of proteins within FAs.
Collapse
Affiliation(s)
- Charlotte F Kelley
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
| | - Thomas Litschel
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular BiophysicsMartinsriedGermany
| | - Stephanie Schumacher
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
| | - Dirk Dedden
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular BiophysicsMartinsriedGermany
| | - Naoko Mizuno
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUnited States
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
10
|
Synergistic Beneficial Effect of Docosahexaenoic Acid (DHA) and Docetaxel on the Expression Level of Matrix Metalloproteinase-2 (MMP-2) and MicroRNA-106b in Gastric Cancer. J Gastrointest Cancer 2020; 51:70-75. [PMID: 30680612 DOI: 10.1007/s12029-019-00205-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common cancers with the majority of patients recognized in advanced stages. The efficacy of using docosahexaenoic acid (DHA) as a supplementary agent has been suggested in treatment along with chemotherapeutics including docetaxel. However, the molecular signatures of such beneficial effects are not well-understood. OBJECTIVE(S) We aimed to evaluate the effects of DHA and docetaxel on the expression level of metastasis-related genes, including MMP-2 and talin-2, and their controlling miRNAs, miR-106b and miR-194, in metastatic GC cell line, MKN45. METHOD(S) GC cell line, MKN45, was cultured, and determination of IC50 of DHA was done by MTT test. Cells were treated with docetaxel, DHA, and their combination for 24 h, and then total RNA was extracted and cDNA synthesis was done using standard protocols. The expression level of target genes, MMP-2 and talin-2, and miR-106b and miR-194 were determined by using quantitative real-time PCR. RESULTS The expression level of MMP-2 was decreased significantly in all treated cells. However, talin-2 showed significant downregulation only after treatment with docetaxel. In contrary to increased expression after treatment with docetaxel, DHA led to a significant under-expression of miR-106b. The similar effect was seen for miR-194. CONCLUSION(S) Combination of docetaxel and DHA led to the significant downregulation of MMP-2. Also, DHA lowered the docetaxel-mediated upregulation of miR-106b oncomiR. In conclusion, supplementation of docetaxel therapy with DHA in GC patients would be considered as a beneficial approach in cancer treatment.
Collapse
|
11
|
Abstract
The morphogenesis of the mammalian secondary plate is a series of highly dynamic developmental process, including the palate shelves vertical outgrowth, elevation to the horizontal plane and complete fusion in the midline. Extracellular matrix (ECM) proteins not only form the basic infrastructure for palatal mesenchymal cells to adhere via integrins but also interact with cells to regulate their functions such as proliferation and differentiation. ECM remodeling is essential for palatal outgrowth, expansion, elevation, and fusion. Multiple signaling pathways important for palatogenesis such as FGF, TGF β, BMP, and SHH remodels ECM dynamics. Dysregulation of ECM such as HA synthesis or ECM breakdown enzymes MMPs or ADAMTS causes cleft palate in mouse models. A better understanding of ECM remodeling will contribute to revealing the pathogenesis of cleft palate.
Collapse
Affiliation(s)
- Xia Wang
- Health Science Center, Shenzhen University , Shenzhen, China
| | - Chunman Li
- Health Science Center, Shenzhen University , Shenzhen, China
| | - Zeyao Zhu
- Health Science Center, Shenzhen University , Shenzhen, China
| | - Li Yuan
- Department of Stomatology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University , Shenzhen, China
| | - Wood Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong, China
| | - Ou Sha
- Health Science Center, Shenzhen University , Shenzhen, China
| |
Collapse
|
12
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
13
|
Gough RE, Goult BT. The tale of two talins - two isoforms to fine-tune integrin signalling. FEBS Lett 2018; 592:2108-2125. [PMID: 29723415 PMCID: PMC6032930 DOI: 10.1002/1873-3468.13081] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 11/08/2022]
Abstract
Talins are cytoplasmic adapter proteins essential for integrin-mediated cell adhesion to the extracellular matrix. Talins control the activation state of integrins, link integrins to cytoskeletal actin, recruit numerous signalling molecules that mediate integrin signalling and coordinate recruitment of microtubules to adhesion sites via interaction with KANK (kidney ankyrin repeat-containing) proteins. Vertebrates have two talin genes, TLN1 and TLN2. Although talin1 and talin2 share 76% protein sequence identity (88% similarity), they are not functionally redundant, and the differences between the two isoforms are not fully understood. In this Review, we focus on the similarities and differences between the two talins in terms of structure, biochemistry and function, which hint at subtle differences in fine-tuning adhesion signalling.
