1
|
Buhl E, Garg S, Monaghan M, Preston A, Likeman M, Dare J, Evans J, Taylor LS, Berry I, Urankar K, Spry PGD, Williams C, Taylor RW, Alston CL, Hodge JJL, Majumdar A. Infantile Cerebellar-Retinal Degeneration Associated With Novel ACO2 Variants: Clinical Features and Insights From a Drosophila Model. Clin Genet 2025. [PMID: 40210596 DOI: 10.1111/cge.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 04/12/2025]
Abstract
Infantile Cerebellar-Retinal Degeneration (ICRD) is an autosomal recessive neuro-disability associated with hypotonia, seizures, optic atrophy, and retinal degeneration. Recessive variants of the mitochondrial aconitase gene (ACO2) are a known cause of ICRD. Here, we present a paediatric male patient with ICRD, where whole genome sequencing of the family trio revealed segregating heterozygous variants of unknown significance in ACO2. At 4 months, he displayed generalised hypotonia, and by 6 years, visual electrophysiology indicated bilateral optic atrophy. Magnetic Resonance Imaging (MRI) at age seven confirmed optic nerve and cerebellar atrophy, and together with symptoms of developmental delay, align with ICRD. We established a Drosophila animal model to explore the impact of ACO2 loss- and gain-of-function. Manipulating the fly ortholog, mAcon1, through pan-neuronal knock-down or over-expression negatively affected longevity, locomotion, activity, whilst disrupting sleep and circadian rhythms. Mis-expression of mAcon1 in the eye led to impaired visual synaptic transmission and neurodegeneration. These experiments mirrored certain aspects of the human disease, providing a foundation for understanding its biological processes and pathogenic mechanisms, and offering insights into potential targets to screen for future treatments or preventive measures for ACO2-related ICRD.
Collapse
Affiliation(s)
- Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Suchika Garg
- Department of Paediatric Neurology, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Marie Monaghan
- Department of Paediatric Neurology, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Amy Preston
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Marcus Likeman
- Department of Paediatric Neuroradiology, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Julianne Dare
- Department of Community Paediatrics, Community Children's Health Partnership, Kingswood Locality Hub, Bristol, UK
| | - Julie Evans
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Lucie S Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Ian Berry
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Kathryn Urankar
- Department of Neuropathology, North Bristol Hospital NHS Foundation Trust, Bristol, UK
| | - Paul G D Spry
- Department of Paediatric Ophthalmology, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Cathy Williams
- Department of Paediatric Ophthalmology, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Robert W Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Charlotte L Alston
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Anirban Majumdar
- Department of Paediatric Neurology, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| |
Collapse
|
2
|
Ma T, Zeng X, Liu M, Xu S, Wang Y, Wu Q, Zhang T. Analysis and identification of mitochondria-related genes associated with age-related hearing loss. BMC Genomics 2025; 26:218. [PMID: 40045222 PMCID: PMC11881475 DOI: 10.1186/s12864-025-11287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND To explore the mitochondrial genes that play a key role in the occurrence and development of age-related hearing loss (ARHL) and provide a basis for the study of the mechanism of ARHL. RESULTS 503 differentially expressed genes (DEGs) were detected in the GSE49543 dataset. 233 genes were up-regulated, and 270 genes were down-regulated. There are 1140 genes in the mitochondrial gene bank, and 28 differentially expressed genes related to ARHL. These genes are mainly involved in mitochondrial respiratory chain complex assembly, small molecule catabolism, NADH dehydrogenase complex assembly, organic acid catabolism, precursor metabolites and energy production, and mitochondrial span Membrane transport, metabolic processes of active oxygen species. Then, Cytoscape software identified the three key genes: Aco2, Bcs1l and Ndufs1. Immunofluorescence and Western blot experiments confirmed that the protein content of three key genes in aging cochlear hair cells decreased. CONCLUSION We employed bioinformatics analysis to screen 503 differentially expressed genes and identified three key genes associated with ARHL. Subsequently, we conducted in vitro experiments to validate their significance, thereby providing a valuable reference for further elucidating the role of mitochondrial function in the pathogenesis and progression of ARHL.
Collapse
Affiliation(s)
- Tianyu Ma
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China
| | - Xiaoyun Zeng
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China
| | - Mengting Liu
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China
| | - Shijia Xu
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China
| | - Yuyao Wang
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China
| | - Qilong Wu
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China
| | - Tianhong Zhang
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China.
| |
Collapse
|
3
|
Kuang W, Huang J, Yang Y, Liao Y, Zhou Z, Liu Q, Wu H. Identification of markers correlating with mitochondrial function in myocardial infarction by bioinformatics. PLoS One 2024; 19:e0316463. [PMID: 39775580 PMCID: PMC11684664 DOI: 10.1371/journal.pone.0316463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI), one of the most serious cardiovascular diseases, is also affected by altered mitochondrial metabolism and immune status, but their crosstalk is poorly understood. In this paper, we use bioinformatics to explore key targets associated with mitochondrial metabolic function in MI. METHODS The datasets (GSE775, GSE183272 and GSE236374) were from National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) in conjunction with mitochondrial gene data that were downloaded from the MitoCarta 3.0 database. Differentially expressed genes (DEGs) in the dataset were screened by ClusterGVis, Weighted Gene Co-Expression Network Analysis (WGCNA) and GEO2R, and functional enrichment was performed by Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genomes (KEGG). Then mitochondria-associated DEGs (MitoDEGs) were obtained. Protein-protein interaction (PPI) networks were constructed to identify central MitoDEGs that are strongly associated with MI. The Cytoscape and miRWalk databases were then used to predict the transcription factors and target miRNAs of the central MitoDEG, respectively. Finally, the mouse model has been established to demonstrate the expression of MitoDEGs and their association with cardiac function. RESULTS MitoDEGs in MI were mainly involved in mitochondrial function and adenosine triphosphate (ATP) synthesis pathways. The 10 MI-related hub MitoDEGs were then obtained by eight different algorithms. Immunoassays showed a significant increase in monocyte macrophage and T cell infiltration. According to animal experiments, the expression trends of the four hub MitoDEGs (Aco2, Atp5a1, Ndufs3, and Ndufv1) were verified to be consistent with the bioinformatics results. CONCLUSION Our study identified key genes (Aco2, Atp5a1, Ndufs3, and Ndufv1) associated with mitochondrial function in myocardial infarction.
