1
|
Yurttas AG, Okat Z, Elgun T, Cifci KU, Sevim AM, Gul A. Genetic deviation associated with photodynamic therapy in HeLa cell. Photodiagnosis Photodyn Ther 2023; 42:103346. [PMID: 36809810 DOI: 10.1016/j.pdpdt.2023.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Photodynamic therapy (PDT) is a method that is used in cancer treatment. The main therapeutic effect is the production of singlet oxygen (1O2). Phthalocyanines for PDT produce high singlet oxygen with absorbers of about 600-700 nm. AIM It is aimed to analyze cancer cell pathways by flow cytometry analysis and cancer-related genes with q-PCR device by applying phthalocyanine L1ZnPC, which we use as photosensitizer in photodynamic therapy, in HELA cell line. In this study, we investigate the molecular basis of L1ZnPC's anti-cancer activity. MATERIAL METHOD The cytotoxic effects of L1ZnPC, a phthalocyanine obtained from our previous study, in HELA cells were evaluated and it was determined that it led to a high rate of death as a result. The result of photodynamic therapy was analyzed using q-PCR. From the data received at the conclusion of this investigation, gene expression values were calculated, and expression levels were assessed using the 2-∆∆Ct method to examine the relative changes in these values. Cell death pathways were interpreted with the FLOW cytometer device. One-Way Analysis of Variance (ANOVA) and the Tukey-Kramer Multiple Comparison Test with Post-hoc Test were used for the statistical analysis. CONCLUSION In our study, it was observed that HELA cancer cells underwent apoptosis at a rate of 80% with drug application plus photodynamic therapy by flow cytometry method. According to q-PCR results, CT values of eight out of eighty-four genes were found to be significant and their association with cancer was evaluated. L1ZnPC is a new phthalocyanine used in this study and our findings should be supported by further studies. For this reason, different analyses are needed to be performed with this drug in different cancer cell lines. In conclusion, according to our results, this drug looks promising but still needs to be analyzed through new studies. It is necessary to examine in detail which signaling pathways they use and their mechanism of action. For this, additional experiments are required.
Collapse
Affiliation(s)
- Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Zehra Okat
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Tugba Elgun
- Medical Biology, Faculty of Medicine, Istanbul Biruni University, Istanbul, Turkey
| | - Kezban Ucar Cifci
- Division of Basic Sciences and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Turkey; Department of Molecular Medicine, Institute of Health Sciences, University of Health Sciences, Turkey
| | - Altug Mert Sevim
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Gul
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Rani M, Kumari R, Singh SP, Devi A, Bansal P, Siddiqi A, Alsahli MA, Almatroodi SA, Rahmani AH, Rizvi MMA. MicroRNAs as master regulators of FOXO transcription factors in cancer management. Life Sci 2023; 321:121535. [PMID: 36906255 DOI: 10.1016/j.lfs.2023.121535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
MicroRNAs are critical regulators of the plethora of genes, including FOXO "forkhead" dependent transcription factors, which are bonafide tumour suppressors. The FOXO family members modulate a hub of cellular processes like apoptosis, cell cycle arrest, differentiation, ROS detoxification, and longevity. Aberrant expression of FOXOs in human cancers has been observed due to their down-regulation by diverse microRNAs, which are predominantly involved in tumour initiation, chemo-resistance and tumour progression. Chemo-resistance is a major obstacle in cancer treatment. Over 90% of casualties in cancer patients are reportedly associated with chemo-resistance. Here, we have primarily discussed the structure, functions of FOXO and also their post-translational modifications which influence the activities of these FOXO family members. Further, we have addressed the role of microRNAs in carcinogenesis by regulating the FOXOs at post-transcriptional level. Therefore, microRNAs-FOXO axis can be exploited as a novel cancer therapy. The administration of microRNA-based cancer therapy is likely to be beneficial to curb chemo-resistance in cancers.
Collapse
Affiliation(s)
- Madhu Rani
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rashmi Kumari
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Centre for Pharmacology and Therapeutics, Rosewell Park Comprehensive Care Centre, 665 Elm Street, Buffalo, NY, USA 14203
| | - Annu Devi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Preeti Bansal
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aisha Siddiqi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - M Moshahid Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
3
|
Huang M, Li P, Chen F, Cai Z, Yang S, Zheng X, Li W. Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields. Cancer Med 2022; 12:2187-2198. [PMID: 35929424 PMCID: PMC9939155 DOI: 10.1002/cam4.5112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022] Open
Abstract
Gliomas refer to a group of complicated human brain tumors with a low 5-year survival rate and limited therapeutic options. Extremely low-frequency pulsed electromagnetic field (ELF-PEMF) is a specific magnetic field featuring almost no side effects. However, the application of ELF-PEMF in the treatment of gliomas is rare. This review summarizes five significant underlying mechanisms including calcium ions, autophagy, apoptosis, angiogenesis, and reactive oxygen species, and applications of ELF-PEMF in glioma treatment from a clinical practice perspective. In addition, the prospects of ELF-PEMF in combination with conventional therapy for the treatment of gliomas are reviewed. This review benefits any specialists, especially oncologists, interested in this new therapy because it can help treat patients with gliomas properly.
Collapse
Affiliation(s)
- Mengqian Huang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Parker Li
- Clinical MedicineShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Chen
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zehao Cai
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shoubo Yang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaohong Zheng
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Li
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Høye E, Fromm B, Böttger PHM, Domanska D, Torgunrud A, Lund-Andersen C, Abrahamsen TW, Fretland Å, Dagenborg VJ, Lorenz S, Edwin B, Hovig E, Flatmark K. A comprehensive framework for analysis of microRNA sequencing data in metastatic colorectal cancer. NAR Cancer 2022; 4:zcab051. [PMID: 35047825 PMCID: PMC8759566 DOI: 10.1093/narcan/zcab051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Although microRNAs (miRNAs) contribute to all hallmarks of cancer, miRNA dysregulation in metastasis remains poorly understood. The aim of this work was to reliably identify miRNAs associated with metastatic progression of colorectal cancer (CRC) using novel and previously published next-generation sequencing (NGS) datasets generated from 268 samples of primary (pCRC) and metastatic CRC (mCRC; liver, lung and peritoneal metastases) and tumor adjacent tissues. Differential expression analysis was performed using a meticulous bioinformatics pipeline, including only bona fide miRNAs, and utilizing miRNA-tailored quality control and processing. Five miRNAs were identified as up-regulated at multiple metastatic sites Mir-210_3p, Mir-191_5p, Mir-8-P1b_3p [mir-141–3p], Mir-1307_5p and Mir-155_5p. Several have previously been implicated in metastasis through involvement in epithelial-to-mesenchymal transition and hypoxia, while other identified miRNAs represent novel findings. The use of a publicly available pipeline facilitates reproducibility and allows new datasets to be added as they become available. The set of miRNAs identified here provides a reliable starting-point for further research into the role of miRNAs in metastatic progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Kjersti Flatmark
- To whom correspondence should be addressed. Tel: +47 22 78 18 63;
| |
Collapse
|
5
|
Ren LX, Zeng BW, Zhu M, Zhao AN, Shi B, Zhang H, Wang DD, Gu JF, Yang Z. A Novel ZNF304/miR-183-5p/FOXO4 Pathway Regulates Cell Proliferation in Clear Cell Renal Carcinoma. Front Oncol 2021; 11:710525. [PMID: 34692488 PMCID: PMC8529286 DOI: 10.3389/fonc.2021.710525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Zinc-finger protein 304 (ZNF304) plays a critical role in silencing genes through transcription, regulating cell survival, proliferation, apoptosis, and differentiation during development. However, the roles of transcription factor ZNF304 and its clinical significance in clear cell renal carcinoma (ccRCC) remain unclear. In this study, we found that the expression of ZNF304 was downregulated in ccRCC tissues. Lower levels of ZNF304 were correlated with poor survival. Downregulation of ZNF304 promoted ccRCC cell growth in vitro, whereas overexpression of ZNF304 inhibited growth. Our results indicated that miR-183-5p/FOXO4 mediated ZNF304 regulation of cell growth. Interestingly, we revealed that ZNF304 promoted FOXO4 expression in ccRCC cells. Mechanistically, ZNF304 binds to miR-183 promoter and inhibits miR-183-5p transcription. Furthermore, the expression of miR-183-5p wes increased in ccRCC tissues, and the upregulation of miR-183-5p was related to the poor prognosis of ccRCC patients. miR-183-5p upregulation repressed the expression of FOXO4 and promoted ccRCC progression. These results demonstrated that ZNF304/miR-183-5p/FOXO4 axis played essential role in promoting ccRCC progression, which suggests that disruption of this axis may be a potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Li-Xin Ren
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo-Wen Zeng
- Department of Urology, Affiliated Hospital of Sergeant School of Army Medical University, Shijiazhuang, China
| | - Meng Zhu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - An-Ning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bei Shi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan-Dan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun-Fei Gu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Kim HAJ, Shaikh MH, Lee M, Zeng PYF, Sorgini A, Akintola T, Deng X, Jarycki L, Khan H, MacNeil D, Khan MI, Mendez A, Yoo J, Fung K, Lang P, Palma DA, Patel K, Mymryk JS, Barrett JW, Boutros PC, Morris LGT, Nichols AC. 3p Arm Loss and Survival in Head and Neck Cancer: An Analysis of TCGA Dataset. Cancers (Basel) 2021; 13:5313. [PMID: 34771477 PMCID: PMC8582539 DOI: 10.3390/cancers13215313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Loss of the 3p chromosome arm has previously been reported to be a biomarker of poorer outcome in both human papillomavirus (HPV)-positive and HPV-negative head and neck cancer. However, the precise operational measurement of 3p arm loss is unclear and the mutational profile associated with the event has not been thoroughly characterized. We downloaded the clinical, single nucleotide variation (SNV), copy number aberration (CNA), RNA sequencing, and reverse phase protein assay (RPPA) data from The Cancer Genome Atlas (TCGA) and The Cancer Proteome Atlas HNSCC cohorts. Survival data and hypoxia scores were downloaded from published studies. In addition, we report the inclusion of an independent Memorial Sloan Kettering cohort. We assessed the frequency of loci deletions across the 3p arm separately in HPV-positive and -negative disease. We found that deletions on chromosome 3p were almost exclusively an all or none event in the HPV-negative cohort; patients either had <1% or >97% of the arm deleted. 3p arm loss, defined as >97% deletion in HPV-positive patients and >50% in HPV-negative patients, had no impact on survival (p > 0.05). However, HPV-negative tumors with 3p arm loss presented at a higher N-category and overall stage and developed more distant metastases (p < 0.05). They were enriched for SNVs in TP53, and depleted for point mutations in CASP8, HRAS, HLA-A, HUWE1, HLA-B, and COL22A1 (false discovery rate, FDR < 0.05). 3p arm loss was associated with CNAs across the whole genome (FDR < 0.1), and pathway analysis revealed low lymphoid-non-lymphoid cell interactions and cytokine signaling (FDR < 0.1). In the tumor microenvironment, 3p arm lost tumors had low immune cell infiltration (FDR < 0.1) and elevated hypoxia (FDR < 0.1). 3p arm lost tumors had lower abundance of proteins phospho-HER3 and ANXA1, and higher abundance of miRNAs hsa-miR-548k and hsa-miR-421, which were all associated with survival. There were no molecular differences by 3p arm status in HPV-positive patients, at least at our statistical power level. 3p arm loss is largely an all or none phenomenon in HPV-negative disease and does not predict poorer survival from the time of diagnosis in TCGA cohort. However, it produces tumors with distinct molecular characteristics and may represent a clinically useful biomarker to guide treatment decisions for HPV-negative patients.
