1
|
Cong R, Lu C, Li X, Xu Z, Wang Y, Sun S. Tumor organoids in cancer medicine: from model systems to natural compound screening. PHARMACEUTICAL BIOLOGY 2025; 63:89-109. [PMID: 39893515 PMCID: PMC11789228 DOI: 10.1080/13880209.2025.2458149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
CONTEXT The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening. OBJECTIVE This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded. RESULTS AND CONCLUSIONS The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Rong Cong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
2
|
Bhattacharya T, Kumari M, Kaur K, Kaity S, Arumugam S, Ravichandiran V, Roy S. Decellularized extracellular matrix-based bioengineered 3D breast cancer scaffolds for personalized therapy and drug screening. J Mater Chem B 2024; 12:8843-8867. [PMID: 39162395 DOI: 10.1039/d4tb00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Breast cancer (BC) is the second deadliest cancer after lung cancer. Similar to all cancers, it is also driven by a 3D microenvironment. The extracellular matrix (ECM) is an essential component of the 3D tumor micro-environment, wherein it functions as a scaffold for cells and provides metabolic support. BC is characterized by alterations in the ECM. Various studies have attempted to mimic BC-specific ECMs using artificial materials, such as Matrigel. Nevertheless, research has proven that naturally derived decellularized extracellular matrices (dECMs) are superior in providing the essential in vivo-like cues needed to mimic a cancer-like environment. Developing in vitro 3-D BC models is not straightforward and requires extensive analysis of the data established by researchers. For the benefit of researchers, in this review, we have tried to highlight all developmental studies that have been conducted by various scientists so far. The analysis of the conclusions drawn from these studies is also discussed. The advantages and drawbacks of the decellularization methods employed for generating BC scaffolds will be covered, and the review will shed light on how dECM scaffolds help develop a BC environment. The later stages of the article will also focus on immunogenicity issues arising from decellularization and the origin of the tissue. Finally, this review will also discuss the biofabrication of matrices, which is the core part of the bioengineering process.
Collapse
Affiliation(s)
- Teeshyo Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
3
|
Shukla P, Bera AK, Yeleswarapu S, Pati F. High Throughput Bioprinting Using Decellularized Adipose Tissue-Based Hydrogels for 3D Breast Cancer Modeling. Macromol Biosci 2024; 24:e2400035. [PMID: 38685795 DOI: 10.1002/mabi.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Indexed: 05/02/2024]
Abstract
3D bioprinting allows rapid automated fabrication and can be applied for high throughput generation of biomimetic constructs for in vitro drug screening. Decellularized extracellular matrix (dECM) hydrogel is a popular biomaterial choice for tissue engineering and studying carcinogenesis as a tumor microenvironmental mimetic. This study proposes a method for high throughput bioprinting with decellularized adipose tissue (DAT) based hydrogels for 3D breast cancer modeling. A comparative analysis of decellularization protocol using detergent-based and detergent-free decellularization methods for caprine-origin adipose tissue is performed, and the efficacy of dECM hydrogel for 3D cancer modeling is assessed. Histological, biochemical, morphological, and biological characterization and analysis showcase the cytocompatibility of DAT hydrogel. The rheological property of DAT hydrogel and printing process optimization is assessed to select a bioprinting window to attain 3D breast cancer models. The bioprinted tissues are characterized for cellular viability and tumor cell-matrix interactions. Additionally, an approach for breast cancer modeling is shown by performing rapid high throughput bioprinting in a 96-well plate format, and in vitro drug screening using 5-fluorouracil is performed on 3D bioprinted microtumors. The results of this study suggest that high throughput bioprinting of cancer models can potentially have downstream clinical applications like multi-drug screening platforms and personalized disease models.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Sriya Yeleswarapu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| |
Collapse
|
4
|
Shukla P, Bera AK, Ghosh A, Kiranmai G, Pati F. Assessment and process optimization of high throughput biofabrication of immunocompetent breast cancer model for drug screening applications. Biofabrication 2024; 16:035030. [PMID: 38876096 DOI: 10.1088/1758-5090/ad586b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Recent advancements in 3D cancer modeling have significantly enhanced our ability to delve into the intricacies of carcinogenesis. Despite the pharmaceutical industry's substantial investment of both capital and time in the drug screening and development pipeline, a concerning trend persists: drug candidates screened on conventional cancer models exhibit a dismal success rate in clinical trials. One pivotal factor contributing to this discrepancy is the absence of drug testing on pathophysiologically biomimetic 3D cancer models during pre-clinical stages. Unfortunately, current manual methods of 3D cancer modeling, such as spheroids and organoids, suffer from limitations in reproducibility and scalability. In our study, we have meticulously developed 3D bioprinted breast cancer model utilizing decellularized adipose tissue-based hydrogel obtained via a detergent-free decellularization method. Our innovative printing techniques allows for rapid, high-throughput fabrication of 3D cancer models in a 96-well plate format, demonstrating unmatched scalability and reproducibility. Moreover, we have conducted extensive validation, showcasing the efficacy of our platform through drug screening assays involving two potent anti-cancer drugs, 5-Fluorouracil and PRIMA-1Met. Notably, our platform facilitates effortless imaging and gene expression analysis, streamlining the evaluation process. In a bid to enhance the relevance of our cancer model, we have introduced a heterogeneous cell population into the DAT-based bioink. Through meticulous optimization and characterization, we have successfully developed a biomimetic immunocompetent breast cancer model, complete with microenvironmental cues and diverse cell populations. This breakthrough paves the way for rapid multiplex drug screening and the development of personalized cancer models, marking a paradigm shift in cancer research and pharmaceutical development.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Amit Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Gaddam Kiranmai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
5
|
Pickett MR, Chen YI, Kamra M, Kumar S, Kalkunte N, Sugerman GP, Varodom K, Rausch MK, Zoldan J, Yeh HC, Parekh SH. Assessing the impact of extracellular matrix fiber orientation on breast cancer cellular metabolism. Cancer Cell Int 2024; 24:199. [PMID: 38840117 PMCID: PMC11151503 DOI: 10.1186/s12935-024-03385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/25/2024] [Indexed: 06/07/2024] Open
Abstract
The extracellular matrix (ECM) is a dynamic and complex microenvironment that modulates cell behavior and cell fate. Changes in ECM composition and architecture have been correlated with development, differentiation, and disease progression in various pathologies, including breast cancer [1]. Studies have shown that aligned fibers drive a pro-metastatic microenvironment, promoting the transformation of mammary epithelial cells into invasive ductal carcinoma via the epithelial-to-mesenchymal transition (EMT) [2]. The impact of ECM orientation on breast cancer metabolism, however, is largely unknown. Here, we employ two non-invasive imaging techniques, fluorescence-lifetime imaging microscopy (FLIM) and intensity-based multiphoton microscopy, to assess the metabolic states of cancer cells cultured on ECM-mimicking nanofibers in a random and aligned orientation. By tracking the changes in the intrinsic fluorescence of nicotinamide adenine dinucleotide and flavin adenine dinucleotide, as well as expression levels of metastatic markers, we reveal how ECM fiber orientation alters cancer metabolism and EMT progression. Our study indicates that aligned cellular microenvironments play a key role in promoting metastatic phenotypes of breast cancer as evidenced by a more glycolytic metabolic signature on nanofiber scaffolds of aligned orientation compared to scaffolds of random orientation. This finding is particularly relevant for subsets of breast cancer marked by high levels of collagen remodeling (e.g. pregnancy associated breast cancer), and may serve as a platform for predicting clinical outcomes within these subsets [3-6].
