1
|
Pan X, Yuan S, Xun X, Fan Z, Xue X, Zhang C, Wang J, Deng J. Long-Term Recruitment of Endogenous M2 Macrophages by Platelet Lysate-Rich Plasma Macroporous Hydrogel Scaffold for Articular Cartilage Defect Repair. Adv Healthc Mater 2022; 11:e2101661. [PMID: 34969180 DOI: 10.1002/adhm.202101661] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/21/2021] [Indexed: 01/08/2023]
Abstract
After cartilage damage, a large number of monocytes/macrophages infiltrate into adjacent synovium and the resident macrophages in synovial tissue transform to activated macrophages (M1), which secrete pro-inflammatory cytokines to induce sustained inflammation and chondrocyte apoptotic. However, current clinical therapies for cartilage repair can rarely achieve long-term anti-inflammatory regulation and satisfactory outcomes. Herein, a platelet lysate-rich plasma macroporous hydrogel (PLPMH) scaffold with around 100 µm pore size and 1.25 MPa Young's modulus is developed to sustainedly recruit and polarize endogenous anti-inflammatory macrophages (M2) for improving cartilage defect repair. PLPMH scaffold can steadily release sphingosine1-phosphate and proteins via gradual degradation, thus inducing M2 macrophages migration or resting (M0) macrophages migration and then polarization to M2 phenotype, and improving the secretion of anti-inflammatory cytokines. Furthermore, PLPMH scaffold exhibits negligible inflammatory responses in vivo and promotes endogenous M2 macrophage infiltration in large numbers and long-time duration to provide a local anti-inflammatory microenvironment, which even lasts for 42 d. In a rabbit model of cartilage defect, PLPMH scaffold increases the ratio of M2 macrophages and improves cartilage tissue regeneration. These studies support that PLPMH scaffold may have a great potential in articular cartilage tissue engineering by providing an anti-inflammatory and pro-regenerative microenvironment.
Collapse
Affiliation(s)
- Xiaoyun Pan
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Shanshan Yuan
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Xiaojie Xun
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | | | - Xinghe Xue
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Changhuan Zhang
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Jilong Wang
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Junjie Deng
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| |
Collapse
|
2
|
Yang Y, Zhao J, Zhang J, Lei Y, Yuan F, Liu L, Gao H, Guo H, Niu X, Chen R, Fu X, Han Y, Han H, Chan T, Zhao L, Wang H, Zheng Q, Li X. Regulation of macrophage migration in ischemic mouse hearts via an AKT2/NBA1/SPK1 pathway. Oncotarget 2017; 8:115345-115359. [PMID: 29383164 PMCID: PMC5777776 DOI: 10.18632/oncotarget.23263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022] Open
Abstract
The role of the AKT2/NBA1/SPK1 signaling cascade in macrophage migration regulation and post-ischemic cardiac remodeling was investigated. We determined that the AKT2/NBA1/SPK1 signaling cascade regulated macrophage migration. A novel role for NBA1 in macrophage migration was discovered. Elevated AKT2 phosphorylation, NBA1, SPK1 (along with phosphorylated SPK1) levels, macrophage recruitment, apoptosis, and fibrosis were found within the infarct area. Atorvastatin had a beneficial effect on cardiac remodeling following myocardial infarction by inhibiting AKT2/NBA1/SPK1-mediated macrophage recruitment, apoptosis, and collagen deposition while increasing angiogenesis in the infarct area. Atorvastatin-related protection of cardiac remodeling following myocardial infarction was abolished in SPK1-KO mice. The AKT2/NAB1/SPK1 pathway is a novel regulating factor of macrophage migration and cardiac remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Yanping Yang
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Jieqiong Zhao
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Juan Zhang
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Yonghong Lei
- Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Fang Yuan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Lu Liu
- Department of Nutrition, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Haibo Gao
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Hua Guo
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Xiaolin Niu
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Ruirui Chen
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Yan Han
- Department of Plastic Surgery, Chinese General Hospital, Beijing 100853, PR China
| | - Hua Han
- Department of Molecular Biology, The Fourth Military Medical University, Xian 710038, PR China
| | - Tung Chan
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Lianyou Zhao
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Haichang Wang
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| | - Qiangsun Zheng
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
- Cardiovascular Department, Xibei Hospital, Xian 710038, PR China
| | - Xue Li
- Cardiovascular Department, Tangdu Hospital, The Fourth Military Medical University, Xian 710038, PR China
| |
Collapse
|
3
|
