1
|
Lyu M, Iida H, Eekhout T, Mäkelä M, Muranen S, Ye L, Vatén A, Wybouw B, Wang X, De Rybel B, Mähönen AP. The dynamic and diverse nature of parenchyma cells in the Arabidopsis root during secondary growth. NATURE PLANTS 2025; 11:878-890. [PMID: 40140531 PMCID: PMC12014502 DOI: 10.1038/s41477-025-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
During secondary growth, the vascular cambium produces conductive xylem and phloem cells, while the phellogen (cork cambium) deposits phellem (cork) as the outermost protective barrier. Although most of the secondary tissues are made up of parenchyma cells, which are also produced by both cambia, their diversity and function are poorly understood. Here we combined single-cell RNA sequencing analysis with lineage tracing to recreate developmental trajectories of the cell types in the Arabidopsis root undergoing secondary growth. By analysing 93 reporter lines, we were able to identify 20 different cell types or cell states, many of which have not been described before. We additionally observed distinct transcriptome signatures of parenchyma cells depending on their maturation state and proximity to the conductive cell types. Our data show that both xylem and phloem parenchyma tissues are required for normal formation of conductive tissue cell types. Furthermore, we show that mature phloem parenchyma gradually obtains periderm identity, and this transformation can be accelerated by jasmonate treatment or wounding. Our study thus reveals the diversity of parenchyma cells and their capacity to undergo considerable identity changes during secondary growth.
Collapse
Affiliation(s)
- Munan Lyu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Hiroyuki Iida
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent, Belgium
- VIB Single Cell Core, VIB, Leuven, Belgium
| | - Meeri Mäkelä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Sampo Muranen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Lingling Ye
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Anne Vatén
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Centre for Plant Systems Biology, Ghent, Belgium.
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Martin‐Ramirez S, Stouthamer J, Smakowska‐Luzan E. More questions than answers: insights into potential cysteine-rich receptor-like kinases redox signalling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70176. [PMID: 40300149 PMCID: PMC12040379 DOI: 10.1111/tpj.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Over the past few decades, significant advancements have been made in understanding how plasma-membrane localised receptor kinases (RKs) detect signals and activate responses to various stimuli. Numerous examples of ligand-induced receptor activation mechanisms and their downstream consequences have been characterised in detail. The crucial role of post-translational modifications (PTMs), such as the phosphorylation of receptor kinases, has been demonstrated concerning different cellular responses. Given the diverse structures and architectures of the extracellular domains (ECDs) of RKs, it is probable that various forms of PTMs also play an essential role in receptor activation, including cysteine oxidative modifications triggered by reactive oxygen species (ROS). The function of cysteine oxidative modifications as functional redox switches that modulate protein structure and function has been extensively studied across various multicellular organisms. Based on biochemical and structural characteristics, the family of cysteine-rich receptor-like kinases (CRK) emerges as excellent candidates for proteins regulated in a redox-dependent manner. This review provides a concise overview of cysteine's biochemical and structural properties in its role as a molecular redox switch. Drawing on the currently available literature, we describe how cysteine-redox signalling is maintained, particularly in plant cells. We further focus on extracellular ROS perception and the role of CRKs as promising candidates for ROS sensors in Arabidopsis thaliana. We discuss the structural and biochemical properties of CRKs, their involvement in plant growth and defence processes, and our perspective on why CRKs could be key components of the ROS sensing machinery or ROS sensors, especially regarding the dimerization abilities of CRKs. Finally, we highlight the current challenges in identifying and quantifying cysteine oxidative modifications and propose methods for detecting ROS-modified cysteines that may be promising for investigating the role of CRKs in extracellular ROS perception and signalling.
Collapse
Affiliation(s)
- Sergio Martin‐Ramirez
- Laboratory of BiochemistryWageningen University and ResearchWageningenThe Netherlands
| | - Jente Stouthamer
- Laboratory of BiochemistryWageningen University and ResearchWageningenThe Netherlands
| | | |
Collapse
|
3
|
Eswaran G, Zhang X, Rutten JP, Han J, Iida H, López Ortiz J, Mäkilä R, Wybouw B, Planterose Jiménez B, Vainio L, Porcher A, Leal Gavarron M, Zhang J, Blomster T, Wang X, Dolan D, Smetana O, Brady SM, Kucukoglu Topcu M, Ten Tusscher K, Etchells JP, Mähönen AP. Identification of cambium stem cell factors and their positioning mechanism. Science 2024; 386:646-653. [PMID: 39509505 DOI: 10.1126/science.adj8752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/26/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024]
Abstract
Wood constitutes the largest reservoir of terrestrial biomass. Composed of xylem, it arises from one side of the vascular cambium, a bifacial stem cell niche that also produces phloem on the opposing side. It is currently unknown which molecular factors endow cambium stem cell identity. Here we show that TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF) ligand-activated PHLOEM INTERCALATED WITH XYLEM (PXY) receptors promote the expression of CAMBIUM-EXPRESSED AINTEGUMENTA-LIKE (CAIL) transcription factors to define cambium stem cell identity in the Arabidopsis root. By sequestrating the phloem-originated TDIF, xylem-expressed PXY confines the TDIF signaling front, resulting in the activation of CAIL expression and stem cell identity in only a narrow domain. Our findings show how signals emanating from cells on opposing sides ensure robust yet dynamically adjustable positioning of a bifacial stem cell layer.
Collapse
Affiliation(s)
- Gugan Eswaran
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Xixi Zhang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Jacob Pieter Rutten
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, Netherlands
| | - Jingyi Han
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Hiroyuki Iida
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Jennifer López Ortiz
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Riikka Mäkilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | | | - Leo Vainio
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Alexis Porcher
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Marina Leal Gavarron
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Jing Zhang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Tiina Blomster
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - David Dolan
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Ondřej Smetana
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Siobhán M Brady
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Melis Kucukoglu Topcu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Kirsten Ten Tusscher
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, Netherlands
- Experimental and Computational Plant Development, Utrecht University, 3584 CH Utrecht, Netherlands
| | - J Peter Etchells
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Larsen PB, He S, Meyer TJ, Szurman-Zubrzycka M, Alfs C, Kwasniewska J, Pervis A, Gajecka M, Veerabahu A, Beaulieu TR, Bolaris SC, Eekhout T, De Veylder L, Abel S, Szarejko I, Murn J. The stem cell niche transcription factor ETHYLENE RESPONSE FACTOR 115 participates in aluminum-induced terminal differentiation in Arabidopsis roots. PLANT, CELL & ENVIRONMENT 2024; 47:4432-4448. [PMID: 39007549 DOI: 10.1111/pce.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Aluminum-dependent stoppage of root growth requires the DNA damage response (DDR) pathway including the p53-like transcription factor SUPPRESSOR OF GAMMA RADIATION 1 (SOG1), which promotes terminal differentiation of the root tip in response to Al dependent cell death. Transcriptomic analyses identified Al-induced SOG1-regulated targets as candidate mediators of this growth arrest. Analysis of these factors either as loss-of-function mutants or by overexpression in the als3-1 background shows ERF115, which is a key transcription factor that in other scenarios is rate-limiting for damaged stem cell replenishment, instead participates in transition from an actively growing root to one that has terminally differentiated in response to Al toxicity. This is supported by a loss-of-function erf115 mutant raising the threshold of Al required to promote terminal differentiation of Al hypersensitive als3-1. Consistent with its key role in stoppage of root growth, a putative ERF115 barley ortholog is also upregulated following Al exposure, suggesting a conserved role for this ATR-dependent pathway in Al response. In contrast to other DNA damage agents, these results show that ERF115 and likely related family members are important determinants of terminal differentiation of the root tip following Al exposure and central outputs of the SOG1-mediated pathway in Al response.
Collapse
Affiliation(s)
- Paul B Larsen
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Shiyang He
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Taylor J Meyer
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Carolin Alfs
- Leibniz Institute for Plant Biochemistry, Department of Molecular Signal Processing, Halle, Germany
| | - Jolanta Kwasniewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Alexandra Pervis
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Monika Gajecka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Aishwarya Veerabahu
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Taylor R Beaulieu
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Stephen C Bolaris
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Steffen Abel
- Leibniz Institute for Plant Biochemistry, Department of Molecular Signal Processing, Halle, Germany
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jernej Murn
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
5
|
Krasensky-Wrzaczek J, Wrzaczek M. New kids on the block-cysteine-rich receptor-like kinases in pattern-triggered immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102619. [PMID: 39178641 DOI: 10.1016/j.pbi.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
Plant-specific receptor-like protein kinases (RLKs) are essential for pathogen recognition during pattern-triggered immunity. Together with coreceptors and associated proteins, they act as bona fide immune receptors, perceiving a variety of microbe-associated molecular patterns or damage-associated molecular patterns. The cysteine-rich receptor-like kinases (CRKs) form one of the biggest subgroups of RLKs, but so far, their ligands have not been identified. It has been shown that CRKs play important roles in plant immunity and defense responses as well as in response to abiotic stimuli and in control of plant development. However, molecular information on how CRKs integrate with the known framework of signaling components controlling early defense responses remains enigmatic.
Collapse
Affiliation(s)
- Julia Krasensky-Wrzaczek
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Michael Wrzaczek
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
6
|
Shomali A, Aliniaeifard S, Kamrani YY, Lotfi M, Aghdam MS, Rastogi A, Brestič M. Interplay among photoreceptors determines the strategy of coping with excess light in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1423-1438. [PMID: 38402588 DOI: 10.1111/tpj.16685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
This study investigates photoreceptor's role in the adaption of photosynthetic apparatus to high light (HL) intensity by examining the response of tomato wild type (WT) (Solanum lycopersicum L. cv. Moneymaker) and tomato mutants (phyA, phyB1, phyB2, cry1) plants to HL. Our results showed a photoreceptor-dependent effect of HL on the maximum quantum yield of photosystem II (Fv/Fm) with phyB1 exhibiting a decrease, while phyB2 exhibiting an increase in Fv/Fm. HL resulted in an increase in the efficient quantum yield of photosystem II (ΦPSII) and a decrease in the non-photochemical quantum yields (ΦNPQ and ΦN0) solely in phyA. Under HL, phyA showed a significant decrease in the energy-dependent quenching component of NPQ (qE), while phyB2 mutants showed an increase in the state transition (qT) component. Furthermore, ΔΔFv/Fm revealed that PHYB1 compensates for the deficit of PHYA in phyA mutants. PHYA signaling likely emerges as the dominant effector of PHYB1 and PHYB2 signaling within the HL-induced signaling network. In addition, PHYB1 compensates for the role of CRY1 in regulating Fv/Fm in cry1 mutants. Overall, the results of this research provide valuable insights into the unique role of each photoreceptor and their interplay in balancing photon energy and photoprotection under HL condition.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Yousef Yari Kamrani
- Experimental Biophysics, Institute for Biology, Humboldt-University of Berlin, Invaliden Str. 42, 10115, Berlin, Germany
| | - Mahmoud Lotfi
- Photosynthesis Laboratory, Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| | - Marian Brestič
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, A. Hlinku 2, Nitra, 949 76, Slovak Republic
| |
Collapse
|
7
|
Wang P, Wang D, Li Y, Li J, Liu B, Wang Y, Gao C. The transcription factor ThDOF8 binds to a novel cis-element and mediates molecular responses to salt stress in Tamarix hispida. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3171-3187. [PMID: 38400756 DOI: 10.1093/jxb/erae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Salt stress is a common abiotic factor that restricts plant growth and development. As a halophyte, Tamarix hispida is a good model plant for exploring salt-tolerance genes and regulatory mechanisms. DNA-binding with one finger (DOF) is an important transcription factor (TF) that influences and controls various signaling substances involved in diverse biological processes related to plant growth and development, but the regulatory mechanisms of DOF TFs in response to salt stress are largely unknown in T. hispida. In the present study, a newly identified Dof gene, ThDOF8, was cloned from T. hispida, and its expression was found to be induced by salt stress. Transient overexpression of ThDOF8 enhanced T. hispida salt tolerance by enhancing proline levels, and increasing the activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD). These results were also verified in stably transformed Arabidopsis. Results from TF-centered yeast one-hybrid (Y1H) assays and EMSAs showed that ThDOF8 binds to a newly identified cis-element (TGCG). Expression profiling by gene chip analysis identified four potential direct targets of ThDOF8, namely the cysteine-rich receptor-like kinases genes, CRK10 and CRK26, and two glutamate decarboxylase genes, GAD41, and GAD42, and these were further verified by ChIP-quantitative-PCR, EMSAs, Y1H assays, and β-glucuronidase enzyme activity assays. ThDOF8 can bind to the TGCG element in the promoter regions of its target genes, and transient overexpression of ThCRK10 also enhanced T. hispida salt tolerance. On the basis of our results, we propose a new regulatory mechanism model, in which ThDOF8 binds to the TGCG cis-element in the promoter of the target gene CRK10 to regulate its expression and improve salt tolerance in T. hispida. This study provides a basis for furthering our understanding the role of DOF TFs and identifying other downstream candidate genes that have the potential for improving plant salt tolerance via molecular breeding.