Collapse
Affiliation(s)
- Madison R Pickett
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA.
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Mohini Kamra
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Sachin Kumar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Nikhith Kalkunte
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Kelsey Varodom
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 78712, Austin, TX, USA
- Department of Mechanical Engineering, The University of Texas at Austin, 78712, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Hsin-Chin Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Cavallini C, Olivi E, Tassinari R, Zannini C, Ragazzini G, Marcuzzi M, Taglioli V, Ventura C. Deer antler stem cell niche: An interesting perspective. World J Stem Cells 2024; 16:479-485. [PMID: 38817324 PMCID: PMC11135255 DOI: 10.4252/wjsc.v16.i5.479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024] Open
Abstract
In recent years, there has been considerable exploration into methods aimed at enhancing the regenerative capacity of transplanted and/or tissue-resident cells. Biomaterials, in particular, have garnered significant interest for their potential to serve as natural scaffolds for cells. In this editorial, we provide commentary on the study by Wang et al, in a recently published issue of World J Stem Cells, which investigates the use of a decellularized xenogeneic extracellular matrix (ECM) derived from antler stem cells for repairing osteochondral defects in rat knee joints. Our focus lies specifically on the crucial role of biological scaffolds as a strategy for augmenting stem cell potential and regenerative capabilities, thanks to the establishment of a favorable microenvironment (niche). Stem cell differentiation heavily depends on exposure to intrinsic properties of the ECM, including its chemical and protein composition, as well as the mechanical forces it can generate. Collectively, these physicochemical cues contribute to a bio-instructive signaling environment that offers tissue-specific guidance for achieving effective repair and regeneration. The interest in mechanobiology, often conceptualized as a form of "structural memory", is steadily gaining more validation and momentum, especially in light of findings such as these.
Collapse
Affiliation(s)
- Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Bologna 40128, Italy
- Eldor Lab, Bologna 40128, Italy
| | | | | | | | | | - Martina Marcuzzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna 40138, Italy
| | | | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Bologna 40128, Italy.
| |
Collapse
|
7
|
Li X, Shan J, Chen X, Cui H, Wen G, Yu Y. Decellularized diseased tissues: current state-of-the-art and future directions. MedComm (Beijing) 2023; 4:e399. [PMID: 38020712 PMCID: PMC10661834 DOI: 10.1002/mco2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Decellularized matrices derived from diseased tissues/organs have evolved in the most recent years, providing novel research perspectives for understanding disease occurrence and progression and providing accurate pseudo models for developing new disease treatments. Although decellularized matrix maintaining the native composition, ultrastructure, and biomechanical characteristics of extracellular matrix (ECM), alongside intact and perfusable vascular compartments, facilitates the construction of bioengineered organ explants in vitro and promotes angiogenesis and tissue/organ regeneration in vivo, the availability of healthy tissues and organs for the preparation of decellularized ECM materials is limited. In this paper, we review the research advancements in decellularized diseased matrices. Considering that current research focuses on the matrices derived from cancers and fibrotic organs (mainly fibrotic kidney, lungs, and liver), the pathological characterizations and the applications of these diseased matrices are mainly discussed. Additionally, a contrastive analysis between the decellularized diseased matrices and decellularized healthy matrices, along with the development in vitro 3D models, is discussed in this paper. And last, we have provided the challenges and future directions in this review. Deep and comprehensive research on decellularized diseased tissues and organs will promote in-depth exploration of source materials in tissue engineering field, thus providing new ideas for clinical transformation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianyang Shan
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Urciuolo F, Imparato G, Netti PA. In vitro strategies for mimicking dynamic cell-ECM reciprocity in 3D culture models. Front Bioeng Biotechnol 2023; 11:1197075. [PMID: 37434756 PMCID: PMC10330728 DOI: 10.3389/fbioe.2023.1197075] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
The extracellular microenvironment regulates cell decisions through the accurate presentation at the cell surface of a complex array of biochemical and biophysical signals that are mediated by the structure and composition of the extracellular matrix (ECM). On the one hand, the cells actively remodel the ECM, which on the other hand affects cell functions. This cell-ECM dynamic reciprocity is central in regulating and controlling morphogenetic and histogenetic processes. Misregulation within the extracellular space can cause aberrant bidirectional interactions between cells and ECM, resulting in dysfunctional tissues and pathological states. Therefore, tissue engineering approaches, aiming at reproducing organs and tissues in vitro, should realistically recapitulate the native cell-microenvironment crosstalk that is central for the correct functionality of tissue-engineered constructs. In this review, we will describe the most updated bioengineering approaches to recapitulate the native cell microenvironment and reproduce functional tissues and organs in vitro. We have highlighted the limitations of the use of exogenous scaffolds in recapitulating the regulatory/instructive and signal repository role of the native cell microenvironment. By contrast, strategies to reproduce human tissues and organs by inducing cells to synthetize their own ECM acting as a provisional scaffold to control and guide further tissue development and maturation hold the potential to allow the engineering of fully functional histologically competent three-dimensional (3D) tissues.