Vercellino M, Trebini C, Capello E, Mancardi GL, Giordana MT, Cavalla P. Inflammatory responses in Multiple Sclerosis normal-appearing white matter and in non-immune mediated neurological conditions with wallerian axonal degeneration: A comparative study. J Neuroimmunol 2017; 312:49-58. [PMID: 28919237 DOI: 10.1016/j.jneuroim.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/28/2017] [Accepted: 09/06/2017] [Indexed: 01/22/2023]
Abstract
Inflammatory-like changes in the white matter (WM) are commonly observed in conditions of axonal degeneration by different etiologies. This study is a systematic comparison of the principal features of the inflammatory-like changes in the WM in different pathological conditions characterized by axonal damage/degeneration, focusing in particular on Multiple Sclerosis (MS) normal-appearing white matter (NAWM) compared to non immune-mediated disorders. The study was performed on sections of NAWM from 15 MS cases, 11 cases of non immune-mediated disorders with wallerian axonal degeneration (stroke, trauma, amyotrophic lateral sclerosis), 3 cases of viral encephalitis, 6 control cases. Common features of the inflammatory-like changes observed in all of the conditions of WM pathology were diffuse endothelial expression of VCAM-1, microglial activation with expression of M2 markers, increased expression of sphingosine receptors. Inflammation in MS NAWM was characterized, compared to non immune-mediated conditions, by higher VCAM-1 expression, higher density of perivascular lymphocytes, focal perivascular inflammation with microglial expression of M1 markers, ongoing acute axonal damage correlating with VCAM-1 expression but not with microglia activation. Inflammatory changes in MS NAWM share all the main features observed in the WM in non immune-mediated conditions with wallerian axonal degeneration (with differences to a large extent more quantitative than qualitative), but with superimposition of disease-specific perivascular inflammation and ongoing acute axonal damage.
Collapse
Affiliation(s)
- M Vercellino
- Città della Salute e della Scienza di Torino University Hospital, Department of Neuroscience, Via Cherasco 15, 10126 Torino, Italy.
| | - C Trebini
- Città della Salute e della Scienza di Torino University Hospital, Department of Neuroscience, Via Cherasco 15, 10126 Torino, Italy
| | - E Capello
- University of Genova, Department of Neuroscience, Ophtalmology and Genetics, Via de Toni 5, 16132 Genova, Italy
| | - G L Mancardi
- University of Genova, Department of Neuroscience, Ophtalmology and Genetics, Via de Toni 5, 16132 Genova, Italy
| | - M T Giordana
- Città della Salute e della Scienza di Torino University Hospital, Department of Neuroscience, Via Cherasco 15, 10126 Torino, Italy
| | - P Cavalla
- Città della Salute e della Scienza di Torino University Hospital, Department of Neuroscience, Via Cherasco 15, 10126 Torino, Italy
| |
Collapse
|
4
|
Yang J, Yin S, Bi F, Liu L, Qin T, Wang H, Cao W. TIMAP repression by TGFβ and HDAC3-associated Smad signaling regulates macrophage M2 phenotypic phagocytosis. J Mol Med (Berl) 2016; 95:273-285. [PMID: 27709267 DOI: 10.1007/s00109-016-1479-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/23/2016] [Accepted: 09/26/2016] [Indexed: 11/30/2022]
Abstract
TIMAP (TGFβ-inhibited membrane-associated protein) is an endothelium-enriched TGFβ downstream protein and structurally belongs to the targeting subunit of myosin phosphatase; however, the mechanism of TGFβ repressing TIMAP and its functional relevance to TGFβ bioactivity remain largely unknown. Here, we report that TIMAP is reduced in TGFβ-elevated mouse fibrotic kidney and highly expressed in macrophages. TGFβ repression of TIMAP is associated with HDAC3 upregulation and its recruitment by Smad2/3 at the Smad binding element on TIMAP promoter, whereas specific HDAC3 inhibition reversed the TIMAP repression, suggesting that TGFβ transcriptionally downregulates TIMAP through HDAC3-associated Smad signaling. Further investigation showed that TIMAP over-expression interrupted TGFβ-associated Smad signaling and TIMAP repression by TGFβ correlated with TGFβ-induced macrophage M2 polarization markers, migration, and phagocytosis-the processes promoted by phosphorylation of the putative TIMAP substrate myosin light chain (MLC). Consistently, TIMAP dephosphorylated MLC in macrophages and TGFβ induced macrophage migration and phagocytosis in TIMAP- and MLC phosphorylation-dependent manners, suggesting that TIMAP dephosphorylation of MLC constitutes an essential regulatory loop mitigating TGFβ-associated macrophage M2 phenotypic activities. Given that hyperactive TGFβ often causes excessive macrophage phagocytic activities potentially leading to various chronic disorders, the strategies targeting HDAC3/TIMAP axis might improve TGFβ-associated pathological processes. KEY MESSAGE TIMAP is enriched in the endothelium and highly expressed in macrophages. TIMAP is suppressed by TGFβ via HDAC3-associated Smad signaling. TIMAP inhibits TGFβ signaling and TGFβ-associated macrophage M2 polarization. TIMAP dephosphorylation of MLC counteracts TGFβ-induced macrophage phagocytosis.