Collapse
Affiliation(s)
- Peilong Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325000, China
| | - Danni Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yongxi Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Jinghang Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Baichao Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yuanyuan Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| |
Collapse
|
8
|
Liu H, Li X, Yin Z, Hu J, Xie L, Wu H, Han S, Li B, Zhang H, Li C, Li L, Zhang F, Tan G. Identification and characterization of the CRK gene family in the wheat genome and analysis of their expression profile in response to high temperature-induced male sterility. PeerJ 2024; 12:e17370. [PMID: 38737737 PMCID: PMC11086307 DOI: 10.7717/peerj.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.
Collapse
Affiliation(s)
- Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| | - Xiaoyi Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Zehui Yin
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Junmin Hu
- Jiaozuo Seed Management Station, Jiaozuo, Henan Province, China
| | - Liuyong Xie
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Huanhuan Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Shuying Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Bing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Huifang Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| | - Fuli Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
| | - Guangxuan Tan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| |
Collapse
|
9
|
Zameer R, Alwutayd KM, Alshehri D, Mubarik MS, Li C, Yu C, Li Z. Identification of cysteine-rich receptor-like kinase gene family in potato: revealed StCRLK9 in response to heat, salt and drought stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23320. [PMID: 38723163 DOI: 10.1071/fp23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
The investigation into cysteine-rich receptor-like kinases (CRLKs) holds pivotal significance as these conserved, upstream signalling molecules intricately regulate fundamental biological processes such as plant growth, development and stress adaptation. This study undertakes a comprehensive characterisation of CRLKs in Solanum tuberosum (potato), a staple food crop of immense economic importance. Employing comparative genomics and evolutionary analyses, we identified 10 distinct CRLK genes in potato. Further categorisation into three major groups based on sequence similarity was performed. Each CRLK member in potato was systematically named according to its chromosomal position. Multiple sequence alignment and phylogenetic analyses unveiled conserved gene structures and motifs within the same groups. The genomic distribution of CRLKs was observed across Chromosomes 2-5, 8 and 12. Gene duplication analysis highlighted a noteworthy trend, with most gene pairs exhibiting a Ka/Ks ratio greater than one, indicating positive selection of StCRLKs in potato. Salt and drought stresses significantly impacted peroxidase and catalase activities in potato seedlings. The presence of diverse cis -regulatory elements, including hormone-responsive elements, underscored their involvement in myriad biotic and abiotic stress responses. Interestingly, interactions between the phytohormone auxin and CRLK proteins unveiled a potential auxin-mediated regulatory mechanism. A holistic approach combining transcriptomics and quantitative PCR validation identified StCRLK9 as a potential candidate involved in plant response to heat, salt and drought stresses. This study lays a robust foundation for future research on the functional roles of the CRLK gene family in potatoes, offering valuable insights into their diverse regulatory mechanisms and potential applications in stress management.
Collapse
Affiliation(s)
- Roshan Zameer
- School of Life Sciences, Henan University, Kaifeng, China
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Cheng Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Chengde Yu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhifang Li
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
11
|
Castillo-Villanueva A, Reyes-Vivas H, Oria-Hernández J. Comparison of cysteine content in whole proteomes across the three domains of life. PLoS One 2023; 18:e0294268. [PMID: 37956129 PMCID: PMC10642813 DOI: 10.1371/journal.pone.0294268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
An empirical observation suggests that Giardia lamblia proteins have larger cysteine content than their counterparts in other organisms. As this parasite lacks conventional antioxidant stress systems, it is generally accepted that high cysteine content helps G. lamblia cope with oxygen toxicity, a strategy apparently shared by other organisms. Here, we question whether the high cysteine content in some organisms is genuine or just a simple assumption based on singular observations. To this end, we analyzed the cysteine content in 78 proteomes of organisms spanning the three domains of life. The results indicate that the cysteine content in eukaryota is approximately double that in archaea and bacteria, with G. lamblia among the highest. Atypical cysteine contents were found in a few organisms correlating with specific environmental conditions, supporting the evolutionary amino acid-level selection of amino acid composition.
Collapse
Affiliation(s)
- Adriana Castillo-Villanueva
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud Ciudad de México, Ciudad de México, México
| | - Horacio Reyes-Vivas
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud Ciudad de México, Ciudad de México, México
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud Ciudad de México, Ciudad de México, México
| |
Collapse
|
12
|
Lantican DV, Nocum JDL, Manohar ANC, Mendoza JVS, Gardoce RR, Lachica GC, Gueco LS, Dela Cueva FM. Comparative RNA-seq analysis of resistant and susceptible banana genotypes reveals molecular mechanisms in response to banana bunchy top virus (BBTV) infection. Sci Rep 2023; 13:18719. [PMID: 37907581 PMCID: PMC10618458 DOI: 10.1038/s41598-023-45937-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Bananas hold significant economic importance as an agricultural commodity, serving as a primary livelihood source, a favorite fruit, and a staple crop in various regions across the world. However, Banana bunchy top disease (BBTD), which is caused by banana bunchy top virus (BBTV), poses a considerable threat to banana cultivation. To understand the resistance mechanism and the interplay of host suitability factors in the presence of BBTV, we conducted RNA-seq-based comparative transcriptomics analysis on mock-inoculated and BBTV-inoculated samples from resistant (wild Musa balbisiana) and susceptible (Musa acuminata 'Lakatan') genotypes. We observed common patterns of expression for 62 differentially expressed genes (DEGs) in both genotypes, which represent the typical defense response of bananas to BBTV. Furthermore, we identified 99 DEGs exclusive to the 'Lakatan' banana cultivar, offering insights into the host factors and susceptibility mechanisms that facilitate successful BBTV infection. In parallel, we identified 151 DEGs unique to the wild M. balbisiana, shedding light on the multifaceted mechanisms of BBTV resistance, involving processes such as secondary metabolite biosynthesis, cell wall modification, and pathogen perception. Notably, our validation efforts via RT-qPCR confirmed the up-regulation of the glucuronoxylan 4-O-methyltransferase gene (14.28 fold-change increase), implicated in xylan modification and degradation. Furthermore, our experiments highlighted the potential recruitment of host's substrate adaptor ADO (30.31 fold-change increase) by BBTV, which may play a role in enhancing banana susceptibility to the viral pathogen. The DEGs identified in this work can be used as basis in designing associated gene markers for the precise integration of resistance genes in marker-assisted breeding programs. Furthermore, the findings can be applied to develop genome-edited banana cultivars targeting the resistance and susceptibility genes, thus developing novel cultivars that are resilient to important diseases.
Collapse
Affiliation(s)
- Darlon V Lantican
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines.
| | - Jen Daine L Nocum
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Anand Noel C Manohar
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Jay-Vee S Mendoza
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Roanne R Gardoce
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Grace C Lachica
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
- Philippine Genome Center - Program for Agriculture, Livestock, Fisheries, Forestry, Office of the Vice Chancellor for Research and Extension, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Lavernee S Gueco
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Fe M Dela Cueva
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| |
Collapse
|
13
|
Gandhi A, Oelmüller R. Emerging Roles of Receptor-like Protein Kinases in Plant Response to Abiotic Stresses. Int J Mol Sci 2023; 24:14762. [PMID: 37834209 PMCID: PMC10573068 DOI: 10.3390/ijms241914762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The productivity of plants is hindered by unfavorable conditions. To perceive stress signals and to transduce these signals to intracellular responses, plants rely on membrane-bound receptor-like kinases (RLKs). These play a pivotal role in signaling events governing growth, reproduction, hormone perception, and defense responses against biotic stresses; however, their involvement in abiotic stress responses is poorly documented. Plant RLKs harbor an N-terminal extracellular domain, a transmembrane domain, and a C-terminal intracellular kinase domain. The ectodomains of these RLKs are quite diverse, aiding their responses to various stimuli. We summarize here the sub-classes of RLKs based on their domain structure and discuss the available information on their specific role in abiotic stress adaptation. Furthermore, the current state of knowledge on RLKs and their significance in abiotic stress responses is highlighted in this review, shedding light on their role in influencing plant-environment interactions and opening up possibilities for novel approaches to engineer stress-tolerant crop varieties.
Collapse
Affiliation(s)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany;
| |
Collapse
|
14
|
López-Bucio J, Ortiz-Castro R, Magaña-Dueñas V, García-Cárdenas E, Jiménez-Vázquez KR, Raya-González J, Pelagio-Flores R, Ibarra-Laclette E, Herrera-Estrella L. Pseudomonas aeruginosa LasI-dependent plant growth promotion requires the host nitrate transceptor AtNRT1.1/CHL1 and the nitrate reductases NIA1 and NIA2. PLANTA 2023; 258:80. [PMID: 37715847 DOI: 10.1007/s00425-023-04236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
MAIN CONCLUSION In P. aeruginosa, mutation of the gene encoding N-acyl-L-homoserine lactone synthase LasI drives defense and plant growth promotion, and this latter trait requires adequate nitrate nutrition. Cross-kingdom communication with bacteria is crucial for plant growth and productivity. Here, we show a strong induction of genes for nitrate uptake and assimilation in Arabidopsis seedlings co-cultivated with P. aeruginosa WT (PAO1) or ΔlasI mutants defective on the synthesis of the quorum-sensing signaling molecule N-(3-oxododecanoyl)-L-homoserine lactone. Along with differential induction of defense-related genes, the change from plant growth repression to growth promotion upon bacterial QS disruption, correlated with upregulation of the dual-affinity nitrate transceptor CHL1/AtNRT1/NPF6.3 and the nitrate reductases NIA1 and NIA2. CHL1-GUS was induced in Arabidopsis primary root tips after transfer onto P. aeruginosa ΔlasI streaks at low and high N availability, whereas this bacterium required high concentrations of nitrogen to potentiate root and shoot biomass production and to improve root branching. Arabidopsis chl1-5 and chl1-12 mutants and double mutants in NIA1 and NIA2 nitrate reductases showed compromised growth under low nitrogen availability and failed to mount an effective growth promotion and root branching response even at high NH4NO3. WT P. aeruginosa PAO1 and P. aeruginosa ΔlasI mutant promoted the accumulation of nitric oxide (NO) in roots of both the WT and nia1nia2 double mutants, whereas NO donors SNP or SNAP did not improve growth or root branching in nia1nia2 double mutants with or without bacterial cocultivation. Thus, inoculation of Arabidopsis roots with P. aeruginosa drives gene expression for improved nitrogen acquisition and this macronutrient is critical for the plant growth-promoting effects upon disruption of the LasI quorum-sensing system.