Collapse
Affiliation(s)
- F. Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - G. Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - P. A. Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
9
|
Collagen-Based Biomimetic Systems to Study the Biophysical Tumour Microenvironment. Cancers (Basel) 2022; 14:cancers14235939. [PMID: 36497421 PMCID: PMC9739814 DOI: 10.3390/cancers14235939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The extracellular matrix (ECM) is a pericellular network of proteins and other molecules that provides mechanical support to organs and tissues. ECM biophysical properties such as topography, elasticity and porosity strongly influence cell proliferation, differentiation and migration. The cell's perception of the biophysical microenvironment (mechanosensing) leads to altered gene expression or contractility status (mechanotransduction). Mechanosensing and mechanotransduction have profound implications in both tissue homeostasis and cancer. Many solid tumours are surrounded by a dense and aberrant ECM that disturbs normal cell functions and makes certain areas of the tumour inaccessible to therapeutic drugs. Understanding the cell-ECM interplay may therefore lead to novel and more effective therapies. Controllable and reproducible cell culturing systems mimicking the ECM enable detailed investigation of mechanosensing and mechanotransduction pathways. Here, we discuss ECM biomimetic systems. Mainly focusing on collagen, we compare and contrast structural and molecular complexity as well as biophysical properties of simple 2D substrates, 3D fibrillar collagen gels, cell-derived matrices and complex decellularized organs. Finally, we emphasize how the integration of advanced methodologies and computational methods with collagen-based biomimetics will improve the design of novel therapies aimed at targeting the biophysical and mechanical features of the tumour ECM to increase therapy efficacy.
Collapse
|
10
|
Tamayo-Angorrilla M, López de Andrés J, Jiménez G, Marchal JA. The biomimetic extracellular matrix: a therapeutic tool for breast cancer research. Transl Res 2022; 247:117-136. [PMID: 34844003 DOI: 10.1016/j.trsl.2021.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
A deeper knowledge of the functional versatility and dynamic nature of the ECM has improved the understanding of cancer biology. Translational Significance: This work provides an in-depth view of the importance of the ECM to develop more mimetic breast cancer models, which aim to recreate the components and architecture of tumor microenvironment. Special focus is placed on decellularized matrices derived from tissue and cell culture, both in procurement and applications, as they have achieved great success in cancer research and pharmaceutical sector. The extracellular matrix (ECM) is increasingly recognized as a master regulator of cell behavior and response to breast cancer (BC) treatment. During BC progression, the mammary gland ECM is remodeled and altered in the composition and organization. Accumulated evidence suggests that changes in the composition and mechanics of ECM, orchestrated by tumor-stromal interactions along with ECM remodeling enzymes, are actively involved in BC progression and metastasis. Understanding how specific ECM components modulate the tumorigenic process has led to an increased interest in the development of biomaterial-based biomimetic ECM models to recapitulate key tumor characteristics. The decellularized ECMs (dECMs) have emerged as a promising in vitro 3D tumor model, whose recent advances in the processing and application could become the biomaterial by excellence for BC research and the pharmaceutical industry. This review offers a detailed view of the contribution of ECM in BC progression, and highlights the application of dECM-based biomaterials as promising personalized tumor models that more accurately mimic the tumorigenic mechanisms of BC and the response to treatment. This will allow the design of targeted therapeutic approaches adapted to the specific characteristics of each tumor that will have a great impact on the precision medicine applied to BC patients.
Collapse
Affiliation(s)
- Marta Tamayo-Angorrilla
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.
| |
Collapse
|
11
|
Decellularized normal and cancer tissues as tools for cancer research. Cancer Gene Ther 2022; 29:879-888. [PMID: 34785762 DOI: 10.1038/s41417-021-00398-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
Today it is widely accepted that molecular mechanisms triggering cancer initiate with a genetic modification. However, a genetic alteration providing the aberrant clone with a growing advantage over neighboring cells is not sufficient to develop cancer. Currently, tumors are considered a heterogeneous population of cells and an extracellular matrix (ECM) that make up a characteristic microenvironment. Interactions between tumor cells and cancer microenvironment define cancer progression and therapeutic response. To investigate and clarify the role of ECM in the regulation of cancer cell behavior and response to therapy, the decellularization of ECM, a widely used technique in tissue engineering, has been recently employed to develop 3D culture model of disease. In this review, we briefly explore the different components of healthy and pathological ECM and the methods to obtain and characterize the ECM from native bioptic tissue. Finally, we highlight the most relevant applications of ECM in translational cancer research strategies: decellularized ECM, ECM-hydrogel and 3D bioprinting.
Collapse
|
12
|
Almici E, Chiappini V, López-Márquez A, Badosa C, Blázquez B, Caballero D, Montero J, Natera-de Benito D, Nascimento A, Roldán M, Lagunas A, Jiménez-Mallebrera C, Samitier J. Personalized in vitro Extracellular Matrix Models of Collagen VI-Related Muscular Dystrophies. Front Bioeng Biotechnol 2022; 10:851825. [PMID: 35547158 PMCID: PMC9081367 DOI: 10.3389/fbioe.2022.851825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/24/2022] [Indexed: 01/10/2023] Open
Abstract
Collagen VI-related dystrophies (COL6-RDs) are a group of rare congenital neuromuscular dystrophies that represent a continuum of overlapping clinical phenotypes that go from the milder Bethlem myopathy (BM) to the severe Ullrich congenital muscular dystrophy, for which there is no effective treatment. Mutations in one of the three Collagen VI genes alter the incorporation of this protein into the extracellular matrix (ECM), affecting the assembly and the structural integrity of the whole fibrillar network. Clinical hallmarks of COL6-RDs are secondary to the ECM disruption and include muscle weakness, proximal joint contractures, and distal hyperlaxity. Although some traits have been identified in patients’ ECMs, a correlation between the ECM features and the clinical phenotype has not been established, mainly due to the lack of predictive and reliable models of the pathology. Herein, we engineered a new personalized pre-clinical model of COL6-RDs using cell-derived matrices (CDMs) technology to better recapitulate the complexity of the native scenario. We found that CDMs from COL6-RD patients presented alterations in ECM structure and composition, showing a significantly decreased Collagen VI secretion, especially in the more severe phenotypes, and a decrease in Fibrillin-1 inclusion. Next, we examined the Collagen VI-mediated deposition of Fibronectin in the ECM, finding a higher alignment, length, width, and straightness than in patients with COL6-RDs. Overall, these results indicate that CDMs models are promising tools to explore the alterations that arise in the composition and fibrillar architecture due to mutations in Collagen VI genes, especially in early stages of matrix organization. Ultimately, CDMs derived from COL6-RD patients may become relevant pre-clinical models, which may help identifying novel biomarkers to be employed in the clinics and to investigate novel therapeutic targets and treatments.
