1
|
Taghizadieh M, Kalantari M, Bakhshali R, Kobravi S, Khalilollah S, Baghi HB, Bayat M, Nahand JS, Akhavan-Sigari R. To be or not to be: navigating the influence of MicroRNAs on cervical cancer cell death. Cancer Cell Int 2025; 25:153. [PMID: 40251577 PMCID: PMC12008905 DOI: 10.1186/s12935-025-03786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
With all diagnostic and therapeutic advances, such as surgery, radiation- and chemo-therapy, cervical cancer (CC) is still ranked fourth among the most frequent cancers in women globally. New biomarkers and therapeutic targets are warranted to be discovered for the early detection, treatment, and prognosis of CC. As component of the non-coding RNA's family, microRNAs (miRNAs) participate in several cellular functions such as cell proliferation, gene expression, many signaling cascades, apoptosis, angiogenesis, etc. MiRNAs can suppress or induce programmed cell death (PCD) pathways by altering their regulatory genes. Besides, abnormal expression of miRNAs weakens or promotes various signaling pathways associated with PCD, resulting in the development of human diseases such as CC. For that reason, understanding the effects that miRNAs exert on the various modes of tumor PCD, and evaluating the potential of miRNAs to serve as targets for induction of cell death and reappearance of chemotherapy. The current study aims to define the effect that miRNAs exert on cell apoptosis, autophagy, pyroptosis, ferroptosis, and anoikis in cervical cancer to investigate possible targets for cervical cancer therapy. Manipulating the PCD pathways by miRNAs could be considered a primary therapeutic strategy for cervical cancer.
Collapse
Affiliation(s)
- Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kalantari
- Department of Biology, Tehran University of health Sciences, Tehran, Iran
| | | | - Sepehr Kobravi
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
2
|
He H, He M, Wang Y, Xiong H, Xiong Y, Shan M, Liu D, Guo Z, Kou Y, Zhang Y, Yang M, Lian J, Sun L, He F. Berberine increases the killing effect of pirarubicin on HCC cells by inhibiting ATG4B-autophagy pathway. Exp Cell Res 2024; 439:114094. [PMID: 38750718 DOI: 10.1016/j.yexcr.2024.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/17/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Pirarubicin (THP) is a new generation of cell cycle non-specific anthracycline-based anticancer drug. In the clinic, THP and THP combination therapies have been shown to be effective in hepatocellular carcinoma (HCC) patients with transcatheter arterial chemoembolization (TACE) without serious side effects. However, drug resistance limits its therapeutic efficacy. Berberine (BBR), an isoquinoline alkaloid, has been shown to possess antitumour properties against various malignancies. However, the synergistic effect of BBR and THP in the treatment of HCC is unknown. In the present study, we demonstrated for the first time that BBR sensitized HCC cells to THP, including enhancing THP-induced growth inhibition and apoptosis of HCC cells. Moreover, we found that BBR sensitized THP by reducing the expression of autophagy-related 4B (ATG4B). Mechanistically, the inhibition of HIF1α-mediated ATG4B transcription by BBR ultimately led to attenuation of THP-induced cytoprotective autophagy, accompanied by enhanced growth inhibition and apoptosis in THP-treated HCC cells. Tumor-bearing experiments in nude mice showed that the combination treatment with BBR and THP significantly suppressed the growth of HCC xenografts. These results reveal that BBR is able to strengthen the killing effect of THP on HCC cells by repressing the ATG4B-autophagy pathway, which may provide novel insights into the improvement of chemotherapeutic efficacy of THP, and may be conducive to the further clinical application of THP in HCC treatment.
Collapse
Affiliation(s)
- Haiyan He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China; Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Meng He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Haojun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yu Xiong
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Meihua Shan
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Dong Liu
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Ziyuan Guo
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Yuhong Kou
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Jiqin Lian
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China.
| | - Liangbo Sun
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China.
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Liu Y, Wang M, Lu Y, Zhang S, Kang L, Zheng G, Ren Y, Guo X, Zhao H, Hao H. Construction and validation of a novel and superior protein risk model for prognosis prediction in esophageal cancer. Front Genet 2022; 13:1055202. [DOI: 10.3389/fgene.2022.1055202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Esophageal cancer (EC) is recognized as one of the most common malignant tumors in the word. Based on the biological process of EC occurrence and development, exploring molecular biomarkers can provide a good guidance for predicting the risk, prognosis and treatment response of EC. Proteomics has been widely used as a technology that identifies, analyzes and quantitatively acquires the composition of all proteins in the target tissues. Proteomics characterization applied to construct a prognostic signature will help to explore effective biomarkers and discover new therapeutic targets for EC. This study showed that we established a 8 proteins risk model composed of ASNS, b-Catenin_pT41_S45, ARAF_pS299, SFRP1, Vinculin, MERIT40, BAK and Atg4B via multivariate Cox regression analysis of the proteome data in the Cancer Genome Atlas (TCGA) to predict the prognosis power of EC patients. The risk model had the best discrimination ability and could distinguish patients in the high- and low-risk groups by principal component analysis (PCA) analysis, and the high-risk patients had a poor survival status compared with the low-risk patients. It was confirmed as one independent and superior prognostic predictor by the receiver operating characteristic (ROC) curve and nomogram. K-M survival analysis was performed to investigate the relationship between the 8 proteins expressions and the overall survival. GSEA analysis showed KEGG and GO pathways enriched in the risk model, such as metabolic and cancer-related pathways. The high-risk group presented upregulation of dendritic cells resting, macrophages M2 and NK cells activated, downregulation of plasma cells, and multiple activated immune checkpoints. Most of the potential therapeutic drugs were more appropriate treatment for the low-risk patients. Through adequate analysis and verification, this 8 proteins risk model could act as a great prognostic evaluation for EC patients and provide new insight into the diagnosis and treatment of EC.