Collapse
Affiliation(s)
- Jun Yang
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China
| | - Shasha Yin
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China
| | - Fangfang Bi
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China
| | - Lin Liu
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China
| | - Tian Qin
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China
| | - Hongwei Wang
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China
| | - Wangsen Cao
- Nanjing University School of Medicine, Jiangsu Key Laboratory of Molecular Medicine, 22 Hankou Road, Room 209, Science & Technology Building, Nanjing, 210093, China.
| |
Collapse
|
5
|
Wang Y, Tan L, Jin J, Sun H, Chen Z, Tan X, Su Y, Shi C. Non-cultured dermal-derived mesenchymal cells attenuate sepsis induced by cecal ligation and puncture in mice. Sci Rep 2015; 5:16973. [PMID: 26586517 PMCID: PMC4653757 DOI: 10.1038/srep16973] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Sepsis remains a threat to critically ill patients and carries a high morbidity and mortality. Cell-based therapies have risen in prominence in recent years. Dermal-derived mesenchymal cells (DMCs) are attractive as one of the abundant sources from which to isolate mesenchymal cells for therapeutic applications and can be easily accessed with minimal harm to the donor. In this study, we described for the first time the use of non-cultured DMCs for treating sepsis in a cecal ligation and puncture (CLP) mouse model and investigated their immunomodulatory effects. We found that non-cultured DMCs administration provides a beneficial effect to improve survival in CLP-induced sepsis. This effect is partly mediated by the ability of DMCs to home to sites of injury, to reduce the inflammatory response, to inhibit apoptosis, and to stimulate macrophage migration and phagocytosis. Our further findings suggest that DMCs treatment modulates the beneficial cytoprotective effects exhibited during sepsis, at least in part, by altering miRNA expression. These discoveries provide important evidence that non-cultured DMCs therapy has a specific anti-inflammatory effect on sepsis, and provide the basis for the development of a new therapeutic strategy for managing clinical sepsis.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Li Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Jie Jin
- Department of Hematology, Daping Hospital, Third Military Medical University, 10# Daping Changjiang Road, Chongqing, 400042, China
| | - Huiqin Sun
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Zelin Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Xu Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| |
Collapse
|
6
|
Murakami M, Saito T, Tabata Y. Controlled release of sphingosine-1-phosphate agonist with gelatin hydrogels for macrophage recruitment. Acta Biomater 2014; 10:4723-4729. [PMID: 25038462 DOI: 10.1016/j.actbio.2014.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 11/30/2022]
Abstract
The objective of this study is to design a drug delivery system (DDS) for the in vivo promotion of macrophage recruitment. As the drug, a water-insoluble agonist of sphingosine-1-phosphate type 1 receptor (SEW2871) was selected. SEW2871 (SEW) was water-solubilized by micelle formation with gelatin grafted by L-lactic acid oligomer. SEW micelles were mixed with gelatin, followed by dehydrothermal crosslinking of gelatin to obtain gelatin hydrogels incorporating SEW micelles. SEW was released from the hydrogels incorporating SEW micelles in vitro and in vivo. The water-solubilized SEW showed in vitro macrophage migration activity. When implanted into the back subcutis or the skin wound defect of mice, the hydrogel incorporating SEW micelles promoted macrophage migration toward the tissue around the implanted site to a significantly great extent compared with SEW-free hydrogel and that mixed with SEW micelles. The hydrogel is a promising DDS to enhance macrophage recruitment in vivo.