Collapse
Affiliation(s)
- Wenlong Kuang
- Department of Cardiology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Jianwu Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulu Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Center for Reproductive Medicine, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailang Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Yao S, Colangelo LA, Perry AS, Marron MM, Yaffe K, Sedaghat S, Lima JAC, Tian Q, Clish CB, Newman AB, Shah RV, Murthy VL. Implications of metabolism on multi-systems healthy aging across the lifespan. Aging Cell 2024; 23:e14090. [PMID: 38287525 PMCID: PMC11019145 DOI: 10.1111/acel.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Aging is increasingly thought to involve dysregulation of metabolism in multiple organ systems that culminate in decreased functional capacity and morbidity. Here, we seek to understand complex interactions among metabolism, aging, and systems-wide phenotypes across the lifespan. Among 2469 adults (mean age 74.7 years; 38% Black) in the Health, Aging and Body Composition study we identified metabolic cross-sectionally correlates across 20 multi-dimensional aging-related phenotypes spanning seven domains. We used LASSO-PCA and bioinformatic techniques to summarize metabolome-phenome relationships and derive metabolic scores, which were subsequently linked to healthy aging, mortality, and incident outcomes (cardiovascular disease, disability, dementia, and cancer) over 9 years. To clarify the relationship of metabolism in early adulthood to aging, we tested association of these metabolic scores with aging phenotypes/outcomes in 2320 participants (mean age 32.1, 44% Black) of the Coronary Artery Risk Development in Young Adults (CARDIA) study. We observed significant overlap in metabolic correlates across the seven aging domains, specifying pathways of mitochondrial/cellular energetics, host-commensal metabolism, inflammation, and oxidative stress. Across four metabolic scores (body composition, mental-physical performance, muscle strength, and physical activity), we found strong associations with healthy aging and incident outcomes, robust to adjustment for risk factors. Metabolic scores for participants four decades younger in CARDIA were related to incident cardiovascular, metabolic, and neurocognitive performance, as well as long-term cardiovascular disease and mortality over three decades. Conserved metabolic states are strongly related to domain-specific aging and outcomes over the life-course relevant to energetics, host-commensal interactions, and mechanisms of innate immunity.
Collapse
Affiliation(s)
- Shanshan Yao
- University of PittsburgPittsburghPennsylvaniaUSA
| | | | | | | | | | | | | | - Qu Tian
- National Institute of AgingBaltimoreMarylandUSA
| | - Clary B. Clish
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
| | | | - Ravi V. Shah
- Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | | |
Collapse
|
5
|
Zhu J, Xu F, Lai H, Yuan H, Li XY, Hu J, Li W, Liu L, Wang C. ACO2 deficiency increases vulnerability to Parkinson's disease via dysregulating mitochondrial function and histone acetylation-mediated transcription of autophagy genes. Commun Biol 2023; 6:1201. [PMID: 38007539 PMCID: PMC10676364 DOI: 10.1038/s42003-023-05570-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023] Open
Abstract
Parkinson's disease (PD) is characterized by α-synuclein aggregation in dopaminergic (DA) neurons, which are sensitive to oxidative stress. Mitochondria aconitase 2 (ACO2) is an essential enzyme in the tricarboxylic acid cycle that orchestrates mitochondrial and autophagic functions to energy metabolism. Though widely linked to diseases, its relation to PD has not been fully clarified. Here we revealed that the peripheral ACO2 activity was significantly decreased in PD patients and associated with their onset age and disease durations. The knock-in mouse and Drosophila models with the A252T variant displayed aggravated motor deficits and DA neuron degeneration after 6-OHDA and rotenone-induction, and the ACO2 knockdown or blockade cells showed features of mitochondrial and autophagic dysfunction. Moreover, the transcription of autophagy-related genes LC3 and Atg5 was significantly downregulated via inhibited histone acetylation at the H3K9 and H4K5 sites. These data provided multi-dimensional evidences supporting the essential roles of ACO2, and as a potential early biomarker to be used in clinical trials for assessing the effects of antioxidants in PD. Moreover, ameliorating energy metabolism by targeting ACO2 could be considered as a potential therapeutic strategy for PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Junge Zhu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Fanxi Xu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Hong Lai
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Huiyao Yuan
- Department of Biochemistry and Molecular Biology, Capital Medical University; School of Basic Medicine, Beijing, 100069, China
| | - Xu-Ying Li
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Junya Hu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Wei Li
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology, Capital Medical University; School of Basic Medicine, Beijing, 100069, China.