Collapse
|
4
|
Hiura F, Kawabata Y, Aoki T, Mizokami A, Jimi E. Inhibition of the ATG4-LC3 pathway suppressed osteoclast maturation. Biochem Biophys Res Commun 2022; 632:40-47. [DOI: 10.1016/j.bbrc.2022.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
|
5
|
Karlina I, Schroeder BA, Kirgizov K, Romantsova O, Istranov AL, Nedorubov A, Timashev P, Ulasov I. Latest developments in the pathobiology of Ewing sarcoma. J Bone Oncol 2022; 35:100440. [PMID: 35855933 PMCID: PMC9287185 DOI: 10.1016/j.jbo.2022.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A. Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kirill Kirgizov
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia Moscow, 115478, Russia
| | - Olga Romantsova
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia Moscow, 115478, Russia
| | - Andrey L. Istranov
- Department of Oncology, radiation therapy and plastic surgery, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Andrey Nedorubov
- Center for Preclinical Research, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Corresponding author at: Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
6
|
Belyaeva E, Kharwar RK, Ulasov IV, Karlina I, Timashev P, Mohammadinejad R, Acharya A. Isoforms of autophagy-related proteins: role in glioma progression and therapy resistance. Mol Cell Biochem 2022; 477:593-604. [PMID: 34854022 DOI: 10.1007/s11010-021-04308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022]
Abstract
Autophagy is the process of recycling and utilization of degraded organelles and macromolecules in the cell compartments formed during the fusion of autophagosomes with lysosomes. During autophagy induction the healthy and tumor cells adapt themselves to harsh conditions such as cellular stress or insufficient supply of nutrients in the cell environment to maintain their homeostasis. Autophagy is currently seen as a form of programmed cell death along with apoptosis and necroptosis. In recent years multiple studies have considered the autophagy as a potential mechanism of anticancer therapy in malignant glioma. Although, subsequent steps in autophagy development are known and well-described, on molecular level the mechanism of autophagosome initiation and maturation using autophagy-related proteins is under investigation. This article reviews current state about the mechanism of autophagy, its molecular pathways and the most recent studies on roles of autophagy-related proteins and their isoforms in glioma progression and its treatment.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Rajesh Kumar Kharwar
- Endocrine Research Laboratory, Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur, UP, India
| | - Ilya V Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia, 119991.
| | - Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Petr Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation, 119991
- Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 4 Kosygin st., Moscow, Russian Federation, 119991
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, Russian Federation, 119991
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arbind Acharya
- Tumor Immunology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
7
|
Peng K, Sun A, Zhu J, Gao J, Li Y, Shao G, Yang W, Lin Q. Restoration of the ATG5-dependent autophagy sensitizes DU145 prostate cancer cells to chemotherapeutic drugs. Oncol Lett 2021; 22:638. [PMID: 34386060 PMCID: PMC8298997 DOI: 10.3892/ol.2021.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/17/2021] [Indexed: 01/07/2023] Open
Abstract
Autophagy serves an important role in cancer cell survival and drug resistance. In the present study, the prostate cancer DU145 cell line was used, which lacks autophagy related 5 (ATG5) expression and is defective in induction of ATG5-dependent autophagy. The aim of the study was to examine the effects of the restoration of autophagy on cell proliferation and migration, and to assess the cytotoxicity caused by chemotherapeutic drugs, using microscopic, wound-healing, western blot and apoptotic assays. The restoration of the autophagic activity in DU145 cells by the overexpression of ATG5 enhanced the cell proliferation and migration rates. Notably, restoration of the ATG5-dependent autophagy in DU145 cells significantly increased the cytotoxic effects of the chemotherapeutic drugs, docetaxel and valproic acid, and the endoplasmic reticulum stress inducers, brefeldin A, tunicamycin and thapsigargin. The present study provides a novel perspective on the role of ATG5-dependent autophagy in drug resistance and chemotherapy.
Collapse
Affiliation(s)
- Ke Peng
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Aiqin Sun
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jun Zhu
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jinyi Gao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yanlin Li
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wannian Yang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
8
|
Yang G, Li Y, Zhao Y, Ouyang L, Chen Y, Liu B, Liu J. Targeting Atg4B for cancer therapy: Chemical mediators. Eur J Med Chem 2020; 209:112917. [PMID: 33077263 DOI: 10.1016/j.ejmech.2020.112917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/05/2023]
Abstract
Atg4, a pivotal macroautophagy/autophagy-related cysteine protein family, which regulate autophagy through either cleaving Atg8 homologs for its further lipidation or delipidating Atg8 homologs from the autophagosome. There are four homologs, Atg4A, Atg4B, Atg4C, and Atg4D. Among them, an increasing amount of evidence indicates that Atg4B possessed superior catalytic efficiency toward the Atg8 substrate, as well as regulates autophagy process and plays a key role in the development of several human cancers. Recently, efforts have been contributed to the exploration of Atg4B inhibitors or activators. In this review, we comprehensively clarify the function of Atg4B in autophagy and cancer biology, as well as the relationship between pharmacological function and structure-activity of small molecule drugs targeting Atg4B. The development of novel drugs targeting Atg4B could be well applied in the clinical practice.
Collapse
Affiliation(s)
- Gaoxia Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqian Zhao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jie Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Differential expression and prognostic relevance of autophagy-related markers ATG4B, GABARAP, and LC3B in breast cancer. Breast Cancer Res Treat 2020; 183:525-547. [PMID: 32685993 DOI: 10.1007/s10549-020-05795-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Previous studies indicate that breast cancer molecular subtypes differ with respect to their dependency on autophagy, but our knowledge of the differential expression and prognostic significance of autophagy-related biomarkers in breast cancer is limited. METHODS Immunohistochemistry (IHC) was performed on tissue microarrays from a large population of 3992 breast cancer patients divided into training and validation cohorts. Consensus staining scores were used to evaluate the expression levels of autophagy proteins LC3B, ATG4B, and GABARAP and determine the associations with clinicopathological variables and molecular biomarkers. Survival analyses were performed using the Kaplan-Meier function and Cox proportional hazards regression models. RESULTS We found subtype-specific expression differences for ATG4B, with its expression lowest in basal-like breast cancer and highest in Luminal A, but there were no significant associations with patient prognosis. LC3B and GABARAP levels were highest in basal-like breast cancers, and high levels were associated with worse outcomes across all subtypes (DSS; GABARAP: HR 1.43, LC3B puncta: HR 1.43). High ATG4B levels were associated with ER, PR, and BCL2 positivity, while high LC3B and GABARAP levels were associated with ER, PR, and BCL2 negativity, as well as EGFR, HER2, HER3, CA-IX, PD-L1 positivity, and high Ki67 index (p < 0.05 for all associations). Exploratory multi-marker analysis indicated that the combination of ATG4B and GABARAP with LC3B could be useful for further stratifying patient outcomes. CONCLUSIONS ATG4B levels varied across breast cancer subtypes but did not show prognostic significance. High LC3B expression and high GABARAP expression were both associated with poor prognosis and with clinicopathological characteristics of aggressive disease phenotypes in all breast cancer subtypes.