Collapse
Affiliation(s)
- Enrico Almici
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Vanessa Chiappini
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Arístides López-Márquez
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carmen Badosa
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Blanca Blázquez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - David Caballero
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Joan Montero
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel Natera-de Benito
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Andrés Nascimento
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mònica Roldán
- Unitat de Microscòpia Confocal i Imatge Cel·lular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Lagunas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
- *Correspondence: Anna Lagunas, ; Cecilia Jiménez-Mallebrera,
| | - Cecilia Jiménez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barselona, Spain
- *Correspondence: Anna Lagunas, ; Cecilia Jiménez-Mallebrera,
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
13
|
García-Gareta E, Pérez MÁ, García-Aznar JM. Decellularization of tumours: A new frontier in tissue engineering. J Tissue Eng 2022; 13:20417314221091682. [PMID: 35495097 PMCID: PMC9044784 DOI: 10.1177/20417314221091682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. The tumour extracellular
matrix (ECM) has unique features in terms of composition and mechanical
properties, resulting in a structurally and chemically different ECM to that of
native, healthy tissues. This paper reviews to date the efforts into
decellularization of tumours, which in the authors’ view represents a new
frontier in the ever evolving field of tumour tissue engineering. An overview of
the ECM and its importance in cancer is given, ending with examples of research
using decellularized tumours, which has already indicated potential therapeutic
targets, unravelled malignancy mechanisms or response to chemotherapy agents.
The review highlights that more research is needed in this area, which can
answer important questions related to tumour formation and progression to
ultimately identify new and effective therapeutic targets. Within the
near-future of personalized medicine, this research can create patient-specific
tumour models and therapeutic regimes.
Collapse
Affiliation(s)
- Elena García-Gareta
- Aragonese Agency for R&D (ARAID) Foundation, Zaragoza, Aragón, Spain
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - María Ángeles Pérez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, Spain
| |
Collapse
|
14
|
Yang H, Xu F, Xiao K, Chen Y, Tian Z. N-Glycoproteomics Study of Putative N-Glycoprotein Biomarkers of Drug Resistance in MCF-7/ADR Cells. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:269-284. [PMID: 36939756 PMCID: PMC9590513 DOI: 10.1007/s43657-021-00029-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023]
Abstract
Currently, drug resistance of anti-cancer therapy has become the main cause of low survival rate and poor prognosis. Full understanding of drug resistance mechanisms is an urgent request for further development of anti-cancer therapy and improvement of prognosis. Here we present our N-glycoproteomics study of putative N-glycoprotein biomarkers of drug resistance in doxorubicin resistance breast cancer cell line michigan cancer foundation-7 (MCF-7/ADR) relative to parental michigan cancer foundation-7 (MCF-7) cells. Intact N-glycopeptides (IDs) from MCF-7/ADR and MCF-7 cells were enriched with zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC), labeled with stable isotopic diethylation (SIDE), and analyzed with C18-RPLC-MS/MS (HCD with stepped normalized collision energies); these IDs were identified with database search engine GPSeeker, and the differentially expressed intact N-glycopeptides (DEGPs) were quantified with GPSeekerQuan. With target-decoy searches and control of spectrum-level FDR ≤ 1%, 322 intact N-glycopeptides were identified; these intact N-glycopeptides come from the combination of 249 unique peptide backbones (corresponding to 234 intact N-glycoproteins) and 90 monosaccharide compositions (corresponding to 248 putative N-glycosites). The sequence structures of 165 IDs were confirmed with structure-diagnostic fragment ions. With the criteria of observation at least twice among the three technical replicates, ≥ 1.5-fold change and p value < 0.05, 20 DEGPs were quantified, where five of them were up-regulated and 15 of them were down-regulated; the corresponding intact N-glycoproteins as putative markers of drug resistance were discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-021-00029-8.
Collapse
Affiliation(s)
- Hailun Yang
- grid.24516.340000000123704535Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Feifei Xu
- grid.89957.3a0000 0000 9255 8984School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Kaijie Xiao
- grid.24516.340000000123704535Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Yun Chen
- grid.89957.3a0000 0000 9255 8984School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Zhixin Tian
- grid.24516.340000000123704535Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| |
Collapse
|
15
|
Coletta S, Lonardi S, Sensi F, D’Angelo E, Fassan M, Pucciarelli S, Valzelli A, Biccari A, Vermi W, Della Bella C, Barizza A, D’Elios MM, de Bernard M, Agostini M, Codolo G. Tumor Cells and the Extracellular Matrix Dictate the Pro-Tumoral Profile of Macrophages in CRC. Cancers (Basel) 2021; 13:5199. [PMID: 34680345 PMCID: PMC8533926 DOI: 10.3390/cancers13205199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are major components of the tumor microenvironment. In colorectal cancer (CRC), a strong infiltration of TAMs is accompanied by a decrease in effector T cells and an increase in the metastatic potential of CRC. We investigated the functional profile of TAMs infiltrating CRC tissue by immunohistochemistry, flow cytometry, ELISA, and qRT-PCR and their involvement in impairing the activation of effector T cells. In CRC biopsies, we evidenced a high percentage of macrophages with low expression of the antigen-presenting complex MHC-II and high expression of CD206. Monocytes co-cultured with tumor cells or a decellularized tumor matrix differentiated toward a pro-tumoral macrophage phenotype characterized by decreased expression of MHC-II and CD86 and increased expression of CD206 and an abundant release of pro-tumoral cytokines and chemokines. We demonstrated that the hampered expression of MHC-II in macrophages is due to the downregulation of the MHC-II transactivator CIITA and that this effect relies on increased expression of miRNAs targeting CIITA. As a result, macrophages become unable to present antigens to CD4 T lymphocytes. Our data suggest that the tumor microenvironment contributes to defining a pro-tumoral profile of macrophages infiltrating CRC tissue with impaired capacity to activate T cell effector functions.
Collapse
Affiliation(s)
- Sara Coletta
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| | - Silvia Lonardi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (A.V.); (W.V.)
| | - Francesca Sensi
- Department of Molecular Sciences and Nanosystems, Cà Foscari University of Venice, 30172 Venice, Italy;
- Pediatric Research Institute, 35127 Padova, Italy
| | - Edoardo D’Angelo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35124 Padova, Italy;
- Veneto Institute of Oncology, IOV-IRCCS, 35100 Padova, Italy
| | - Salvatore Pucciarelli
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
| | - Arianna Valzelli
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (A.V.); (W.V.)
| | - Andrea Biccari
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padova, Italy
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (A.V.); (W.V.)