| | - Chaodong Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
6
|
Dutta D, Kanca O, Byeon SK, Marcogliese PC, Zuo Z, Shridharan RV, Park JH, Lin G, Ge M, Heimer G, Kohler JN, Wheeler MT, Kaipparettu BA, Pandey A, Bellen HJ. A defect in mitochondrial fatty acid synthesis impairs iron metabolism and causes elevated ceramide levels. Nat Metab 2023; 5:1595-1614. [PMID: 37653044 PMCID: PMC11151872 DOI: 10.1038/s42255-023-00873-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last step of mtFAS, causes lethality, while neuronal loss of Mecr leads to progressive neurodegeneration. We observe a defect in Fe-S cluster biogenesis and increased iron levels in flies lacking mecr, leading to elevated ceramide levels. Reducing the levels of either iron or ceramide suppresses the neurodegenerative phenotypes, indicating an interplay between ceramide and iron metabolism. Mutations in human MECR cause pediatric-onset neurodegeneration, and we show that human-derived fibroblasts display similar elevated ceramide levels and impaired iron homeostasis. In summary, this study identifies a role of mecr/MECR in ceramide and iron metabolism, providing a mechanistic link between mtFAS and neurodegeneration.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Rishi V Shridharan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ming Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Gali Heimer
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benny A Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, India
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
7
|
Hou Y, He Y, Wang J, Zhou Y, Ma B, Li X, Shi L, Zhang Q. Comprehensive metabolomics profiling of seminal plasma in asthenozoospermia caused by different etiologies. Clin Chim Acta 2023; 548:117530. [PMID: 37652159 DOI: 10.1016/j.cca.2023.117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Asthenozoospermia (AZS) is a disease characterized by decreased sperm motility induced by multiple etiologies, and the pathological mechanisms of various AZS are unclear. We simultaneously analyzed the metabolic profiling of four representative AZS to provide new insights into the etiologies of AZS. METHOD Seminal plasma samples were collected from healthy control (HC; n = 30) and four AZS induced by varicocele (VA, n = 30), obesity (OA, n = 22), reproductive system infections (RA; n = 17) and idiopathic (IA, n = 30), respectively, and were analyzed using gas chromatography-mass spectrometry. Disturbed metabolites and metabolic pathways were compared between AZS and HC, as well as IA and the other three AZS. RESULTS A total of 40 different metabolites were identified in the seminal plasma of AZS and HC, of which lactic acid, fructose, citric acid, glutamine and pyruvic acid metabolic abnormalities associated with all the AZS groups, while each AZS group had unique metabolic changes. RA was significantly separated from the other three AZS, and metabolites such as cholesterol, octadecanoic acid and serine mainly contributed to the separation. CONCLUSION The comprehensive metabolomic analysis and comparison of four various AZS provided evidence and clues for the mechanism mining, which will benefit future etiology, diagnosis and treatment of AZS.
Collapse
Affiliation(s)
- Yuyang Hou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yuanping He
- School of Economics & Management, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jingjie Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yanfen Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xin Li
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Liang Shi
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
8
|
Young T, Gale SL, Ragg NLC, Sander SG, Burritt DJ, Benedict B, Le DV, Villas-Bôas SG, Alfaro AC. Metabolic Regulation of Copper Toxicity during Marine Mussel Embryogenesis. Metabolites 2023; 13:838. [PMID: 37512545 PMCID: PMC10385052 DOI: 10.3390/metabo13070838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The development of new tools for assessing the health of cultured shellfish larvae is crucial for aquaculture industries to develop and refine hatchery methodologies. We established a large-volume ecotoxicology/health stressor trial, exposing mussel (Perna canaliculus) embryos to copper in the presence of ethylenediaminetetraacetic acid (EDTA). GC/MS-based metabolomics was applied to identify potential biomarkers for monitoring embryonic/larval health and to characterise mechanisms of metal toxicity. Cellular viability, developmental abnormalities, larval behaviour, mortality, and a targeted analysis of proteins involved in the regulation of reactive oxygen species were simultaneously evaluated to provide a complementary framework for interpretative purposes and authenticate the metabolomics data. Trace metal analysis and speciation modelling verified EDTA as an effective copper chelator. Toxicity thresholds for P. canaliculus were low, with 10% developmental abnormalities in D-stage larvae being recorded upon exposure to 1.10 μg·L-1 bioavailable copper for 66 h. Sublethal levels of bioavailable copper (0.04 and 1.10 μg·L-1) caused coordinated fluctuations in metabolite profiles, which were dependent on development stage, treatment level, and exposure duration. Larvae appeared to successfully employ various mechanisms involving the biosynthesis of antioxidants and a restructuring of energy-related metabolism to alleviate the toxic effects of copper on cells and developing tissues. These results suggest that regulation of trace metal-induced toxicity is tightly linked with metabolism during the early ontogenic development of marine mussels. Lethal-level bioavailable copper (50.3 μg·L-1) caused severe metabolic dysregulation after 3 h of exposure, which worsened with time, substantially delayed embryonic development, induced critical oxidative damage, initiated the apoptotic pathway, and resulted in cell/organism death shortly after 18 h of exposure. Metabolite profiling is a useful approach to (1) assess the health status of marine invertebrate embryos and larvae, (2) detect early warning biomarkers for trace metal contamination, and (3) identify novel regulatory mechanisms of copper-induced toxicity.
Collapse
Affiliation(s)
- Tim Young
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | | | | | - Sylvia G. Sander
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9010, New Zealand
- Marine Mineral Resources Group, Research Division 4: Dynamics of the Ocean Floor, Magmatic and Hydrothermal Systems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - David J. Burritt
- Department of Botany, University of Otago, 464 Great King St, Dunedin 9016, New Zealand
| | - Billy Benedict
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9010, New Zealand
| | - Dung V. Le
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi 000084, Vietnam
| | - Silas G. Villas-Bôas
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
9
|
Shen M, Goforth JB, Eisenstein RS. Iron-dependent post transcriptional control of mitochondrial aconitase expression. Metallomics 2023; 15:mfac099. [PMID: 36702557 PMCID: PMC9902864 DOI: 10.1093/mtomcs/mfac099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/28/2023]
Abstract
Iron regulatory proteins (IRPs) control the translation of animal cell mRNAs encoding proteins with diverse roles. This includes the iron storage protein ferritin and the tricarboxylic cycle (TCA) enzyme mitochondrial aconitase (ACO2) through iron-dependent binding of IRP to the iron responsive element (IRE) in the 5' untranslated region (UTR). To further elucidate the mechanisms allowing IRPs to control translation of 5' IRE-containing mRNA differentially, we focused on Aco2 mRNA, which is weakly controlled versus the ferritins. Rat liver contains two classes of Aco2 mRNAs, with and without an IRE, due to alterations in the transcription start site. Structural analysis showed that the Aco2 IRE adopts the canonical IRE structure but lacks the dynamic internal loop/bulge five base pairs 5' of the CAGUG(U/C) terminal loop in the ferritin IREs. Unlike ferritin mRNAs, the Aco2 IRE lacks an extensive base-paired flanking region. Using a full-length Aco2 mRNA expression construct, iron controlled ACO2 expression in an IRE-dependent and IRE-independent manner, the latter of which was eliminated with the ACO23C3S mutant that cannot bind the FeS cluster. Iron regulation of ACO23C3S encoded by the full-length mRNA was completely IRE-dependent. Replacement of the Aco23C3S 5' UTR with the Fth1 IRE with base-paired flanking sequences substantially improved iron responsiveness, as did fusing of the Fth1 base-paired flanking sequences to the native IRE in the Aco3C3S construct. Our studies further define the mechanisms underlying the IRP-dependent translational regulatory hierarchy and reveal that Aco2 mRNA species lacking the IRE contribute to the expression of this TCA cycle enzyme.