Collapse
|
14
|
Genetic Requirement of talin1 for Proliferation of Cranial Neural Crest Cells during Palate Development. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1633. [PMID: 29707441 PMCID: PMC5908504 DOI: 10.1097/gox.0000000000001633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 01/20/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Craniofacial malformations are among the most common congenital anomalies. Cranial neural crest cells (CNCCs) form craniofacial structures involving multiple cellular processes, perturbations of which contribute to craniofacial malformations. Adhesion of cells to the extracellular matrix mediates bidirectional interactions of the cells with their extracellular environment that plays an important role in craniofacial morphogenesis. Talin (tln) is crucial in cell-matrix adhesion between cells, but its role in craniofacial morphogenesis is poorly understood. Methods: Talin gene expression was determined by whole mount in situ hybridization. Craniofacial cartilage and muscles were analyzed by Alcian blue in Tg(mylz2:mCherry) and by transmission electron microscopy. Pulse-chase photoconversion, 5-ethynyl-2’-deoxyuridine proliferation, migration, and apoptosis assays were performed for functional analysis. Results: Expression of tln1 was observed in the craniofacial cartilage structures, including the palate. The Meckel’s cartilage was hypoplastic, the palate was shortened, and the craniofacial muscles were malformed in tln1 mutants. Pulse-chase and EdU assays during palate morphogenesis revealed defects in CNCC proliferation in mutants. No defects were observed in CNCC migration and apoptosis. Conclusions: The work shows that tln1 is critical for craniofacial morphogenesis in zebrafish. Loss of tln1 leads to a shortened palate and Meckel’s cartilage along with disorganized skeletal muscles. Investigations into the cellular processes show that tln1 is required for CNCC proliferation during palate morphogenesis. The work will lead to a better understanding of the involvement of cytoskeletal proteins in craniofacial morphogenesis.
Collapse
|
15
|
Li L, Li X, Qi L, Rychahou P, Jafari N, Huang C. The role of talin2 in breast cancer tumorigenesis and metastasis. Oncotarget 2017; 8:106876-106887. [PMID: 29290996 PMCID: PMC5739781 DOI: 10.18632/oncotarget.22449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022] Open
Abstract
Recent studies show that talin2 has a higher affinity to β-integrin tails and is indispensable for traction force generation and cell invasion. However, its roles in cell migration, cancer cell metastasis and tumorigenesis remain to be determined. Here, we used MDA-MB-231 human breast cancer cells as a model to define the roles of talin2 in cell migration, invasion, metastasis and tumorigenesis. We show here that talin2 knockdown (KD) inhibited cell migration and focal adhesion dynamics, a key step in cell migration, and that talin2 knockout (KO) inhibited cell invasion and traction force generation, the latter is crucial for cell invasion. Re-expression of talin2WT in talin2-KO cells restored traction force generation and cell invasion, but that of talin2S339C, a β-integrin-binding deficient mutant, did not. Moreover, talin2 KO (or KD) suppressed tumorigenesis and metastasis in mouse xenograft models. However, surprisingly, re-expression of talin2WT in talin2-KO cells did not rescue tumorigenesis. Thus, talin2 is required for breast cancer cell migration, invasion, metastasis and tumorigenesis, although exogenous expression of high levels of talin2 could inhibit tumorigenesis.
Collapse
Affiliation(s)
- Liqing Li
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - Xiang Li
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - Lei Qi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - Naser Jafari
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - Cai Huang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
16
|
Mathew S, Palamuttam RJ, Mernaugh G, Ramalingam H, Lu Z, Zhang MZ, Ishibe S, Critchley DR, Fässler R, Pozzi A, Sanders CR, Carroll TJ, Zent R. Talin regulates integrin β1-dependent and -independent cell functions in ureteric bud development. Development 2017; 144:4148-4158. [PMID: 28993400 DOI: 10.1242/dev.149914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022]
Abstract
Kidney collecting system development requires integrin-dependent cell-extracellular matrix interactions. Integrins are heterodimeric transmembrane receptors consisting of α and β subunits; crucial integrins in the kidney collecting system express the β1 subunit. The β1 cytoplasmic tail has two NPxY motifs that mediate functions by binding to cytoplasmic signaling and scaffolding molecules. Talins, scaffolding proteins that bind to the membrane proximal NPxY motif, are proposed to activate integrins and to link them to the actin cytoskeleton. We have defined the role of talin binding to the β1 proximal NPxY motif in the developing kidney collecting system in mice that selectively express a Y-to-A mutation in this motif. The mice developed a hypoplastic dysplastic collecting system. Collecting duct cells expressing this mutation had moderate abnormalities in cell adhesion, migration, proliferation and growth factor-dependent signaling. In contrast, mice lacking talins in the developing ureteric bud developed kidney agenesis and collecting duct cells had severe cytoskeletal, adhesion and polarity defects. Thus, talins are essential for kidney collecting duct development through mechanisms that extend beyond those requiring binding to the β1 integrin subunit NPxY motif.