Collapse
|
10
|
Agrotis A, Ketteler R. On ATG4B as Drug Target for Treatment of Solid Tumours-The Knowns and the Unknowns. Cells 2019; 9:cells9010053. [PMID: 31878323 PMCID: PMC7016753 DOI: 10.3390/cells9010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an evolutionary conserved stress survival pathway that has been shown to play an important role in the initiation, progression, and metastasis of multiple cancers; however, little progress has been made to date in translation of basic research to clinical application. This is partially due to an incomplete understanding of the role of autophagy in the different stages of cancer, and also to an incomplete assessment of potential drug targets in the autophagy pathway. While drug discovery efforts are on-going to target enzymes involved in the initiation phase of the autophagosome, e.g., unc51-like autophagy activating kinase (ULK)1/2, vacuolar protein sorting 34 (Vps34), and autophagy-related (ATG)7, we propose that the cysteine protease ATG4B is a bona fide drug target for the development of anti-cancer treatments. In this review, we highlight some of the recent advances in our understanding of the role of ATG4B in autophagy and its relevance to cancer, and perform a critical evaluation of ATG4B as a druggable cancer target.
Collapse
|
11
|
Khan T, Relitti N, Brindisi M, Magnano S, Zisterer D, Gemma S, Butini S, Campiani G. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Med Res Rev 2019; 40:1002-1060. [PMID: 31742748 DOI: 10.1002/med.21646] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinomas (OSCC) and esophageal squamous cell carcinomas (ESCC) exhibit a survival rate of less than 60% and 40%, respectively. Late-stage diagnosis and lack of effective treatment strategies make both OSCC and ESCC a significant health burden. Autophagy, a lysosome-dependent catabolic process, involves the degradation of intracellular components to maintain cell homeostasis. Targeting autophagy has been highlighted as a feasible therapeutic strategy with clinical utility in cancer treatment, although its associated regulatory mechanisms remain elusive. The detection of relevant biomarkers in biological fluids has been anticipated to facilitate early diagnosis and/or prognosis for these tumors. In this context, recent studies have indicated the presence of specific proteins and small RNAs, detectable in circulating plasma and serum, as biomarkers. Interestingly, the interplay between biomarkers (eg, exosomal microRNAs) and autophagic processes could be exploited in the quest for targeted and more effective therapies for OSCC and ESCC. In this review, we give an overview of the available biomarkers and innovative targeted therapeutic strategies, including the application of autophagy modulators in OSCC and ESCC. Additionally, we provide a viewpoint on the state of the art and on future therapeutic perspectives combining the early detection of relevant biomarkers with drug discovery for the treatment of OSCC and ESCC.
Collapse
Affiliation(s)
- Tuhina Khan
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico IL, Napoli, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| |
Collapse
|
12
|
Pérez-Hernández M, Arias A, Martínez-García D, Pérez-Tomás R, Quesada R, Soto-Cerrato V. Targeting Autophagy for Cancer Treatment and Tumor Chemosensitization. Cancers (Basel) 2019; 11:E1599. [PMID: 31635099 PMCID: PMC6826429 DOI: 10.3390/cancers11101599] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a tightly regulated catabolic process that facilitates nutrient recycling from damaged organelles and other cellular components through lysosomal degradation. Deregulation of this process has been associated with the development of several pathophysiological processes, such as cancer and neurodegenerative diseases. In cancer, autophagy has opposing roles, being either cytoprotective or cytotoxic. Thus, deciphering the role of autophagy in each tumor context is crucial. Moreover, autophagy has been shown to contribute to chemoresistance in some patients. In this regard, autophagy modulation has recently emerged as a promising therapeutic strategy for the treatment and chemosensitization of tumors, and has already demonstrated positive clinical results in patients. In this review, the dual role of autophagy during carcinogenesis is discussed and current therapeutic strategies aimed at targeting autophagy for the treatment of cancer, both under preclinical and clinical development, are presented. The use of autophagy modulators in combination therapies, in order to overcome drug resistance during cancer treatment, is also discussed as well as the potential challenges and limitations for the use of these novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Alain Arias
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO), Universidad de La Frontera, Temuco 4811230, Chile.
- Research Group of Health Sciences, Faculty of Health Sciences, Universidad Adventista de Chile, Chillán 3780000, Chile.
| | - David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, 09001 Burgos, Spain.
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| |
Collapse
|
13
|
Wen ZP, Zeng WJ, Chen YH, Li H, Wang JY, Cheng Q, Yu J, Zhou HH, Liu ZZ, Xiao J, Chen XP. Knockdown ATG4C inhibits gliomas progression and promotes temozolomide chemosensitivity by suppressing autophagic flux. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:298. [PMID: 31291988 PMCID: PMC6617611 DOI: 10.1186/s13046-019-1287-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Gliomas are the most common primary tumors in central nervous system. Despite advances in diagnosis and therapy, the prognosis of glioma remains gloomy. Autophagy is a cellular catabolic process that degrades proteins and damaged organelles, which is implicated in tumorigenesis and tumor progression. Autophagy related 4C cysteine peptidase (ATG4C) is an autophagy regulator responsible for cleaving of pro-LC3 and delipidation of LC3 II. This study was designed to investigate the role of ATG4C in glioma progression and temozolomide (TMZ) chemosensitivity. METHODS The association between ATG4C mRNA expression and prognosis of gliomas patients was analyzed using the TCGA datasets. The role of ATG4C in proliferation, apoptosis, autophagy, and TMZ chemosensitivity were investigated by silencing ATG4C in vivo. Ectopic xenograft nude mice model was established to investigate the effects of ATG4C on glioma growth in vivo. RESULTS The median overall survival (OS) time of patients with higher ATG4C expression was significantly reduced (HR: 1.48, p = 9.91 × 10- 7). ATG4C mRNA expression was evidently increased with the rising of glioma grade (p = 2.97 × 10- 8). Knockdown ATG4C suppressed glioma cells proliferation by inducing cell cycle arrest at G1 phase. ATG4C depletion suppressed autophagy and triggered apoptosis through ROS accumulation. Depletion of ATG4C suppressed TMZ-activated autophagy and promoted sensitivity of glioma cells to TMZ. Additionally, ATG4C knockdown suppressed the growth of glioma remarkably in nude mice. CONCLUSION ATG4C is a potential prognostic predictor for glioma patient. Targeting ATG4C may provide promising therapy strategies for gliomas treatment.
Collapse
Affiliation(s)
- Zhi-Peng Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Wen-Jing Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yan-Hong Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, Hunan, People's Republic of China
| | - He Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jie-Ya Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Zheng-Zheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan province, China.