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Firenze, 50121 Firenze, Italy; (C.D.B.); (M.M.D.)
| | - Annica Barizza
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, University of Firenze, 50121 Firenze, Italy; (C.D.B.); (M.M.D.)
| | - Marina de Bernard
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| | - Marco Agostini
- Pediatric Research Institute, 35127 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padova, Italy
| | - Gaia Codolo
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| |
Collapse
|
16
|
Assunção M, Dehghan-Baniani D, Yiu CHK, Später T, Beyer S, Blocki A. Cell-Derived Extracellular Matrix for Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2020; 8:602009. [PMID: 33344434 PMCID: PMC7744374 DOI: 10.3389/fbioe.2020.602009] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cell-derived extracellular matrices (CD-ECMs) captured increasing attention since the first studies in the 1980s. The biological resemblance of CD-ECMs to their in vivo counterparts and natural complexity provide them with a prevailing bioactivity. CD-ECMs offer the opportunity to produce microenvironments with costumizable biological and biophysical properties in a controlled setting. As a result, CD-ECMs can improve cellular functions such as stemness or be employed as a platform to study cellular niches in health and disease. Either on their own or integrated with other materials, CD-ECMs can also be utilized as biomaterials to engineer tissues de novo or facilitate endogenous healing and regeneration. This review provides a brief overview over the methodologies used to facilitate CD-ECM deposition and manufacturing. It explores the versatile uses of CD-ECM in fundamental research and therapeutic approaches, while highlighting innovative strategies. Furthermore, current challenges are identified and it is accentuated that advancements in methodologies, as well as innovative interdisciplinary approaches are needed to take CD-ECM-based research to the next level.
Collapse
Affiliation(s)
- Marisa Assunção
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dorsa Dehghan-Baniani
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Him Kendrick Yiu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Thomas Später
- Institute for Clinical and Experimental Surgery, University of Saarland, Saarbrücken, Germany
| | - Sebastian Beyer
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anna Blocki
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
17
|
Sieni E, Bazzolo B, Pieretti F, Zamuner A, Tasso A, Dettin M, Conconi MT. Breast cancer cells grown on hyaluronic acid-based scaffolds as 3D in vitro model for electroporation. Bioelectrochemistry 2020; 136:107626. [PMID: 32784105 DOI: 10.1016/j.bioelechem.2020.107626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Nowadays, electroporation (EP) represents a promising method for the intracellular delivery of anticancer drugs. To setting up the process, the EP efficiency is usually evaluated by using cell suspension and adherent cell cultures that are not representative of the in vivo conditions. Indeed, cells are surrounded by extracellular matrix (ECM) whose composition and physical characteristics are different for each tissue. So, various three-dimensional (3D) in vitro models, such as spheroids and hydrogel-based cultures, have been proposed to mimic the tumour microenvironment. Herein, a 3D breast cancer in vitro model has been proposed. HCC1954 cells were seeded on crosslinked and lyophilized matrices composed of hyaluronic acid (HA) and ionic complementary self-assembling peptides (SAPs) already known to provide a fibrous structure mimicking collagen network. Herein, SAPs were functionalized with laminin derived IKVAV adhesion motif. Cultures were characterized by spheroids surrounded by ECM produced by cancer cells as demonstrated by collagen1a1 and laminin B1 transcripts. EP was carried out on both 2D and 3D cultures: a sequence of 8 voltage pulses at 5 kHz with different amplitude was applied using a plate electrode. Cell sensitivity to EP seemed to be modulated by the presence of ECM and the different cell organization. Indeed, cells cultured on HA-IKVAV were more sensitive than those treated in 2D and HA cultures, in terms of both cell membrane permeabilization and viability. Collectively, our results suggest that HA-IKVAV cultures may represent an interesting model for EP studies. Further studies will be needed to elucidate the influence of ECM composition on EP efficiency.
Collapse
Affiliation(s)
- Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, Via Dunant, 3, 21100 Varese, Italy.
| | - Bianca Bazzolo
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, 35131 Padova, Italy.
| | - Fabio Pieretti
- University of Padova, Department of Industrial Engineering, Via Marzolo, 9, 35131 Padova, Italy.
| | - Annj Zamuner
- University of Padova, Department of Industrial Engineering, Via Marzolo, 9, 35131 Padova, Italy.
| | - Alessia Tasso
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, 35131 Padova, Italy
| | - Monica Dettin
- University of Padova, Department of Industrial Engineering, Via Marzolo, 9, 35131 Padova, Italy.
| | - Maria Teresa Conconi
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, 35131 Padova, Italy.
| |
Collapse
|
18
|
Northcutt LA, Suarez-Arnedo A, Rafat M. Emerging Biomimetic Materials for Studying Tumor and Immune Cell Behavior. Ann Biomed Eng 2020; 48:2064-2077. [PMID: 31617045 PMCID: PMC7156320 DOI: 10.1007/s10439-019-02384-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Cancer is one of the leading causes of death both in the United States and worldwide. The dynamic microenvironment in which tumors grow consists of fibroblasts, immune cells, extracellular matrix (ECM), and cytokines that enable progression and metastasis. Novel biomaterials that mimic these complex surroundings give insight into the biological, chemical, and physical environment that cause cancer cells to metastasize and invade into other tissues. Two-dimensional (2D) cultures are useful for gaining limited information about cancer cell behavior; however, they do not accurately represent the environments that cells experience in vivo. Recent advances in the design and tunability of diverse three-dimensional (3D) biomaterials complement biological knowledge and allow for improved recapitulation of in vivo conditions. Understanding cell-ECM and cell-cell interactions that facilitate tumor survival will accelerate the design of more effective therapies. This review discusses innovative materials currently being used to study tumor and immune cell behavior and interactions, including materials that mimic the ECM composition, mechanical stiffness, and integrin binding sites of the tumor microenvironment.