Collapse
Affiliation(s)
- Sijo Mathew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Riya J Palamuttam
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Harini Ramalingam
- Department of Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenwei Lu
- Center for Structure Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Molecular Physiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Molecular Physiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veteran Affairs Hospital Nashville, TN 37212, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center for Structure Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas J Carroll
- Department of Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA .,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veteran Affairs Hospital Nashville, TN 37212, USA
| |
Collapse
|
17
|
Qi L, Jafari N, Li X, Chen Z, Li L, Hytönen VP, Goult BT, Zhan CG, Huang C. Talin2-mediated traction force drives matrix degradation and cell invasion. J Cell Sci 2017; 129:3661-3674. [PMID: 27694340 DOI: 10.1242/jcs.185959] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
Talin binds to β-integrin tails to activate integrins, regulating cell migration, invasion and metastasis. There are two talin genes, TLN1 and TLN2, encoding talin1 and talin2, respectively. Talin1 regulates focal adhesion dynamics, cell migration and invasion, whereas the biological function of talin2 is not clear and, indeed, talin2 has been presumed to function redundantly with talin1. Here, we show that talin2 has a much stronger binding to β-integrin tails than talin1. Replacement of talin2 Ser339 with Cys significantly decreased its binding to β1-integrin tails to a level comparable to that of talin1. Talin2 localizes at invadopodia and is indispensable for the generation of traction force and invadopodium-mediated matrix degradation. Ablation of talin2 suppressed traction force generation and invadopodia formation, which were restored by re-expressing talin2 but not talin1. Furthermore, re-expression of wild-type talin2 (but not talin2S339C) in talin2-depleted cells rescued development of traction force and invadopodia. These results suggest that a strong interaction of talin2 with integrins is required to generate traction, which in turn drives invadopodium-mediated matrix degradation, which is key to cancer cell invasion.
Collapse
Affiliation(s)
- Lei Qi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA Veterans Affairs Medical Center, Lexington, KY 40502, USA
| | - Naser Jafari
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA Veterans Affairs Medical Center, Lexington, KY 40502, USA
| | - Xiang Li
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - Zaozao Chen
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Liqing Li
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - Vesa P Hytönen
- BioMediTech, University of Tampere, 33520 Tampere, Finland and Fimlab Laboratories, Tampere 33520, Finland
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY 40506, USA
| | - Cai Huang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA Veterans Affairs Medical Center, Lexington, KY 40502, USA Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
18
|
Hu X, Margadant FM, Yao M, Sheetz MP. Molecular stretching modulates mechanosensing pathways. Protein Sci 2017; 26:1337-1351. [PMID: 28474792 DOI: 10.1002/pro.3188] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/21/2023]
Abstract
For individual cells in tissues to create the diverse forms of biological organisms, it is necessary that they must reliably sense and generate the correct forces over the correct distances and directions. There is considerable evidence that the mechanical aspects of the cellular microenvironment provide critical physical parameters to be sensed. How proteins sense forces and cellular geometry to create the correct morphology is not understood in detail but protein unfolding appears to be a major component in force and displacement sensing. Thus, the crystallographic structure of a protein domain provides only a starting point to then analyze what will be the effects of physiological forces through domain unfolding or catch-bond formation. In this review, we will discuss the recent studies of cytoskeletal and adhesion proteins that describe protein domain dynamics. Forces applied to proteins can activate or inhibit enzymes, increase or decrease protein-protein interactions, activate or inhibit protein substrates, induce catch bonds and regulate interactions with membranes or nucleic acids. Further, the dynamics of stretch-relaxation can average forces or movements to reliably regulate morphogenic movements. In the few cases where single molecule mechanics are studied under physiological conditions such as titin and talin, there are rapid cycles of stretch-relaxation that produce mechanosensing signals. Fortunately, the development of new single molecule and super-resolution imaging methods enable the analysis of single molecule mechanics in physiologically relevant conditions. Thus, we feel that stereotypical changes in cell and tissue shape involve mechanosensing that can be analyzed at the nanometer level to determine the molecular mechanisms involved.