Collapse
Affiliation(s)
- Macy Shen
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
- Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, CA 92834-6866, USA
| | - Jeremy B Goforth
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
- Science Department, Lodi Middle School, 945 S. Ham Lane, Lodi, CA 95242, USA
| | - Richard S Eisenstein
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
10
|
Kesawat MS, Kherawat BS, Ram C, Singh A, Dey P, Gora JS, Misra N, Chung SM, Kumar M. Genome-Wide Identification and Expression Profiling of Aconitase Gene Family Members Reveals Their Roles in Plant Development and Adaptation to Diverse Stress in Triticum aestivum L. PLANTS 2022; 11:3475. [PMID: 36559588 PMCID: PMC9782157 DOI: 10.3390/plants11243475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 06/01/2023]
Abstract
Global warming is a serious threat to food security and severely affects plant growth, developmental processes, and, eventually, crop productivity. Respiratory metabolism plays a critical role in the adaptation of diverse stress in plants. Aconitase (ACO) is the main enzyme, which catalyzes the revocable isomerization of citrate to isocitrate in the Krebs cycle. The function of ACO gene family members has been extensively studied in model plants, for instance Arabidopsis. However, their role in plant developmental processes and various stress conditions largely remained unknown in other plant species. Thus, we identified 15 ACO genes in wheat to elucidate their function in plant developmental processes and different stress environments. The phylogenetic tree revealed that TaACO genes were classified into six groups. Further, gene structure analysis of TaACOs has shown a distinctive evolutionary path. Synteny analysis showed the 84 orthologous gene pairs in Brachypodium distachyon, Aegilops tauschii, Triticum dicoccoides, Oryza sativa, and Arabidopsis thaliana. Furthermore, Ka/Ks ratio revealed that most TaACO genes experienced strong purifying selection during evolution. Numerous cis-acting regulatory elements were detected in the TaACO promoters, which play a crucial role in plant development processes, phytohormone signaling, and are related to defense and stress. To understand the function of TaACO genes, the expression profiling of TaACO genes were investigated in different tissues, developmental stages, and stress conditions. The transcript per million values of TaACOs genes were retrieved from the Wheat Expression Browser Database. We noticed the differential expression of the TaACO genes in different tissues and various stress conditions. Moreover, gene ontology analysis has shown enrichment in the tricarboxylic acid metabolic process (GO:0072350), citrate metabolic process (GO:0006101), isocitrate metabolic process GO:0006102, carbohydrate metabolic (GO:0005975), and glyoxylate metabolic process (GO:0046487). Therefore, this study provided valuable insight into the ACO gene family in wheat and contributed to the further functional characterization of TaACO during different plant development processes and various stress conditions.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, India
| | - Chet Ram
- ICAR-Central Institute for Arid Horticulture, Bikaner 334006, India
| | - Anupama Singh
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Prajjal Dey
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Jagan Singh Gora
- ICAR-Central Institute for Arid Horticulture, Bikaner 334006, India
| | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology 13 (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Sang-Min Chung
- Department of Life Science, Dongguk University, Dong-gu 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, Dongguk University, Dong-gu 10326, Republic of Korea
| |
Collapse
|
11
|
Solana-Manrique C, Sanz FJ, Torregrosa I, Palomino-Schätzlein M, Hernández-Oliver C, Pineda-Lucena A, Paricio N. Metabolic Alterations in a Drosophila Model of Parkinson's Disease Based on DJ-1 Deficiency. Cells 2022; 11:cells11030331. [PMID: 35159141 PMCID: PMC8834223 DOI: 10.3390/cells11030331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second-most common neurodegenerative disorder, whose physiopathology is still unclear. Moreover, there is an urgent need to discover new biomarkers and therapeutic targets to facilitate its diagnosis and treatment. Previous studies performed in PD models and samples from PD patients already demonstrated that metabolic alterations are associated with this disease. In this context, the aim of this study is to provide a better understanding of metabolic disturbances underlying PD pathogenesis. To achieve this goal, we used a Drosophila PD model based on inactivation of the DJ-1β gene (ortholog of human DJ-1). Metabolomic analyses were performed in 1-day-old and 15-day-old DJ-1β mutants and control flies using 1H nuclear magnetic resonance spectroscopy, combined with expression and enzymatic activity assays of proteins implicated in altered pathways. Our results showed that the PD model flies exhibited protein metabolism alterations, a shift fromthe tricarboxylic acid cycle to glycolytic pathway to obtain ATP, together with an increase in the expression of some urea cycle enzymes. Thus, these metabolic changes could contribute to PD pathogenesis and might constitute possible therapeutic targets and/or biomarkers for this disease.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | - Isabel Torregrosa
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | | | - Carolina Hernández-Oliver
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (C.H.-O.); (A.P.-L.)
| | - Antonio Pineda-Lucena
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (C.H.-O.); (A.P.-L.)