Collapse
Affiliation(s)
- José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| | - Randy Ortiz-Castro
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Viridiana Magaña-Dueñas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Elizabeth García-Cárdenas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Kirán Rubí Jiménez-Vázquez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzunzan 173, Col. Matamoros, 58240, Morelia, Michoacán, Mexico
| | - Ramón Pelagio-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzunzan 173, Col. Matamoros, 58240, Morelia, Michoacán, Mexico
| | - Enrique Ibarra-Laclette
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Luis Herrera-Estrella
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Campus Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| |
Collapse
|
15
|
Guo W, Xing Y, Luo X, Li F, Ren M, Liang Y. Reactive Oxygen Species: A Crosslink between Plant and Human Eukaryotic Cell Systems. Int J Mol Sci 2023; 24:13052. [PMID: 37685857 PMCID: PMC10487619 DOI: 10.3390/ijms241713052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive oxygen species (ROS) are important regulating factors that play a dual role in plant and human cells. As the first messenger response in organisms, ROS coordinate signals in growth, development, and metabolic activity pathways. They also can act as an alarm mechanism, triggering cellular responses to harmful stimuli. However, excess ROS cause oxidative stress-related damage and oxidize organic substances, leading to cellular malfunctions. This review summarizes the current research status and mechanisms of ROS in plant and human eukaryotic cells, highlighting the differences and similarities between the two and elucidating their interactions with other reactive substances and ROS. Based on the similar regulatory and metabolic ROS pathways in the two kingdoms, this review proposes future developments that can provide opportunities to develop novel strategies for treating human diseases or creating greater agricultural value.
Collapse
Affiliation(s)
- Wei Guo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yadi Xing
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Yiming Liang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
16
|
Rachowka J, Anielska-Mazur A, Bucholc M, Stephenson K, Kulik A. SnRK2.10 kinase differentially modulates expression of hub WRKY transcription factors genes under salinity and oxidative stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1135240. [PMID: 37621885 PMCID: PMC10445769 DOI: 10.3389/fpls.2023.1135240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/30/2023] [Indexed: 08/26/2023]
Abstract
In nature, all living organisms must continuously sense their surroundings and react to the occurring changes. In the cell, the information about these changes is transmitted to all cellular compartments, including the nucleus, by multiple phosphorylation cascades. Sucrose Non-Fermenting 1 Related Protein Kinases (SnRK2s) are plant-specific enzymes widely distributed across the plant kingdom and key players controlling abscisic acid (ABA)-dependent and ABA-independent signaling pathways in the plant response to osmotic stress and salinity. The main deleterious effects of salinity comprise water deficiency stress, disturbances in ion balance, and the accompanying appearance of oxidative stress. The reactive oxygen species (ROS) generated at the early stages of salt stress are involved in triggering intracellular signaling required for the fast stress response and modulation of gene expression. Here we established in Arabidopsis thaliana that salt stress or induction of ROS accumulation by treatment of plants with H2O2 or methyl viologen (MV) induces the expression of several genes encoding transcription factors (TFs) from the WRKY DNA-Binding Protein (WRKY) family. Their induction by salinity was dependent on SnRK2.10, an ABA non-activated kinase, as it was strongly reduced in snrk2.10 mutants. The effect of ROS was clearly dependent on their source. Following the H2O2 treatment, SnRK2.10 was activated in wild-type (wt) plants and the induction of the WRKY TFs expression was only moderate and was enhanced in snrk2.10 lines. In contrast, MV did not activate SnRK2.10 and the WRKY induction was very strong and was similar in wt and snrk2.10 plants. A bioinformatic analysis indicated that the WRKY33, WRKY40, WRKY46, and WRKY75 transcription factors have a similar target range comprising numerous stress-responsive protein kinases. Our results indicate that the stress-related functioning of SnRK2.10 is fine-tuned by the source and intracellular distribution of ROS and the co-occurrence of other stress factors.
Collapse
Affiliation(s)
| | | | | | | | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Zhang Y, Tian H, Chen D, Zhang H, Sun M, Chen S, Qin Z, Ding Z, Dai S. Cysteine-rich receptor-like protein kinases: emerging regulators of plant stress responses. TRENDS IN PLANT SCIENCE 2023; 28:776-794. [PMID: 37105805 DOI: 10.1016/j.tplants.2023.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 06/17/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) belong to a large DUF26-containing receptor-like kinase (RLK) family. They play key roles in immunity, abiotic stress response, and growth and development. How CRKs regulate diverse processes is a long-standing question. Recent studies have advanced our understanding of the molecular mechanisms underlying CRK functions in Ca2+ influx, reactive oxygen species (ROS) production, mitogen-activated protein kinase (MAPK) cascade activation, callose deposition, stomatal immunity, and programmed cell death (PCD). We review the CRK structure-function relationship with a focus on the roles of CRKs in immunity, the abiotic stress response, and the growth-stress tolerance tradeoff. We provide a critical analysis and synthesis of how CRKs control sophisticated regulatory networks that determine diverse plant phenotypic outputs.
Collapse
Affiliation(s)
- Yongxue Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Haodong Tian
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Daniel Chen
- MD Program of Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Sixue Chen
- Department of Biology, The University of Mississippi, Oxford, MS 38677, USA
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Zhaojun Ding
- Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
18
|
Mir ZA, Chauhan D, Pradhan AK, Srivastava V, Sharma D, Budhlakoti N, Mishra DC, Jadon V, Sahu TK, Grover M, Gangwar OP, Kumar S, Bhardwaj SC, Padaria JC, Singh AK, Rai A, Singh GP, Kumar S. Comparative transcriptome profiling of near isogenic lines PBW343 and FLW29 to unravel defense related genes and pathways contributing to stripe rust resistance in wheat. Funct Integr Genomics 2023; 23:169. [PMID: 37209309 DOI: 10.1007/s10142-023-01104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Stripe rust (Sr), caused by Puccinia striiformis f. sp. tritici (Pst), is the most devastating disease that poses serious threat to the wheat-growing nations across the globe. Developing resistant cultivars is the most challenging aspect in wheat breeding. The function of resistance genes (R genes) and the mechanisms by which they influence plant-host interactions are poorly understood. In the present investigation, comparative transcriptome analysis was carried out by involving two near-isogenic lines (NILs) PBW343 and FLW29. The seedlings of both the genotypes were inoculated with Pst pathotype 46S119. In total, 1106 differentially expressed genes (DEGs) were identified at early stage of infection (12 hpi), whereas expressions of 877 and 1737 DEGs were observed at later stages (48 and 72 hpi) in FLW29. The identified DEGs were comprised of defense-related genes including putative R genes, 7 WRKY transcriptional factors, calcium, and hormonal signaling associated genes. Moreover, pathways involved in signaling of receptor kinases, G protein, and light showed higher expression in resistant cultivar and were common across different time points. Quantitative real-time PCR was used to further confirm the transcriptional expression of eight critical genes involved in plant defense mechanism against stripe rust. The information about genes are likely to improve our knowledge of the genetic mechanism that controls the stripe rust resistance in wheat, and data on resistance response-linked genes and pathways will be a significant resource for future research.
Collapse
Affiliation(s)
- Zahoor Ahmad Mir
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Divya Chauhan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | | | - Vivek Srivastava
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Divya Sharma
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | | | - Vasudha Jadon
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Tanmaya Kumar Sahu
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Monendra Grover
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Om Prakash Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal, Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal, Pradesh, 171002, India
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal, Pradesh, 171002, India
| | - Jasdeep C Padaria
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - G P Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| |
Collapse
|
19
|
Piovesana M, Wood AKM, Smith DP, Deery MJ, Bayliss R, Carrera E, Wellner N, Kosik O, Napier JA, Kurup S, Matthes MC. A point mutation in the kinase domain of CRK10 leads to xylem vessel collapse and activation of defence responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3104-3121. [PMID: 36869735 DOI: 10.1093/jxb/erad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/27/2023] [Indexed: 05/21/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) are a large family of plasma membrane-bound receptors ubiquitous in higher plants. However, despite their prominence, their biological roles have remained largely elusive so far. In this study we report the characterization of an Arabidopsis mutant named crk10-A397T in which alanine 397 has been replaced by a threonine in the αC helix of the kinase domain of CRK10, known to be a crucial regulatory module in mammalian kinases. The crk10-A397T mutant is a dwarf that displays collapsed xylem vessels in the root and hypocotyl, whereas the vasculature of the inflorescence develops normally. In situ phosphorylation assays with His-tagged wild type and crk10-A397T versions of the CRK10 kinase domain revealed that both alleles are active kinases capable of autophosphorylation, with the newly introduced threonine acting as an additional phosphorylation site in crk10-A397T. Transcriptomic analysis of wild type and crk10-A397T mutant hypocotyls revealed that biotic and abiotic stress-responsive genes are constitutively up-regulated in the mutant, and a root-infection assay with the vascular pathogen Fusarium oxysporum demonstrated that the mutant has enhanced resistance to this pathogen compared with wild type plants. Taken together our results suggest that crk10-A397T is a gain-of-function allele of CRK10, the first such mutant to have been identified for a CRK in Arabidopsis.