Collapse
Affiliation(s)
- Xian Hu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411.,Department of Biosciences, University of Oslo, Oslo, 0316, Norway
| | | | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore, 117411
| | - Michael Patrick Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, 117411.,Department of Biological Sciences, University of Columbia, New York, 10027
| |
Collapse
|
19
|
Talin Modulation by a Synthetic N-Acylurea Derivative Reduces Angiogenesis in Human Endothelial Cells. Int J Mol Sci 2017; 18:ijms18010221. [PMID: 28117756 PMCID: PMC5297850 DOI: 10.3390/ijms18010221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 12/30/2022] Open
Abstract
Talin is a focal adhesion protein that activates integrins and recruits other focal adhesion proteins. Talin regulates the interactions between integrins and the extracellular matrix, which are critical for endothelial cells during angiogenesis. In this study, we successfully synthesized a novel talin modulator, N-((2-(1H-indol-3-yl)ethyl)carbamoyl)-2-(benzo[d][1,3]dioxol-5-yloxy)acetamide, referred to as KCH-1521. KCH-1521 was determined to bind talin and modulate downstream signaling molecules of talin. After 24 h of treatment, KCH-1521 changed the cell morphology of human umbilical vein endothelial cells (HUVECs) and reduced focal adhesion protein expression including vinculin and paxillin. Talin downstream signaling is regulated via focal adhesion kinase (FAK), kinase B (AKT), and extracellular signal-regulated kinase (ERK) pathways, however, treatment with KCH-1521 decreased phosphorylation of FAK, AKT, and ERK, leading to reduction of cell proliferation, survival, and angiogenesis. Interestingly, the expression of various angiogenic genes was significantly decreased after treatment with KCH-1521. Also, in vitro tube forming assay revealed that KCH-1521 reduced angiogenic networks in a time-dependent manner. To investigate the reversibility of its effects, KCH-1521 was removed after treatment. HUVECs recovered their morphology through rearrangement of the cytoskeleton and the expression of angiogenic genes was also recovered. By further optimization and in vivo studies of KCH-1521, a novel drug of talin modulation could be used to achieve therapeutic anti-angiogenesis for vascular diseases and cancers.
Collapse
|
20
|
Haining AWM, Lieberthal TJ, Hernández ADR. Talin: a mechanosensitive molecule in health and disease. FASEB J 2016; 30:2073-85. [DOI: 10.1096/fj.201500080r] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/09/2016] [Indexed: 12/22/2022]
|
21
|
Merched AJ, Daret D, Li L, Franzl N, Sauvage-Merched M. Specific autoantigens in experimental autoimmunity-associated atherosclerosis. FASEB J 2016; 30:2123-34. [PMID: 26891734 DOI: 10.1096/fj.201500131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Higher cardiovascular morbidity in patients with a wide range of autoimmune diseases highlights the importance of autoimmunity in promoting atherosclerosis. Our purpose was to investigate the mechanisms of accelerated atherosclerosis and identified vascular autoantigens targeted by autoimmunity. We created a mouse model of autoimmunity-associated atherosclerosis by transplanting bone marrow from FcγRIIB knockout (FcRIIB(-/-)) mice into LDL receptor knockout mice. We characterized the cellular and molecular mechanisms of atherogenesis and identified specific aortic autoantigens using serologic proteomic studies. En face lesion area analysis showed more aggressive atherosclerosis in autoimmune mice compared with control mice (0.64 ± 0.12 vs 0.32 ± 0.05 mm(2); P < 0.05, respectively). At the cellular level, FcRIIB(-/-) macrophages showed significant reduction (46-72%) in phagocytic capabilities. Proteomic analysis revealed circulating autoantibodies in autoimmune mice that targeted 25 atherosclerotic lesion proteins, including essential components of adhesion complex, cytoskeleton, and extracellular matrix, and proteins involved in critical functions and pathways. Microscopic examination of atherosclerotic plaques revealed essential colocalization of autoantibodies with endothelial cells, their adherence to basement membranes, the internal elastica lamina, and necrotic cores. The new vascular autoimmunosome may be a useful target for diagnostic and immunotherapeutic interventions in autoimmunity-associated diseases that have accelerated atherosclerosis.-Merched, A. J., Daret, D., Li, L., Franzl, N., Sauvage-Merched, M. Specific autoantigens in experimental autoimmunity-associated atherosclerosis.