Collapse
Affiliation(s)
- Hugh Andrew Jinwook Kim
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Mushfiq Hassan Shaikh
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Mark Lee
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY 10065, USA; (M.L.); (L.G.T.M.)
| | - Peter Y. F. Zeng
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Alana Sorgini
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Temitope Akintola
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Xiaoxiao Deng
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Laura Jarycki
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Halema Khan
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Danielle MacNeil
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A3K7, Canada;
| | - Mohammed Imran Khan
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Adrian Mendez
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A3K7, Canada;
| | - John Yoo
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A3K7, Canada;
| | - Kevin Fung
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A3K7, Canada;
| | - Pencilla Lang
- Department of Oncology, University of Western Ontario, London, ON N6A3K7, Canada;
| | - David A. Palma
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A3K7, Canada;
| | - Krupal Patel
- Moffitt Cancer Center, Department of Otolaryngology, Tampa, FL 33612, USA;
| | - Joe S. Mymryk
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A3K7, Canada;
- Department of Microbiology & Immunology, University of Western Ontario, London, ON N6A3K7, Canada
| | - John W. Barrett
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A3K7, Canada;
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA;
- Department of Urology, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Institute for Precision Health, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 90095, USA
| | - Luc G. T. Morris
- Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY 10065, USA; (M.L.); (L.G.T.M.)
| | - Anthony C. Nichols
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, ON N6A3K7, Canada; (H.A.J.K.); (M.H.S.); (P.Y.F.Z.); (A.S.); (T.A.); (X.D.); (L.J.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A3K7, Canada;
| |
Collapse
|
7
|
Yang S, Pang L, Dai W, Wu S, Ren T, Duan Y, Zheng Y, Bi S, Zhang X, Kong J. Role of Forkhead Box O Proteins in Hepatocellular Carcinoma Biology and Progression (Review). Front Oncol 2021; 11:667730. [PMID: 34123834 PMCID: PMC8190381 DOI: 10.3389/fonc.2021.667730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of malignant tumor of the digestive system, is associated with high morbidity and mortality. The main treatment for HCC is surgical resection. Advanced disease, recurrence, and metastasis are the main factors affecting prognosis. Chemotherapy and radiotherapy are not sufficiently efficacious for the treatment of primary and metastatic HCC; therefore, optimizing targeted therapy is essential for improving outcomes. Forkhead box O (FOXO) proteins are widely expressed in cells and function to integrate a variety of growth factors, oxidative stress signals, and other stimulatory signals, thereby inducing the specific expression of downstream signal factors and regulation of the cell cycle, senescence, apoptosis, oxidative stress, HCC development, and chemotherapy sensitivity. Accordingly, FOXO proteins are considered multifunctional targets of cancer treatment. The current review discusses the roles of FOXO proteins, particularly FOXO1, FOXO3, FOXO4, and FOXO6, in HCC and establishes a theoretical basis for the potential targeted therapy of HCC.
Collapse
Affiliation(s)
- Shaojie Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liwei Pang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tengqi Ren
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunlong Duan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Zheng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyuan Bi
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolin Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Tao X, Fang Y, Huo C. Long non-coding RNA Rian protects against experimental bronchopulmonary dysplasia by sponging miR-421. Exp Ther Med 2021; 22:781. [PMID: 34055080 PMCID: PMC8145903 DOI: 10.3892/etm.2021.10213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a frequent complication characterized by accelerated lung alveolarization in newborns. Long non-coding RNAs (lncRNAs) and microRNAs (miRs) are regarded as essential regulators in various diseases, including BPD. However, the detailed mechanism of the functions of RNA imprinted and accumulated in nucleus (Rian) lncRNA in the progression of BPD have remained elusive. The aim of the present study was to illustrate the interaction between miR-421 and Rian in BPD models and MLE-12 cells. The ability of Rian to protect neonatal lungs from hyperoxia-induced lung damage was examined. A mouse model of BPD and a hyperoxia-stimulated MLE-12 cell damage model were generated and treated with specific plasmid/mimics for the overexpression of Rian/miR-421. The interaction between miR-421 and Rian was predicted and verified using StarBase and a dual-luciferase reporter assay, respectively. The expression levels of miR-421 or Rian in both tissues and the MLE-12 alveolar epithelial cell line were assessed using reverse transcription-quantitative (RT-q)PCR. As parameters of alveolarization, the mean linear intercept (MLI), radial alveolar count (RAC) and the lung weight/body weight (LW/BW) ratio were measured. Furthermore, RT-qPCR was used to measure mRNA levels of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) in the lung tissue of mice, and ELISAs were performed to determine the levels of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) in the supernatant of MLE-12 cells. Cell growth and apoptosis were evaluated using an MTT assay and flow cytometry, respectively. Furthermore, caspase-3 activity was assessed using a caspase-3 activity detection kit. Prediction with StarBase and the dual-luciferase reporter assay revealed that miR-421 directly targeted Rian. RT-qPCR analysis confirmed that Rian was downregulated and miR-421 was upregulated in lung tissues of the mouse model of BPD and in hyperoxia-induced MLE-12 cells. However, the expression of miR-421 was decreased by Rian-overexpression, an effect that was reversed by miR-421 mimics. In addition, BPD was alleviated by Rian-plasmid, as confirmed by the enhanced RAC and reduced MLI and LW/BW ratio. The present results also indicated that Rian-plasmid inhibited the secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) in BPD mouse serum and hyperoxia-induced MLE-12 cells. In addition, Rian-plasmid eliminated the effect of hyperoxia to inhibit cell viability and induce apoptosis in MLE-12 cells. However, all of these effects of Rian were markedly reversed by miR-421 mimics. The present results indicated that Rian may attenuate hyperoxic damage in neonatal lungs and may serve as a novel molecular target for BPD treatment.
Collapse
Affiliation(s)
- Xifeng Tao
- Department of Pediatrics, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Yafei Fang
- Department of Pediatrics, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Chen Huo
- Department of Pediatrics, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| |
Collapse
|
9
|
Bao LH, Ji K, Li D, Liu SS, Song ZY, Xia GH. The biological function and diagnostic value of miR-762 in nasopharyngeal carcinoma. J Chin Med Assoc 2021; 84:498-503. [PMID: 33742996 DOI: 10.1097/jcma.0000000000000523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Low diagnostic efficiency and high metastasis and recurrence of nasopharyngeal carcinoma (NPC) result in bad survival. A novel diagnostic biomarker is of great importance for the improvement of NPC management. This study aimed to state the biological function and diagnostic values of miR-762 in NPC to provide a novel insight into the detection and therapy of NPC. METHODS The expression of miR-762 in NPC and healthy samples was detected by quantitative real-time polymerase chain reaction and its diagnostic value was evaluated by the receiver operating characteristic (ROC) analysis. The functional roles of miR-762 in the proliferation, migration, and invasion of NPC cells were assessed by CCK8 and Transwell assay. RESULTS The significant upregulation of miR-762 was observed in NPC serum compared with healthy controls, which was associated with the TNM stage and lymph node metastasis of NPC patients. The ROC curve showed that miR-762 could be a diagnostic biomarker for NPC with high accuracy and specificity. Additionally, miR-762 served as a tumor promoter, which could promote cell proliferation, migration, and invasion of NPC. CONCLUSION The upregulation of miR-762 in NPC is associated with the disease progression and diagnosis of NPC. miR-762 might be involved in the tumor progression of NPC, which provides a potential therapeutic target for the treatment and management of NPC.
Collapse
Affiliation(s)
- Li-Hao Bao
- Department of Otolaryngology Surgery, Beilun District People's Hospital, Ningbo, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
10
|
Cao QG, Guo Q, Bai J, Dong Y, Zhang XH, Hong WL. The apoptosis mechanisms of HepG2 cells induced by bitter melon seed. J Food Biochem 2021; 45:e13683. [PMID: 33844303 DOI: 10.1111/jfbc.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022]
Abstract
Liver cancer is one of the leading causes of cancer-related deaths in the world. Bitter melon seed (BMS) is well known for anti-inflammatory and anticancer properties. MicroRNA-421 (miR-421) is considered as a regulator of cancer initiation, tumor metastasis, and progression, interfering with transcription of the mRNAs responsible for the cancer pathogenesis. HepG2 cells were treated with BMS water extract (BMSW) for 24 hr, and the IC50 was 586.27 ± 0.07 µg/ml. The ROS, mitochondrial membrane potential, the protein expression, and the nuclear fragmentation after the treatment of BMSW were respectively detected. The increase of ROS resulted in the decrease of mitochondrial membrane potential, which induced the apoptosis of cells subsequently. BMSW inhibited the proliferation of HepG2 cells by blocking cell cycle in the S phase and influenced the nuclei and the expression of protein, leading to cellular laxity and apoptosis. The expression level of miR-421 in HepG2 was distinctly down-regulated by 13.74 fold with 600 µg/ml of BMSW. Comprehensive microarray and RT-PCR analysis identified six putative target genes of miR-421 (GADD45B, DUSP6, DUSP3, DUSP10, CASP3, and CAPN2). The relationships of DUSP6, CASP3, and miR-421 were further confirmed by miR-421 mimics/inhibitor transfection by RT-PCR and western blot. The CASP3 was identified as target gene of miR-421. BMSW induced the apoptosis of HepG2 cell by regulating miR-421 and CASP3. PRACTICAL APPLICATIONS: Hepatocellular carcinoma (HCC) is a malignant tumour with the fourth highest mortality rate in the world. Bitter melon seed (BMS) as edible and medical food has significant anticancer activity. Our study indicated the anticancer mechanisms of BMS and provided the scientific basis for the application of BMS in healthy or novel functional foods. BMS can be used as dietary supplements or nutritional fortifiers to improve the survival status of patients with liver cancer due to safety and effectiveness.
Collapse
Affiliation(s)
- Qing-Guo Cao
- Department of College of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Qin Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jie Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiao-Hua Zhang
- Department of College of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Wen-Long Hong
- Department of College of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| |
Collapse
|
11
|
Liu T, Feng X, Liao Y. miR-617 Promotes the Growth of IL-22-Stimulated Keratinocytes Through Regulating FOXO4 Expression. Biochem Genet 2021; 59:547-559. [PMID: 33211221 DOI: 10.1007/s10528-020-09997-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023]
Abstract
Psoriasis is considered as a common chronic and relapsing inflammatory skin disease. MicroRNAs (miRNAs) were found to be related with psoriasis pathogenesis. Nevertheless, the function of miR-617 in psoriasis is still unclear. The miR-617 RNA level was detected using quantitative reverse transcription-PCR (qRT-PCR). Western blot analysis examined the protein level. Cell proliferation was analyzed via cell counting kit-8 (CCK-8) assay. Flow cytometry analysis detected cell cycle and apoptosis. The relationship between miR-617 and forkhead box protein O4 (FOXO4) was confirmed through dual luciferase assay. The miR-617 was up-regulated in psoriatic skin tissues and interleukin-22 (IL-22)-stimulated immortalized human keratinocyte HaCaT cells. Moreover, miR-617 mimics promoted proliferation, cell cycle, and suppressed apoptosis in IL-22-stimulated HaCaT cells. However, miR-617 inhibitor showed opposite effects. Additionally, FOXO4 was a target of miR-617. FOXO4 was down-regulated in psoriatic skin tissues and IL-22-stimulated HaCaT cells. Negative correlation between miR-617 and FOXO4 was identified. FOXO4 overexpression alleviated the effects of miR-617 proliferation, cell cycle and apoptosis in the IL-22-stimulated HaCaT cells. These results demonstrate that miR-617 increases the growth of IL-22-stimulated keratinocytes through targeting FOXO4, which provides a new therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Tao Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Road, Luzhou, 646000, Sichuan, China.