Collapse
Affiliation(s)
- Maiara Piovesana
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
- College of Life and Environmental Sciences, Streatham Campus, Exeter EX4 4PY, UK
| | - Ana K M Wood
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Daniel P Smith
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QR, UK
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politècnica de València, Valencia 46022, Spain
| | | | - Ondrej Kosik
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Johnathan A Napier
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Smita Kurup
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Michaela C Matthes
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
20
|
Nanda S, Rout P, Ullah I, Nag SR, Reddy VV, Kumar G, Kumar R, He S, Wu H. Genome-wide identification and molecular characterization of CRK gene family in cucumber (Cucumis sativus L.) under cold stress and sclerotium rolfsii infection. BMC Genomics 2023; 24:219. [PMID: 37101152 PMCID: PMC10131431 DOI: 10.1186/s12864-023-09319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The plant cysteine-rich receptor-like kinases (CRKs) are a large family having multiple roles, including defense responses under both biotic and abiotic stress. However, the CRK family in cucumbers (Cucumis sativus L.) has been explored to a limited extent. In this study, a genome-wide characterization of the CRK family has been performed to investigate the structural and functional attributes of the cucumber CRKs under cold and fungal pathogen stress. RESULTS A total of 15 C. sativus CRKs (CsCRKs) have been characterized in the cucumber genome. Chromosome mapping of the CsCRKs revealed that 15 genes are distributed in cucumber chromosomes. Additionally, the gene duplication analysis of the CsCRKs yielded information on their divergence and expansion in cucumbers. Phylogenetic analysis divided the CsCRKs into two clades along with other plant CRKs. Functional predictions of the CsCRKs suggested their role in signaling and defense response in cucumbers. The expression analysis of the CsCRKs by using transcriptome data and via qRT-PCR indicated their involvement in both biotic and abiotic stress responses. Under the cucumber neck rot pathogen, Sclerotium rolfsii infection, multiple CsCRKs exhibited induced expressions at early, late, and both stages. Finally, the protein interaction network prediction results identified some key possible interacting partners of the CsCRKs in regulating cucumber physiological processes. CONCLUSIONS The results of this study identified and characterized the CRK gene family in cucumbers. Functional predictions and validation via expression analysis confirmed the involvement of the CsCRKs in cucumber defense response, especially against S. rolfsii. Moreover, current findings provide better insights into the cucumber CRKs and their involvement in defense responses.
Collapse
Affiliation(s)
- Satyabrata Nanda
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Priyadarshini Rout
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Ikram Ullah
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Swapna Rani Nag
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Velagala Veerraghava Reddy
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Gagan Kumar
- Krishi Vigyan Kendra, Narkatiaganj, Dr. Rajendra Prasad Central Agricultural University, Pusa Samastipur, Bihar, 848125, India
| | - Ritesh Kumar
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Shuilian He
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongzhi Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
21
|
Mäkilä R, Wybouw B, Smetana O, Vainio L, Solé-Gil A, Lyu M, Ye L, Wang X, Siligato R, Jenness MK, Murphy AS, Mähönen AP. Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. NATURE PLANTS 2023; 9:631-644. [PMID: 36997686 PMCID: PMC10119023 DOI: 10.1038/s41477-023-01360-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Vascular cambium contains bifacial stem cells, which produce secondary xylem to one side and secondary phloem to the other. However, how these fate decisions are regulated is unknown. Here we show that the positioning of an auxin signalling maximum within the cambium determines the fate of stem cell daughters. The position is modulated by gibberellin-regulated, PIN1-dependent polar auxin transport. Gibberellin treatment broadens auxin maximum from the xylem side of the cambium towards the phloem. As a result, xylem-side stem cell daughter preferentially differentiates into xylem, while phloem-side daughter retains stem cell identity. Occasionally, this broadening leads to direct specification of both daughters as xylem, and consequently, adjacent phloem-identity cell reverts to being stem cell. Conversely, reduced gibberellin levels favour specification of phloem-side stem cell daughter as phloem. Together, our data provide a mechanism by which gibberellin regulates the ratio of xylem and phloem production.
Collapse
Affiliation(s)
- Riikka Mäkilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ondřej Smetana
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Leo Vainio
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Solé-Gil
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Munan Lyu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lingling Ye
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riccardo Siligato
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Geel, Belgium
| | - Mark K Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Zhou S, Luo Q, Nie Z, Wang C, Zhu W, Hong Y, Zhao J, Pei B, Ma W. CRK41 Modulates Microtubule Depolymerization in Response to Salt Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1285. [PMID: 36986973 PMCID: PMC10051889 DOI: 10.3390/plants12061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The pivotal role of cysteine-rich receptor-like kinases (CRKs) in modulating growth, development, and responses to stress has been widely acknowledged in Arabidopsis. However, the function and regulation of CRK41 has remained unclear. In this study, we demonstrate that CRK41 is critical for modulating microtubule depolymerization in response to salt stress. The crk41 mutant exhibited increased tolerance, while overexpression of CRK41 led to hypersensitivity to salt. Further analysis revealed that CRK41 interacts directly with the MAP kinase3 (MPK3), but not with MPK6. Inactivation of either MPK3 or MPK6 could abrogate the salt tolerance of the crk41 mutant. Upon NaCl treatment, microtubule depolymerization was heightened in the crk41 mutant, yet alleviated in the crk41mpk3 and crk41mpk6 double mutants, indicating that CRK41 suppresses MAPK-mediated microtubule depolymerizations. Collectively, these results reveal that CRK41 plays a crucial role in regulating microtubule depolymerization triggered by salt stress through coordination with MPK3/MPK6 signalling pathways, which are key factors in maintaining microtubule stability and conferring salt stress resistance in plants.
Collapse
Affiliation(s)
- Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Qiuling Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Zhiyan Nie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Changhui Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Wenkang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Jun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Baolei Pei
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
23
|
Vu MH, Hyun TK, Bahk S, Jo Y, Kumar R, Thiruppathi D, Iswanto ABB, Chung WS, Shelake RM, Kim JY. ROS-mediated plasmodesmal regulation requires a network of an Arabidopsis receptor-like kinase, calmodulin-like proteins, and callose synthases. FRONTIERS IN PLANT SCIENCE 2023; 13:1107224. [PMID: 36743578 PMCID: PMC9893415 DOI: 10.3389/fpls.2022.1107224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Plasmodesmata (PD) play a critical role in symplasmic communication, coordinating plant activities related to growth & development, and environmental stress responses. Most developmental and environmental stress signals induce reactive oxygen species (ROS)-mediated signaling in the apoplast that causes PD closure by callose deposition. Although the apoplastic ROS signals are primarily perceived at the plasma membrane (PM) by receptor-like kinases (RLKs), such components involved in PD regulation are not yet known. Here, we show that an Arabidopsis NOVEL CYS-RICH RECEPTOR KINASE (NCRK), a PD-localized protein, is required for plasmodesmal callose deposition in response to ROS stress. We identified the involvement of NCRK in callose accumulation at PD channels in either basal level or ROS-dependent manner. Loss-of-function mutant (ncrk) of NCRK induces impaired callose accumulation at the PD under the ROS stress resembling a phenotype of the PD-regulating GLUCAN SYNTHASE-LIKE 4 (gsl4) knock-out plant. The overexpression of transgenic NCRK can complement the callose and the PD permeability phenotypes of ncrk mutants but not kinase-inactive NCRK variants or Cys-mutant NCRK, in which Cys residues were mutated in Cys-rich repeat ectodomain. Interestingly, NCRK mediates plasmodesmal permeability in mechanical injury-mediated signaling pathways regulated by GSL4. Furthermore, we show that NCRK interacts with calmodulin-like protein 41 (CML41) and GSL4 in response to ROS stress. Altogether, our data indicate that NCRK functions as an upstream regulator of PD callose accumulation in response to ROS-mediated stress signaling pathways.
Collapse
Affiliation(s)
- Minh Huy Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Sungwha Bahk
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Yeonhwa Jo
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ritesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dhineshkumar Thiruppathi
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo Sik Chung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Research and Development Center, Nulla Bio Inc 501 Jinju-daero, Jinju, Republic of Korea
| |
Collapse
|
24
|
Al-Khayri JM, Rashmi R, Surya Ulhas R, Sudheer WN, Banadka A, Nagella P, Aldaej MI, Rezk AAS, Shehata WF, Almaghasla MI. The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels. PLANTS (BASEL, SWITZERLAND) 2023; 12:292. [PMID: 36679005 PMCID: PMC9865530 DOI: 10.3390/plants12020292] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 05/22/2023]
Abstract
In recent years, the global agricultural system has been unfavorably impacted by adverse environmental changes. These changes in the climate, in turn, have altered the abiotic conditions of plants, affecting plant growth, physiology and production. Abiotic stress in plants is one of the main obstacles to global agricultural production and food security. Therefore, there is a need for the development of novel approaches to overcome these problems and achieve sustainability. Nanotechnology has emerged as one such novel approach to improve crop production, through the utilization of nanoscale products, such as nanofertilizer, nanofungicides, nanoherbicides and nanopesticides. Their ability to cross cellular barriers makes nanoparticles suitable for their application in agriculture. Since they are easily soluble, smaller, and effective for uptake by plants, nanoparticles are widely used as a modern agricultural tool. The implementation of nanoparticles has been found to be effective in improving the qualitative and quantitative aspects of crop production under various biotic and abiotic stress conditions. This review discusses various abiotic stresses to which plants are susceptible and highlights the importance of the application of nanoparticles in combating abiotic stress, in addition to the major physiological, biochemical and molecular-induced changes that can help plants tolerate stress conditions. It also addresses the potential environmental and health impacts as a result of the extensive use of nanoparticles.
Collapse
Affiliation(s)
- Jameel Mohammed Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ramakrishnan Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Rutwick Surya Ulhas
- Faculty of Biological Sciences, Institute of Biochemistry and Biophysics, Friedrich-Schiller-Universität, Furstengraben 1, 07743 Jena, Germany
| | - Wudali N. Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Mohammed Ibrahim Aldaej
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Virus & Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 3725005, Egypt
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
25
|
Rao X, Cheng N, Mathew IE, Hirschi KD, Nakata PA. Crucial role of Arabidopsis glutaredoxin S17 in heat stress response revealed by transcriptome analysis. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:58-70. [PMID: 36099929 DOI: 10.1071/fp22002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Heat stress can have detrimental effects on plant growth and development. However, the mechanisms by which the plant is able to perceive changes in ambient temperature, transmit this information, and initiate a temperature-induced response are not fully understood. Previously, we showed that heterologous expression of an Arabidopsis thaliana L. monothiol glutaredoxin AtGRXS17 enhances thermotolerance in various crops, while disruption of AtGRXS17 expression caused hypersensitivity to permissive temperature. In this study, we extend our investigation into the effect of AtGRXS17 and heat stress on plant growth and development. Although atgrxs17 plants were found to exhibit a slight decrease in hypocotyl elongation, shoot meristem development, and root growth compared to wild-type when grown at 22°C, these growth phenotypic differences became more pronounced when growth temperatures were raised to 28°C. Transcriptome analysis revealed significant changes in genome-wide gene expression in atgrxs17 plants compared to wild-type under conditions of heat stress. The expression of genes related to heat stress factors, auxin response, cellular communication, and abiotic stress were altered in atgrxs17 plants in response to heat stress. Overall, our findings indicate that AtGRXS17 plays a critical role in controlling the transcriptional regulation of plant heat stress response pathways.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, P. R. China
| | - Ninghui Cheng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Iny E Mathew
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendal D Hirschi
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Sarwar R, Li L, Yu J, Zhang Y, Geng R, Meng Q, Zhu K, Tan XL. Functional Characterization of the Cystine-Rich-Receptor-like Kinases ( CRKs) and Their Expression Response to Sclerotinia sclerotiorum and Abiotic Stresses in Brassica napus. Int J Mol Sci 2022; 24:ijms24010511. [PMID: 36613954 PMCID: PMC9820174 DOI: 10.3390/ijms24010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins that bind to the calcium ion to regulate stress-signaling and plant development-related pathways, as indicated by several pieces of evidence. However, the CRK gene family hasn’t been inadequately examined in Brassica napus. In our study, 27 members of the CRK gene family were identified in Brassica napus, which are categorized into three phylogenetic groups and display synteny relationship to the Arabidopsis thaliana orthologs. All the CRK genes contain highly conserved N-terminal PKINASE domain; however, the distribution of motifs and gene structure were variable conserved. The functional divergence analysis between BnaCRK groups indicates a shift in evolutionary rate after duplication events, demonstrating that BnaCRKs might direct a specific function. RNA-Seq datasets and quantitative real-time PCR (qRT-PCR) exhibit the complex expression profile of the BnaCRKs in plant tissues under multiple stresses. Nevertheless, BnaA06CRK6-1 and BnaA08CRK8 from group B were perceived to play a predominant role in the Brassica napus stress signaling pathway in response to drought, salinity, and Sclerotinia sclerotiorum infection. Insights gained from this study improve our knowledge about the Brassica napus CRK gene family and provide a basis for enhancing the quality of rapeseed.