Collapse
Affiliation(s)
- Aksam J Merched
- Department of Pharmaceutical Sciences, and INSERM U1053, University of Bordeaux, Bordeaux, France Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Danièle Daret
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lan Li
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Nathalie Franzl
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
22
|
Fang KP, Dai W, Ren YH, Xu YC, Zhang SM, Qian YB. Both Talin-1 and Talin-2 correlate with malignancy potential of the human hepatocellular carcinoma MHCC-97 L cell. BMC Cancer 2016; 16:45. [PMID: 26822056 PMCID: PMC4730717 DOI: 10.1186/s12885-016-2076-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 01/19/2016] [Indexed: 12/27/2022] Open
Abstract
Background Talin-1 (TLN-1) and TLN-2 are implicated in many cellular processes, but their roles in hepatocellular carcinoma (HCC) remain unclear. This study aimed to assess cell cycle distribution, anoikis, invasion and migration in human HCC MHCC-97 L cells. Methods MHCC-97 L cells, which highly express TLN-1, were transduced with TLN-1 shRNA (experimental group) or scramble shRNA (negative control group); non-transduced MHCC-97 L cells were used as blank controls. TLN-1 and TLN-2 mRNA and protein levels were detected by real-time RT-PCR and western blot, respectively. Then, cell cycle distribution and anoikis were assessed by flow cytometry. In addition, migration and invasion abilities were assessed using Transwell and cell scratch assays. Finally, a xenograft nude mouse model was established to further assess cell tumorigenicity. Results Compared with the blank and negative control groups, TLN-1/2 mRNA and protein levels were significantly reduced in the experiment group. TLN-1/2 knockdown cells showed significantly more cells in the G0/G1 phase (79.24 %) in comparison with both blank (65.36 %) and negative (62.69 %) control groups; conversely, less cells were found in G2/M and S phases in the experimental group compared with controls. Moreover, anoikis was enhanced (P < 0.05), while invasion and migration abilities were reduced (P < 0.05) in TLN-1/2 knockdown cells compared with controls. TLN-1/2 knockdown inhibited MHCC-97 L cell migration (Percentage of wound healing area: experimental group: 32.6 ± 0.7 % vs. negative controls: 50.1 ± 0.6 % and blank controls: 53.6 ± 0.6 %, both P < 0.01). Finally, the tumors obtained with TLN-1/2 knockdown cells were smaller (P < 0.05) compared with controls. Conclusion Both TLN-1 and TLN-2 levels correlate with tumorigenicity in human HCC, indicating that these molecules constitute important molecular targets for the diagnosis and/or treatment of HCC.
Collapse
Affiliation(s)
- Kun-Peng Fang
- The People's Hospital, Xuancheng City, Auhui Province, China
| | - Wei Dai
- First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yan-Hong Ren
- First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ye-Chuan Xu
- First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - She-Min Zhang
- First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ye-Ben Qian
- The People's Hospital, Xuancheng City, Auhui Province, China. .,First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
23
|
Atherton P, Stutchbury B, Wang DY, Jethwa D, Tsang R, Meiler-Rodriguez E, Wang P, Bate N, Zent R, Barsukov IL, Goult BT, Critchley DR, Ballestrem C. Vinculin controls talin engagement with the actomyosin machinery. Nat Commun 2015; 6:10038. [PMID: 26634421 PMCID: PMC4686655 DOI: 10.1038/ncomms10038] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
The link between extracellular-matrix-bound integrins and intracellular F-actin is essential for cell spreading and migration. Here, we demonstrate how the actin-binding proteins talin and vinculin cooperate to provide this link. By expressing structure-based talin mutants in talin null cells, we show that while the C-terminal actin-binding site (ABS3) in talin is required for adhesion complex assembly, the central ABS2 is essential for focal adhesion (FA) maturation. Thus, although ABS2 mutants support cell spreading, the cells lack FAs, fail to polarize and exert reduced force on the surrounding matrix. ABS2 is inhibited by the preceding mechanosensitive vinculin-binding R3 domain, and deletion of R2R3 or expression of constitutively active vinculin generates stable force-independent FAs, although cell polarity is compromised. Our data suggest a model whereby force acting on integrin-talin complexes via ABS3 promotes R3 unfolding and vinculin binding, activating ABS2 and locking talin into an actin-binding configuration that stabilizes FAs. The mechanosensitive proteins talin and vinculin mediate the linkage between integrin-bound extracellular matrix and the actin cytoskeleton. Here the authors dissect distinct roles for two actin-binding sites within talin on adhesion complex assembly and maturation, which are regulated by vinculin binding to talin.