| | - Xiaomei Feng
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yongmei Liao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Road, Luzhou, 646000, Sichuan, China
| |
Collapse
|
12
|
Liu S, Zhang J, Zheng T, Mou X, Xin W. Circ_WWC3 overexpression decelerates the progression of osteosarcoma by regulating miR-421/PDE7B axis. Open Life Sci 2021; 16:229-241. [PMID: 33817314 PMCID: PMC7968534 DOI: 10.1515/biol-2021-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background Emerging evidence has shown that circular RNAs (circRNAs) are vital regulators in osteosarcoma (OS) progression. However, the effects of circ_WWC3 in OS have not been explored. In this research, the functions and mechanisms of circ_WWC3 in OS were investigated. Methods Quantitative reverse trancription polymerase chain reaction (qRT-PCR) was adopted to determine the levels of circ_WWC3, WW and WWC3 mRNA, miR-421, and phosphodiesterase 7B (PDE7B) mRNA. RNase R assay was used to determine the characteristic of circ_WWC3. Colony formation assay and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay were applied for cell growth. Transwell assay was performed for cell migration and invasion. Flow cytometry analysis was utilized for cell apoptosis. Western blot assay was conducted for the levels of apoptosis-related proteins and PDE7B protein. Dual-luciferase reporter assay was carried out to analyze the targeting relationship between miR-421 and circ_WWC3 or PDE7B. The murine xenograft model was established to explore the effect of circ_WWC3 in vivo. Results Compared to normal tissues and cells, circ_WWC3 and PDE7B were downregulated in OS tissues and cells. Overexpression of circ_WWC3 or PDE7B suppressed OS cell growth, migration, and invasion and promoted apoptosis in vitro. Regarding the mechanism analysis, circ_WWC3 positively modulated PDE7B expression by targeting miR-421. MiR-421 overexpression restored the impacts of circ_WWC3 on OS cell growth, metastasis, and apoptosis. Inhibition of miR-421 repressed the malignant behaviors of OS cells by targeting PDE7B. In addition, circ_WWC3 inhibited the tumorigenicity of OS in vivo. Conclusion Circ_WWC3 overexpression slowed the development of OS by elevating PDE7B via sponging miR-421.
Collapse
Affiliation(s)
- Sihai Liu
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Jing Zhang
- Taizhou Vocational and Technical College, Taizhou, Zhejiang, 318000, China
| | - Ting Zheng
- Department Emergency, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| | - Xiongneng Mou
- Department Emergency, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| | - Wenwei Xin
- Department Emergency, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| |
Collapse
|
13
|
Qu C, Liu X, Guo Y, Fo Y, Chen X, Zhou J, Yang B. MiR-128-3p inhibits vascular smooth muscle cell proliferation and migration by repressing FOXO4/MMP9 signaling pathway. Mol Med 2020; 26:116. [PMID: 33238881 PMCID: PMC7687681 DOI: 10.1186/s10020-020-00242-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been identified as important participants in the development of atherosclerosis (AS). The present study explored the role of miR-128-3p in the dysfunction of vascular smooth muscle cells (VSMCs) and the underlying mechanism. Methods Human VSMCs and ApoE knockout (ApoE−/−) C57BL/6J mice were used to establish AS cell and animal models, respectively. Expression levels of miR-128-3p, forkhead box O4 (FOXO4) and matrix metallopeptidase 9 (MMP9) were detected using qRT-PCR and Western blot, respectively. CCK-8, BrdU, and Transwell assays as well as flow cytometry analysis were performed to detect the proliferation, migration and apoptosis of VSMCs. Levels of inflammatory cytokines and lipids in human VSMCs, mice serum and mice VSMCs were also determined. The binding site between miR-128-3p and 3′UTR of FOXO4 was confirmed using luciferase reporter gene assay. Results MiR-128-3p was found to be decreased in AS patient serum, ox-LDL-treated VSMCs, AS mice serum and VSMCs of AS mice. Transfection of miR-128-3p mimics suppressed the proliferation and migration of VSMCs, accompanied by the promoted apoptosis and the decreased levels of inflammatory cytokines. Further experiments confirmed the interaction between miR-128-3p and FOXO4. Augmentation of FOXO4 or MMP9 reversed the effects of miR-128-3p. Besides, miR-128-3p inhibited triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) but increased high-density lipoprotein cholesterol (HDL-C) in the serum of AS mice. Conclusion MiR-128-3p repressed the proliferation and migration of VSMCs through inhibiting the expressions of FOXO4 and MMP9.
Collapse
Affiliation(s)
- Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China
| | - Yan Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China
| | - Yuhong Fo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China
| | - Xiuhuan Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China
| | - Jining Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road No.238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
14
|
Dong A, Zhang J, Sun W, Hua H, Sun Y. Upregulation of miR-421 predicts poor prognosis and promotes proliferation, migration, and invasion of papillary thyroid cancer cells. J Chin Med Assoc 2020; 83:991-996. [PMID: 32881717 PMCID: PMC7647428 DOI: 10.1097/jcma.0000000000000426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) represents the most frequent subtype of thyroid cancer (TC) with poor prognosis mainly due to the severe invasion and metastasis. As an oncogene, microRNA-421 (miR-421) is involved in the development of various cancers. This study was to investigate the clinical significance of miR-421 in PTC and its effects on the biological function of PTC cells. METHODS The expression level of miR-421 in all tissues and PTC cell lines was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, the relationship between miR-421 expression and the clinicopathological feature was detected by chi-square analysis in 106 patients with PTC. In addition, Kaplan-Meier and multivariate Cox regression analysis were used to detect the survival time and the prognostic value of miR-421. Finally, the regulatory effect of miR-421 on the proliferation, migration, and invasion ability of PTC cells was detected by Cell Counting Kit (CCK-8) and Transwell assay. RESULTS Compared with all control groups, the expression of miR-421 was significantly increased in 106 patients tissues and PTC cell lines (p < 0.001). In addition, patients with miR-421 upregulated in PTC showed more positive lymph node metastasis (p = 0.011), positive tumor infiltration (p = 0.031), and TNM stage III/IV (p = 0.019), and when miR-421 expression level was elevated, the survival rate of PTC patients was poor (log-rank test, p = 0.023). Furthermore, miR-421 might be an independent prognostic biomarker for PTC (hazard ratio [HR] = 3.172, 95% CI = 1.071-9.393, p = 0.037). Finally, increased levels of miR-421 can significantly promote cell proliferation, migration, and invasion (p < 0.01). CONCLUSION miR-421 is a novel oncogene of PTC and is a valuable prognostic biomarker. Moreover, the upregulation of miR-421 enhances the proliferation, migration, and invasion of PTC cells.
Collapse
Affiliation(s)
- Anbing Dong
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianhua Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenhai Sun
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hui Hua
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yinghe Sun
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Address correspondence. Dr. Yinghe Sun, Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, 16, Jiangsu Road, Qingdao, Shandong 266071, China. E-mail address: (Y. Sun)
| |
Collapse
|
15
|
Chen PY, Hsieh PL, Peng CY, Liao YW, Yu CH, Yu CC. LncRNA MEG3 inhibits self-renewal and invasion abilities of oral cancer stem cells by sponging miR-421. J Formos Med Assoc 2020; 120:1137-1142. [PMID: 33012637 DOI: 10.1016/j.jfma.2020.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/PURPOSE Oral cancer stem cells (CSCs) have been considered as the key cells that are implicated in tumor recurrence and metastasis. In recent years, great attention has been paid to the significance of various non-coding RNAs due to their regulatory roles in oral CSCs. Although the function of long non-coding RNA MEG3 in various cancers has been investigated, its effects on the features of oral CSCs remained to be determined. METHODS The expression levels of MEG3 in tongue squamous cell carcinomas and prognostic effect have been evaluated. We assessed the expression of MEG3 in sphere cells (oral CSCs) using qRT-PCR. Secondary sphere formation and invasion assays were conducted to evaluate the self-renewal and metastatic abilities, respectively. Bioinformatics software and luciferase reporter assay were used to predict and verify the relationship between MEG3 and miR-421. RESULTS MEG3 was downregulated in the tissues of oral cancer and associated with a poor prognosis. In oral CSCs, the expression of MEG3 was repressed and overexpression of MEG3 resulted in suppression of self-renewal and invasion abilities. Luciferase reporter assay showed that miR-421 directly interacted with MEG3, and our subsequent experiment demonstrated that elevation of miR-421 reversed the MEG3-inhibited characteristics of oral CSCs. CONCLUSION Our findings suggest that MEG3 can serve as a tumor suppressor in oral CSCs by impeding the action of miR-421. Moreover, targeting MEG3-miR-421 axis has the potential to mitigate the tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Pei-Yin Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
16
|
Zhou Y, Cheng X, Wan Y, Chen T, Zhou Q, Wang Z, Zhu H. MicroRNA-421 Inhibits Apoptosis by Downregulating Caspase-3 in Human Colorectal Cancer. Cancer Manag Res 2020; 12:7579-7587. [PMID: 32904410 PMCID: PMC7455595 DOI: 10.2147/cmar.s255787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose Dysregulated microRNAs (miRNAs/miRs) have been reported to play significant roles in pathogenesis of colorectal cancer (CRC). Previous studies have demonstrated that miR-421 regulates apoptosis in some cancers. Caspase-3 plays a key role in apoptosis, but the relationship between miR-421 and caspase-3 in CRC has not been determined. In this study, we investigated the role of miR-421 in CRC and the relationship between miR-421 and caspase-3. Methods Expression of miR-421 and caspase-3 were detected in human paired CRC cancer tissues and corresponding paracancerous tissues. In situ detection of tissue, apoptosis was performed via the TUNEL assay. HCT116 and SW480 cell lines were subjected to several in vitro experiments to explore the relationship between miRNA421 and caspase-3 during apoptosis using miR421 mimics/antagomir and luciferase reporter assay. Apoptosis was measured by determining the levels and activity of caspase-3 as well as DNA fragmentation. Luciferase reporter assay was performed to determine the potential interaction of miR-421 with caspase-3. Results The results showed that the expression of miR-421 in cancer tissues was higher than that in corresponding paracancerous tissues. Inhibition of miR-421 induced apoptosis, as shown by the upregulation of caspase-3 activity and expression as well as DNA fragmentation, which were attenuated by miR-421 mimic. We further showed that miR-421 targeted and inhibited CASP3 expression by targeting sites located in the 3ʹ-untranslated region (3ʹ-UTR) of CASP3 mRNA. Conclusion This study demonstrated an anti-apoptotic role of miR-421 in CRC and identified caspase-3 gene as a direct target of miR-421. These findings provide a potential treatment strategy using miR-421 as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Xiaowen Cheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China.,Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Yufeng Wan
- Department of Otolaryngology, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, People's Republic of China
| | - Tingting Chen
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Qing Zhou
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Zhengguang Wang
- Department of Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| |
Collapse
|
17
|
MicroRNAs: Biogenesis, Functions and Potential Biomarkers for Early Screening, Prognosis and Therapeutic Molecular Monitoring of Nasopharyngeal Carcinoma. Processes (Basel) 2020. [DOI: 10.3390/pr8080966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
According to reports published, the aberrant expression of microRNAs (miRNAs), a class of 19–25 nucleotide-long small non-coding RNAs, is responsible for human cancers, including nasopharyngeal cancer (NPC). The dysregulation of miRNAs that act either as a tumor suppressor or oncogene, leading to a wide range of NPC pathogenesis pathways, includes the proliferation, invasion, migration as well as the metastasis of NPC cells. This article reviews and highlights recent advances in the studies of miRNAs in NPC, with a specific demonstration of the functions of miRNA, especially circulating miRNAs, in the pathway of NPC pathogenesis. Additionally, the possible use of miRNAs as early screening and prognostic biomarkers and for therapeutic molecular monitoring has been extensively studied.