- Programa de Terapias Moleculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
- Correspondence: ; Tel.: +34-96-354-3005; Fax: +34-96-354-3029
| |
Collapse
|
12
|
Cho Y, Kim G, Park J. Mitochondrial aconitase 1 regulates age-related memory impairment via autophagy/mitophagy-mediated neural plasticity in middle-aged flies. Aging Cell 2021; 20:e13520. [PMID: 34799973 PMCID: PMC8672789 DOI: 10.1111/acel.13520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 01/24/2023] Open
Abstract
Age‐related memory impairment (AMI) occurs in many species, including humans. The underlying mechanisms are not fully understood. In wild‐type Drosophila (w1118), AMI appears in the form of a decrease in learning (3‐min memory) from middle age (30 days after eclosion [DAE]). We performed in vivo, DNA microarray, and behavioral screen studies to identify genes controlling both lifespan and AMI and selected mitochondrial Acon1 (mAcon1). mAcon1 expression in the head of w1118 decreased with age. Neuronal overexpression of mAcon1 extended its lifespan and improved AMI. Neuronal or mushroom body expression of mAcon1 regulated the learning of young (10 DAE) and middle‐aged flies. Interestingly, acetyl‐CoA and citrate levels increased in the heads of middle‐aged and neuronal mAcon1 knockdown flies. Acetyl‐CoA, as a cellular energy sensor, is related to autophagy. Autophagy activity and efficacy determined by the positive and negative changes in the expression levels of Atg8a‐II and p62 were proportional to the expression level of mAcon1. Levels of the presynaptic active zone scaffold protein Bruchpilot were inversely proportional to neuronal mAcon1 levels in the whole brain. Furthermore, mAcon1 overexpression in Kenyon cells induced mitophagy labeled with mt‐Keima and improved learning ability. Both processes were blocked by pink1 knockdown. Taken together, our results imply that the regulation of learning and AMI by mAcon1 occurs via autophagy/mitophagy‐mediated neural plasticity.
Collapse
Affiliation(s)
- Yun‐Ho Cho
- Department of Physiology Korea University College of Medicine Seoul Republic of Korea
| | - Gye‐Hyeong Kim
- Department of Physiology Korea University College of Medicine Seoul Republic of Korea
| | - Joong‐Jean Park
- Department of Physiology Korea University College of Medicine Seoul Republic of Korea
| |
Collapse
|
13
|
Han G, Wei P, He M, Teng H, Chu Y. Metabolomic Profiling of the Aqueous Humor in Patients with Wet Age-Related Macular Degeneration Using UHPLC-MS/MS. J Proteome Res 2020; 19:2358-2366. [PMID: 32293180 DOI: 10.1021/acs.jproteome.0c00036] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Assessing metabolomic alterations in age-related macular degeneration (AMD) can provide insights into its pathogenesis. We compared the metabolomic profiles of the aqueous humor between wet AMD patients (n = 26) and age- and sex-matched patients undergoing cataract surgery without AMD as controls (n = 20). A global untargeted metabolomics study was performed using ultra-high-performance liquid chromatography tandem mass spectrometry. Univariate analysis after the false discovery correction showed 18 significantly altered metabolites among the 291 metabolites measured. These differential metabolomic profiles pointed to three interconnected metabolic pathways: a compromised carnitine-associated mitochondrial oxidation pathway (carnitine, deoxycarnitine, N6-trimethyl-l-lysine), an altered carbohydrate metabolism pathway (cis-aconitic acid, itaconatic acid, and mesaconic acid), which plays a role in senescence and immunity, and an activated osmoprotection pathway (glycine betaine, creatine), which potentially contributes to the pathogenesis of the disease. These results suggested that metabolic dysfunction in AMD is mitochondrial-centered and may provide new insights into the pathophysiology of wet AMD and novel therapeutic strategies.
Collapse
Affiliation(s)
- Guoge Han
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin 300020, P. R. China
| | - Pinghui Wei
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin 300020, P. R. China
| | - Meiqin He
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin 300020, P. R. China
| | - He Teng
- Eye Institute and School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, P. R. China
| | - Yanhua Chu
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin 300020, P. R. China
| |
Collapse
|
14
|
Ohnuma K, Kishita Y, Nyuzuki H, Kohda M, Ohtsu Y, Takeo S, Asano T, Sato-Miyata Y, Ohtake A, Murayama K, Okazaki Y, Aigaki T. Ski3/TTC37 deficiency associated with trichohepatoenteric syndrome causes mitochondrial dysfunction in Drosophila. FEBS Lett 2020; 594:2168-2181. [PMID: 32294252 DOI: 10.1002/1873-3468.13792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022]
Abstract
Tetratricopeptide repeat protein 37 (TTC37) is a causative gene of trichohepatoenteric syndrome (THES). However, little is known about the pathogenesis of this disease. Here, we characterize the phenotype of a Drosophila model in which ski3, a homolog of TTC37, is disrupted. The mutant flies are pupal lethal, and the pupal lethality is partially rescued by transgenic expression of wild-type ski3 or human TTC37. The mutant larvae show growth retardation, heart arrhythmia, triacylglycerol accumulation, and aberrant metabolism of glycolysis and the TCA cycle. Moreover, mitochondrial membrane potential and respiratory chain complex activities are significantly reduced in the mutants. Our results demonstrate that ski3 deficiency causes mitochondrial dysfunction, which may underlie the pathogenesis of THES.