Collapse
Affiliation(s)
- Rehman Sarwar
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lei Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiang Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yijie Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Rui Geng
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qingfeng Meng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keming Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
27
|
The CRK5 and WRKY53 Are Conditional Regulators of Senescence and Stomatal Conductance in Arabidopsis. Cells 2022; 11:cells11223558. [PMID: 36428987 PMCID: PMC9688832 DOI: 10.3390/cells11223558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
In Arabidopsis thaliana, cysteine-rich receptor-like kinases (CRKs) constitute a large group of membrane-localized proteins which perceive external stimuli and transduce the signal into the cell. Previous reports based on their loss-of-function phenotypes and expression profile support their role in many developmental and stress-responsive pathways. Our study revealed that one member of this family, CRK5, acts as a negative regulator of leaf aging. Enrichment of the CRK5 promoter region in W-box cis-elements demonstrated that WRKY transcription factors control it. We observed significantly enhanced WRKY53 expression in crk5 and reversion of its early-senescence phenotype in the crk5 wrky53 line, suggesting a negative feedback loop between these proteins antagonistically regulating chlorophyll a and b contents. Yeast-two hybrid assay showed further that CRK5 interacts with several proteins involved in response to water deprivation or calcium signaling, while gas exchange analysis revealed a positive effect of CRK5 on water use efficiency. Consistent with that, the crk5 plants showed disturbed foliar temperature, stomatal conductance, transpiration, and increased susceptibility to osmotic stress. These traits were fully or partially reverted to wild-type phenotype in crk5 wrky53 double mutant. Obtained results suggest that WRKY53 and CRK5 are antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
Collapse
|
28
|
Zhao X, Qu D, Wang L, Gao Y, An N, Wang A, Li Y, Yang J, Wu F, Su H. Genome-wide identification of cysteine-rich receptor-like kinases in sweet cherry reveals that PaCRK1 enhances sweet cherry resistance to salt stress. PLANT CELL REPORTS 2022; 41:2037-2088. [PMID: 35904590 DOI: 10.1007/s00299-022-02907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Forty PaCRKs have been identified from sweet cherry and overexpression PaCRK1 in sweet cherry enhances its resistance to salt stress. Cysteine-rich receptor-like kinases (CRKs), a large subgroup of the receptor-like kinases, play an important role in plant development and stress response. However, knowledge about CRKs and its function against adverse environmental stresses in sweet cherry were lacking. In this study, 40 PaCRKs were identified from sweet cherry (Prunus avium) genome database. Phylogenetic analysis indicated that PaCRKs could be classified into six subgroups. Transcriptome analysis showed that the expression levels of most PaCRKs were changed under external environmental stresses. Functional study showed that PaCRK1 overexpression could enhance Arabidopsis and sweet cherry tolerance to salt stress. Moreover, biochemical analysis showed that PaCRK1 increased salt tolerance of sweet cherry by regulating the expression of antioxidation-related genes and their enzyme activities. This study provides a comprehensive understanding of PaCRKs in sweet cherry and elucidates the potential role of PaCRKs in response to various environmental stimuli.
Collapse
Affiliation(s)
- Xiaohui Zhao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Dehui Qu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Lei Wang
- College of Life Sciences, Ludong University, Yantai, 264025, China
| | - Yuanhui Gao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Ningning An
- Yantai Laishan Garden Construction and Maintenance Center, Yantai, 264003, China
| | - Aiping Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yaxin Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jingjing Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Fanlin Wu
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Hongyan Su
- School of Agriculture, Ludong University, Yantai, 264025, China.
- The Institute of Ecological Garden, Ludong University, Yantai, 264025, China.
| |
Collapse
|
29
|
Xu F, Chen S, Zhou S, Yue C, Yang X, Zhang X, Zhan K, He D. Genome-wide association, RNA-seq and iTRAQ analyses identify candidate genes controlling radicle length of wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:939544. [PMID: 36247556 PMCID: PMC9554269 DOI: 10.3389/fpls.2022.939544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The radicle, present in the embryo of a seed, is the first root to emerge at germination, and its rapid growth is essential for establishment and survival of the seedling. However, there are few studies on the critical mechanisms underlying radicle and then radicle length in wheat seedlings, despite its importance as a food crop throughout the world. In the present study, 196 wheat accessions from the Huanghuai Wheat Region were screened to measure radicle length under 4 hydroponic culture environments over 3 years. Different expression genes and proteins (DEGs/DEPs) between accessions with extremely long [Yunong 949 (WRL1), Zhongyu 9,302 (WRL2)] and short roots [Yunong 201 (WRS1), Beijing 841 (WRS2)] were identified in 12 sets of root tissue samples by RNA-seq and iTRAQ (Isobaric tags for relative and absolute quantification). Phenotypic results showed that the elongation zone was significantly longer in root accessions with long roots compared to the short-rooted accessions. A genome-wide association study (GWAS) identified four stable chromosomal regions significantly associated with radicle length, among which 1A, 4A, and 7A chromosomes regions explained 7.17% to12.93% of the phenotypic variation. The omics studies identified the expression patterns of 24 DEGs/DEPs changed at both the transcriptional and protein levels. These DEGs/DEPs were mainly involved in carbon fixation in photosynthetic organisms, photosynthesis and phenylpropanoid biosynthesis pathways. TraesCS1A02G104100 and TraesCS2B02G519100 were involved in the biosynthesis of tricin-lignins in cell walls and may affect the extension of cell walls in the radicle elongation zone. A combination of GWAS and RNA-seq analyses revealed 19 DEGs with expression changes in the four accessions, among which, TraesCS1A02G422700 (a cysteine-rich receptor-like protein kinase 6, CRK6) also showed upregulation in the comparison group by RNA-seq, iTRAQ, and qRT-PCR. BSMV-mediated gene silencing also showed that TaCRK6 improves root development in wheat. Our data suggest that TaCRK6 is a candidate gene regulating radicle length in wheat.
Collapse
Affiliation(s)
- Fengdan Xu
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Research Institute of Plant Nutrition and Resources and Environments, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shulin Chen
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Sumei Zhou
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Chao Yue
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Xiwen Yang
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Xiang Zhang
- Research Institute of Plant Nutrition and Resources and Environments, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Kehui Zhan
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Dexian He
- College of Agronomy of Henan Agricultural University/National Engineering Research Center for Wheat/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
30
|
Identification of Heat-Tolerant Genes in Non-Reference Sequences in Rice by Integrating Pan-Genome, Transcriptomics, and QTLs. Genes (Basel) 2022; 13:genes13081353. [PMID: 36011264 PMCID: PMC9407402 DOI: 10.3390/genes13081353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/04/2023] Open
Abstract
The availability of large-scale genomic data resources makes it very convenient to mine and analyze genes that are related to important agricultural traits in rice. Pan-genomes have been constructed to provide insight into the genome diversity and functionality of different plants, which can be used in genome-assisted crop improvement. Thus, a pan-genome comprising all genetic elements is crucial for comprehensive variation study among the heat-resistant and -susceptible rice varieties. In this study, a rice pan-genome was firstly constructed by using 45 heat-tolerant and 15 heat-sensitive rice varieties. A total of 38,998 pan-genome genes were identified, including 37,859 genes in the reference and 1141 in the non-reference contigs. Genomic variation analysis demonstrated that a total of 76,435 SNPs were detected and identified as the heat-tolerance-related SNPs, which were specifically present in the highly heat-resistant rice cultivars and located in the genic regions or within 2 kbp upstream and downstream of the genes. Meanwhile, 3214 upregulated and 2212 downregulated genes with heat stress tolerance-related SNPs were detected in one or multiple RNA-seq datasets of rice under heat stress, among which 24 were located in the non-reference contigs of the rice pan-genome. We then mapped the DEGs with heat stress tolerance-related SNPs to the heat stress-resistant QTL regions. A total of 1677 DEGs, including 990 upregulated and 687 downregulated genes, were mapped to the 46 heat stress-resistant QTL regions, in which 2 upregulated genes with heat stress tolerance-related SNPs were identified in the non-reference sequences. This pan-genome resource is an important step towards the effective and efficient genetic improvement of heat stress resistance in rice to help meet the rapidly growing needs for improved rice productivity under different environmental stresses. These findings provide further insight into the functional validation of a number of non-reference genes and, especially, the two genes identified in the heat stress-resistant QTLs in rice.
Collapse
|
31
|
Huang C, Wang D, Chen H, Deng W, Chen D, Chen P, Wang J. Genome-Wide Identification of DUF26 Domain-Containing Genes in Dongxiang Wild Rice and Analysis of Their Expression Responses under Submergence. Curr Issues Mol Biol 2022; 44:3351-3363. [PMID: 36005127 PMCID: PMC9406443 DOI: 10.3390/cimb44080231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The DUF26 domain-containing protein is an extracellular structural protein, which plays an important role in signal transduction. Dongxiang wild rice (Oryza rufipogon Griff.) is the northern-most common wild rice in China. Using domain analysis, 85 DUF26 domain-containing genes were identified in Dongxiang wild rice (DXWR) and further divided into four categories. The DUF26 domain-containing genes were unevenly distributed on chromosomes, and there were 18 pairs of tandem repeats. Gene sequence analysis showed that there were significant differences in the gene structure and motif distribution of the DUF26 domain in different categories. Motifs 3, 8, 9, 13, 14, 16, and 18 were highly conserved in all categories. It was also found that there were eight plasmodesmata localization proteins (PDLPs) with a unique motif 19. Collinearity analysis showed that DXWR had a large number of orthologous genes with wheat, maize, sorghum and zizania, of which 17 DUF26 domain-containing genes were conserved in five gramineous crops. Under the stress of anaerobic germination and seedling submergence treatment, 33 DUF26 domain-containing genes were differentially expressed in varying degrees. Further correlation analysis with the expression of known submergence tolerance genes showed that these DUF26 domain-containing genes may jointly regulate the submergence tolerance process with these known submergence tolerance genes in DXWR.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Chen
- Correspondence: (P.C.); (J.W.); Tel.: +86-185-7906-9996 (P.C.); +86-133-8753-2293 (J.W.)
| | - Jilin Wang
- Correspondence: (P.C.); (J.W.); Tel.: +86-185-7906-9996 (P.C.); +86-133-8753-2293 (J.W.)