Collapse
|
18
|
Ji Y, Feng G, Hou Y, Yu Y, Wang R, Yuan H. Long noncoding RNA MEG3 decreases the growth of head and neck squamous cell carcinoma by regulating the expression of miR-421 and E-cadherin. Cancer Med 2020; 9:3954-3963. [PMID: 32277605 PMCID: PMC7286453 DOI: 10.1002/cam4.3002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 01/04/2023] Open
Abstract
Background Maternally expressed 3 (MEG3), a long chain noncoding RNA (lncRNA), has verified its function as a suppressor in several kinds of cancers. However, the downstream mechanism of MEG3 in regulating the molecular mechanism of epithelial‐mesenchymal transformation (EMT) in head and neck squamous cell carcinoma (HNSCC) progression demands further investigation. Methods Quantitative real‐time polymerase chain reaction (qRT‐PCR) was used to determine the expression level of MEG3 in HNSCC and adjacent normal tissues of 51 cases. Luciferase report assay was used to detect the correlation between miR‐421 and MEG3, and miR‐421 and E‐cadherin in HNSCC cell lines. Cell invasion and proliferation capacity were assessed through transwell and CCK8 assays. Scratch wound assay was used to assess cell migration capacity. Results Firstly, this study demonstrated that the expression of MEG3 was significantly downregulated in HNSCC compared to adjacent normal tissues. Overexpressed MEG3 inhibited cell proliferation, migration, and invasion in vitro. Secondly, MEG3 upregulated the expression of E‐cadherin, which was instead downregulated by miR‐421. MiR‐421 was negatively regulated by MEG3 in HNSCC. Therefore, MEG3 regulated EMT by sponging miR‐421 targeting E‐cadherin in HNSCC. Conclusions This study indicated that the MEG3‐miR‐421‐E‐cadherin axis could be a new therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Yefeng Ji
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Guanying Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yunwen Hou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yang Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Qi M, Sun LA, Jiang XC, Han YL, Wang L, Niu WH, Fei MX, Zhaba WD, Zheng LR, Zhou ML. FOXO4 expression associates with glioblastoma development and FOXO4 expression inhibits cell malignant phenotypes in vitro and in vivo. Life Sci 2020; 247:117436. [PMID: 32070707 DOI: 10.1016/j.lfs.2020.117436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/13/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIM Forkhead box protein O4 (FOXO4) is a transcription factor, and aberrant FOXO4 expression is associated with development of various human cancers. This study explored the role of FOXO4 in glioma in vitro and in vivo. METHODS FOXO4 expression was first assessed in normal brain tissues, low-grade glioma, glioblastoma multiforme (GBM), normal human astrocytes (HA), and GBM cell lines, while manipulation of FOXO4 expression in glioma cell lines was assessed using qRT-PCR, Western blot, and cell viability CCK-8, Transwell, and a nude mouse subcutaneous xenograft assays. KEY FINDINGS The data showed downregulated FOXO4 expression in GBM tissues and cell lines. FOXO4 overexpression induced by transfection with FOXO4 cDNA significantly inhibited GBM cell proliferation, migration, and invasion, but increased tumor cells to undergo apoptosis in vitro, while suppressed growth of GBM cell subcutaneous xenografts in nude mice. In conclusion, FOXO4 possesses an anti-cancer glioma activity, which could be a novel target for future control of GBM.
Collapse
Affiliation(s)
- Min Qi
- Anatomy Experimental Center, Wannan Medical College, Wuhu 241002, Anhui, China; Graduate School of Wannan Medical College, Wuhu 241002, Anhui, China; Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Le-An Sun
- Graduate School of Wannan Medical College, Wuhu 241002, Anhui, China; Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu 241001, Anhui, China
| | - Xiao-Chun Jiang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu 241001, Anhui, China
| | - Yan-Ling Han
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Lin Wang
- Department of Pathophysiology, Basic Medical College, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Wen-Hao Niu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Mao-Xing Fei
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Wang-Dui Zhaba
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Lan-Rong Zheng
- Department of Pathology, Basic Medical College, Wannan Medical College, Wuhu 241002, Anhui, China.
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China.
| |
Collapse
|
20
|
Liu W, Li Y, Luo B. Current perspective on the regulation of FOXO4 and its role in disease progression. Cell Mol Life Sci 2020; 77:651-663. [PMID: 31529218 PMCID: PMC11104957 DOI: 10.1007/s00018-019-03297-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Forkhead box O4 (FOXO4) is a member of the FOXO family that regulates a number of genes involved in metabolism, cell cycle, apoptosis, and cellular homeostasis via transcriptional activity. It also mediates cell responses to oxidative stress and treatment with antitumor agents. The expression of FOXO4 is repressed by microRNAs in multiple cancer cells, while FOXO4 function is regulated by post-translational modifications and interaction with other proteins. The deregulation of FOXO4 is closely linked to the progression of several types of cancer, senescence, and other diseases. In this review, we present recent findings on the regulation of FOXO4 in physiological and pathological conditions and provide an overview of the complex role of FOXO4 in disease development and response to therapy.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, Faculty of Medicine, Qingdao University, Qingdao, China
| | - Yong Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Faculty of Medicine, Qingdao University, Qingdao, China
| | - Bing Luo
- Department of Pathogenic Biology, Faculty of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
21
|
Li X, Chen SH, Zeng JW. MiR-421 Is Overexpressed and Promotes Cell Proliferation in Non-Small Cell Lung Cancer. Med Princ Pract 2020; 29:80-89. [PMID: 31473750 PMCID: PMC7024855 DOI: 10.1159/000503020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lung cancer is the main cause of cancer--related deaths worldwide, and the overall 5-year survival rate of non-small cell lung cancer (NSCLC) remained low. -MicroRNAs had been confirmed to be an important regulator in tumor progression, and they could serve as either tumor promoters or suppressors in NSCLC. OBJECTIVES To identify the novel cancer-specific biomarkers for NSCLC patients, which may be useful to monitor tumor progression and improve NSCLC patients' survival. METHOD The expression profile of miR-421 was analyzed in NSCLC samples using public datasets, including The Cancer Genome Atlas and GSE102286. The expression level of miR-421 was detected by reverse transcription-polymerase chain reaction. Cell proliferation and cell cycle were detected by Cell Counting Kit assay, flow cytometry assay, respectively. Kyoto Encyclopedia of Genes and Genomes analysis were applied to determine the biological roles of miR-421, based on the online DAVID system. Statistical comparisons between groups of normalized data were performed using t test or Mann-Whitney U test according to the test condition. RESULTS In this study, we focused on exploring the roles of miR-421 in NSCLC prognosis and growth. The present study for the first time showed that miR-421 was overexpressed in NSCLC and associated with a shorter overall survival time of patients with NSCLC. Bioinformatics analysis revealed miR-421 was involved in transcription, cell cycle, and insulin signaling pathway regulation. Furthermore, a gain of function assay showed that overexpression of miR-421 could promote NSCLC cell proliferation and cell cycle progression. CONCLUSIONS Our findings suggest that miR-421 might be a promising prognostic and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xing Li
- Department of Respiratory Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China,
| | - Shao-Hua Chen
- Department of Respiratory Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Jin-Wu Zeng
- Department of Respiratory Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| |
Collapse
|
22
|
Gupta MK, Rajeswari J, Reddy PR, Kumar KS, Chamundeswaramma KV, Vadde R. Genetic Marker Identification for the Detection of Early-Onset Gastric Cancer Through Genome-Wide Association Studies. RECENT ADVANCEMENTS IN BIOMARKERS AND EARLY DETECTION OF GASTROINTESTINAL CANCERS 2020:191-211. [DOI: https:/doi.org/10.1007/978-981-15-4431-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
23
|
Gupta MK, Rajeswari J, Reddy PR, Kumar KS, Chamundeswaramma KV, Vadde R. Genetic Marker Identification for the Detection of Early-Onset Gastric Cancer Through Genome-Wide Association Studies. RECENT ADVANCEMENTS IN BIOMARKERS AND EARLY DETECTION OF GASTROINTESTINAL CANCERS 2020:191-211. [DOI: 10.1007/978-981-15-4431-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
24
|
Guo LL, Guo ML, Yao J, Weng YQ, Zhang XZ. MicroRNA-421 improves ischemia/reperfusion injury via regulation toll-like receptor 4 pathway. J Int Med Res 2019; 48:300060519871863. [PMID: 31847632 PMCID: PMC7607211 DOI: 10.1177/0300060519871863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Objectives The objective was to investigate the effects of microRNA-421 against myocardial
ischemia/reperfusion injury in C57BL/6 mice. Methods Male C57BL/6 mice (n = 27) were randomly divided into three groups: normal control (NC)
group (sham-treated); I/R model group, which underwent the
I30min/R24h model (ischemia for 30 minutes followed by
reperfusion for 24 hours); and the miRNA group, which were injected with miR-421.
Pathology was assessed by hematoxylin and eosin staining and myocardial infarct size was
measured by triphenyltetrazolium chloride staining. The apoptosis rate was measured by
TUNEL assay, and relative expression of toll-like receptor-4 (TLR4), Janus kinase 2
(JAK2), and signal transducer and activator of translation 3 (STAT3) was evaluated by
immunohistochemistry. Interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and high
mobility group protein B1 (HMGB1) serum concentrations were measured by ELISA. Results Compared with the NC group, in the model group, the myocardial infarction was large;
inflammatory cell infiltration was severe; apoptosis was enhanced; expression of TLR4,
JAK2, and STAT3 was increased; and serum concentrations of IL-6, TNF-α, IL-10, and HMGB1
were significantly increased. In the miRNA group, the ischemia/reperfusion injury was
significantly improved. Conclusions Overexpression of miRNA-421 could reduce ischemia/reperfusion inflammatory response,
perhaps via inactivation of TLR4, JAK2, and STAT3.
Collapse
Affiliation(s)
- Lin-Lin Guo
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ming-Lei Guo
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jian Yao
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yun-Qi Weng
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xue-Zhi Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
25
|
Wu Q, Wang H, Liu L, Zhu K, Yu W, Guo J. Hsa_circ_0001546 acts as a miRNA-421 sponge to inhibit the chemoresistance of gastric cancer cells via ATM/Chk2/p53-dependent pathway. Biochem Biophys Res Commun 2019; 521:303-309. [PMID: 31668372 DOI: 10.1016/j.bbrc.2019.10.117] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/13/2019] [Indexed: 01/18/2023]
Abstract
Circular RNAs (circRNAs) are a new class of noncoding RNAs, play a crucial role in tumor initiation and development. Hsa_circ_0001546 is a novel circular RNA that was downregulated in gastric cancer (GC) tissues, however its function and mechanism in GC has not been studied. Our study verified that circ_0001546 was decreased in GC and correlated with the poor prognosis. Next, Pull-down assay and dual-luciferase reporter assay verified that miR-421 was a target of circ_0001546 while ATM (Ataxia telangiectasia mutated) was target by miR-421. Overexpression of circ_0001546 inhibited the proliferation and chemoresistance of HGC-27 cells, and increased the expression of ATM. In addition, circ_0001546 overexpression reversed the effect of miR-421 overexpression. What is more, circ_0001546 inhibits the chemoresistance of HGC-27 cells to L-OPH (Oxaliplatin) may through the activation of the ATM/checkpoint kinase 2 (Chk2)/p53-dependent signaling pathway. In summary, our study proved that circ_0001546 sponges miR-421 to upregulate the expression level of ATM and inhibit the proliferation and chemoresistance through the activation of the ATM/Chk2/p53-dependent pathway.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China
| | - Hongjuan Wang
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China
| | - Lan Liu
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China
| | - Kongxi Zhu
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China
| | - Weihua Yu
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China
| | - Jianqiang Guo
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China.