Collapse
Affiliation(s)
- Kohei Ohnuma
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Japan
| | - Yoshihito Kishita
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Japan
| | - Hiromi Nyuzuki
- Department of Pediatrics, School of Medicine, Niigata University, Asahimachi, Japan
| | - Masakazu Kohda
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Japan
| | - Yuta Ohtsu
- Division of Medical Nutrition, Faculty of Healthcare, Tokyo Healthcare University, Setagaya-ku, Japan
| | - Satomi Takeo
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Japan
| | - Tsunaki Asano
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Japan
| | - Yukiko Sato-Miyata
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Japan
- Research and Education Centre for Natural Sciences, Keio University, Yokohama, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Saitama Medical University, Iruma-gun, Japan
| | - Kei Murayama
- Department of Metabolism, Center for Medical Genetics, Chiba Children's Hospital, Midori-ku, Japan
| | - Yasushi Okazaki
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Japan
| |
Collapse
|
15
|
Liu Z, Yang Z, Xiong L, Li D, Zou Q, Yuan Y. ACO2 and ANPEP as novel prognostic markers for gallbladder squamous cell/adenosquamous carcinomas and adenocarcinomas. Int J Clin Oncol 2020; 25:1346-1355. [PMID: 32249333 DOI: 10.1007/s10147-020-01651-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/03/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Squamous cell/adenosquamous carcinoma (SC/ASC) is a rarely identified form of gallbladder cancer with poorly understood clinical features. As such, there is an urgent need to identify novel prognostic biomarkers for such gallbladder SC/ASC cases, and for gallbladder adenocarcinomas (ACs). METHODS The levels of ACO2 and ANPEP proteins were assessed via an EnVision-based immunohistochemical approach using 46 SC/ASC and 80 AC patient samples. RESULTS There was a marked reduction in levels of ACO2 and ANPEP in gallbladder AC relative to normal adjacent tissue or benign gallbladder lesions. The was a significant correlation between lack of ACO2 and ANPEP and larger tumors, higher tumor-node-metastasis (TNM) staging, invasion, metastasis to regional lymph nodes, and ineligibility for surgical resection in both SC/ASC and AC tumor samples. Kaplan-Meier survival analyses further confirmed a relationship between ACO2 and ANPEP negativity and decreased overall survival in patients with these diseases (p < 0.05 or p < 0.01), and a multivariate regression analysis further established that ACO2 negativity and ANPEP negativity were independently predictive of poor SC/ASC and AC patient outcomes. CONCLUSIONS ACO2 and ANPEP may have key physiological relevance in cancers of the gallbladder and thus warrant investigation as prognostic biomarkers.
Collapse
Affiliation(s)
- Ziru Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhulin Yang
- Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Li Xiong
- Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Daiqiang Li
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiong Zou
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuan Yuan
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Xue YN, Liu YN, Su J, Li JL, Wu Y, Guo R, Yu BB, Yan XY, Zhang LC, Sun LK, Li Y. Zinc cooperates with p53 to inhibit the activity of mitochondrial aconitase through reactive oxygen species accumulation. Cancer Med 2019; 8:2462-2473. [PMID: 30972978 PMCID: PMC6536939 DOI: 10.1002/cam4.2130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming is a central hallmark of cancer. Therefore, targeting metabolism may provide an effective strategy for identifying promising drug targets for cancer treatment. In prostate cancer, cells undergo metabolic transformation from zinc‐accumulating, citrate‐producing cells to citrate‐oxidizing malignant cells with lower zinc levels and higher mitochondrial aconitase (ACO2) activity. ACO2 is a Krebs cycle enzyme that converts citrate to isocitrate and is sensitive to reactive oxygen species (ROS)‐mediated damage. In this study, we found that the expression of ACO2 is positively correlated with the malignancy of prostate cancer. Both zinc and p53 can lead to an increase in ROS. ACO2 can be a target for remodeling metabolism by sensing changes in the ROS levels of prostate cancer. Our results indicate that targeting ACO2 through zinc and p53 can change prostate cancer metabolism, and thus provides a potential new therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Ya-Nan Xue
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Ya-Nan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiu-Ling Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yao Wu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Rui Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Bing-Bing Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xiao-Yu Yan
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Li-Chao Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lian-Kun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
18
|
Metabolomics: State-of-the-Art Technologies and Applications on Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:257-276. [PMID: 29951824 DOI: 10.1007/978-981-13-0529-0_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolomics is one of the latest "omics" technology concerned with the high-throughput identification and quantification of metabolites, the final products of cellular processes. The revealed data provide an instantaneous snapshot of an organism's metabolic pathways, which can be used to explain its phenotype or physiology. On the other hand, Drosophila has shown its power in studying metabolism and related diseases. At this stage, we have the state-of-the-art knowledge in place: a potential candidate to study cellular metabolism (Drosophila melanogaster) and a powerful methodology for metabolic network decipherer (metabolomics). Yet missing is advanced metabolomics technologies like isotope-assisted metabolomics optimized for Drosophila. In this chapter, we will discuss on the current status and future perspectives in technologies and applications of Drosophila metabolomics.
Collapse
|
19
|
Bolick DT, Mayneris-Perxachs J, Medlock GL, Kolling GL, Papin JA, Swann JR, Guerrant RL. Increased Urinary Trimethylamine N-Oxide Following Cryptosporidium Infection and Protein Malnutrition Independent of Microbiome Effects. J Infect Dis 2017; 216:64-71. [PMID: 28520899 PMCID: PMC5905612 DOI: 10.1093/infdis/jix234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
Cryptosporidium infections have been associated with growth stunting, even in the absence of diarrhea. Having previously detailed the effects of protein deficiency on both microbiome and metabolome in this model, we now describe the specific gut microbial and biochemical effects of Cryptosporidium infection. Protein-deficient mice were infected with Cryptosporidium parvum oocysts for 6-13 days and compared with uninfected controls. Following infection, there was an increase in the urinary excretion of choline- and amino-acid-derived metabolites. Conversely, infection reduced the excretion of the microbial-host cometabolite (3-hydroxyphenyl)propionate-sulfate and disrupted metabolites involved in the tricarboxylic acid (TCA) cycle. Correlation analysis of microbial and biochemical profiles resulted in associations between various microbiota members and TCA cycle metabolites, as well as some microbial-specific degradation products. However, no correlation was observed between the majority of the infection-associated metabolites and the fecal bacteria, suggesting that these biochemical perturbations are independent of concurrent changes in the relative abundance of members of the microbiota. We conclude that cryptosporidial infection in protein-deficient mice can mimic some metabolic changes seen in malnourished children and may help elucidate our understanding of long-term metabolic consequences of early childhood enteric infections.