| |
Collapse
|
32
|
Piya S, Hawk T, Patel B, Baldwin L, Rice JH, Stewart CN, Hewezi T. Kinase-dead mutation: A novel strategy for improving soybean resistance to soybean cyst nematode Heterodera glycines. MOLECULAR PLANT PATHOLOGY 2022; 23:417-430. [PMID: 34851539 PMCID: PMC8828698 DOI: 10.1111/mpp.13168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 05/29/2023]
Abstract
Protein kinases phosphorylate proteins for functional changes and are involved in nearly all cellular processes, thereby regulating almost all aspects of plant growth and development, and responses to biotic and abiotic stresses. We generated two independent co-expression networks of soybean genes using control and stress response gene expression data and identified 392 differentially highly interconnected kinase hub genes among the two networks. Of these 392 kinases, 90 genes were identified as "syncytium highly connected hubs", potentially essential for activating kinase signalling pathways in the nematode feeding site. Overexpression of wild-type coding sequences of five syncytium highly connected kinase hub genes using transgenic soybean hairy roots enhanced plant susceptibility to soybean cyst nematode (SCN; Heterodera glycines) Hg Type 0 (race 3). In contrast, overexpression of kinase-dead variants of these five syncytium kinase hub genes significantly enhanced soybean resistance to SCN. Additionally, three of the five tested kinase hub genes enhanced soybean resistance to SCN Hg Type 1.2.5.7 (race 2), highlighting the potential of the kinase-dead approach to generate effective and durable resistance against a wide range of SCN Hg types. Subcellular localization analysis revealed that kinase-dead mutations do not alter protein cellular localization, confirming the structure-function of the kinase-inactive variants in producing loss-of-function phenotypes causing significant decrease in nematode susceptibility. Because many protein kinases are highly conserved and are involved in plant responses to various biotic and abiotic stresses, our approach of identifying kinase hub genes and their inactivation using kinase-dead mutation could be translated for biotic and abiotic stress tolerance.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Tracy Hawk
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Bhoomi Patel
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Logan Baldwin
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - John H. Rice
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - C. Neal Stewart
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
33
|
Heat Stress Reduces Root Meristem Size via Induction of Plasmodesmal Callose Accumulation Inhibiting Phloem Unloading in Arabidopsis. Int J Mol Sci 2022; 23:ijms23042063. [PMID: 35216183 PMCID: PMC8879574 DOI: 10.3390/ijms23042063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
The intercellular transport of sugars, nutrients, and small molecules is essential for plant growth, development, and adaptation to environmental changes. Various stresses are known to affect the cell-to-cell molecular trafficking modulated by plasmodesmal permeability. However, the mechanisms of plasmodesmata modification and molecules involved in the phloem unloading process under stress are still not well understood. Here, we show that heat stress reduces the root meristem size and inhibits phloem unloading by inducing callose accumulation at plasmodesmata that connect the sieve element and phloem pole pericycle. Furthermore, we identify the loss-of-function of CALLOSE SYNTHASE 8 (CalS8), which is expressed specifically in the phloem pole pericycle, decreasing the plasmodesmal callose deposition at the interface between the sieve element and phloem pole pericycle and alleviating the suppression at root meristem size by heat stress. Our studies indicate the involvement of callose in the interaction between root meristem growth and heat stress and show that CalS8 negatively regulates the thermotolerance of Arabidopsis roots.
Collapse
|
34
|
Zhang L, Zhu X, Zhao Y, Guo J, Zhang T, Huang W, Huang J, Hu Y, Huang CH, Ma H. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution. Mol Biol Evol 2022; 39:6521033. [PMID: 35134207 PMCID: PMC8844509 DOI: 10.1093/molbev/msac026] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adaptation to cool climates has occurred several times in different angiosperm groups. Among them, Pooideae, the largest grass subfamily with ∼3,900 species including wheat and barley, have successfully occupied many temperate regions and play a prominent role in temperate ecosystems. To investigate possible factors contributing to Pooideae adaptive evolution to cooling climates, we performed phylogenetic reconstruction using five gene sets (with 1,234 nuclear genes and their subsets) from 157 transcriptomes/genomes representing all 15 tribes and 24 of 26 subtribes. Our phylogeny supports the monophyly of all tribes (except Diarrheneae) and all subtribes with at least two species, with strongly supported resolution of their relationships. Molecular dating suggests that Pooideae originated in the late Cretaceous, with subsequent divergences under cooling conditions first among many tribes from the early middle to late Eocene and again among genera in the middle Miocene and later periods. We identified a cluster of gene duplications (CGD5) shared by the core Pooideae (with 80% Pooideae species) near the Eocene–Oligocene transition, coinciding with the transition from closed to open habitat and an upshift of diversification rate. Molecular evolutionary analyses homologs of CBF for cold resistance uncovered tandem duplications during the core Pooideae history, dramatically increasing their copy number and possibly promoting adaptation to cold habitats. Moreover, duplication of AP1/FUL-like genes before the Pooideae origin might have facilitated the regulation of the vernalization pathway under cold environments. These and other results provide new insights into factors that likely have contributed to the successful adaptation of Pooideae members to temperate regions.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xinxin Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Weichen Huang
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Jie Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
35
|
Mondal R, Biswas S, Srivastava A, Basu S, Trivedi M, Singh SK, Mishra Y. In silico analysis and expression profiling of S-domain receptor-like kinases (SD-RLKs) under different abiotic stresses in Arabidopsis thaliana. BMC Genomics 2021; 22:817. [PMID: 34772363 PMCID: PMC8590313 DOI: 10.1186/s12864-021-08133-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND S-domain receptor-like kinases (SD-RLKs) are an important and multi-gene subfamily of plant receptor-like/pelle kinases (RLKs), which are known to play a significant role in the development and immune responses of Arabidopsis thaliana. The conserved cysteine residues in the extracellular domain of SD-RLKs make them interesting candidates for sensing reactive oxygen species (ROS), assisting oxidative stress mitigation and associated signaling pathways during abiotic stresses. However, how closely SD-RLKs are interrelated to abiotic stress mitigation and signaling remains unknown in A. thaliana. RESULTS This study was initiated by examining the chromosomal localization, phylogeny, sequence and differential expression analyses of 37 SD-RLK genes using publicly accessible microarray datasets under cold, osmotic stress, genotoxic stress, drought, salt, UV-B, heat and wounding. Out of 37 SD-RLKs, 12 genes displayed differential expression patterns in both the root and the shoot tissues. Promoter structure analysis suggested that these 12 SD-RLK genes harbour several potential cis-regulatory elements (CREs), which are involved in regulating multiple abiotic stress responses. Based on these observations, we investigated the expression patterns of 12 selected SD-RLKs under ozone, wounding, oxidative (methyl viologen), UV-B, cold, and light stress at different time points using semi-qRT-PCR. Of these 12 SD-SRKs, the genes At1g61360, At1g61460, At1g61380, and At4g27300 emerged as potential candidates that maintain their expression in most of the stress treatments till exposure for 12 h. Expression patterns of these four genes were further verified under similar stress treatments using qRT-PCR. The expression analysis indicated that the gene At1g61360, At1g61380, and At1g61460 were mostly up-regulated, whereas the expression of At4g27300 either up- or down-regulated in these conditions. CONCLUSIONS To summarize, the computational analysis and differential transcript accumulation of SD-RLKs under various abiotic stresses suggested their association with abiotic stress tolerance and related signaling in A. thaliana. We believe that a further detailed study will decipher the specific role of these representative SD-RLKs in abiotic stress mitigation vis-a-vis signaling pathways in A. thaliana.
Collapse
Affiliation(s)
- Raju Mondal
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.,Current address: Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Center, Central Silk Board-Ministry of Textiles (GoI), Hosur, Tamil Nadu, 635109, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suvajit Basu
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Maitri Trivedi
- Plant Cell and Molecular Biology Lab, Department of Botany, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390 002, India
| | - Sunil Kumar Singh
- Plant Cell and Molecular Biology Lab, Department of Botany, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390 002, India
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
36
|
Abstract
Oriented cell divisions are crucial throughout plant development to define the final size and shape of organs and tissues. As most of the tissues in mature roots and stems are derived from vascular tissues, studying cell proliferation in the vascular cell lineage is of great importance. Although perturbations of vascular development are often visible already at the whole plant macroscopic phenotype level, a more detailed characterization of the vascular anatomy, cellular organization, and differentiation status of specific vascular cell types can provide insights into which pathway or developmental program is affected. In particular, defects in the frequency or orientation of cell divisions can be reliably identified from the number of vascular cell files. Here, we provide a detailed description of the different clearing, staining, and imaging techniques that allow precise phenotypic analysis of vascular tissues in different organs of the model plant Arabidopsis thaliana throughout development, including the quantification of cell file numbers, differentiation status of vascular cell types, and expression of reporter genes.
Collapse
|
37
|
Gómez-Pérez D, Kemen E. Predicting Lifestyle from Positive Selection Data and Genome Properties in Oomycetes. Pathogens 2021; 10:807. [PMID: 34202069 PMCID: PMC8308905 DOI: 10.3390/pathogens10070807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
As evidenced in parasitism, host and niche shifts are a source of genomic and phenotypic diversification. Exemplary is a reduction in the core metabolism as parasites adapt to a particular host, while the accessory genome often maintains a high degree of diversification. However, selective pressures acting on the genome of organisms that have undergone recent lifestyle or host changes have not been fully investigated. Here, we developed a comparative genomics approach to study underlying adaptive trends in oomycetes, a eukaryotic phylum with a wide and diverse range of economically important plant and animal parasitic lifestyles. Our analysis reveals converging evolution on biological processes for oomycetes that have similar lifestyles. Moreover, we find that certain functions, in particular carbohydrate metabolism, transport, and signaling, are important for host and environmental adaptation in oomycetes. Given the high correlation between lifestyle and genome properties in our oomycete dataset, together with the known convergent evolution of fungal and oomycete genomes, we developed a model that predicts plant pathogenic lifestyles with high accuracy based on functional annotations. These insights into how selective pressures correlate with lifestyle may be crucial to better understand host/lifestyle shifts and their impact on the genome.
Collapse
Affiliation(s)
| | - Eric Kemen
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|
38
|
Genome-Wide Identification and Characterization of Cysteine-Rich Receptor-Like Protein Kinase Genes in Tomato and Their Expression Profile in Response to Heat Stress. DIVERSITY 2021. [DOI: 10.3390/d13060258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During plant growth, development and stress adaption, receptor-like protein kinases (RLKs) are essential components in perceiving and integrating extracellular stimuli and transmitting the signals to activate the downstream signaling pathways. Cysteine-rich receptor-like protein kinases (CRKs) are a large subfamily of RLKs and their roles in modulating plant disease resistance are well elucidated. However, the roles of CRKs in plant abiotic stress responses, especially heat stress, are largely unknown. In this study, 35 SlCRK genes were identified in tomato (Solanum lycopersicum) based on the multiple sequence alignment and phylogenetic relationships. SlCRK genes are tandemly distributed on seven chromosomes and have similar exon–intron organization and common conserved motifs. Various phytohormone responsive, stress responsive cis-regulatory elements and heat shock elements are predicted in the promoter regions of SlCRK genes. Transcriptome analysis of tomato fruits under heat stress revealed that most SlCRK genes were downregulated upon heat treatment. GO enrichment analyses of genes that were co-expressed with SlCRK members have identified various stress responses related and proteasomal protein catabolic process related genes, which may be involved in heat stress signaling. Overall, our results provide valuable information for further research on the roles of SlCRKs in response to abiotic stress, especially heat stress.