Collapse
Affiliation(s)
- Masahiro Murakami
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Saito
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
7
|
Al-Jarallah A, Chen X, González L, Trigatti BL. High density lipoprotein stimulated migration of macrophages depends on the scavenger receptor class B, type I, PDZK1 and Akt1 and is blocked by sphingosine 1 phosphate receptor antagonists. PLoS One 2014; 9:e106487. [PMID: 25188469 PMCID: PMC4154704 DOI: 10.1371/journal.pone.0106487] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023] Open
Abstract
HDL carries biologically active lipids such as sphingosine-1-phosphate (S1P) and stimulates a variety of cell signaling pathways in diverse cell types, which may contribute to its ability to protect against atherosclerosis. HDL and sphingosine-1-phosphate receptor agonists, FTY720 and SEW2871 triggered macrophage migration. HDL-, but not FTY720-stimulated migration was inhibited by an antibody against the HDL receptor, SR-BI, and an inhibitor of SR-BI mediated lipid transfer. HDL and FTY720-stimulated migration was also inhibited in macrophages lacking either SR-BI or PDZK1, an adaptor protein that binds to SR-BI's C-terminal cytoplasmic tail. Migration in response to HDL and S1P receptor agonists was inhibited by treatment of macrophages with sphingosine-1-phosphate receptor type 1 (S1PR1) antagonists and by pertussis toxin. S1PR1 activates signaling pathways including PI3K-Akt, PKC, p38 MAPK, ERK1/2 and Rho kinases. Using selective inhibitors or macrophages from gene targeted mice, we demonstrated the involvement of each of these pathways in HDL-dependent macrophage migration. These data suggest that HDL stimulates the migration of macrophages in a manner that requires the activities of the HDL receptor SR-BI as well as S1PR1 activity.
Collapse
Affiliation(s)
- Aishah Al-Jarallah
- Department of Biochemistry and Biomedical Sciences, and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Xing Chen
- Department of Biochemistry and Biomedical Sciences, and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Leticia González
- Department of Biochemistry and Biomedical Sciences, and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and Biomedical Sciences, and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
8
|
Burow P, Klapperstück M, Markwardt F. Activation of ATP secretion via volume-regulated anion channels by sphingosine-1-phosphate in RAW macrophages. Pflugers Arch 2014; 467:1215-26. [PMID: 24965069 DOI: 10.1007/s00424-014-1561-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
We report the activation of outwardly rectifying anion currents by sphingosine-1-phosphate (S1P) in the murine macrophage cell line RAW 264.7. The S1P-induced current is mainly carried by anions, because the reversal potential of the current was shifted by replacement of extracellular Cl(-) by glutamate(-) but not when extracellular Na(+) was substituted by Tris(+). The inhibition of the current by hypertonic extracellular or hypotonic intracellular solution as well as the inhibitory effects of NPPB, tamoxifen, and glibenclamide indicates that the anion current is mediated by volume-regulated anion channels (VRAC). The S1P effect was blocked by intracellular GDPβS and W123, which points to signaling via the S1P receptor 1 (S1PR1) and G proteins. As cytochalasin D diminished the action of S1P, we conclude that the actin cytoskeleton is involved in the stimulation of VRAC. S1P and hypotonic extracellular solution induced secretion of ATP from the macrophages, which in both cases was blocked in a similar way by typical VRAC blockers. We suppose that the S1P-induced ATP secretion in macrophages via activation of VRAC constitutes a functional link between sphingolipid and purinergic signaling in essential processes such as inflammation and migration of leukocytes as well as phagocytosis and the killing of intracellular bacteria.