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
14
|
Targeting ATG4 in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11050649. [PMID: 31083460 PMCID: PMC6562779 DOI: 10.3390/cancers11050649] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a lysosome-mediated degradation pathway that enables the degradation and recycling of cytoplasmic components to sustain metabolic homoeostasis. Recently, autophagy has been reported to have an astonishing number of connections to cancer, as tumor cells require proficient autophagy in response to metabolic and therapeutic stresses to sustain cell proliferation. Autophagy-related gene 4 (ATG4) is essential for autophagy by affecting autophagosome formation through processing full-length microtubule-associated protein 1A/1B-light chain 3 (pro-LC3) and lipidated LC3. An increasing amount of evidence suggests that ATG4B expression is elevated in certain types of cancer, implying that ATG4B is a potential anticancer target. In this review, we address the central roles of ATG4B in the autophagy machinery and in targeted cancer therapy. Specifically, we discuss how pharmacologically inhibiting ATG4B can benefit cancer therapies.
Collapse
|
15
|
Bosc D, Vezenkov L, Bortnik S, An J, Xu J, Choutka C, Hannigan AM, Kovacic S, Loo S, Clark PGK, Chen G, Guay-Ross RN, Yang K, Dragowska WH, Zhang F, Go NE, Leung A, Honson NS, Pfeifer TA, Gleave M, Bally M, Jones SJ, Gorski SM, Young RN. A new quinoline-based chemical probe inhibits the autophagy-related cysteine protease ATG4B. Sci Rep 2018; 8:11653. [PMID: 30076329 PMCID: PMC6076261 DOI: 10.1038/s41598-018-29900-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 07/17/2018] [Indexed: 01/06/2023] Open
Abstract
The cysteine protease ATG4B is a key component of the autophagy machinery, acting to proteolytically prime and recycle its substrate MAP1LC3B. The roles of ATG4B in cancer and other diseases appear to be context dependent but are still not well understood. To help further explore ATG4B functions and potential therapeutic applications, we employed a chemical biology approach to identify ATG4B inhibitors. Here, we describe the discovery of 4-28, a styrylquinoline identified by a combined computational modeling, in silico screening, high content cell-based screening and biochemical assay approach. A structure-activity relationship study led to the development of a more stable and potent compound LV-320. We demonstrated that LV-320 inhibits ATG4B enzymatic activity, blocks autophagic flux in cells, and is stable, non-toxic and active in vivo. These findings suggest that LV-320 will serve as a relevant chemical tool to study the various roles of ATG4B in cancer and other contexts.
Collapse
Affiliation(s)
- D Bosc
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Inserm, Institut Pasteur de Lille, U1177 Drugs & Molecules for Living Systems, Université de Lille, F-59000, Lille, France
| | - L Vezenkov
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15 avenue Charles Flahault, 34093, Montpellier, France
| | - S Bortnik
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada
| | - J An
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - J Xu
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - C Choutka
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - A M Hannigan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - S Kovacic
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - S Loo
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - P G K Clark
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - G Chen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - R N Guay-Ross
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - K Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - W H Dragowska
- Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - F Zhang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - N E Go
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - A Leung
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - N S Honson
- Centre for Drug Research and Development, 2405 Wesbrook Mall - 4th Floor, Vancouver, BC, V6T 1Z3, Canada
| | - T A Pfeifer
- Centre for Drug Research and Development, 2405 Wesbrook Mall - 4th Floor, Vancouver, BC, V6T 1Z3, Canada
| | - M Gleave
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - M Bally
- Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - S J Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - S M Gorski
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - R N Young
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
16
|
Chu J, Fu Y, Xu J, Zheng X, Gu Q, Luo X, Dai Q, Zhang S, Liu P, Hong L, Li M. ATG4B inhibitor FMK-9a induces autophagy independent on its enzyme inhibition. Arch Biochem Biophys 2018; 644:29-36. [PMID: 29510087 DOI: 10.1016/j.abb.2018.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/07/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Atg4 is essential for autophagosome formation and Atg8 recycle with the function of processing the precursor and the lipidated Atg8-family proteins. Abnormal autophagic activity is involved in a variety of pathophysiological diseases and ATG4B is of interest as a potential therapeutic target due to its key roles in autophagy process. So ATG4B inhibitors are highly needed. FMK-9a is the most potent inhibitor reported so far. In this study, we confirmed FMK-9a could suppress ATG4B activity in vitro and in cells, with an IC50 of 260 nM. Besides, FMK-9a could also attenuate the process of cleavage of pro-LC3 and the delipidation of LC3-PE. Importantly, FMK-9a could induce autophagy both in HeLa and MEF cells regardless of its inhibition on ATG4B activity. Moreover, FMK-9a induced autophagy required FIP200 and ATG5. In conclusion, we demonstrated that ATG4B inhibitor FMK-9a induces autophagy independent on its enzyme inhibition. Thus, FMK-9a may plays multiple roles in autophagy process and cannot simply take it as an ATG4B inhibitor.
Collapse
Affiliation(s)
- Jiaqi Chu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Yuanyuan Fu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Jiecheng Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Xueping Zheng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Qianqian Gu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Qi Dai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Shuxian Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Liang Hong
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China.
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
17
|
Identification of breast cancer cell subtypes sensitive to ATG4B inhibition. Oncotarget 2018; 7:66970-66988. [PMID: 27556700 PMCID: PMC5341851 DOI: 10.18632/oncotarget.11408] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/09/2016] [Indexed: 01/22/2023] Open
Abstract
Autophagy, a lysosome-mediated degradation and recycling process, functions in advanced malignancies to promote cancer cell survival and contribute to cancer progression and drug resistance. While various autophagy inhibition strategies are under investigation for cancer treatment, corresponding patient selection criteria for these autophagy inhibitors need to be developed. Due to its central roles in the autophagy process, the cysteine protease ATG4B is one of the autophagy proteins being pursued as a potential therapeutic target. In this study, we investigated the expression of ATG4B in breast cancer, a heterogeneous disease comprised of several molecular subtypes. We examined a panel of breast cancer cell lines, xenograft tumors, and breast cancer patient specimens for the protein expression of ATG4B, and found a positive association between HER2 and ATG4B protein expression. We showed that HER2-positive cells, but not HER2-negative breast cancer cells, require ATG4B to survive under stress. In HER2-positive cells, cytoprotective autophagy was dependent on ATG4B under both starvation and HER2 inhibition conditions. Combined knockdown of ATG4B and HER2 by siRNA resulted in a significant decrease in cell viability, and the combination of ATG4B knockdown with trastuzumab resulted in a greater reduction in cell viability compared to trastuzumab treatment alone, in both trastuzumab-sensitive and -resistant HER2 overexpressing breast cancer cells. Together these results demonstrate a novel association of ATG4B positive expression with HER2 positive breast cancers and indicate that this subtype is suitable for emerging ATG4B inhibition strategies.