| |
Collapse
|
26
|
Lu C, Yang Z, Jiang S, Yang Y, Han Y, Lv J, Li T, Chen F, Yu Y. Forkhead box O4 transcription factor in human neoplasms: Cannot afford to lose the novel suppressor. J Cell Physiol 2019; 234:8647-8658. [PMID: 30515801 DOI: 10.1002/jcp.27853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Forkhead box O4 (FOXO4), a member of FOXO family, has been highlighted as an essential transcriptional regulator in many diverse carcinomas. Accumulated studies have demonstrated that FOXO4 is downregulated and associated with tumorigenesis, invasiveness, and metastasis of most human cancer. FOXO4 alteration is also closely linked to the prognosis of various types of cancer. The aim of this review is to comprehensively present the clinical and pathological significance of FOXO4 in human cancer. Additionally, the potential clinical applications of future FOXO4 research are discussed. Collectively, the information reviewed here should increase the potential of FOXO4 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhi Yang
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianjun Lv
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuan Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
27
|
Liang H, Wang C, Gao K, Li J, Jia R. ΜicroRNA‑421 promotes the progression of non‑small cell lung cancer by targeting HOPX and regulating the Wnt/β‑catenin signaling pathway. Mol Med Rep 2019; 20:151-161. [PMID: 31115507 PMCID: PMC6580023 DOI: 10.3892/mmr.2019.10226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) function as key regulators of numerous types of cancers. miRNA (miR)-421 expression is dysregulated in a variety of tumors; however, its role in non-small cell lung cancer (NSCLC) remains unclear. In the present study, the role and molecular mechanism of miR-421 in NSCLC was investigated. In this study, miRNA (miR)-421 was upregulated in NSCLC tissues and cell lines used the reverse transcriptase quantitative polymerase chain reaction. Ectopic expression of miR-421 significantly promoted cell proliferation in vitro and tumor growth in vivo by promoting cell cycle progression via CCK-8, colony formation, EdU assay, xenograft model and cell cycle assay. In addition, miR-421 inhibited NSCLC cell apoptosis by flow cytometry apoptosis assay, as evidenced by anti-apoptosis gene Bcl-2 and apoptosis gene cleaved caspase-3 and cleaved PARP using western blot assay. Furthermore, miR-421 promoted cell migration and invasion through EMT process using Transwell and western blot assay. It was also demonstrated that miR-421 can directly target HOPX by the EGFP reporter assay and western blot assay. MiR-421 overexpression promoted the protein expression levels of β-catenin, cyclin D1 and c-myc by western blot assay, which are the downstream genes of Wnt pathway. These data indicated that miR-421 may act as an oncogene through the effects of HOPX on the Wnt/β-catenin signaling pathway and may provide insight into the mechanisms underlying carcinogenesis and the identification of potential biomarkers associated with NSCLC.
Collapse
Affiliation(s)
- Huagang Liang
- Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Chao Wang
- Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Kun Gao
- Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Jian Li
- Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Rui Jia
- Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| |
Collapse
|
28
|
Xu L, Feng X, Hao X, Wang P, Zhang Y, Zheng X, Li L, Ren S, Zhang M, Xu M. CircSETD3 (Hsa_circ_0000567) acts as a sponge for microRNA-421 inhibiting hepatocellular carcinoma growth. J Exp Clin Cancer Res 2019; 38:98. [PMID: 30795787 PMCID: PMC6385474 DOI: 10.1186/s13046-019-1041-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/15/2019] [Indexed: 02/05/2023] Open
Abstract
Background Circular RNAs (circRNAs) play important roles in tumourigenesis and tumour progression. However, the expression profiles and functions of circRNAs in hepatocellular carcinoma (HCC) are largely unclear. Methods The expression profiles of circRNAs in HCC were identified through microarray analysis and were validated through quantitative reverse transcription polymerase chain reaction (qRT-PCR). Survival curves were plotted using the Kaplan-Meier method and compared using the log-rank test. The circular structure of candidate circRNA was confirmed through Sanger sequencing, divergent primer PCR, and RNase R treatments. Proliferation of HCC cells was evaluated in vitro and in vivo. The microRNA (miRNA) sponge mechanism of circRNAs was demonstrated using dual-luciferase reporter and RNA immunoprecipitation assays. Results CircSETD3 (hsa_circRNA_0000567/hsa_circRNA_101436) was significantly downregulated in HCC tissues and cell lines. Low expression of circSETD3 in HCC tissues significantly predicted an unfavourable prognosis and was correlated with larger tumour size and poor differentiation of HCC in patients. In vitro experiments showed that circSETD3 inhibited the proliferation of HCC cells and induced G1/S arrest in HCC cells. In vivo studies revealed that circSETD3 was stably overexpressed in a xenograft mouse model and inhibited the growth of HCC. Furthermore, we demonstrated that circSETD3 acts as a sponge for miR-421 and verified that mitogen-activated protein kinase (MAPK)14 is a novel target of miR-421. Conclusion CircSETD3 is a novel tumour suppressor of HCC and is a valuable prognostic biomarker. Moreover, circSETD3 inhibits the growth of HCC partly through the circSETD3/miR-421/MAPK14 pathway. Electronic supplementary material The online version of this article (10.1186/s13046-019-1041-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liangliang Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Xinfu Feng
- Department of Liver Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China.,Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, 550000, Guizhou Province, China
| | - Xiangyong Hao
- Department of Liver Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China.,Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu Province, China
| | - Peng Wang
- Department of Liver Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yanfang Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Xiaobo Zheng
- Department of Liver Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Shengsheng Ren
- Department of Liver Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China. .,Department of General surgery, Mianzhu hospital of West China hospital, Sichuan University, Mianzhu City, Sichuan Province, China.
| | - Mingqing Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
29
|
Yu C, Chen DQ, Liu HX, Li WB, Lu JW, Feng JF. Rosmarinic acid reduces the resistance of gastric carcinoma cells to 5-fluorouracil by downregulating FOXO4-targeting miR-6785-5p. Biomed Pharmacother 2019; 109:2327-2334. [PMID: 30551491 DOI: 10.1016/j.biopha.2018.10.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Chemoresistance has been a major problem in cancer chemotherapy. The present study aimed to investigate the effect of Rosmarinic acid (RA) on chemoresistance to 5-Fu and its molecular mechanism in gastric carcinoma. METHODS CCK8 cell proliferation and apoptosis assay were used to evaluate the effect of RA on chemoresistance to 5-Fu in GC cells. RNA microarray was used to identify miRNA involved. Expression level of miRNA in GC cells was determined by RT-PCR. Down- or up-regulating of miRNA in the GC cells was performed by transfection of RNA interference or expression vectors in the GC cells. Double luciferase reporter assay was used to verify miRNA target genes. Expression of P-glycoprotein and Bax was analyzed with Western blot. RESULTS RA treated SGC7901/5-Fu cells showed significant increased chemosensitivity to 5-Fu. The IC50 of 5-Fu was significantly reduced in RA treated SGC7901/5-Fu cells (70.43 ± 1.06 μg/mL) compared to untreated SGC7901/5-Fu cells (208.6 ± 1.09 μg/mL) (P < 0.05). Apoptosis rate was significantly increased in RA+5-Fu treated SGC7901/5-Fu cells compared to 5-FU treatment alone (P < 0.01). Two miRNAs, namely miR-642a-3p and miR-6785-5p, were identified to be involved in the chemo-sensitizing effect of RA in the SGC7901/5-Fu cells. RA treated SGC7901/5-Fu cells showed reduced expression levels of miR-642a-3p and miR-6785-5p compared to untreated SGC7901/5-Fu cells (P < 0.05). Down- or up-regulation of miR-6785-5p increased or reduced chemosensitivity of gastric carcinoma cells to 5-Fu, respectively. RA treated SGC7901/5-Fu and the SGC7901/5-Fu-Si cells showed significantly increased FOXO4 expression (P < 0.01). Double luciferase reporter assay confirmed miR-6785-5p directly targets FOXO4 to regulate its expression. RA significantly reduced P-gp expression and increased Bax expression in SGC7901/5-Fu and the SGC7901/5-Fu-Si cells (P < 0.05). CONCLUSION RA enhances chemosensitivity of resistant gastric carcinoma SGC7901 cells to 5-Fu by downregulating miR-6785-5p and miR-642a-3p and increasing FOXO4 expression. These study suggest the potential for RA as a multidrug resistance-reversing agent in GC.
Collapse
Affiliation(s)
- Chen Yu
- Department of Integrated TCM & Western Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiang Su, 210000
| | - Dong-Qing Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nan Jing Medical University Affiliated Cancer Hospital, Suzhou, Jiang Su, 210000
| | - Hai-Xia Liu
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiang Su, 210000
| | - Wei-Bing Li
- Department of Integrated TCM & Western Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiang Su, 210000
| | - Jian-Wei Lu
- Department of Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiang Su, 210000.
| | - Ji-Feng Feng
- Department of Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiang Su, 210000.
| |
Collapse
|
30
|
Li Y, Cui X, Li Y, Zhang T, Li S. Upregulated expression of miR-421 is associated with poor prognosis in non-small-cell lung cancer. Cancer Manag Res 2018; 10:2627-2633. [PMID: 30147363 PMCID: PMC6095112 DOI: 10.2147/cmar.s167432] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) represents the most frequent subtype of lung cancer. MicroRNAs (miRNAs) have attracted a lot of attention with regard to their clinical significance and crucial biological functions in various human cancers. This study aimed to investigate the prognostic significance of microRNA-421 (miR-421) and its correlation with tumor progression in NSCLC. Materials and methods Expression levels of miR-421 in both serum and tissue samples were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The prognostic value of miR-421 was evaluated using Kaplan–Meier survival analysis and Cox regression assay. To explore the functional role of miR-421 during NSCLC progression, cell experiments were carried out. Results Expression of serum and tissue miR-421 was upregulated in the NSCLC patients compared with the normal controls (all P<0.001), and the expression showed a significant correlation between the serum samples and tissues (R=0.475, P<0.001). The increased miR-421 expression was associated with positive lymph-node metastasis and advanced TNM stage (all P<0.05). Moreover, patients with high miR-421 expression had poor overall survival compared with those with low expression (log-rank P=0.007). The overexpression of miR-421 proved to be an independent prognostic factor for NSCLC (HR=1.991, 95% CI=1.046–3.791, P=0.036). According to the cell experiments, the proliferation, migration and invasion of NSCLC cells were suppressed by knockdown of miR-421. Conclusion Overexpression of miR-421 serves as a prognostic biomarker and may be involved in the promotion of tumor progression in NSCLC.