Collapse
Affiliation(s)
- Philipp Burow
- Julius Bernstein Institute for Physiology, Martin Luther University Halle, Magdeburger Str. 6, 06097, Halle/Saale, Germany
| | | | | |
Collapse
|
9
|
Sakaguchi S, Shono JI, Suzuki T, Sawano S, Anderson JE, Do MKQ, Ohtsubo H, Mizunoya W, Sato Y, Nakamura M, Furuse M, Yamada K, Ikeuchi Y, Tatsumi R. Implication of anti-inflammatory macrophages in regenerative moto-neuritogenesis: promotion of myoblast migration and neural chemorepellent semaphorin 3A expression in injured muscle. Int J Biochem Cell Biol 2014; 54:272-85. [PMID: 24886696 DOI: 10.1016/j.biocel.2014.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/06/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
Regenerative mechanisms that regulate intramuscular motor innervation are thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies proposed a heretofore unexplored role of resident myogenic stem cell (satellite cell)-derived myoblasts as a key presenter of a secreted neural chemorepellent semaphorin 3A (Sema3A); hepatocyte growth factor (HGF) triggered its expression exclusively at the early-differentiation phase. In order to verify this concept, the present study was designed to clarify a paracrine source of HGF release. In vitro experiments demonstrated that activated anti-inflammatory macrophages (CD206-positive M2) produce HGF and thereby promote myoblast chemoattraction and Sema3A expression. Media from pro-inflammatory macrophage cultures (M1) did not show any significant effect. M2 also enhanced the expression of myoblast-differentiation markers in culture, and infiltrated predominantly at the early-differentiation phase (3-5 days post-injury); M2 were confirmed to produce HGF as monitored by in vivo/ex vivo immunocytochemistry of CD11b/CD206/HGF-positive cells and by HGF in situ hybridization of cardiotoxin- or crush-injured tibialis anterior muscle, respectively. These studies advance our understanding of the stage-specific activation of Sema3A expression signaling. Findings, therefore, encourage the idea that M2 contribute to spatiotemporal up-regulation of extracellular Sema3A concentrations by producing HGF that, in turn, stimulates a burst of Sema3A secretion by myoblasts that are recruited to site of injury. This model may ensure a coordinated delay in re-attachment of motoneuron terminals onto damaged fibers early in muscle regeneration, and thus synchronize the recovery of muscle-fiber integrity and the early resolution of inflammation after injury.
Collapse
Affiliation(s)
- Shohei Sakaguchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Jun-ichi Shono
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Yusuke Sato
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Mako Nakamura
- Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Mitsuhiro Furuse
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Koji Yamada
- Department of Food Science and Biotechnology, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan.
| |
Collapse
|
10
|
Dynamic Cross Talk between S1P and CXCL12 Regulates Hematopoietic Stem Cells Migration, Development and Bone Remodeling. Pharmaceuticals (Basel) 2013; 6:1145-69. [PMID: 24276423 PMCID: PMC3818832 DOI: 10.3390/ph6091145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/18/2013] [Accepted: 09/04/2013] [Indexed: 12/23/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are mostly retained in a quiescent non-motile mode in their bone marrow (BM) niches, shifting to a migratory cycling and differentiating state to replenish the blood with mature leukocytes on demand. The balance between the major chemo-attractants CXCL12, predominantly in the BM, and S1P, mainly in the blood, dynamically regulates HSC recruitment to the circulation versus their retention in the BM. During alarm situations, stress-signals induce a decrease in CXCL12 levels in the BM, while S1P levels are rapidly and transiently increased in the circulation, thus favoring mobilization of stem cells as part of host defense and repair mechanisms. Myeloid cytokines, including G-CSF, up-regulate S1P signaling in the BM via the PI3K pathway. Induced CXCL12 secretion from stromal cells via reactive oxygen species (ROS) generation and increased S1P1 expression and ROS signaling in HSCs, all facilitate mobilization. Bone turnover is also modulated by both CXCL12 and S1P, regulating the dynamic BM stromal microenvironment, osteoclasts and stem cell niches which all functionally express CXCL12 and S1P receptors. Overall, CXCL12 and S1P levels in the BM and circulation are synchronized to mutually control HSC motility, leukocyte production and osteoclast/osteoblast bone turnover during homeostasis and stress situations.
Collapse
|
11
|
Kluger MA, Zahner G, Paust HJ, Schaper M, Magnus T, Panzer U, Stahl RAK. Leukocyte-derived MMP9 is crucial for the recruitment of proinflammatory macrophages in experimental glomerulonephritis. Kidney Int 2013; 83:865-77. [DOI: 10.1038/ki.2012.483] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Oh YC, Cho WK, Jeong YH, Im GY, Kim A, Hwang YH, Kim T, Song KH, Ma JY. A Novel Herbal Medicine KIOM-MA Exerts an Anti-Inflammatory Effect in LPS-Stimulated RAW 264.7 Macrophage Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:462383. [PMID: 23243447 PMCID: PMC3518860 DOI: 10.1155/2012/462383] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 12/22/2022]
Abstract
KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as nitric oxide (NO) and prostaglandin E(2) (PGE(2)). Consistent with the inhibitory effect on PGE(2), KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9) in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB) and represses the activity of extracellular signal-regulated kinase (ERK), p38, and c-Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs). Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jin Yeul Ma
- Korean Medicine (KM)-Based Herbal Drug Research Group, Korea Institute of Oriental Medicine, 461-24 Jeonmin-Dong, Yuseong, Daejeon 305-811, Republic of Korea
| |
Collapse
|