Collapse
|
18
|
Ni Z, He J, Wu Y, Hu C, Dai X, Yan X, Li B, Li X, Xiong H, Li Y, Li S, Xu L, Li Y, Lian J, He F. AKT-mediated phosphorylation of ATG4B impairs mitochondrial activity and enhances the Warburg effect in hepatocellular carcinoma cells. Autophagy 2018; 14:685-701. [PMID: 29165041 DOI: 10.1080/15548627.2017.1407887] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phosphorylation is a major type of post-translational modification, which can influence the cellular physiological function. ATG4B, a key macroautophagy/autophagy-related protein, has a potential effect on the survival of tumor cells. However, the role of ATG4B phosphorylation in cancers is still unknown. In this study, we identified a novel phosphorylation site at Ser34 of ATG4B induced by AKT in HCC cells. The phosphorylation of ATG4B at Ser34 had little effect on autophagic flux, but promoted the Warburg effect including the increase of L-lactate production and glucose consumption, and the decrease of oxygen consumption in HCC cells. The Ser34 phosphorylation of ATG4B also contributed to the impairment of mitochondrial activity including the inhibition of F1Fo-ATP synthase activity and the elevation of mitochondrial ROS in HCC cells. Moreover, the phosphorylation of ATG4B at Ser34 enhanced its mitochondrial location and the subsequent colocalization with F1Fo-ATP synthase in HCC cells. Furthermore, recombinant human ATG4B protein suppressed the activity of F1Fo-ATP synthase in MgATP submitochondrial particles from patient-derived HCC tissues in vitro. In brief, our results demonstrate for the first time that the phosphorylation of ATG4B at Ser34 participates in the metabolic reprogramming of HCC cells via repressing mitochondrial function, which possibly results from the Ser34 phosphorylation-induced mitochondrial enrichment of ATG4B and the subsequent inhibition of F1Fo-ATP synthase activity. Our findings reveal a noncanonical working pattern of ATG4B under pathological conditions, which may provide a scientific basis for developing novel strategies for HCC treatment by targeting ATG4B and its Ser34 phosphorylation.
Collapse
Affiliation(s)
- Zhenhong Ni
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Jintao He
- b Battalion 17 of Students , College of Preventive Medicine, Third Military Medical University , Chongqing, China
| | - Yaran Wu
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Changjiang Hu
- c Department of Gastroenterology , Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Xufang Dai
- d College of Educational Science, Chongqing Normal University , Chongqing , China
| | - Xiaojing Yan
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Bo Li
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Xinzhe Li
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Haojun Xiong
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Yuming Li
- e Department of Hepatobiliary Surgery , Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Song Li
- f Center for Pharmacogenetics , Department of Pharmaceutical Sciences, School of Pharmacy , University of Pittsburgh , Pittsburgh , PA , USA
| | - Liang Xu
- g Department of Molecular Biosciences and Department of Radiation Oncology , University of Kansas Cancer Center, University of Kansas , Lawrence , KS , USA
| | - Yongsheng Li
- h Institute of Cancer, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Jiqin Lian
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Fengtian He
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| |
Collapse
|
19
|
He S, Li Q, Jiang X, Lu X, Feng F, Qu W, Chen Y, Sun H. Design of Small Molecule Autophagy Modulators: A Promising Druggable Strategy. J Med Chem 2017; 61:4656-4687. [PMID: 29211480 DOI: 10.1021/acs.jmedchem.7b01019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a lysosome-dependent mechanism of intracellular degradation for maintaining cellular homeostasis. Dysregulation of autophagy has been verified to be closely linked to a number of human diseases. Consequently, targeting autophagy has been highlighted as a novel therapeutic strategy for clinical utility. Mounting efforts have been done in recent years to elucidate the mechanisms of autophagy regulation and to identify potential modulators of autophagy. However, most of the compounds target complex and multifaceted pathway and proteins, which may limit the evaluation of therapeutic value and in depth studies as chemical tools. Therefore, the development of specific and active autophagy modulators becomes most desirable. Here, we briefly review the regulation of autophagy and then summarize the recent development of small molecules targeting the core autophagic machinery. Finally, we put forward our viewpoints on the current problems, with the aim to provide reference for future drug discovery and potential therapeutic perspectives on novel, potent, selective autophagy modulators.
Collapse
Affiliation(s)
- Siyu He
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Qi Li
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Xueyang Jiang
- Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Xin Lu
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Feng Feng
- Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Wei Qu
- Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Yao Chen
- School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , 210023 , China
| | - Haopeng Sun
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
20
|
“In vivo self-assembled” nanoprobes for optimizing autophagy-mediated chemotherapy. Biomaterials 2017; 141:199-209. [DOI: 10.1016/j.biomaterials.2017.06.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022]
|
21
|
Maruyama T, Noda NN. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. J Antibiot (Tokyo) 2017; 71:ja2017104. [PMID: 28901328 PMCID: PMC5799747 DOI: 10.1038/ja.2017.104] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 12/15/2022]
Abstract
Autophagy is an intracellular degradation system that contributes to cellular homeostasis through degradation of various targets such as proteins, organelles and microbes. Since autophagy is related to various diseases such as infection, neurodegenerative diseases and cancer, it is attracting attention as a new therapeutic target. Autophagy is mediated by dozens of autophagy-related (Atg) proteins, among which Atg4 is the sole protease that regulates autophagy through the processing and deconjugating of Atg8. As the Atg4 activity is essential and highly specific to autophagy, Atg4 is a prospective target for developing autophagy-specific inhibitors. In this review article, we summarize our current knowledge of the structure, function and regulation of Atg4 including efforts to develop Atg4-specific inhibitors.The Journal of Antibiotics advance online publication, 13 September 2017; doi:10.1038/ja.2017.104.