Collapse
Affiliation(s)
- Paul Atherton
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Ben Stutchbury
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - De-Yao Wang
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Devina Jethwa
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Ricky Tsang
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | | | - Pengbo Wang
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Neil Bate
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Roy Zent
- Vanderbilt Centre for Kidney Disease, Vanderbilt Division of Nephrology, S-3223 Medical Centre, North Nashville, Tennessee, USA
| | - Igor L Barsukov
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, KENT CT2 7NJ, UK
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
24
|
Wu Q, Zhang J, Koh W, Yu Q, Zhu X, Amsterdam A, Davis GE, Arnaout MA, Xiong JW. Talin1 is required for cardiac Z-disk stabilization and endothelial integrity in zebrafish. FASEB J 2015; 29:4989-5005. [PMID: 26310270 DOI: 10.1096/fj.15-273409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/13/2015] [Indexed: 01/20/2023]
Abstract
Talin (tln) binds and activates integrins to couple extracellular matrix-bound integrins to the cytoskeleton; however, its role in heart development is not well characterized. We identified the defective gene and the resulting cardiovascular phenotypes in zebrafish tln1(fl02k) mutants. The ethylnitrosourea-induced fl02k mutant showed heart failure, brain hemorrhage, and diminished cardiac and vessel lumens at 52 h post fertilization. Positional cloning revealed a nonsense mutation of tln1 in this mutant. tln1, but neither tln2 nor -2a, was dominantly expressed in the heart and vessels. Unlike tln1 and -2 in the mouse heart, the unique tln1 expression in the heart enabled us, for the first time, to determine the critical roles of Tln1 in the maintenance of cardiac sarcomeric Z-disks and endothelial/endocardial cell integrity, partly through regulating F-actin networks in zebrafish. The similar expression profiles of tln1 and integrin β1b (itgb1b) and synergistic function of the 2 genes revealed that itgb1b is a potential partner for tln1 in the stabilization of cardiac Z-disks and vessel lumens. Taken together, the results of this work suggest that Tln1-mediated Itgβ1b plays a crucial role in maintaining cardiac sarcomeric Z-disks and endothelial/endocardial cell integrity in zebrafish and may also help to gain molecular insights into congenital heart diseases.
Collapse
Affiliation(s)
- Qing Wu
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jiaojiao Zhang
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wonshill Koh
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Qingming Yu
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xiaojun Zhu
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam Amsterdam
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - George E Davis
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - M Amin Arnaout
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jing-Wei Xiong
- *Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Medical Pharmacology and Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA; and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Lutz J, Grimm-Günter EMS, Joshi P, Rivero F. Expression analysis of mouse Rhobtb3 using a LacZ reporter and preliminary characterization of a knockout strain. Histochem Cell Biol 2014; 142:511-28. [PMID: 24923387 DOI: 10.1007/s00418-014-1235-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2014] [Indexed: 11/28/2022]
Abstract
RhoBTB3 is an atypical member of the Rho family of small GTPases. It localizes at the Golgi apparatus and endosomes and is involved in vesicle trafficking and in targeting proteins for degradation in the proteasome. Previous studies using Northern blot analysis showed that Rhobtb3 is ubiquitously expressed in adult mice, but expression is particularly high in brain, heart and uterus. The gene is also expressed between embryonic days 11.5 and 17.5. To investigate the specific cell types that express this gene across tissues, both in the embryo and in the adult organism, we have made use of a gene trap mouse strain that expresses the LacZ gene under the transcriptional control of the endogenous Rhobtb3 promoter. Histochemical detection of β-galactosidase expression revealed a profile characterized by nearly ubiquitous expression of Rhobtb3 in the embryo, but with particularly high levels in bone, cartilage, all types of muscle, testis and restricted areas of the nervous system. In the adult, expression persists at much lower levels in cardiac muscle, the tunica media of blood vessels and cartilage and at high levels in the seminiferous tubules. A general preliminary characterization of this gene trap mouse strain revealed reduced viability, a postnatal growth defect and reduced testis size. Our results should pave the way for future studies aimed at investigating the roles of RhoBTB3 in tissue development and in cardiac, vascular and testicular function.