Collapse
|
39
|
Arellano-Villagómez FC, Guevara-Olvera L, Zuñiga-Mayo VM, E. Cerbantez-Bueno V, Verdugo-Perales M, R. Medina H, De Folter S, Acosta-García G. Arabidopsis cysteine-rich receptor-like protein kinase CRK33 affects stomatal density and drought tolerance. PLANT SIGNALING & BEHAVIOR 2021; 16:1905335. [PMID: 33769202 PMCID: PMC8143253 DOI: 10.1080/15592324.2021.1905335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 05/19/2023]
Abstract
Cysteine-rich receptor-like protein kinases (CRKs) are transmembrane proteins containing two domains of unknown function 26 (DUF26) RLKs in their ectodomain. Despite that CRKs control important aspects of plant development, only few proteins have functionally been characterized. In this work, we analyzed the function of CRK33 by characterizing two insertional lines. The stomatal density and stomatal index were decreased in crk33-2 and crk33-3 plants in comparison to wild-type plants, correlating with a decreased transpiration in transgenic plants and a higher drought tolerance. Furthermore, photosynthesis and stomatal conductance changed. Finally, all four stomata cell fate genes were upregulated, especially the expression of TMM and SPCH in the mutant background, suggesting a role for CRK33 in stomatal spacing.
Collapse
Affiliation(s)
| | - Lorenzo Guevara-Olvera
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| | - Víctor M. Zuñiga-Mayo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro De Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, México
- Instituto de Fitosanidad, Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de México, México
| | - Vincent E. Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro De Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, México
| | - Mercedes Verdugo-Perales
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| | - Humberto R. Medina
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| | - Stefan De Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro De Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, México
| | - Gerardo Acosta-García
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
- CONTACT Gerardo Acosta-García Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| |
Collapse
|
40
|
Grabsztunowicz M, Rantala M, Ivanauskaite A, Blomster T, Koskela MM, Vuorinen K, Tyystjärvi E, Burow M, Overmyer K, Mähönen AP, Mulo P. Root-type ferredoxin-NADP + oxidoreductase isoforms in Arabidopsis thaliana: Expression patterns, location and stress responses. PLANT, CELL & ENVIRONMENT 2021; 44:548-558. [PMID: 33131061 DOI: 10.1111/pce.13932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
In Arabidopsis, two leaf-type ferredoxin-NADP+ oxidoreductase (LFNR) isoforms function in photosynthetic electron flow in reduction of NADP+ , while two root-type FNR (RFNR) isoforms catalyse reduction of ferredoxin in non-photosynthetic plastids. As the key to understanding, the function of RFNRs might lie in their spatial and temporal distribution in different plant tissues and cell types, we examined expression of RFNR1 and RFNR2 genes using β-glucuronidase (GUS) reporter lines and investigated accumulation of distinct RFNR isoforms using a GFP approach and Western blotting upon various stresses. We show that while RFNR1 promoter is active in leaf veins, root tips and in the stele of roots, RFNR2 promoter activity is present in leaf tips and root stele, epidermis and cortex. RFNR1 protein accumulates as a soluble protein within the plastids of root stele cells, while RFNR2 is mainly present in the outer root layers. Ozone treatment of plants enhanced accumulation of RFNR1, whereas low temperature treatment specifically affected RFNR2 accumulation in roots. We further discuss the physiological roles of RFNR1 and RFNR2 based on characterization of rfnr1 and rfnr2 knock-out plants and show that although the function of these proteins is partly redundant, the RFNR proteins are essential for plant development and survival.
Collapse
Affiliation(s)
- Magda Grabsztunowicz
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Marjaana Rantala
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Aiste Ivanauskaite
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Tiina Blomster
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Minna M Koskela
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Katariina Vuorinen
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Ari P Mähönen
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Paula Mulo
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
41
|
Song H, Huang Y, Gu B. QTL-Seq identifies quantitative trait loci of relative electrical conductivity associated with heat tolerance in bottle gourd (Lagenaria siceraria). PLoS One 2020; 15:e0227663. [PMID: 33170849 PMCID: PMC7654804 DOI: 10.1371/journal.pone.0227663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Heat is a major abiotic stress that seriously affects watermelon (Citrullus lanatus) production. However, its effects may be mitigated through grafting watermelon to heat tolerant bottle gourd (Lagenaria siceraria) rootstocks. Understanding the genetic basis of heat tolerance and development of reliable DNA markers to indirectly select for the trait are necessary in breeding for new varieties with heat tolerance. The objectives of this study were to investigate the inheritance of heat tolerance and identify molecular markers associated with heat tolerance in bottle gourd. A segregating F2 population was developed from a cross between two heat tolerant and sensitive inbred lines. The population was phenotyped for relative electrical conductivity (REC) upon high temperature treatment which was used as an indicator for heat tolerance. QTL-seq was performed to identify regions associated with heat tolerance. We found that REC-based heat tolerance in this population exhibited recessive inheritance. Seven heat-tolerant quantitative trait loci (qHT1.1, qHT2.1, qHT2.2, qHT5.1, qHT6.1, qHT7.1, and qHT8.1) were identified with qHT2.1 being a promising major-effect QTL. In the qHT2.1 region, we identified three non-synonymous SNPs that were potentially associated with heat tolerance. These SNPs were located in the genes that may play roles in pollen sterility, intracellular transport, and signal recognition. Association of the three SNPs with heat tolerance was verified in segregating F2 populations, which could be candidate markers for marker assisted selection for heat tolerance in bottle gourd. The qHT2.1 region is an important finding that may be used for fine mapping and discovery of novel genes associated with heat tolerance in bottle gourd.
Collapse
Affiliation(s)
- Hui Song
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
- * E-mail:
| | - Yunping Huang
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
| | - Binquan Gu
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
42
|
Kanojia A, Gupta S, Benina M, Fernie AR, Mueller-Roeber B, Gechev T, Dijkwel PP. Developmentally controlled changes during Arabidopsis leaf development indicate causes for loss of stress tolerance with age. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6340-6354. [PMID: 32720687 PMCID: PMC7586751 DOI: 10.1093/jxb/eraa347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/22/2020] [Indexed: 05/26/2023]
Abstract
Leaf senescence is the final stage of leaf development and is induced by the gradual occurrence of age-related changes (ARCs). The process of leaf senescence has been well described, but the cellular events leading to this process are still poorly understood. By analysis of progressively ageing, but not yet senescing, Arabidopsis thaliana rosette leaves, we aimed to better understand processes occurring prior to the onset of senescence. Using gene expression analysis, we found that as leaves mature, genes responding to oxidative stress and genes involved in stress hormone biosynthesis and signalling were up-regulated. A decrease in primary metabolites that provide protection against oxidative stress was a possible explanation for the increased stress signature. The gene expression and metabolomics changes occurred concomitantly to a decrease in drought, salinity, and dark stress tolerance of individual leaves. Importantly, stress-related genes showed elevated expression in the early ageing mutant old5 and decreased expression in the delayed ageing mutant ore9. We propose that the decreased stress tolerance with age results from the occurrence of senescence-inducing ARCs that is integrated into the leaf developmental programme, and that this ensures a timely and certain death.
Collapse
Affiliation(s)
- Aakansha Kanojia
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Saurabh Gupta
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Maria Benina
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| | - Paul P Dijkwel
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
43
|
Bauer S, Mekonnen DW, Geist B, Lange B, Ghirardo A, Zhang W, Schäffner AR. The isoleucic acid triad: distinct impacts on plant defense, root growth, and formation of reactive oxygen species. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4258-4270. [PMID: 32227083 PMCID: PMC7448199 DOI: 10.1093/jxb/eraa160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/26/2020] [Indexed: 05/18/2023]
Abstract
Isoleucic acid (ILA), a branched-chain amino acid-related 2-hydroxycarboxylic acid, occurs ubiquitously in plants. It enhances pathogen resistance and inhibits root growth of Arabidopsis. The salicylic acid (SA) glucosyltransferase UGT76B1 is able to conjugate ILA. Here, we investigate the role of ILA in planta in Arabidopsis and reveal a triad of distinct responses to this small molecule. ILA synergistically co-operates with SA to activate SA-responsive gene expression and resistance in a UGT76B1-dependent manner in agreement with the observed competitive ILA-dependent repression of SA glucosylation by UGT76B1. However, ILA also shows an SA-independent stress response. Nitroblue tetrazolium staining and pharmacological experiments indicate that ILA induces superoxide formation of the wild type and of an SA-deficient (NahG sid2) line. In contrast, the inhibitory effect of ILA on root growth is independent of both SA and superoxide induction. These effects of ILA are specific and distinct from its isomeric compound leucic acid and from the amino acid isoleucine. Leucic acid and isoleucine do not induce expression of defense marker genes or superoxide production, whereas both compounds inhibit root growth. All three responses to ILA are also observed in Brassica napus.
Collapse
Affiliation(s)
- Sibylle Bauer
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Dereje W Mekonnen
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Birgit Geist
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Birgit Lange
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Andrea Ghirardo
- Institute of Biochemical Plant Pathology, Environmental Simulation Unit, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Wei Zhang
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| |
Collapse
|
44
|
Arabidopsis Transmembrane Receptor-Like Kinases (RLKs): A Bridge between Extracellular Signal and Intracellular Regulatory Machinery. Int J Mol Sci 2020; 21:ijms21114000. [PMID: 32503273 PMCID: PMC7313013 DOI: 10.3390/ijms21114000] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Receptors form the crux for any biochemical signaling. Receptor-like kinases (RLKs) are conserved protein kinases in eukaryotes that establish signaling circuits to transduce information from outer plant cell membrane to the nucleus of plant cells, eventually activating processes directing growth, development, stress responses, and disease resistance. Plant RLKs share considerable homology with the receptor tyrosine kinases (RTKs) of the animal system, differing at the site of phosphorylation. Typically, RLKs have a membrane-localization signal in the amino-terminal, followed by an extracellular ligand-binding domain, a solitary membrane-spanning domain, and a cytoplasmic kinase domain. The functional characterization of ligand-binding domains of the various RLKs has demonstrated their essential role in the perception of extracellular stimuli, while its cytosolic kinase domain is usually confined to the phosphorylation of their substrates to control downstream regulatory machinery. Identification of the several ligands of RLKs, as well as a few of its immediate substrates have predominantly contributed to a better understanding of the fundamental signaling mechanisms. In the model plant Arabidopsis, several studies have indicated that multiple RLKs are involved in modulating various types of physiological roles via diverse signaling routes. Here, we summarize recent advances and provide an updated overview of transmembrane RLKs in Arabidopsis.