Collapse
Affiliation(s)
- Tatsuro Maruyama
- Laboratory of Structural Biology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Nobuo N Noda
- Laboratory of Structural Biology, Institute of Microbial Chemistry, Tokyo, Japan
| |
Collapse
|
22
|
Lin YX, Qiao SL, Wang Y, Zhang RX, An HW, Ma Y, Rajapaksha RPYJ, Qiao ZY, Wang L, Wang H. An in Situ Intracellular Self-Assembly Strategy for Quantitatively and Temporally Monitoring Autophagy. ACS NANO 2017; 11:1826-1839. [PMID: 28112893 DOI: 10.1021/acsnano.6b07843] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Autophagy plays a crucial role in the metabolic process. So far, conventional methods are incapable of rapid, precise, and real-time monitoring of autophagy in living objects. Herein, we describe an in situ intracellular self-assembly strategy for quantitative and temporal determination of autophagy in living objectives. The intelligent building blocks (DPBP) are composed by a bulky dendrimer as a carrier, a bis(pyrene) derivative (BP) as a signal molecule, and a peptide linker as a responsive unit that can be cleaved by an autophagy-specific enzyme, i.e., ATG4B. DPBP maintains the quenched fluorescence with monomeric BP. However, the responsive peptide is specifically tailored upon activation of autophagy, resulting in self-aggregation of BP residues which emit a 30-fold enhanced fluorescence. By measuring the intensity of fluorescent signal, we are able to quantitatively evaluate the autophagic level. In comparison with traditional techniques, such as TEM, Western blot, and GFP-LC3, the reliability and accuracy of this method are finally validated. We believe this in situ intracellular self-assembly strategy provides a rapid, effective, real-time, and quantitative method for monitoring autophagy in living objects, and it will be a useful tool for autophagy-related fundamental and clinical research.
Collapse
Affiliation(s)
- Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Sheng-Lin Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Ruo-Xin Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yang Ma
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - R P Yeshan J Rajapaksha
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
23
|
Abstract
Macroautophagy (autophagy hereafter) captures intracellular proteins and organelles and degrades them in lysosomes. The degradation breakdown products are released from lysosomes and recycled into metabolic and biosynthetic pathways. Basal autophagy provides protein and organelle quality control by eliminating damaged cellular components. Starvation-induced autophagy recycles intracellular components into metabolic pathways to sustain mitochondrial metabolic function and energy homeostasis. Recycling by autophagy is essential for yeast and mammals to survive starvation through intracellular nutrient scavenging. Autophagy suppresses degenerative diseases and has a context-dependent role in cancer. In some models, cancer initiation is suppressed by autophagy. By preventing the toxic accumulation of damaged protein and organelles, particularly mitochondria, autophagy limits oxidative stress, chronic tissue damage, and oncogenic signaling, which suppresses cancer initiation. This suggests a role for autophagy stimulation in cancer prevention, although the role of autophagy in the suppression of human cancer is unclear. In contrast, some cancers induce autophagy and are dependent on autophagy for survival. Much in the way that autophagy promotes survival in starvation, cancers can use autophagy-mediated recycling to maintain mitochondrial function and energy homeostasis to meet the elevated metabolic demand of growth and proliferation. Thus, autophagy inhibition may be beneficial for cancer therapy. Moreover, tumors are more autophagy-dependent than normal tissues, suggesting that there is a therapeutic window. Despite these insights, many important unanswered questions remain about the exact mechanisms of autophagy-mediated cancer suppression and promotion, how relevant these observations are to humans, and whether the autophagy pathway can be modulated therapeutically in cancer. See all articles in this CCR Focus section, "Cell Death and Cancer Therapy."
Collapse
Affiliation(s)
- Eileen White
- Rutgers Cancer Institute of New Jersey (CINJ), New Brunswick, New Jersey. Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey.
| | - Janice M Mehnert
- Rutgers Cancer Institute of New Jersey (CINJ), New Brunswick, New Jersey. Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Chang S Chan
- Rutgers Cancer Institute of New Jersey (CINJ), New Brunswick, New Jersey. Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
24
|
Qiu Z, Kuhn B, Aebi J, Lin X, Ding H, Zhou Z, Xu Z, Xu D, Han L, Liu C, Qiu H, Zhang Y, Haap W, Riemer C, Stahl M, Qin N, Shen HC, Tang G. Discovery of Fluoromethylketone-Based Peptidomimetics as Covalent ATG4B (Autophagin-1) Inhibitors. ACS Med Chem Lett 2016; 7:802-6. [PMID: 27563406 DOI: 10.1021/acsmedchemlett.6b00208] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/25/2016] [Indexed: 01/19/2023] Open
Abstract
ATG4B or autophagin-1 is a cysteine protease that cleaves ATG8 family proteins. ATG4B plays essential roles in the autophagosome formation and the autophagy pathway. Herein we disclose the design and structural modifications of a series of fluoromethylketone (FMK)-based peptidomimetics as highly potent ATG4B inhibitors. Their structure-activity relationship (SAR) and protease selectivity are also discussed.