Collapse
Affiliation(s)
- Julia Lutz
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Cottingham Road, HU6 7RX, Hull, UK
| | | | | | | |
Collapse
|
26
|
Kambouris M, Maroun RC, Ben-Omran T, Al-Sarraj Y, Errafii K, Ali R, Boulos H, Curmi PA, El-Shanti H. Mutations in zinc finger 407 [ZNF407] cause a unique autosomal recessive cognitive impairment syndrome. Orphanet J Rare Dis 2014; 9:80. [PMID: 24907849 PMCID: PMC4070100 DOI: 10.1186/1750-1172-9-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/29/2014] [Indexed: 01/14/2023] Open
Abstract
Background A consanguineous Arab family is affected by an apparently novel autosomal recessive disorder characterized by cognitive impairment, failure-to-thrive, hypotonia and dysmorphic features including bilateral ptosis and epicanthic folds, synophrys, midface hypoplasia, downturned mouth corners, thin upper vermillion border and prominent ears, bilateral 5th finger camptodactyly, bilateral short 4th metatarsal bones, and limited knee mobility bilaterally. Methods The family was studied by homozygosity mapping, candidate gene mutation screening and whole Exome Next Generation Sequencing of a single affected member to identify the offending gene and mutation. The mutated gene product was studied by structural bioinformatics methods. Results A damaging c.C5054G mutation affecting an evolutionary highly conserved amino acid p.S1685W was identified in the ZNF407 gene at 18q23. The Serine to Tryptophane mutation affects two of the three ZNF407 isoforms and is located in the last third of the protein, in a linker peptide adjoining two zinc-finger domains. Structural analyses of this mutation shows disruption of an H-bond that locks the relative spatial position of the two fingers, leading to a higher flexibility of the linker and thus to a decreased probability of binding to the target DNA sequence essentially eliminating the functionality of downstream domains and interfering with the expression of various genes under ZNF407 control during fetal brain development. Conclusions ZNF407 is a transcription factor with an essential role in brain development. When specific and limited in number homozygosity intervals exist that harbor the offending gene in consanguineous families, Whole Exome Sequencing of a single affected individual is an efficient approach to gene mapping and mutation identification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hatem El-Shanti
- Qatar Biomedical Research Institute, Medical Genetics Center, 69 Lusail Street, West Bay Area, P,O, Box: 33123, Doha, Qatar.
| |
Collapse
|
27
|
Winograd-Katz SE, Fässler R, Geiger B, Legate KR. The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 2014; 15:273-88. [PMID: 24651544 DOI: 10.1038/nrm3769] [Citation(s) in RCA: 467] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adhesive interactions of cells with their environment through the integrin family of transmembrane receptors have key roles in regulating multiple aspects of cellular physiology, including cell proliferation, viability, differentiation and migration. Consequently, failure to establish functional cell adhesions, and thus the assembly of associated cytoplasmic scaffolding and signalling networks, can have severe pathological effects. The roles of specific constituents of integrin-mediated adhesions, which are collectively known as the 'integrin adhesome', in diverse pathological states are becoming clear. Indeed, the prominence of mutations in specific adhesome molecules in various human diseases is now appreciated, and experimental as well as in silico approaches provide insights into the molecular mechanisms underlying these pathological conditions.