Collapse
Affiliation(s)
- Yunxia Li
- Department of Clinical Laboratory, Shouguang People's Hospital, Shandong 262700, China,
| | - Xiaomei Cui
- Department of Neurosurgery, Shouguang People's Hospital, Shandong 262700, China
| | - Yongdeng Li
- Department of Joint Surgery, Shouguang People's Hospital, Shandong 262700, China
| | - Tingting Zhang
- Hemodialysis Room, Shouguang People's Hospital, Shandong 262700, China
| | - Shuyun Li
- Coronary Care Unit, Shouguang People's Hospital, Shandong 262700, China
| |
Collapse
|
31
|
Liao X, Wang X, Huang K, Yang C, Yu T, Han C, Zhu G, Su H, Huang R, Peng T. Genome-scale analysis to identify prognostic microRNA biomarkers in patients with early stage pancreatic ductal adenocarcinoma after pancreaticoduodenectomy. Cancer Manag Res 2018; 10:2537-2551. [PMID: 30127641 PMCID: PMC6089101 DOI: 10.2147/cmar.s168351] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The aim of the study was to investigate potential prognostic microRNA (miRNA) biomarkers for patients with early stage pancreatic ductal adenocarcinoma (PDAC) after pancreaticoduodenectomy using a miRNA-sequencing (miRNA-seq) data set from The Cancer Genome Atlas (TCGA). A miRNA expression-based prognostic signature was generated, and the potential role of target genes in overall survival (OS) in patients with PDAC was examined. Methods A miRNA-seq data set of 112 PDAC patients who underwent pancreaticoduodenectomy was obtained from TCGA. Survival analysis was performed to identify potential prognostic biomarkers. Results Eleven miRNAs (hsa-mir-501, hsa-mir-4521, hsa-mir-5091, hsa-mir-24-1, hsa-mir-126, hsa-mir-30e, hsa-mir-3157, hsa-let-7a-3, hsa-mir-133a-1, hsa-mir-4709, and hsa-mir-421) were used to construct a prognostic signature using the step function. The 11-miRNA prognostic signature showed good performance for prognosis prediction (adjusted P<0.0001, adjusted hazard ratio =4.285, 95% confidence interval =2.146–8.554), and the time-dependent receiver operating characteristic analysis showed an area under the curve of 0.864, 0.877, and 0.787 for 1-, 2-, and 3-year PDAC OS predictions, respectively. Comprehensive survival analysis suggested that the prognostic signature could serve as an independent prognostic factor for PDAC OS and performs better in prognosis prediction than other traditional clinical indicators. Functional assessment of the target genes of the miRNAs indicated that they were significantly enriched in multiple biological processes and pathways, including cell proliferation, cell cycle biological processes, the forkhead box O, mitogen-activated protein kinase, Janus kinase/signal transducers and activators of transcription signaling pathways, pathways in cancer, and the ErbB signaling pathway. Several target genes of these miRNAs were also associated with PDAC OS. Conclusion The present study identified a novel miRNA expression signature that showed potential as a prognostic biomarker for PDAC after pancreaticoduodenectomy.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| |
Collapse
|
32
|
Jiang S, Yang Z, Di S, Hu W, Ma Z, Chen F, Yang Y. Novel role of forkhead box O 4 transcription factor in cancer: Bringing out the good or the bad. Semin Cancer Biol 2018; 50:1-12. [DOI: 10.1016/j.semcancer.2018.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 04/28/2018] [Indexed: 10/17/2022]
|
33
|
Wen X, Han XR, Wang YJ, Wang S, Shen M, Zhang ZF, Fan SH, Shan Q, Wang L, Li MQ, Hu B, Sun CH, Wu DM, Lu J, Zheng YL. MicroRNA-421 suppresses the apoptosis and autophagy of hippocampal neurons in epilepsy mice model by inhibition of the TLR/MYD88 pathway. J Cell Physiol 2018; 233:7022-7034. [PMID: 29380367 DOI: 10.1002/jcp.26498] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/24/2018] [Indexed: 11/07/2022]
Abstract
Epilepsy is a group of neurological disorders characterized by epileptic seizures. In this study, we aim to explore the role of microRNA-421 (miR-421) in hippocampal neurons of epilepsy mice via the TLR/MYD88 pathway. Forty mice were randomly served as the normal and model (established as epilepsy model) groups. Hippocampal neurons were assigned into seven groups with different transfections. The RT-qPCR and western blotting were conducted to examine the expression of miR-421 TLR2, TLR4, MYD88, Bax, Bcl-2, p53, Beclin-1, and LC3II/LC3I. Cell proliferation and apoptosis were detected by MTT and flow cytometry.MYD88 is a target gene of miR-421. Model mice showed elevated expression of TLR2, TLR4, MYD88, Bax, p53, Beclin-1, and LC3II/LC3I but reduced expression of miR-421 and Bcl-2. In vitro experiments reveals that overexpression of miR-421 inhibited the TLR/MYD88 pathway. Besides, overexpressed miR-421 declined cell apoptosis but increased cell proliferation. It reveals that miR-421 targeting MYD88 could inhibit the apoptosis and autophagy of hippocampal neurons in epilepsy mice by down-regulating the TLR/MYD88 pathway.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Liang Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Chun-Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P.R. China
- College of Health Sciences, Jiangsu Normal University, Xuzhou, P.R., China
| |
Collapse
|
34
|
Li J, Jiang Z, Han F, Liu S, Yuan X, Tong J. FOXO4 and FOXD3 are predictive of prognosis in gastric carcinoma patients. Oncotarget 2018; 7:25585-92. [PMID: 27027443 PMCID: PMC5041928 DOI: 10.18632/oncotarget.8339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022] Open
Abstract
Forkhead box (FOX) transcription factor family plays an important role in cancer growth and metastasis. This study aimed to determine the predictive ability of FOX genes in gastric carcinoma. A total of 360 patients with gastric from The Cancer Genome Atlas (TCGA) cohorts were collected in this study. The expression profile of FOX family were obtained from the TCGA RNAseq database. Clinicopathological characteristics, including age, gender, tumor node metastasis (TNM), tumor grade, and overall survival were collected. Univariate and multivariate Cox proportional hazards model were used to assess the risk factors for survival, and the results were further validated in in-house cohort. In the TCGA cohort, FOXO4 (HR = 0.613, 95%CI 0.452–0.832) and FOXD3 (HR = 1.704, 95%CI 1.212–2.397) were shown independently predictive of overall survival in gastric cancer after Cox proportional hazards analysis. The finding was validated in our in-house cohort, which demonstrated that both FOXO4 and FOXD3 were independent predictors for overall survival (FOXO4 high, HR: 0.445, 95%CI 0.277–0.715, P = 0.001, FOXD3 high, HR: 1.927, 95%CI 1.212–3.063, P = 0.006) and disease free survival (FOXO4 high, HR: 0.628, 95%CI 0.420–0.935, P = 0.022, FOXD3 high, HR: 1.698, 95%CI 1.136–2.540, P = 0.010). Collectively, FOX family paly critical roles in gastric cancer, and FOXO4 and FOXD3 were identified as independent prognostic factors for survival outcomes of gastric cancer. Further functional study is needed to understand more about FOX family in gastric cancer.
Collapse
Affiliation(s)
- Jing Li
- Department of Oncology, YangZhou No.1 People's Hospital, The Second Clinical School of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhonghua Jiang
- Department of Gastroenterology, The No.1 People's Hospital of Yancheng, Yancheng, China
| | - Fang Han
- Department of Oncology, YangZhou No.1 People's Hospital, The Second Clinical School of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Shenxiang Liu
- Department of Oncology, YangZhou No.1 People's Hospital, The Second Clinical School of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xin Yuan
- Department of Oncology, YangZhou No.1 People's Hospital, The Second Clinical School of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jiandong Tong
- Department of Oncology, YangZhou No.1 People's Hospital, The Second Clinical School of Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
35
|
MicroRNA-421 regulated by HIF-1α promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget 2017; 7:24466-82. [PMID: 27016414 PMCID: PMC5029715 DOI: 10.18632/oncotarget.8228] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/01/2016] [Indexed: 02/07/2023] Open
Abstract
Hypoxia and dysregulation of microRNAs (miRNAs) have been identified as crucial factors in carcinogenesis. However, the potential mechanisms of HIF-1α and miR-421 in gastric cancer have not been well elucidated. In this study, we found that miR-421 was up-regulated by HIF-1α. Overexpression of miR-421 promoted metastasis, inhibited apoptosis, and induced cisplatin resistance in gastric cancer in vivo and in vitro. E-cadherin and caspase-3 were identified as targets of miR-421. Besides, relative mRNA expression of miR-421 was significantly increased in gastric cancer tumor tissues compared with non-tumor tissues in a cohort of gastric cancer specimens (n=107). The expression of miR-421 was higher in advanced gastric cancers compared with localized ones. Moreover, Kaplan–Meier analysis illustrated that those patients with low levels of miR-421 had a significant longer overall survival (p = 0.006) and time to relapse (p = 0.007). Therefore, miR-421 could serve as an important prognostic marker and a potential molecular target for therapy in gastric cancer.
Collapse
|
36
|
Yang P, Zhang M, Liu X, Pu H. MicroRNA-421 promotes the proliferation and metastasis of gastric cancer cells by targeting claudin-11. Exp Ther Med 2017; 14:2625-2632. [PMID: 28962204 PMCID: PMC5609270 DOI: 10.3892/etm.2017.4798] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to evaluate the expression of microRNA (miR)-421 in gastric cancer and to investigate its biological function and underlying mechanism of action in the development of gastric cancer. The expression of miR-421 was measured in 60 pairs of clinically removed gastric cancer tissues and matched adjacent normal gastric tissues by reverse transcription-quantitative polymerase chain reaction. In addition, following transfection with an miR-421 inhibitor to suppress the expression of miR-421, the proliferation, migration and cell cycle distribution of human gastric carcinoma MKN28/MKN74 cells were determined by cell counting, Transwell and flow cytometry assays. The target gene of miR-421 was also predicted using bioinformatic analysis and verified by dual-luciferase reporter gene assay and western blot analysis. Furthermore, overexpression of the miR-421 target protein was induced in MKN28/MKN74 cells to determine its function. It was observed that miR-421 was significantly upregulated in gastric cancer tissues and that the expression of miR-421 was associated with lymph node metastasis and the clinical stage of gastric cancer (all P<0.05). Claudin11 (CLDN11) was predicted and verified as a direct target of miR-421. In vitro experiments demonstrated that inhibition of miR-421 expression suppressed the proliferation and metastasis of MKN28/MKN74 cells and induced G1/S-phase cell cycle arrest (all P<0.05). Analagous results were observed in MKN28/MKN74 cells following overexpression of the CLDN11 protein. Collectively, these data suggest that miR-421 may promote the proliferation, invasion and metastasis of gastric cancer by inhibiting the expression of CLDN11.
Collapse
Affiliation(s)
- Peng Yang
- Department of Nuclear Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Mei Zhang
- Department of Gastroenterology, General Hospital of Lanzhou Petrochemical Company, Lanzhou, Gansu 730060, P.R. China
| | - Xiting Liu
- Department of Oncology, Gansu Provincial Academic Institute for Medical Research, Lanzhou, Gansu 730050, P.R. China
| | - Huayun Pu
- Department of Gastroenterology, General Hospital of Lanzhou Petrochemical Company, Lanzhou, Gansu 730060, P.R. China
| |
Collapse
|
37
|
MicroRNAs as regulators and mediators of forkhead box transcription factors function in human cancers. Oncotarget 2017; 8:12433-12450. [PMID: 27999212 PMCID: PMC5355356 DOI: 10.18632/oncotarget.14015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Evidence has shown that microRNAs are widely implicated as indispensable components of tumor suppressive and oncogenic pathways in human cancers. Thus, identification of microRNA targets and their relevant pathways will contribute to the development of microRNA-based therapeutics. The forkhead box transcription factors regulate numerous processes including cell cycle progression, metabolism, metastasis and angiogenesis, thereby facilitating tumor initiation and progression. A complex network of protein and non-coding RNAs mediates the expression and activity of forkhead box transcription factors. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs and forkhead box transcription factors and describe the roles of microRNAs-forkhead box axis in various disease states including tumor initiation and progression. Additionally, we describe some of the technical challenges in the use of the microRNA-forkhead box signaling pathway in cancer treatment.
Collapse
|
38
|
Curcumin Induces p53-Null Hepatoma Cell Line Hep3B Apoptosis through the AKT-PTEN-FOXO4 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4063865. [PMID: 28769986 PMCID: PMC5523542 DOI: 10.1155/2017/4063865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/06/2017] [Indexed: 12/19/2022]
Abstract
Objective Curcumin (diferuloylmethane) is a yellow-colored polyphenol with antiproliferative and proapoptotic activities to various types of cancer cells. This study explored the mechanism by which curcumin induces p53-null hepatoma cell apoptosis. Results AKT, FOXO1, and FOXO3 proteins were downregulated after curcumin treatment. Conversely, PTEN was upregulated. Subcellular fractionations revealed that the FOXO4 protein translocated from cytosol into the nucleus after curcumin treatment. Overexpression of FOXO4 increases the sensitivity of Hep3B cells to curcumin. Knockdown of the FOXO4 gene by siRNA inhibits the proapoptotic effects of curcumin on Hep3B cell. Conclusions This study revealed the AKT/PTEN/FOXO4 pathway as a potential candidate of target for treatment of p53-null liver cancers.