Collapse
Affiliation(s)
- Zongxing Qiu
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| | - Bernd Kuhn
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse
124, 4070 Basel, Switzerland
| | - Johannes Aebi
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse
124, 4070 Basel, Switzerland
| | - Xianfeng Lin
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| | - Haiyuan Ding
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| | - Zheng Zhou
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| | - Zhiheng Xu
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| | - Danqing Xu
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| | - Li Han
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| | - Cheng Liu
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| | - Hongxia Qiu
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| | - Yuxia Zhang
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| | - Wolfgang Haap
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse
124, 4070 Basel, Switzerland
| | - Claus Riemer
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse
124, 4070 Basel, Switzerland
| | - Martin Stahl
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse
124, 4070 Basel, Switzerland
| | - Ning Qin
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| | - Hong C. Shen
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| | - Guozhi Tang
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Shanghai, 720 Cailun Road, Shanghai 201203, China
| |
Collapse
|
25
|
Zhang L, Guo M, Li J, Zheng Y, Zhang S, Xie T, Liu B. Systems biology-based discovery of a potential Atg4B agonist (Flubendazole) that induces autophagy in breast cancer. MOLECULAR BIOSYSTEMS 2016; 11:2860-6. [PMID: 26299935 DOI: 10.1039/c5mb00466g] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to explore the autophagy-related protein 4B(ATG4B) and its targeted candidate agonist in triple-negative breast cancer (TNBC) therapy. In this study, the identification of Atg4B as a novel breast cancer target for screening candidate small molecular agonists was performed by phylogenetic analysis, network construction, molecular modelling, molecular docking and molecular dynamics (MD) simulation. In vitro, MTT assay, electron microscopy, western blot and ROS measurement were used for validating the efficacy of the candidate compounds. We used the phylogenetic analysis of Atg4B and constructed their protein-protein interaction (PPI) network. Also, we screened target compounds of Atg4 proteins from Drugbank and ZINC. Flubendazole was validated for its anti-proliferative efficacy in MDA-MB-231 cells. Further MD simulation results supported the stable interaction between Flubendazole and Atg4B. Moreover, Flubendazole induced autophagy and increased ROS production. In conclusion, in silico analysis and experimental validation together demonstrate that Flubendazole can target Atg4B in MDA-MB-231 cells and induce autophagy, which may shed light on the exploration of this compound as a potential new Atg4B targeted drug for future TNBC therapy.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Alirezaei M, Flynn CT, Wood MR, Harkins S, Whitton JL. Coxsackievirus can exploit LC3 in both autophagy-dependent and -independent manners in vivo. Autophagy 2016; 11:1389-407. [PMID: 26090585 DOI: 10.1080/15548627.2015.1063769] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
RNA viruses modify intracellular membranes to produce replication scaffolds. In pancreatic cells, coxsackievirus B3 (CVB3) hijacks membranes from the autophagy pathway, and in vivo disruption of acinar cell autophagy dramatically delays CVB3 replication. This is reversed by expression of GFP-LC3, indicating that CVB3 may acquire membranes from an alternative, autophagy-independent, source(s). Herein, using 3 recombinant CVB3s (rCVB3s) encoding different proteins (proLC3, proLC3(G120A), or ATG4B(C74A)), we show that CVB3 is, indeed, flexible in its utilization of cellular membranes. When compared with a control rCVB3, all 3 viruses replicated to high titers in vivo, and caused severe pancreatitis. Most importantly, each virus appeared to subvert membranes in a unique manner. The proLC3 virus produced a large quantity of LC3-I which binds to phosphatidylethanolamine (PE), affording access to the autophagy pathway. The proLC3(G120A) protein cannot attach to PE, and instead binds to the ER-resident protein SEL1L, potentially providing an autophagy-independent source of membranes. Finally, the ATG4B(C74A) protein sequestered host cell LC3-I, causing accumulation of immature phagophores, and massive membrane rearrangement. Taken together, our data indicate that some RNA viruses can exploit a variety of different intracellular membranes, potentially maximizing their replication in each of the diverse cell types that they infect in vivo.
Collapse
Affiliation(s)
- Mehrdad Alirezaei
- a Department of Immunology and Microbial Science; The Scripps Research Institute ; La Jolla , CA USA
| | | | | | | | | |
Collapse
|
27
|
Wu Y, Ni Z, Yan X, Dai X, Hu C, Zheng Y, He F, Lian J. Targeting the MIR34C-5p-ATG4B-autophagy axis enhances the sensitivity of cervical cancer cells to pirarubicin. Autophagy 2016; 12:1105-17. [PMID: 27097054 DOI: 10.1080/15548627.2016.1173798] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pirarubicin (THP) is a newer generation anthracycline anticancer drug. In the clinic, THP and THP-based combination therapies have been demonstrated to be effective against various tumors without severe side effects. However, previous clinical studies have shown that most patients with cervical cancer are not sensitive to THP treatment, and the associated mechanisms are not clear. Consistent with the clinical study, we confirmed that cervical cancer cells were resistant to THP in vitro and in vivo. Our data demonstrated that THP induced a protective macroautophagy/autophagy response in cervical cancer cells, and suppression of this autophagy dramatically enhanced the cytotoxicity of THP. By scanning the mRNA level change of autophagy-related genes, we found that the upregulation of ATG4B (autophagy-related 4B cysteine peptidase) plays an important role in THP-induced autophagy. Moreover, THP increased the mRNA level of ATG4B in cervical cancer cells by promoting mRNA stability without influencing its transcription. Furthermore, THP triggered a downregulation of MIR34C-5p, which was associated with the upregulation of ATG4B and autophagy induction. Overexpression of MIR34C-5p significantly decreased the level of ATG4B and attenuated autophagy, accompanied by enhanced cell death and apoptosis in THP-treated cervical cancer cells. These results for the first time reveal the presence of a MIR34C-5p-ATG4B-autophagy signaling axis in THP-treated cervical cancer cells in vitro and in vivo, and the axis, at least partially, accounts for the THP nonsensitivity in cervical cancer patients. This study may provide a new insight for improving the chemotherapeutic effect of THP, which may be beneficial to the further clinical application of THP in cervical cancer treatment.
Collapse
Affiliation(s)
- Yaran Wu
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing , China
| | - Zhenhong Ni
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing , China
| | - Xiaojing Yan
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing , China
| | - Xufang Dai
- b Department of Educational College , Chongqing Normal University , Chongqing , China
| | - Changjiang Hu
- c Department of Gastroenterology , Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Yingru Zheng
- d Department of Obstetrics and Gynecology , Daping Hospital, Research Institute of Surgery, Third Military Medical University , Chongqing , China
| | - Fengtian He
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing , China
| | - Jiqin Lian
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing , China
| |
Collapse
|
28
|
Unraveling the roles of Atg4 proteases from autophagy modulation to targeted cancer therapy. Cancer Lett 2016; 373:19-26. [DOI: 10.1016/j.canlet.2016.01.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 11/22/2022]
|
29
|
Ni Z, Gong Y, Dai X, Ding W, Wang B, Gong H, Qin L, Cheng P, Li S, Lian J, He F. AU4S: a novel synthetic peptide to measure the activity of ATG4 in living cells. Autophagy 2016; 11:403-15. [PMID: 25831015 DOI: 10.1080/15548627.2015.1009773] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ATG4 plays a key role in autophagy induction, but the methods for monitoring ATG4 activity in living cells are limited. Here we designed a novel fluorescent peptide named AU4S for noninvasive detection of ATG4 activity in living cells, which consists of the cell-penetrating peptide (CPP), ATG4-recognized sequence "GTFG," and the fluorophore FITC. Additionally, an ATG4-resistant peptide AG4R was used as a control. CPP can help AU4S or AG4R to penetrate cell membrane efficiently. AU4S but not AG4R can be recognized and cleaved by ATG4, leading to the change of fluorescence intensity. Therefore, the difference between AU4S- and AG4R-measured fluorescence values in the same sample, defined as "F-D value," can reflect ATG4 activity. By detecting the F-D values, we found that ATG4 activity paralleled LC3B-II levels in rapamycin-treated cells, but neither paralleled LC3B-II levels in starved cells nor presented a correlation with LC3B-II accumulation in WBCs from healthy donors or leukemia patients. However, when DTT was added to the system, ATG4 activity not only paralleled LC3B-II levels in starved cells in the presence or absence of autophagy inhibitors, but also presented a positive correlation with LC3B-II accumulation in WBCs from leukemia patients (R(2) = 0.5288). In conclusion, this study provides a convenient, rapid, and quantitative method to monitor ATG4 activity in living cells, which may be beneficial to basic and clinical research on autophagy.