Collapse
Affiliation(s)
- David T Bolick
- Division of Infectious Diseases and International Health, UVA Center for Global Health, University of Virginia, Charlottesville
| | - Jordi Mayneris-Perxachs
- Technological Unit of Nutrition and Health, EURECAT-Technological Center of Catalonia, Reus, Spain
| | - Greg L Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville
| | - Glynis L Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville
| | - Jon R Swann
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Imperial College London, United Kingdom
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, UVA Center for Global Health, University of Virginia, Charlottesville
| |
Collapse
|
20
|
Cox JE, Thummel CS, Tennessen JM. Metabolomic Studies in Drosophila. Genetics 2017; 206:1169-1185. [PMID: 28684601 PMCID: PMC5500124 DOI: 10.1534/genetics.117.200014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila, often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research.
Collapse
Affiliation(s)
- James E Cox
- Department of Biochemistry and
- The Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
21
|
Abela L, Spiegel R, Crowther LM, Klein A, Steindl K, Papuc SM, Joset P, Zehavi Y, Rauch A, Plecko B, Simmons TL. Plasma metabolomics reveals a diagnostic metabolic fingerprint for mitochondrial aconitase (ACO2) deficiency. PLoS One 2017; 12:e0176363. [PMID: 28463998 PMCID: PMC5413020 DOI: 10.1371/journal.pone.0176363] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/10/2017] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial respiratory chain dysfunction has been identified in a number of neurodegenerative disorders. Infantile cerebellar-retinal degeneration associated with mutations in the mitochondrial aconitase 2 gene (ACO2) has been recently described as a neurodegenerative disease of autosomal recessive inheritance. To date there is no biomarker for ACO2 deficiency and diagnosis relies on genetic analysis. Here we report global metabolic profiling in eight patients with ACO2 deficiency. Using an LC-MS-based metabolomics platform we have identified several metabolites with affected plasma concentrations including the tricarboxylic acid cycle metabolites cis-aconitate, isocitrate and alpha-ketoglutarate, as well as phosphoenolpyruvate and hydroxybutyrate. Taken together we report a diagnostic metabolic fingerprint for mitochondrial aconitase 2 deficiency.
Collapse
Affiliation(s)
- Lucia Abela
- Division of Child Neurology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
- Radiz–Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Ronen Spiegel
- Department of Pediatrics B, Emek Medical Center, Afula, Rappaport Faculty of Medicine, Technion, Israel
| | - Lisa M. Crowther
- Division of Child Neurology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
- Radiz–Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Andrea Klein
- Division of Child Neurology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Katharina Steindl
- Radiz–Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Sorina Mihaela Papuc
- Radiz–Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Pascal Joset
- Radiz–Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Yoav Zehavi
- Department of Pediatrics B, Emek Medical Center, Afula, Rappaport Faculty of Medicine, Technion, Israel
| | - Anita Rauch
- Radiz–Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Barbara Plecko
- Division of Child Neurology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
- Radiz–Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Thomas Luke Simmons
- Division of Child Neurology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
- Radiz–Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
22
|
X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner. Acta Neuropathol Commun 2016; 4:30. [PMID: 27036546 PMCID: PMC4818453 DOI: 10.1186/s40478-016-0295-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/07/2023] Open
Abstract
The phenotypic spectrum among girls with heterozygous mutations in the X-linked intellectual disability (XLID) gene CASK (calcium/calmodulin-dependent serine protein kinase) includes postnatal microcephaly, ponto-cerebellar hypoplasia, seizures, optic nerve hypoplasia, growth retardation and hypotonia. Although CASK knockout mice were previously reported to exhibit perinatal lethality and a 3-fold increased apoptotic rate in the brain, CASK deletion was not found to affect neuronal physiology and their electrical properties. The pathogenesis of CASK associated disorders and the potential function of CASK therefore remains unknown. Here, using Cre-LoxP mediated gene excision experiments; we demonstrate that deleting CASK specifically from mouse cerebellar neurons does not alter the cerebellar architecture or function. We demonstrate that the neuron-specific deletion of CASK in mice does not cause perinatal lethality but induces severe recurrent epileptic seizures and growth retardation before the onset of adulthood. Furthermore, we demonstrate that although neuron-specific haploinsufficiency of CASK is inconsequential, the CASK mutation associated human phenotypes are replicated with high fidelity in CASK heterozygous knockout female mice (CASK(+/-)). These data suggest that CASK-related phenotypes are not purely neuronal in origin. Surprisingly, the observed microcephaly in CASK(+/-) animals is not associated with a specific loss of CASK null brain cells indicating that CASK regulates postnatal brain growth in a non-cell autonomous manner. Using biochemical assay, we also demonstrate that CASK can interact with metabolic proteins. CASK knockdown in human cell lines cause reduced cellular respiration and CASK(+/-) mice display abnormalities in muscle and brain oxidative metabolism, suggesting a novel function of CASK in metabolism. Our data implies that some phenotypic components of CASK heterozygous deletion mutation associated disorders represent systemic manifestation of metabolic stress and therefore amenable to therapeutic intervention.