Collapse
Affiliation(s)
- Logan A Northcutt
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Marjan Rafat
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Engineering and Science Building, Rm. 426, Nashville, TN, 37212, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
19
|
Ferreira LP, Gaspar VM, Mano JF. Decellularized Extracellular Matrix for Bioengineering Physiomimetic 3D in Vitro Tumor Models. Trends Biotechnol 2020; 38:1397-1414. [PMID: 32416940 DOI: 10.1016/j.tibtech.2020.04.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Recent advances in the extraction and purification of decellularized extracellular matrix (dECM) obtained from healthy or malignant tissues open new avenues for engineering physiomimetic 3D in vitro tumor models, which closely recapitulate key biomolecular hallmarks and the dynamic cancer cell-ECM interactions in the tumor microenvironment. We review current and upcoming methodologies for chemical modification of dECM-based biomaterials and advanced bioprocessing into organotypic 3D solid tumor models. A comprehensive review of disruptive advances and shortcomings of exploring dECM-based biomaterials for recapitulating the native tumor-supporting matrix is also provided. We hope to drive the discussion on how 3D dECM testing platforms can be leveraged for generating microphysiological tumor surrogates that generate more robust and predictive data on therapeutic bioperformance.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
20
|
Hoshiba T. Decellularized Extracellular Matrix for Cancer Research. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1311. [PMID: 31013621 PMCID: PMC6515435 DOI: 10.3390/ma12081311] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
Genetic mutation and alterations of intracellular signaling have been focused on to understand the mechanisms of oncogenesis and cancer progression. Currently, it is pointed out to consider cancer as tissues. The extracellular microenvironment, including the extracellular matrix (ECM), is important for the regulation of cancer cell behavior. To comprehensively investigate ECM roles in the regulation of cancer cell behavior, decellularized ECM (dECM) is now used as an in vitro ECM model. In this review, I classify dECM with respect to its sources and summarize the preparation and characterization methods for dECM. Additionally, the examples of cancer research using the dECM were introduced. Finally, future perspectives of cancer studies with dECM are described in the conclusions.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, Koto-ku, Tokyo 135-0064, Japan.
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Ibaraki, Japan.
| |
Collapse
|
21
|
Hoshiba T, Sugano Y, Yokoyama N. Murine Neural Stem Cell (NSC) Line, MEB5-derived Decellularized Matrix as an In Vitro Extracellular Matrix Model in NSC Niche. CHEM LETT 2018. [DOI: 10.1246/cl.180788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Innovative Flex Course for Frontier Organic Materials Systems, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yuki Sugano
- Yamagata Prefectural Yonezawa Kojokan Senior High School, 1101 Oh-aza Sasano, Yonezawa, Yamagata 992-1443, Japan
| | - Natsumi Yokoyama
- Yamagata Prefectural Yonezawa Kojokan Senior High School, 1101 Oh-aza Sasano, Yonezawa, Yamagata 992-1443, Japan
| |
Collapse
|
22
|
Senthebane DA, Jonker T, Rowe A, Thomford NE, Munro D, Dandara C, Wonkam A, Govender D, Calder B, Soares NC, Blackburn JM, Parker MI, Dzobo K. The Role of Tumor Microenvironment in Chemoresistance: 3D Extracellular Matrices as Accomplices. Int J Mol Sci 2018; 19:E2861. [PMID: 30241395 PMCID: PMC6213202 DOI: 10.3390/ijms19102861] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The functional interplay between tumor cells and their adjacent stroma has been suggested to play crucial roles in the initiation and progression of tumors and the effectiveness of chemotherapy. The extracellular matrix (ECM), a complex network of extracellular proteins, provides both physical and chemicals cues necessary for cell proliferation, survival, and migration. Understanding how ECM composition and biomechanical properties affect cancer progression and response to chemotherapeutic drugs is vital to the development of targeted treatments. METHODS 3D cell-derived-ECMs and esophageal cancer cell lines were used as a model to investigate the effect of ECM proteins on esophageal cancer cell lines response to chemotherapeutics. Immunohistochemical and qRT-PCR evaluation of ECM proteins and integrin gene expression was done on clinical esophageal squamous cell carcinoma biopsies. Esophageal cancer cell lines (WHCO1, WHCO5, WHCO6, KYSE180, KYSE 450 and KYSE 520) were cultured on decellularised ECMs (fibroblasts-derived ECM; cancer cell-derived ECM; combinatorial-ECM) and treated with 0.1% Dimethyl sulfoxide (DMSO), 4.2 µM cisplatin, 3.5 µM 5-fluorouracil and 2.5 µM epirubicin for 24 h. Cell proliferation, cell cycle progression, colony formation, apoptosis, migration and activation of signaling pathways were used as our study endpoints. RESULTS The expression of collagens, fibronectin and laminins was significantly increased in esophageal squamous cell carcinomas (ESCC) tumor samples compared to the corresponding normal tissue. Decellularised ECMs abrogated the effect of drugs on cancer cell cycling, proliferation and reduced drug induced apoptosis by 20⁻60% that of those plated on plastic. The mitogen-activated protein kinase-extracellular signal-regulated kinase (MEK-ERK) and phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) signaling pathways were upregulated in the presence of the ECMs. Furthermore, our data show that concomitant addition of chemotherapeutic drugs and the use of collagen- and fibronectin-deficient ECMs through siRNA inhibition synergistically increased cancer cell sensitivity to drugs by 30⁻50%, and reduced colony formation and cancer cell migration. CONCLUSION Our study shows that ECM proteins play a key role in the response of cancer cells to chemotherapy and suggest that targeting ECM proteins can be an effective therapeutic strategy against chemoresistant tumors.
Collapse
Affiliation(s)
- Dimakatso Alice Senthebane
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Tina Jonker
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Daniella Munro
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Collet Dandara
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Ambroise Wonkam
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Dhirendra Govender
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, NHLS-Groote Schuur Hospital, Cape Town 7925, South Africa.