Collapse
Key Words
- 3-MA, 3-methyladenine
- AG4R, ATG4-resistant peptide
- ATG4
- ATG4, autophagy-related 4, cysteine peptidase
- AU4S
- AU4S, autophagy-related 4 substrate
- Ac, acetyl
- CFP, cyan fluorescent protein
- CPP, cell-penetrating peptide
- CQ, chloroquine
- DTT, dithiothreitol
- EBSS, Earle's balanced salt solution
- FITC, fluorescein isothiocyanate
- HIV, human immunodeficiency virus
- LC3
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- NAC, N-acetyl-L-cysteine
- NRK, normal rat kidney cell line
- PAGE, polyacrylamide gel electrophoresis
- PBS, phosphate-buffered saline
- PE, phosphatidylethanolamine
- PLA2, phospholipase A2
- PMSF, phenylmethanesulfonyl fluoride
- PtdIns3K, phosphatidylinositol 3-kinase
- ROS
- ROS, reactive oxygen species
- SDS, sodium dodecyl sulfate
- WBCs, white blood cells
- YFP, yellow fluorescent protein
- autophagy
Collapse
Affiliation(s)
- Zhenhong Ni
- a Department of Biochemistry and Molecular Biology; College of Basic Medical Sciences ; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
SLC27A4 regulate ATG4B activity and control reactions to chemotherapeutics-induced autophagy in human lung cancer cells. Tumour Biol 2015; 37:6943-52. [PMID: 26662804 DOI: 10.1007/s13277-015-4587-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022] Open
Abstract
Autophagy is a highly conserved self-digestion process to promote cell survival in response to nutrient starvation and other metabolic stresses in eukaryotic cells. Dysregulation of this system is linked with numerous human diseases, including cancers. ATG4B, a cysteine protease required for autophagy, cleaves the C-terminal amino acid of ATG8 family proteins to reveal a C-terminal glycine which is necessary for ATG8 proteins conjugation to phosphatidylethanolamine (PE) and insertion to autophagosome precursor membranes. However, the mechanism governing the protein stability of ATG4B in human cancer cells is not fully understood. In this study, tandem affinity purification/mass spectrometry (TAP/MS) were applied to the investigation of the interaction between ATG4B and potential candidate proteins. Then, co-immunoprecipitation (Co-IP) and GST-pull down assays indicated that the candidate protein-SLC27A4 directly interacts with ATG4B in lung cancer cell lines. Intriguingly, we also found that ATG4B protein expression was increased in parallel with SLC27A4 in lung cancer cell lines as well as lung tumor tissues. However, relevant functional research of SLC27A4 in autophagy or oncotherapy has not been investigated before. In this study, we hypothesized that SLC27A4 might act as a mediator of ATG4B, in some respects, through the protein binding directly. Further, we found that the high expression level of SLC7A4 increased the ATG4B stability and was conducive to rapid reaction to everolimus (RAD001)-induced autophagy in human lung cancer cells. As expected, the results showed that SLC27A4 could help to maintain the protein stability and intracellular concentration of ATG4B, thereby triggering rapid autophagy through releasing ATG4B to cytoplasm under conditions of reduced nutrient availability or during stress of chemotherapy in lung cancer cells. Reduced SLC27A4 by si-RNA also showed the enhanced therapeutic efficiency of everolimus, doxorubicin, and cisplatin in human lung cancer cell lines. Collectively, this study may help researchers better understand the mechanism of autophagy vitality in human cancers and SLC27A4/ATG4B complex might act as a new potential therapeutic target of lung tumor chemotherapy.
Collapse
|
31
|
Autophagic Cell Death by Poncirus trifoliata Rafin., a Traditional Oriental Medicine, in Human Oral Cancer HSC-4 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26221173 PMCID: PMC4499625 DOI: 10.1155/2015/394263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Poncirus trifoliata Rafin. has long been used as anti-inflammatory and antiallergic agent to treat gastrointestinal disorders and pulmonary diseases such as indigestion, constipation, chest fullness, chest pain, bronchitis, and sputum in Korea. P. trifoliata extract has recently been reported to possess anticancer properties; however, its mechanisms of action remain unclear. In this study, its antiproliferative effects and possible mechanisms were investigated in HSC-4 cells. The methanol extract of P. trifoliata (MEPT) significantly decreased the proliferation of HSC-4 cells (inhibitory concentration (IC)50 = 142.7 μg/mL) in a dose-dependent manner. While there were no significant changes observed upon cell cycle analysis and ANNEXIN V and 7-AAD double staining in the MEPT-treated groups, the intensity of acidic vesicular organelle (AVO) staining and microtubule-associated protein 1 light chain (LC) 3-II protein expression increased in response to MEPT treatment. Furthermore, 3-methyladenine (3-MA, autophagy inhibitor) effectively blocked the MEPT-induced cytotoxicity of HSC-4 cells and triggered the activation of p38 and extracellular signal-regulated kinases (ERK) proteins. Taken together, our results indicate that MEPT is a potent autophagy agonist in oral cancer cells with antitumor therapeutic potential that acts through the mitogen-activated protein kinase (MAPK) pathway.
Collapse
|
32
|
Fernández ÁF, López-Otín C. The functional and pathologic relevance of autophagy proteases. J Clin Invest 2015; 125:33-41. [PMID: 25654548 DOI: 10.1172/jci73940] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a well-conserved catabolic process essential for cellular homeostasis. First described in yeast as an adaptive response to starvation, this pathway is also present in higher eukaryotes, where it is triggered by stress signals such as damaged organelles or pathogen infection. Autophagy is characterized at the cellular level by the engulfment of portions of the cytoplasm in double-membrane structures called autophagosomes. Autophagosomes fuse with lysosomes, resulting in degradation of the inner autophagosomal membrane and luminal content. This process is coordinated by complex molecular systems, including the ATG8 ubiquitin-like conjugation system and the ATG4 cysteine proteases, which are implicated in the formation, elongation, and fusion of these autophagic vesicles. In this Review, we focus on the diverse functional roles of the autophagins, a protease family formed by the four mammalian orthologs of yeast Atg4. We also address the dysfunctional expression of these proteases in several pathologic conditions such as cancer and inflammation and discuss potential therapies based on their modulation.
Collapse
|