Collapse
|
23
|
Ahmad S, Basak T, Anand Kumar K, Bhardwaj G, Lalitha A, Yadav DK, Chandak GR, Raghunath M, Sengupta S. Maternal micronutrient deficiency leads to alteration in the kidney proteome in rat pups. J Proteomics 2015; 127:178-84. [PMID: 25982389 DOI: 10.1016/j.jprot.2015.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022]
Abstract
Maternal nutritional deficiency significantly perturbs the offspring's physiology predisposing them to metabolic diseases during adulthood. Vitamin B12 and folate are two such micronutrients, whose deficiency leads to elevated homocysteine levels. We earlier generated B12 and/or folate deficient rat models and using high-throughput proteomic approach, showed that maternal vitamin B12 deficiency modulates carbohydrate and lipid metabolism in the liver of pups through regulation of PPAR signaling pathway. In this study, using similar approach, we identified 26 differentially expressed proteins in the kidney of pups born to mothers fed with vitamin B12 deficient diet while only four proteins were identified in the folate deficient group. Importantly, proteins like calreticulin, cofilin 1 and nucleoside diphosphate kinase B that are involved in the functioning of the kidney were upregulated in B12 deficient group. Our results hint towards a larger effect of vitamin B12 deficiency compared to that of folate presumably due to greater elevation of homocysteine in vitamin B12 deficient group. In view of widespread vitamin B12 and folate deficiency and its association with several diseases like anemia, cardiovascular and renal diseases, our results may have large implications for kidney diseases in populations deficient in vitamin B12 especially in vegetarians and the elderly people.This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Shadab Ahmad
- Genomics and Molecular Medicine unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India
| | - Trayambak Basak
- Genomics and Molecular Medicine unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB Campus, New Delhi, India
| | | | - Gourav Bhardwaj
- Genomics and Molecular Medicine unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India
| | - A Lalitha
- National Institute of Nutrition, Hyderabad, India
| | - Dilip K Yadav
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Shantanu Sengupta
- Genomics and Molecular Medicine unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB Campus, New Delhi, India.
| |
Collapse
|
24
|
Mitochondrial diseases: Drosophila melanogaster as a model to evaluate potential therapeutics. Int J Biochem Cell Biol 2015; 63:60-5. [PMID: 25666557 DOI: 10.1016/j.biocel.2015.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/19/2015] [Accepted: 01/29/2015] [Indexed: 01/26/2023]
Abstract
While often presented as a single entity, mitochondrial diseases comprise a wide range of clinical, biochemical and genetic heterogeneous disorders. Among them, defects in the process of oxidative phosphorylation are the most prevalent. Despite intense research efforts, patients are still without effective treatment. An important part of the development of new therapeutics relies on predictive models of the pathology in order to assess their therapeutic potential. Since mitochondrial diseases are a heterogeneous group of progressive multisystemic disorders that can affect any organ at any time, the development of various in vivo models for the different diseases-associated genes defects will accelerate the search for effective therapeutics. Here, we review existing Drosophila melanogaster models for mitochondrial diseases, with a focus on alterations in oxidative phosphorylation, and discuss the potential of this powerful model organism in the process of drug target discovery. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.
Collapse
|
25
|
Tricoire H, Palandri A, Bourdais A, Camadro JM, Monnier V. Methylene blue rescues heart defects in a Drosophila model of Friedreich's ataxia. Hum Mol Genet 2014; 23:968-79. [PMID: 24105471 DOI: 10.1093/hmg/ddt493] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Friedreich's ataxia (FRDA), the most common hereditary ataxia, is characterized by progressive degeneration of the central and peripheral nervous system, hypertrophic cardiomyopathy and a high risk of diabetes. FRDA is caused by abnormally low levels of frataxin, a highly conserved mitochondrial protein. Drosophila has been previously successfully used to model FRDA in various cell types, including neurons and glial cells. Here, we report the development of a Drosophila cardiac model of FRDA. In vivo heart imaging revealed profound impairments in heart function in frataxin-depleted Drosophila, including a strong increase in end-systolic and end-diastolic diameters and a decrease in fractional shortening (FS). These features, reminiscent of pathological phenotypes in humans, are fully rescued by complementation with human frataxin, suggesting conserved cardiac functions of frataxin between the two organisms. Oxidative stress is not a major factor of heart impairment in frataxin-depleted flies, suggesting the involvement of other pathological mechanisms notably mitochondrial respiratory chain (MRC) dysfunction. Accordingly, we report that methylene blue (MB), a compound known to act as an alternative electron carrier that bypasses mitochondrial complexes I-III, was able to prevent heart dysfunction. MB also partially rescued the phenotype when administered post-symptomatically. Analysis of MB derivatives demonstrates that only compounds with electron carrier properties are able to prevent the heart phenotype. Thus MB, a compound already used for several clinical applications, appears promising for the treatment of the heart dysfunctions that are a major cause of death of FRDA patients. This work provides the grounds for further evaluation of MB action in mammals.
Collapse
Affiliation(s)
- Hervé Tricoire
- Unité de Biologie Fonctionnelle et Adaptative (BFA) EAC4413 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | | | | | | |
Collapse
|
26
|
Lushchak OV, Piroddi M, Galli F, Lushchak VI. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep 2013; 19:8-15. [PMID: 24266943 DOI: 10.1179/1351000213y.0000000073] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Aconitase, an enzyme possessing an iron-sulfur cluster that is sensitive to oxidation, is involved in the regulation of cellular metabolism. There are two isoenzymes of aconitase (Aco)--mitochondrial (mAco) and cytosolic (cAco) ones. The primary role of mAdco is believed to be to control cellular ATP production via regulation of intermediate flux in the Krebs cycle. The cytosolic Aco in its reduced form operates as an enzyme, whereas in the oxidized form it is involved in the control of iron homeostasis as iron regulatory protein 1 (IRP1). Reactive oxygen species (ROS) play a central role in regulation of Aco functions. Catalytic Aco activity is regulated by reversible oxidation of [4Fe-4S]²⁺ cluster and cysteine residues, so redox-dependent posttranslational modifications (PTMs) have gained increasing consideration as regards possible regulatory effects. These include modifications of cysteine residues by oxidation, nitrosylation and thiolation, as well as Tyr nitration and oxidation of Lys residues to carbonyls. Redox-independent PTMs such as phosphorylation and transamination also have been described. In the presence of a sustained ROS flux, redox-dependent PTMs may lead to enzyme damage and cell stress by impaired energy and iron metabolism. Aconitase has been identified as a protein that undergoes oxidative modification and inactivation in aging and certain oxidative stress-related disorders. Here we describe possible mechanisms of involvement of the two aconitase isoforms, cAco and mAco, in the control of cell metabolism and iron homeostasis, balancing the regulatory, and damaging effects of ROS.
Collapse
|