| | - Bridget Calder
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | - Nelson C Soares
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | - Jonathan M Blackburn
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | - M Iqbal Parker
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Kevin Dzobo
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
23
|
Hoshiba T. An extracellular matrix (ECM) model at high malignant colorectal tumor increases chondroitin sulfate chains to promote epithelial-mesenchymal transition and chemoresistance acquisition. Exp Cell Res 2018; 370:571-578. [PMID: 30016638 DOI: 10.1016/j.yexcr.2018.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Chemoresistance is one of the major barriers for tumor chemotherapy. It is clinically known that chemoresistance increases during tumor progression. Additionally, the extracellular matrix (ECM) is also remodeled during tumor progression. However, it remains unclear how ECM remodeling contributes to chemoresistance acquisition. Recently, it has been reported that epithelial-mesenchymal transition (EMT) contributes to chemoresistance acquisition. Here, how ECM remodeling contributes to 5-fluorouracil (5-FU) resistance acquisition was investigated from the viewpoints of EMT using in vitro ECM models mimicking native ECM in colorectal tumor tissue at three different malignant levels. 5-FU partially induced EMT and increased ABCB1 in colorectal HT-29 cells via TGF-β signaling (an invasive tumor cell model). When HT-29 cells were cultured on an ECM model (high malignant matrices) mimicking native ECM in highly malignant tumor tissues, the cells facilitated TGF-β-induced EMT and increased ABCB1 upregulation compared with that of other ECM models mimicking the low malignant level and normal tissues. High malignant matrices contained more chondroitin sulfate (CS) chains than those of other ECM models. Finally, CS chain-reduced high malignant matrices could not facilitate ABCB1 upregulation and TGF-β-induced EMT. These results demonstrated that ECM remodeling during tumor progression increased CS chains to facilitate EMT and ABCB1 upregulation, contributing to chemoresistance acquisition.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Innovative Flex Course for Frontier Organic Material Systems, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
24
|
Pinto M, Rios E, Silva A, Neves S, Caires H, Pinto A, Durães C, Carvalho F, Cardoso A, Santos N, Barrias C, Nascimento D, Pinto-do-Ó P, Barbosa M, Carneiro F, Oliveira M. Decellularized human colorectal cancer matrices polarize macrophages towards an anti-inflammatory phenotype promoting cancer cell invasion via CCL18. Biomaterials 2017; 124:211-224. [DOI: 10.1016/j.biomaterials.2017.02.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 02/06/2023]
|
25
|
Hoshiba T. Cultured cell-derived decellularized matrices: a review towards the next decade. J Mater Chem B 2017; 5:4322-4331. [DOI: 10.1039/c7tb00074j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Summary of recent progress in cell-derived decellularized matrices preparation and application, with perspectives towards the next decade.
Collapse
Affiliation(s)
- T. Hoshiba
- Frontier Center for Organic Materials
- Yamagata University
- Yonezawa
- Japan
- Innovative Flex Course for Frontier Organic Materials Systems
| |
Collapse
|
26
|
Muluhngwi P, Krishna A, Vittitow SL, Napier JT, Richardson KM, Ellis M, Mott JL, Klinge CM. Tamoxifen differentially regulates miR-29b-1 and miR-29a expression depending on endocrine-sensitivity in breast cancer cells. Cancer Lett 2016; 388:230-238. [PMID: 27986463 DOI: 10.1016/j.canlet.2016.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
Endocrine-resistance develops in ∼40% of breast cancer patients after tamoxifen (TAM) therapy. Although microRNAs are dysregulated in breast cancer, their contribution to endocrine-resistance is not yet understood. Previous microarray analysis identified miR-29a and miR-29b-1 as repressed by TAM in MCF-7 endocrine-sensitive breast cancer cells but stimulated by TAM in LY2 endocrine-resistant breast cancer cells. Here we examined the mechanism for the differential regulation of these miRs by TAM in MCF-7 versus TAM-resistant LY2 and LCC9 breast cancer cells and the functional role of these microRNAs in these cells. Knockdown studies revealed that ERα is responsible for TAM regulation of miR-29b-1/a transcription. We also demonstrated that transient overexpression of miR-29b-1/a decreased MCF-7, LCC9, and LY2 proliferation and inhibited LY2 cell migration and colony formation but did not sensitize LCC9 or LY2 cells to TAM. Furthermore, TAM reduced DICER1 mRNA and protein in LY2 cells, a known target of miR-29. Supporting this observation, anti-miR-29b-1 or anti-miR-29a inhibited the suppression of DICER by 4-OHT. These results suggest miR-29b-1/a has tumor suppressor activity in TAM-resistant cells and does not appear to play a role in mediating TAM resistance.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Abirami Krishna
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Stephany L Vittitow
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Joshua T Napier
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kirsten M Richardson
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Mackenzie Ellis
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Justin L Mott
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
27
|
Shologu N, Szegezdi E, Lowery A, Kerin M, Pandit A, Zeugolis DI. Recreating complex pathophysiologies in vitro with extracellular matrix surrogates for anticancer therapeutics screening. Drug Discov Today 2016; 21:1521-1531. [DOI: 10.1016/j.drudis.2016.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
|
28
|
Hoshiba T, Tanaka M. Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: Mechanism of 5-fluorouracil resistance in colorectal tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2749-2757. [PMID: 27558478 DOI: 10.1016/j.bbamcr.2016.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
Abstract
Chemoresistance is a major barrier for tumor chemotherapy. It is well-known that chemoresistance increases with tumor progression. Chemoresistance is altered by both genetic mutations and the alteration of extracellular microenvironment. Particularly, the extracellular matrix (ECM) is remodeled during tumor progression. Therefore, ECM remodeling is expected to cause the acquisition of chemoresistance in highly malignant tumor tissue. Here, we prepared cultured cell-derived decellularized matrices that mimic native ECM in tumor tissues at different stages of malignancy, and 5-fluorouracil (5-FU) resistance was compared among these matrices. 5-FU resistance of colorectal tumor cells increased on the matrices derived from highly malignant tumor HT-29 cells, although the resistance did not increase on the matrices derived from low malignant tumor SW480 cells and normal CCD-841-CoN cells. The resistance on HT-29 cell-derived matrices increased through the activation of Akt and the upregulation of ABCB1 and ABCC1 without cell growth promotion, suggesting that ECM remodeling plays important roles in the acquisition of chemoresistance during tumor progression. It is expected that our decellularized matrices, or "staged tumorigenesis-mimicking matrices", will become preferred cell culture substrates for in vitro analysis of comprehensive ECM roles in chemoresistance and the screening and pharmacokinetic analysis of anti-cancer drugs.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Masaru Tanaka
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| |
Collapse
|
29
|
Liu Z, Vunjak-Novakovic G. Modeling tumor microenvironments using custom-designed biomaterial scaffolds. Curr Opin Chem Eng 2016; 11:94-105. [PMID: 27152253 PMCID: PMC4852888 DOI: 10.1016/j.coche.2016.01.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominant roles of the tumor microenvironment in regulating tumor formation, progression, and metastasis have driven the application of tissue engineering strategies in cancer biology. Highly dynamic and reciprocal communication of tumor cells with their surroundings suggests that studying cancer in custom-designed biomaterial scaffolds may lead to novel therapeutic targets and therapeutic regimens more reliably than traditional monolayer tissue culture models. As tissue engineering becomes progressively more successful in recapitulating the native tumor environment, critical insights into mechanisms of tumor resistance may be elucidated, to impact clinical practice, drug development, and biological research. We review here the recent developments in the use of custom-designed biomaterial scaffolds for modeling human tumors.