Collapse
Affiliation(s)
- Sabina E Winograd-Katz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kyle R Legate
- 1] Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2] Center for Nanosciences, Department of Applied Physics, Ludwig-Maximilians University, 80799 Munich, Germany
| |
Collapse
|
28
|
Fang KP, Zhang JL, Ren YH, Qian YB. Talin-1 Correlates with Reduced Invasion and Migration in Human Hepatocellular Carcinoma Cells. Asian Pac J Cancer Prev 2014; 15:2655-61. [DOI: 10.7314/apjcp.2014.15.6.2655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
29
|
Tian X, Kim JJ, Monkley SM, Gotoh N, Nandez R, Soda K, Inoue K, Balkin DM, Hassan H, Son SH, Lee Y, Moeckel G, Calderwood DA, Holzman LB, Critchley DR, Zent R, Reiser J, Ishibe S. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. J Clin Invest 2014; 124:1098-113. [PMID: 24531545 PMCID: PMC3934159 DOI: 10.1172/jci69778] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022] Open
Abstract
Podocytes are specialized actin-rich epithelial cells that line the kidney glomerular filtration barrier. The interface between the podocyte and the glomerular basement membrane requires integrins, and defects in either α3 or β1 integrin, or the α3β1 ligand laminin result in nephrotic syndrome in murine models. The large cytoskeletal protein talin1 is not only pivotal for integrin activation, but also directly links integrins to the actin cytoskeleton. Here, we found that mice lacking talin1 specifically in podocytes display severe proteinuria, foot process effacement, and kidney failure. Loss of talin1 in podocytes caused only a modest reduction in β1 integrin activation, podocyte cell adhesion, and cell spreading; however, the actin cytoskeleton of podocytes was profoundly altered by the loss of talin1. Evaluation of murine models of glomerular injury and patients with nephrotic syndrome revealed that calpain-induced talin1 cleavage in podocytes might promote pathogenesis of nephrotic syndrome. Furthermore, pharmacologic inhibition of calpain activity following glomerular injury substantially reduced talin1 cleavage, albuminuria, and foot process effacement. Collectively, these findings indicate that podocyte talin1 is critical for maintaining the integrity of the glomerular filtration barrier and provide insight into the pathogenesis of nephrotic syndrome.
Collapse
Affiliation(s)
- Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jin Ju Kim
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Susan M. Monkley
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Nanami Gotoh
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ramiro Nandez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Keita Soda
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Daniel M. Balkin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Hossam Hassan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Sung Hyun Son
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Yashang Lee
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Gilbert Moeckel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - David A. Calderwood
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Lawrence B. Holzman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - David R. Critchley
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Roy Zent
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jochen Reiser
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
30
|
Ciobanasu C, Faivre B, Le Clainche C. Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions. Eur J Cell Biol 2013; 92:339-48. [PMID: 24252517 DOI: 10.1016/j.ejcb.2013.10.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/10/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022] Open
Abstract
Focal adhesions are clusters of integrin transmembrane receptors that mechanically couple the extracellular matrix to the actin cytoskeleton during cell migration. Focal adhesions sense and respond to variations in force transmission along a chain of protein-protein interactions linking successively actin filaments, actin binding proteins, integrins and the extracellular matrix to adapt cell-matrix adhesion to the composition and mechanical properties of the extracellular matrix. This review focuses on the molecular mechanisms by which actin binding proteins integrate actin dynamics, mechanotransduction and integrin activation to control force transmission in focal adhesions.
Collapse
Affiliation(s)
- Corina Ciobanasu
- Laboratoire d'Enzymologie et Biochimie Structurales CNRS, avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
31
|
Calderwood DA, Campbell ID, Critchley DR. Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol 2013; 14:503-17. [PMID: 23860236 PMCID: PMC4116690 DOI: 10.1038/nrm3624] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrin receptors provide a dynamic, tightly-regulated link between the extracellular matrix (or cellular counter-receptors) and intracellular cytoskeletal and signalling networks, enabling cells to sense and respond to their chemical and physical environment. Talins and kindlins, two families of FERM-domain proteins, bind the cytoplasmic tail of integrins, recruit cytoskeletal and signalling proteins involved in mechanotransduction and synergize to activate integrin binding to extracellular ligands. New data reveal the domain structure of full-length talin, provide insights into talin-mediated integrin activation and show that RIAM recruits talin to the plasma membrane, whereas vinculin stabilizes talin in cell-matrix junctions. How kindlins act is less well-defined, but disease-causing mutations show that kindlins are also essential for integrin activation, adhesion, cell spreading and signalling.
Collapse
Affiliation(s)
- David A Calderwood
- Departments of Pharmacology and of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Iain D Campbell
- Department of Biochemistry, University of Oxford, S. Parks Rd., Oxford, OX1 3QU, UK
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH
| |
Collapse
|