Collapse
|
39
|
Li G, Song H, Chen L, Yang W, Nan K, Lu P. TUG1 promotes lens epithelial cell apoptosis by regulating miR-421/caspase-3 axis in age-related cataract. Exp Cell Res 2017; 356:20-27. [PMID: 28392351 DOI: 10.1016/j.yexcr.2017.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Age-related cataract is among the most common chronic disorders of ageing and the apoptosis of lens epithelial cells contributes to non-congenital cataract development. We amid to explore the role of TUG1 and miR-421 in the age-related cataract. METHODS The expression level of TUG1, miR-421 and caspase-3 were detected by RT-qPCR. The apoptotic-related protein, caspase-3, Bax and blc-2 were analyzed by western blot. We performed ultraviolet (UV) irradiation to induce SAR01/04 cell apoptosis which was analyzed by flow cytometry. RIP pull-down and luciferase reporter assay were used to verified the combination and regulating among TUG1, miR-421 and caspase-3. RESULTS Here, we observed that the expression level of TUG1 and caspase-3 in the anterior lens capsules of age-related cataract were significantly higher and miR-421 was significantly lower than that in the normal anterior lens capsules. The apoptosis-related protein, caspase-3, Bax and blc-2 were abnormal expression in the anterior lens capsules of age-related cataract tissue. Our data showed that the expression level of TUG1 and caspase-3 and cell apoptosis rate in SAR01/04 cells treated with UV irradiation was remarkably higher than that in the control. TUG1 negatively regulated miR-421 expression and promoted UV irradiation-induced SAR01/04 cell apoptosis. However, miR-421 inhibitor and pcDNA-caspase-3 could reverse the action of the SRA01/04 cell apoptosis by si-TUG1, which suggested TUG1 promoted UV irradiation-induced apoptosis through downregulating miR-421 expression. Furthermore, this study confirmed TUG1 could been in combination with miR-421, and TUG1 and caspase-3 were both a directly target of miR-421. CONCLUSION TUG1 modulated lens epithelial cell apoptosis through miR-421/caspase-3 axis. These findings will offer a novel insight into the pathogenesis of cataract.
Collapse
Affiliation(s)
- Guoxing Li
- The first Affiliated Hospital of Soochow University, 188 shizi street, Suzhou, Jiangsu 215006, China; Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Huiyang Song
- Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Lei Chen
- The first Affiliated Hospital of Soochow University, 188 shizi street, Suzhou, Jiangsu 215006, China
| | - Weihua Yang
- The first Affiliated Hospital of Soochow University, 188 shizi street, Suzhou, Jiangsu 215006, China
| | - Kaihui Nan
- Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Peirong Lu
- The first Affiliated Hospital of Soochow University, 188 shizi street, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
40
|
Urbánek P, Klotz L. Posttranscriptional regulation of FOXO expression: microRNAs and beyond. Br J Pharmacol 2017; 174:1514-1532. [PMID: 26920226 PMCID: PMC5446586 DOI: 10.1111/bph.13471] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 01/17/2023] Open
Abstract
Forkhead box, class O (FOXO) transcription factors are major regulators of diverse cellular processes, including fuel metabolism, oxidative stress response and redox signalling, cell cycle progression and apoptosis. Their activities are controlled by multiple posttranslational modifications and nuclear-cytoplasmic shuttling. Recently, post-transcriptional regulation of FOXO synthesis has emerged as a new regulatory level of their functions. Accumulating evidence suggests that this post-transcriptional mode of regulation of FOXO activity operates in response to stressful stimuli, including oxidative stress. Here, we give a brief overview on post-transcriptional regulation of FOXO synthesis by microRNAs (miRNAs) and by RNA-binding regulatory proteins, human antigen R (HuR) and quaking (QKI). Aberrant post-transcriptional regulation of FOXOs is frequently connected with various disease states. We therefore discuss characteristic examples of FOXO regulation at the post-transcriptional level under various physiological and pathophysiological conditions, including oxidative stress and cancer. The picture emerging from this summary points to a diversity of interactions between miRNAs/miRNA-induced silencing complexes and RNA-binding regulatory proteins. Better insight into these complexities of post-transcriptional regulatory interactions will add to our understanding of the mechanisms of pathological processes and the role of FOXO proteins. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- P Urbánek
- Institute of Nutrition, Department of NutrigenomicsFriedrich‐Schiller‐Universität JenaJenaGermany
| | - L‐O Klotz
- Institute of Nutrition, Department of NutrigenomicsFriedrich‐Schiller‐Universität JenaJenaGermany
| |
Collapse
|
41
|
Pan Y, Jiao G, Wang C, Yang J, Yang W. MicroRNA-421 inhibits breast cancer metastasis by targeting metastasis associated 1. Biomed Pharmacother 2016; 83:1398-1406. [PMID: 27583980 DOI: 10.1016/j.biopha.2016.08.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of microRNAs is involved in the initiation and progression of several human cancers, including breast cancer, as strong evidence of miRNAs acting as oncogenes or tumour suppressor genes has been found. This study was performed to investigate the biological functions of microRNA-421 (miR-421) in breast cancer and the underlying mechanisms. The expression level of miR-421 was detected in 50 pairs of surgical specimens and human breast cancer cell lines. The results showed that miR-421 is downregulated in breast cancer tissues and metastatic cell lines. In addition, the decrease in miR-421 levels was significantly associated with lymph node metastasis, recurrence/metastasis, or pTNM stage. Functions of miR-421 in cell migration and invasion were assessed through its silencing and overexpression. The results showed that miR-421 knockdown promotes invasion and metastasis in MCF-7 cells and its overexpression suppresses invasion and metastasis in MDA-MB-231 cells. The specific target genes of miR-421 were predicted by TargetScan algorithm and determined by dual luciferase reporter assay, quantitative reverse transcriptase PCR, and western blot analysis. miR-421 could suppress luciferase activity of the reporter containing 3'-untranslated region of metastasis associated 1 (MTA1), a potent oncogene. miR-421 overexpression or knockdown had no effect on the mRNA expression of MTA1, but it could modulate MTA1 protein level. Furthermore, MTA1 knockdown receded the effect of miR-421 inhibitor on invasion and metastasis of MCF-7 cells, and its overexpression receded the effect of miR-421 on invasion and metastasis of MDA-MB-231 cells. Our findings clearly demonstrate that miR-421 suppresses breast cancer metastasis by directly inhibiting MTA1 expression. The present study provides a new insight into the tumour suppressor roles of miR-421 and suggests that miR-421/MTA1 pathway is a putative therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Yongqin Pan
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Genlong Jiao
- Department of Orthopedics, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Cunchuan Wang
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| | - Jingge Yang
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| | - Wah Yang
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
42
|
Yang X, Bam M, Nagarkatti PS, Nagarkatti M. RNA-seq Analysis of δ9-Tetrahydrocannabinol-treated T Cells Reveals Altered Gene Expression Profiles That Regulate Immune Response and Cell Proliferation. J Biol Chem 2016; 291:15460-72. [PMID: 27268054 DOI: 10.1074/jbc.m116.719179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 01/07/2023] Open
Abstract
Marijuana has drawn significant public attention and concern both for its medicinal and recreational use. Δ9-Tetrahydrocannabinol (THC), which is the main bioactive component in marijuana, has also been shown to possess potent anti-inflammatory properties by virtue of its ability to activate cannabinoid receptor-2 (CB-2) expressed on immune cells. In this study, we used RNA-seq to quantify the transcriptomes and transcript variants that are differentially regulated by THC in super antigen-activated lymph node cells and CD4(+) T cells. We found that the expressions of many transcripts were altered by THC in both total lymph node cells and CD4(+) T cells. Furthermore, the abundance of many miRNA precursors and long non-coding RNAs was dramatically altered in THC-treated mice. For example, the expression of miR-17/92 cluster and miR-374b/421 cluster was down-regulated by THC. On the other hand miR-146a, which has been shown to induce apoptosis, was up-regulated by THC. Long non-coding RNAs that are expressed from the opposite strand of CD27 and Appbp2 were induced by THC. In addition, THC treatment also caused alternative promoter usage and splicing. The functions of those altered transcripts were mainly related to immune response and cell proliferation.
Collapse
Affiliation(s)
- Xiaoming Yang
- From the Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Marpe Bam
- From the Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Prakash S Nagarkatti
- From the Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Mitzi Nagarkatti
- From the Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| |
Collapse
|
43
|
Abstract
Background As a common malignant tumor, gastric carcinoma requires early diagnosis to improve treatment efficacy. MicroRNA (miR) molecules have highly conserved nucleotide sequences and can negatively regulate target gene expression at the translational level. miR-421 has been suggested to be related with gastric cancer occurrence. The gene polymorphism of miR-421, however, has not been reported. This study thus investigated the G/C polymorphism of miR-421 and its role in progression and prognosis of gastric cancer. Material/Methods A total of 96 gastric cancer patients were recruited in this study and tumor samples were collected from surgical resection. Single-nucleotide polymorphism (SNP) of miR-421 was determined by DNA sequencing for analyzing the correlation between lymph node metastasis and miR-421 genotypes. Logistic regression analysis was used to determine the relationship between genotype and risk factors of gastric cancer. Kaplan-Meier survival analysis was also performed to compare GG and GC carriers. Results Differential expression patterns existed between gastric cancer tissues and normal gastric mucosa. Logistic regression analysis showed GC and GG genotypes were risk factors for gastric cancer. Patients with lymph node metastasis had higher GG genotype frequency compared to those without metastasis. In survival analysis, GG carriers had shorter survival time than GC carriers. Furthermore, GG genotype was correlated with tumor prognosis (p<0.05). Conclusions G allele of miR-421 is a risk factor for gastric cancer. GG genotype is correlated with lymph node metastasis and prognosis, indicating it is a risk factor for gastric cancer.
Collapse
Affiliation(s)
- Xin Jin
- Department of Clinical Laboratory, Affiliated Hospital, Academy of Military Medical Sciences, Beijing, China (mainland)
| | - Nong Yu
- Department of Clinical Laboratory, Affiliated Hospital, Academy of Military Medical Sciences, Beijing, China (mainland)
| |
Collapse
|
44
|
Xu MM, Mao GX, Liu J, Li JC, Huang H, Liu YF, Liu JH. Low expression of the FoxO4 gene may contribute to the phenomenon of EMT in non-small cell lung cancer. Asian Pac J Cancer Prev 2016; 15:4013-8. [PMID: 24935588 DOI: 10.7314/apjcp.2014.15.9.4013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Because of its importance in tumor invasion and metastasis, the epithelial-mesenchymal transition (EMT) has become a research focus in the field of cancer. Recently, evidence has been presented that FoxO4 might be involved in EMT. Our study aimed to detect the expression of FoxO4, E-cadherin and vimentin in non-small cell lung cancers (NSCLCs). We also investigated clinical features and their correlations with the markers. In our study, FoxO4, E-cadherin and vimentin were assessed by immunohistochemistry in a tissue microarray (TMA) containing 150 cases of NSCLC. In addition, the expression level of FoxO4 protein was determined by Western blotting. The percentages of FoxO4, E-cadherin and vimentin positive expression in NSCLCs were 42.7%, 38.7% and 55.3%, respectively. Immunoreactivity of FoxO4 was low in NSCLC when compared with paired normal lung tissues. There were significant correlations between FoxO4 and TNM stage (P<0.001), histological differentiation (P=0.004) and lymph node metastasis (P<0.001), but no significant links with age (P=0.323), gender (P=0.410), tumor size (P=0.084), smoking status (P=0.721) and histological type (P=0.281). Our study showed that low expression of FoxO4 correlated with decreased expression of E-cadherin and elevated expression of vimentin. Cox regression analysis indicated FoxO4 to be an independent prognostic factor in NSCLC (P=0.046). These data suggested that FoxO4 might inhibit the process of EMT in NSCLC, and might therefore be a target for therapy.