Collapse
Affiliation(s)
- Zen Liu
- Department of Biomedical Engineering, Columbia University in the City of New York
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University in the City of New York
- Department of Medicine, Columbia University in the City of New York
| |
Collapse
|
30
|
Hoshiba T, Nikaido M, Yagi S, Konno I, Yoshihiro A, Tanaka M. Blood-compatible poly (2-methoxyethyl acrylate) for the adhesion and proliferation of lung cancer cells toward the isolation and analysis of circulating tumor cells. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911515618976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Circulating tumor cells have received attention for their role in cancer diagnosis and the decision on which chemotherapeutic course to take. For these purposes, the isolation of circulating tumor cells has been important. Previously, we reported that non-blood cells can adhere on blood-compatible polymer substrates, such as poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate). In this study, we examined whether blood-compatible poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) allow the adhesion and growth of A549 lung cancer cells for isolating circulating tumor cells by adhesion-mediated manner to diagnose metastatic cancer and to decide on the chemotherapeutic course. A549 cells can adhere on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates via an integrin-dependent mechanism after 1 h of incubation, suggesting that blood-compatible poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates possess the ability to capture circulating tumor cells selectively from peripheral blood. After 1 day of culture, A549 cells started to spread on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates. A549 can also grow on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates. Additionally, the chemoresistance of A549 cells against 5-fluorouracil on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates was similar to that on the conventional cell culture substrate, tissue culture polystyrene. These results indicate that circulating tumor cells can be cultured on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates after they are isolated from peripheral blood, and poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates can be used as circulating tumor cell culture substrates for screening anti-cancer drugs. Therefore, poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates might be able to be applied to the development of a new device for a circulating tumor cell–based diagnosis of metastatic cancer and a personalized medicine approach regarding the decision of which chemotherapeutic course should be taken.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, Yamagata, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Mayo Nikaido
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Satomi Yagi
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Iku Konno
- Department of Biochemical Engineering, Yamagata University, Yamagata, Japan
| | - Ayano Yoshihiro
- Department of Biochemical Engineering, Yamagata University, Yamagata, Japan
| | - Masaru Tanaka
- Frontier Center for Organic Materials, Yamagata University, Yamagata, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Hoshiba T, Orui T, Endo C, Sato K, Yoshihiro A, Minagawa Y, Tanaka M. Adhesion-based simple capture and recovery of circulating tumor cells using a blood-compatible and thermo-responsive polymer-coated substrate. RSC Adv 2016. [DOI: 10.1039/c6ra15229e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor cells (CTCs) have been a focus of study for metastatic cancer diagnostics, in in vitro anti-cancer drug screening to decide the chemotherapeutic course, and cancer biology research.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials
- Yamagata University
- Yonezawa
- Japan
- International Center for Materials Nanoarchitectonics
| | - Toshihiko Orui
- Graduate School of Science and Engineering
- Yamagata University
- Yonezawa
- Japan
| | - Chiho Endo
- Graduate School of Science and Engineering
- Yamagata University
- Yonezawa
- Japan
| | - Kazuhiro Sato
- Graduate School of Science and Engineering
- Yamagata University
- Yonezawa
- Japan
| | - Ayano Yoshihiro
- Department of Biochemical Engineering
- Yamagata University
- Yonezawa
- Japan
| | | | - Masaru Tanaka
- Frontier Center for Organic Materials
- Yamagata University
- Yonezawa
- Japan
- Institute for Materials Chemistry and Engineering
| |
Collapse
|
32
|
Hoshiba T, Tanaka M. Optimization of the tissue source, malignancy, and initial substrate of tumor cell-derived matrices to increase cancer cell chemoresistance against 5-fluorouracil. Biochem Biophys Res Commun 2015; 457:353-7. [PMID: 25576861 DOI: 10.1016/j.bbrc.2014.12.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 12/27/2014] [Indexed: 12/30/2022]
Abstract
The low chemoresistance of in vitro cancer cells inhibits the development of new anti-cancer drugs. Thus, development of a new in vitro culture system is required to increase the chemoresistance of in vitro cancer cells. Tumor cell-derived matrices have been reported to increase the chemoresistance of in vitro cancer cells. However, it remains unclear how tissue sources and the malignancy of cells used for the preparation of matrices affect the chemoresistance of tumor cell-derived matrices. Moreover, it remains unclear how the initial substrates used for the preparation of matrices affect the chemoresistance. In this study, we compared the effects of tissue sources and the malignancy of tumor cells, as well as the effect of the initial substrates on chemoresistance against 5-fluorouracil (5-FU). The chemoresistance of breast and colon cancer cells against 5-FU increased on matrices prepared with cells derived from the corresponding original tissues with higher malignancy. Moreover, the chemoresistance against 5-FU was altered on matrices prepared using different initial substrates that exhibited different characteristics of protein adsorption. Taken together, these results indicated that the appropriate selection of tissue sources, malignancy of tumor cells, and initial substrates used for matrix preparation is important for the preparation of tumor cell-derived matrices for chemoresistance assays.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Masaru Tanaka
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
33
|
Cai R, Kawazoe N, Chen G. Influence of surfaces modified with biomimetic extracellular matrices on adhesion and proliferation of mesenchymal stem cells and osteosarcoma cells. Colloids Surf B Biointerfaces 2014; 126:381-6. [PMID: 25516267 DOI: 10.1016/j.colsurfb.2014.11.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 11/27/2014] [Accepted: 11/30/2014] [Indexed: 12/21/2022]
Abstract
Preparation of surfaces modified with biomimetic extracellular matrices (ECMs) is important for investigation of the interaction between ECMs and cells. In the present study, surfaces modified with ECMs from normal somatic cells, stem cells and tumor cells were prepared by cell culture method. The ECMs derived from bone marrow-derived mesenchymal stem cells (MSCs), dermal fibroblasts (FBs), osteoblasts (OBs) and MG63 osteosarcoma cells were deposited on the surfaces of cell-culture polystyrene plates (TCPS). The ECMs from different cell types had different compositions. The effects of the ECM-deposited surfaces on the adhesion, spreading and proliferation of MSCs and MG63 human osteosarcoma cells were dependent on the type of both ECMs and cells. The surfaces deposited with ECMs from MSCs, FBs and OBs promoted cell adhesion more strongly than surfaces deposited with ECMs from MG63 cells and TCPS. Compared to TCPS, the ECM-deposited surfaces promoted proliferation of MSCs while they inhibited the proliferation of MG63 cells.
Collapse
Affiliation(s)
- Rong Cai
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Naoki Kawazoe
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Guoping Chen
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|