Collapse
Affiliation(s)
- Ming-Ming Xu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
45
|
Meng D, Yang S, Wan X, Zhang Y, Huang W, Zhao P, Li T, Wang L, Huang Y, Li T, Li Y. A transcriptional target of androgen receptor, miR-421 regulates proliferation and metabolism of prostate cancer cells. Int J Biochem Cell Biol 2016; 73:30-40. [PMID: 26827675 DOI: 10.1016/j.biocel.2016.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
Prostate cancer is one of the most common malignancies, and microRNAs have been recognized to be involved in tumorigenesis of various kinds of cancer including prostate cancer (PCa). Androgen receptor (AR) plays a core role in prostate cancer progression and is responsible for regulation of numerous downstream targets including microRNAs. This study identified an AR-repressed microRNA, miR-421, in prostate cancer. Expression of miR-421 was significantly suppressed by androgen treatment, and correlated to AR expression in different prostate cancer cell lines. Furthermore, androgen-activated AR could directly bind to androgen responsive element (ARE) of miR-421, as predicted by bioinformatics resources and demonstrated by ChIP and luciferase reporter assays. In addition, over-expression of miR-421 markedly supressed cell viability, delayed cell cycle, reduced glycolysis and inhibited migration in prostate cancer cells. According to the result of miR-421 target genes searching, we focused on 4 genes NRAS, PRAME, CUL4B and PFKFB2 based on their involvement in cell proliferation, cell cycle progression and metabolism. The expression of these 4 downstream targets were significantly repressed by miR-421, and the binding sites were verified by luciferase assay. Additionally, we explored the expression of miR-421 and its target genes in human prostate cancer tissues, both in shared microarray data and in our own cohort. Significant differential expression and inverse correlation were found in PCa patients.
Collapse
Affiliation(s)
- Delong Meng
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Shu Yang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Xuechao Wan
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Yalong Zhang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenhua Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Peiqing Zhao
- Center of Translational Medicine, Central Hospital of Zibo, Zibo, Shangdong Province, China
| | - Tao Li
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianqing Wang
- Center of Translational Medicine, Central Hospital of Zibo, Zibo, Shangdong Province, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Tao Li
- Center of Translational Medicine, Central Hospital of Zibo, Zibo, Shangdong Province, China.
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
46
|
miR-421 is a diagnostic and prognostic marker in patients with osteosarcoma. Tumour Biol 2016; 37:9001-7. [DOI: 10.1007/s13277-015-4578-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022] Open
|
47
|
Drahos J, Schwameis K, Orzolek LD, Hao H, Birner P, Taylor PR, Pfeiffer RM, Schoppmann SF, Cook MB. MicroRNA Profiles of Barrett's Esophagus and Esophageal Adenocarcinoma: Differences in Glandular Non-native Epithelium. Cancer Epidemiol Biomarkers Prev 2015; 25:429-37. [PMID: 26604271 DOI: 10.1158/1055-9965.epi-15-0161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The tissue specificity and robustness of miRNAs may aid risk prediction in individuals diagnosed with Barrett's esophagus. As an initial step, we assessed whether miRNAs can positively distinguish esophageal adenocarcinoma from the precursor metaplasia Barrett's esophagus. METHODS In a case-control study of 150 esophageal adenocarcinomas frequency matched to 148 Barrett's esophagus cases, we quantitated expression of 800 human miRNAs in formalin-fixed paraffin-embedded tissue RNA using NanoString miRNA v2. We tested differences in detection by case group using the χ(2) test and differences in expression using the Wilcoxon rank-sum test. Bonferroni-corrected statistical significance threshold was set at P < 6.25E-05. Sensitivity and specificity were assessed for the most significant miRNAs using 5-fold cross-validation. RESULTS We observed 46 distinct miRNAs significantly increased in esophageal adenocarcinoma compared with Barrett's esophagus, 35 of which remained when restricted to T1b and T2 malignancies. Three miRNAs (miR-663b, miR-421, and miR-502-5p) were detected in >80% esophageal adenocarcinoma, but <20% of Barrett's esophagus. Seven miRNAs (miR-4286, miR-630, miR-575, miR-494, miR-320e, miR-4488, and miR-4508) exhibited the most extreme differences in expression with >5-fold increases. Using 5-fold cross-validation, we repeated feature (miR) selection and case-control prediction and computed performance criteria. Each of the five folds selected the same top 10 miRNAs, which, together, provided 98% sensitivity and 95% specificity. CONCLUSION This study provides evidence that tissue miRNA profiles can discriminate esophageal adenocarcinoma from Barrett's esophagus. This large analysis has identified miRNAs that merit further investigation in relation to pathogenesis and diagnosis of esophageal adenocarcinoma. IMPACT These candidate miRNAs may provide a means for improved risk stratification and more cost-effective surveillance.
Collapse
Affiliation(s)
- Jennifer Drahos
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DDHS, Bethesda, Maryland.
| | - Katrin Schwameis
- Department of Surgery, Upper-GI-Service, CCC-GET Unit, Medical University of Vienna, Vienna, Austria
| | - Linda D Orzolek
- Johns Hopkins Medical Institutions Deep Sequencing and Microarray Core, Baltimore, Maryland
| | - Haiping Hao
- Johns Hopkins Medical Institutions Deep Sequencing and Microarray Core, Baltimore, Maryland
| | - Peter Birner
- Department of Surgery, Upper-GI-Service, CCC-GET Unit, Medical University of Vienna, Vienna, Austria
| | - Phillip R Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DDHS, Bethesda, Maryland
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DDHS, Bethesda, Maryland
| | - Sebastian F Schoppmann
- Department of Surgery, Upper-GI-Service, CCC-GET Unit, Medical University of Vienna, Vienna, Austria
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DDHS, Bethesda, Maryland
| |
Collapse
|
48
|
Huang YK, Yu JC. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: An update and review. World J Gastroenterol 2015; 21:9863-9886. [PMID: 26379393 PMCID: PMC4566381 DOI: 10.3748/wjg.v21.i34.9863] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/15/2015] [Accepted: 07/18/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer and the third leading cause of cancer mortality worldwide. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most popular non-coding RNAs in cancer research. To date, the roles of miRNAs and lncRNAs have been extensively studied in GC, suggesting that miRNAs and lncRNAs represent a vital component of tumor biology. Furthermore, circulating miRNAs and lncRNAs are found to be dysregulated in patients with GC compared with healthy individuals. Circulating miRNAs and lncRNAs may function as promising biomarkers to improve the early detection of GC. Multiple possibilities for miRNA secretion have been elucidated, including active secretion by microvesicles, exosomes, apoptotic bodies, high-density lipoproteins and protein complexes as well as passive leakage from cells. However, the mechanism underlying lncRNA secretion and the functions of circulating miRNAs and lncRNAs have not been fully illuminated. Concurrently, to standardize results of global investigations of circulating miRNAs and lncRNAs biomarker studies, several recommendations for pre-analytic considerations are put forward. In this review, we summarize the known circulating miRNAs and lncRNAs for GC diagnosis. The possible mechanism of miRNA and lncRNA secretion as well as methodologies for identification of circulating miRNAs and lncRNAs are also discussed. The topics covered here highlight new insights into GC diagnosis and screening.
Collapse
|
49
|
Zhang L, Wei P, Shen X, Zhang Y, Xu B, Zhou J, Fan S, Hao Z, Shi H, Zhang X, Kong R, Xu L, Gao J, Zou D, Liang C. MicroRNA Expression Profile in Penile Cancer Revealed by Next-Generation Small RNA Sequencing. PLoS One 2015; 10:e0131336. [PMID: 26158897 PMCID: PMC4497725 DOI: 10.1371/journal.pone.0131336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/01/2015] [Indexed: 12/14/2022] Open
Abstract
Penile cancer (PeCa) is a relatively rare tumor entity but possesses higher morbidity and mortality rates especially in developing countries. To date, the concrete pathogenic signaling pathways and core machineries involved in tumorigenesis and progression of PeCa remain to be elucidated. Several studies suggested miRNAs, which modulate gene expression at posttranscriptional level, were frequently mis-regulated and aberrantly expressed in human cancers. However, the miRNA profile in human PeCa has not been reported before. In this present study, the miRNA profile was obtained from 10 fresh penile cancerous tissues and matched adjacent non-cancerous tissues via next-generation sequencing. As a result, a total of 751 and 806 annotated miRNAs were identified in normal and cancerous penile tissues, respectively. Among which, 56 miRNAs with significantly different expression levels between paired tissues were identified. Subsequently, several annotated miRNAs were selected randomly and validated using quantitative real-time PCR. Compared with the previous publications regarding to the altered miRNAs expression in various cancers and especially genitourinary (prostate, bladder, kidney, testis) cancers, the most majority of deregulated miRNAs showed the similar expression pattern in penile cancer. Moreover, the bioinformatics analyses suggested that the putative target genes of differentially expressed miRNAs between cancerous and matched normal penile tissues were tightly associated with cell junction, proliferation, growth as well as genomic instability and so on, by modulating Wnt, MAPK, p53, PI3K-Akt, Notch and TGF-β signaling pathways, which were all well-established to participate in cancer initiation and progression. Our work presents a global view of the differentially expressed miRNAs and potentially regulatory networks of their target genes for clarifying the pathogenic transformation of normal penis to PeCa, which research resource also provides new insights into future investigations aimed to explore the in-depth mechanisms of miRNAs and other small RNAs including piRNAs in penile carcinogenesis regulation and effective target-specific theragnosis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Pengfei Wei
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xudong Shen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Yuanwei Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Xu
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Haoqiang Shi
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Xiansheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Rui Kong
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Lingfan Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Gao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Duohong Zou
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic College, Anhui Medical University, Hefei, Anhui, China
- * E-mail: (CZL); (DHZ)
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- * E-mail: (CZL); (DHZ)
| |
Collapse
|
50
|
Hsia SM, Yu CC, Shih YH, Yuanchien Chen M, Wang TH, Huang YT, Shieh TM. Isoliquiritigenin as a cause of DNA damage and inhibitor of ataxia-telangiectasia mutated expression leading to G2/M phase arrest and apoptosis in oral squamous cell carcinoma. Head Neck 2015; 38 Suppl 1:E360-71. [PMID: 25580586 DOI: 10.1002/hed.24001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Isoliquiritigenin (ISL), a natural compound extracted from licorice, has chemopreventive and antitumor activities. The purpose of this study was to investigate the anticancer effect of ISL on human oral squamous cell carcinoma (OSCC). METHODS The anti-OSCC effects of ISL were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test, flow cytometry, reverse transcription-polymerase chain reaction, Western blotting, promoter activity, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, malignant phenotype analysis, microRNA, and xenografting. RESULTS ISL induced OSCC cell cycle G2/M phase arrest, apoptosis, and DNA damage. However, the DNA repair-associated ataxia telangiectasia mutated (ATM) and phospho-ATM were downregulated, ATM mRNA remained unchanged, and the downstream signals were inhibited. ATM recovered when the caspase activity was blocked by Z-DVED-FMK. A low dose of ISL inhibited OSCC malignancy in vitro and reduced the tumor size in vivo. CONCLUSION ATM was cleaved by ISL-activated caspase, thus inhibiting DNA repair in OSCC cells. Therefore, ISL is a promising chemopreventive agent against oral cancer. © 2015 Wiley Periodicals, Inc. Head Neck 38: E360-E371, 2016.
Collapse
Affiliation(s)
- Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Science, School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yin-Hua Shih
- Institute of Oral Science, School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Michael Yuanchien Chen
- Department of Oral and Maxillofacial Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Dentistry, College of Medicine, China Medical University, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Yu-Ting Huang
- Institute of Oral Science, School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| |
Collapse
|