Collapse
|
45
|
Gu J, Sun J, Liu N, Sun X, Liu C, Wu L, Liu G, Zeng F, Hou C, Han S, Zhen W, Wang D. A novel cysteine-rich receptor-like kinase gene, TaCRK2, contributes to leaf rust resistance in wheat. MOLECULAR PLANT PATHOLOGY 2020; 21:732-746. [PMID: 32196909 PMCID: PMC7170779 DOI: 10.1111/mpp.12929] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 05/04/2023]
Abstract
Leaf rust, caused by Puccinia triticina, is one of the most destructive fungal diseases in wheat production worldwide. The hypersensitive reaction (HR) is an important defence response against P. triticina infection. In this study, the physiological races 165 and 260 of P. triticina were combined with a line derived from the bread wheat cultivar Thatcher with the leaf rust resistance locus Lr26 to form compatible and incompatible combinations, respectively. Based on an RNA-Seq database of the interaction systems, a new wheat cysteine-rich receptor-like kinase gene, TaCRK2, is specifically induced and up-regulated in the incompatible combination. We identified that TaCRK2 was regulated in a Ca2+ -dependent manner. Knockdown of TaCRK2 by virus-induced gene silencing and RNAi leads to a dramatic increase in HR area and the number of haustorial mother cells at the single infection site. In addition, urediniospores, a P. triticina-specific pathogenic marker in compatible combinations, were observed on leaf surfaces of silenced plants at approximately 15 days after inoculation in the incompatible combination. Moreover, transcription levels of TaPR1, TaPR2, and TaPR5 were obviously reduced in TaCRK2-silenced plants. TaCRK2 overexpression in Nicotiana benthamiana induced strong HR-like cell death. Finally, transient expression of green fluorescent protein fused with TaCRK2 in N. benthamiana indicated that TaCRK2 localizes in the endoplasmic reticulum. Thus, TaCRK2 plays an important role in the resistance to P. triticina infection and has a positive regulation effect on the HR cell death process induced by P. triticina.
Collapse
Affiliation(s)
- Jia Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Jiawei Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Na Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Xizhe Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | | | - Lizhu Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Gang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Chunyan Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Shengfang Han
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Wenchao Zhen
- Key Laboratory of Regulation and Control of Crop Growth of HebeiCollege of AgronomyHebei Agriculture UniversityBaodingChina
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| |
Collapse
|
46
|
Transcriptome analysis of drought-tolerant sorghum genotype SC56 in response to water stress reveals an oxidative stress defense strategy. Mol Biol Rep 2020; 47:3291-3303. [PMID: 32303956 PMCID: PMC7239807 DOI: 10.1007/s11033-020-05396-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Drought tolerance is a crucial trait for crops to curtail the yield loss inflicted by water stress, yet genetic improvement efforts are challenged by the complexity of this character. The adaptation of sorghum to abiotic stress, its genotypic variability, and relatively small genome make this species well-suited to dissect the molecular basis of drought tolerance. The use of differential transcriptome analysis provides a snapshot of the bioprocesses underlying drought response as well as genes that might be determinants of the drought tolerance trait. RNA sequencing data were analyzed via gene ontology enrichment to compare the transcriptome profiles of two sorghum lines, the drought-tolerant SC56 and the drought-sensitive Tx7000. SC56 outperformed Tx7000 in wet conditions by upregulating processes driving growth and guaranteeing homeostasis. The drought tolerance of SC56 seems to be an intrinsic trait occurring through overexpressing stress tolerance genes in wet conditions, notably genes acting in defense against oxidative stress (SOD1, SOD2, VTC1, MDAR1, MSRB2, and ABC1K1). Similarly to wet conditions, under drought, SC56 enhanced its transmembrane transport and maintained growth-promoting mechanisms. Under drought, SC56 also upregulated stress tolerance genes that heighten the antioxidant capacity (SOD1, RCI3, VTE1, UCP1, FD1, and FD2), regulatory factors (CIPK1 and CRK7), and repressors of premature senescence (SAUL1). The differential expression analysis uncovered biological processes which upregulation enables SC56 to be a better accumulator of biomass and connects the drought tolerance trait to key stress tolerance genes, making this genotype a judicious choice for isolation of tolerance genes.
Collapse
|
47
|
Arisha MH, Aboelnasr H, Ahmad MQ, Liu Y, Tang W, Gao R, Yan H, Kou M, Wang X, Zhang Y, Li Q. Transcriptome sequencing and whole genome expression profiling of hexaploid sweetpotato under salt stress. BMC Genomics 2020; 21:197. [PMID: 32131729 PMCID: PMC7057664 DOI: 10.1186/s12864-020-6524-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Purple-fleshed sweetpotato (PFSP) is one of the most important crops in the word which helps to bridge the food gap and contribute to solve the malnutrition problem especially in developing countries. Salt stress is seriously limiting its production and distribution. Due to lacking of reference genome, transcriptome sequencing is offering a rapid approach for crop improvement with promising agronomic traits and stress adaptability. RESULTS Five cDNA libraries were prepared from the third true leaf of hexaploid sweetpotato at seedlings stage (Xuzi-8 cultivar) treated with 200 mM NaCl for 0, 1, 6, 12, 48 h. Using second and third generation technology, Illumina sequencing generated 170,344,392 clean high-quality long reads that were assembled into 15,998 unigenes with an average length 2178 base pair and 96.55% of these unigenes were functionally annotated in the NR protein database. A number of 537 unigenes failed to hit any homologs which may be considered as novel genes. The current results indicated that sweetpotato plants behavior during the first hour of salt stress was different than the other three time points. Furthermore, expression profiling analysis identified 4, 479, 281, 508 significantly expressed unigenes in salt stress treated samples at the different time points including 1, 6, 12, 48 h, respectively as compared to control. In addition, there were 4, 1202, 764 and 2195 transcription factors differentially regulated DEGs by salt stress at different time points including 1, 6, 12, 48 h of salt stress. Validation experiment was done using 6 randomly selected unigenes and the results was in agree with the DEG results. Protein kinases include many genes which were found to play a vital role in phosphorylation process and act as a signal transductor/ receptor proteins in membranes. These findings suggest that salt stress tolerance in hexaploid sweetpotato plants may be mainly affected by TFs, PKs, Protein Detox and hormones related genes which contribute to enhance salt tolerance. CONCLUSION These transcriptome sequencing data of hexaploid sweetpotato under salt stress conditions can provide a valuable resource for sweetpotato breeding research and focus on novel insights into hexaploid sweetpotato responses to salt stress. In addition, it offers new candidate genes or markers that can be used as a guide to the future studies attempting to breed salt tolerance sweetpotato cultivars.
Collapse
Affiliation(s)
- Mohamed Hamed Arisha
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture / Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
- Department of Horticulture, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, 44511, Egypt
| | - Hesham Aboelnasr
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture / Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
- Plant pathology department, Agriculture and Biology research division, National research center, Giza, Egypt
| | - Muhammad Qadir Ahmad
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture / Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Yaju Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture / Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture / Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture / Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture / Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture / Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture / Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture / Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District / Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture / Sweetpotato Research Institute, CAAS, Xuzhou, 221131, Jiangsu, China.
| |
Collapse
|
48
|
Jain N, Rani S, Sharma C, Sinha N, Singh A, Sharma JB, Prasad P, Saripalli G, Sharma PK, Balyan HS, Gupta PK, Prabhu KV. Large-scale stage-specific regulation of gene expression during host-pathogen interactions in CSP44 bread wheat carrying APR gene Lr48. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:203-225. [PMID: 32007128 DOI: 10.1071/fp18336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Genome-wide transcriptome analysis was undertaken in a leaf-rust resistant bread wheat line CSP44 (selected from Australian cv. Condor) carrying the adult plant resistance (APR) gene Lr48. Two pre-adult plant (P-AP) susceptible stages (S48 and S96) and two adult plant (AP) resistant stages (R48 and R96) were used for RNA-seq. At the susceptible P-AP stage (during S48 to S96), expression increased in 2062 genes, and declined in 130 genes; 1775 of 2062 differentially expressed genes (DEGs) also exhibited high expression during early incompatible stage R48. Comparison of S96 with R96 showed that the expression of 80 genes was enhanced and that of 208 genes declined at the AP stage. At the resistant AP stage (during R48 to R96), expression of mere 25 genes increased and that of 126 genes declined. Apparently, the resistance during late adult stage (R96) is caused by regulation of the expression of relatively fewer genes, although at pre-adult stage (S48 to S96), expression of large number of genes increased; expression of majority of these genes kept on increasing during adult stage at R48 also. These and other results of the present study suggest that APR may mimic some kind of systemic acquired resistance (SAR). The host-specific DEGs belonged to 10 different classes including genes involved in defence, transport, epigenetics, photosynthesis, genes encoding some transcription factors etc. The pathogen (Puccinia triticina) specific DEGs (including three genes encoding known biotrophic effectors) seem to help the pathogen in infection/growth through large-scale stage-specific enhanced expression of host's genes. A putative candidate gene for Lr48 containing protein kinase domain (its ortholog in rice encoding OsWAK8) was also identified.
Collapse
Affiliation(s)
- Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sushma Rani
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chanchal Sharma
- Chaudhary Charan Singh University, Meerut 250004, UP, India; and Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan City, Gyeongbook 38453, South Korea
| | - Nivedita Sinha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anupam Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Jai Bhagwan Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pramod Prasad
- Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla 171002, India
| | | | | | | | | | - Kumble Vinod Prabhu
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; and Protection of Plant Varieties and Farmers' Rights Authority, Govt. of India, Ministry of Agriculture & Farmers Welfare, New Delhi 110012 (India)
| |
Collapse
|
49
|
Pelagio-Flores R, Muñoz-Parra E, Barrera-Ortiz S, Ortiz-Castro R, Saenz-Mata J, Ortega-Amaro MA, Jiménez-Bremont JF, López-Bucio J. The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid responses. PLANTA 2019; 251:2. [PMID: 31776759 DOI: 10.1007/s00425-019-03296-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
CRK28, a cysteine-rich receptor-like kinase, plays a role in root organogenesis and overall growth of plants and antagonizes abscisic acid response in seed germination and primary root growth. Receptor-like kinases (RLK) orchestrate development and adaptation to environmental changes in plants. One of the largest RLK groups comprises cysteine-rich receptor-like kinases (CRKs), for which the function of most members remains unknown. In this report, we show that the loss of function of CRK28 led to the formation of roots that are longer and more branched than the parental (Col-0) plantlets, and this correlates with an enhanced domain of the mitotic reporter CycB1:uidA in primary root meristems, whereas CRK28 overexpressing lines had the opposite phenotype, including slow root growth and reduced lateral root formation. Epidermal cell analyses revealed that crk28 mutants had reduced root hair length and increased trichome number, whereas 35S::CRK28 lines present primary roots with longer root hairs but lesser trichomes in leaves. The overall growth in soil of crk28 mutant and CRK28 overexpressing lines was reduced or enhanced, respectively, when compared to the parental (Col-0) seedlings, while germination, root growth and expression analyses of ABI3 and ABI5 further showed that CRK28 modulates ABA responses, which may be important to fine-tune plant morphogenesis. Our study unravels the participation of RLK signaling in root growth and epidermal cell differentiation.
Collapse
Affiliation(s)
- Ramón Pelagio-Flores
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B3, 58040, Morelia, MICH, Mexico
| | - Edith Muñoz-Parra
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B3, 58040, Morelia, MICH, Mexico
| | - Salvador Barrera-Ortiz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B3, 58040, Morelia, MICH, Mexico
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, VER, Mexico
| | - Jorge Saenz-Mata
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n, Fracc. Filadelfia, 35010, Gómez Palacio, DGO, Mexico
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B3, 58040, Morelia, MICH, Mexico.
| |
Collapse
|
50
|
Shumayla, Tyagi S, Sharma A, Singh K, Upadhyay SK. Genomic dissection and transcriptional profiling of Cysteine-rich receptor-like kinases in five cereals and functional characterization of TaCRK68-A. Int J Biol Macromol 2019; 134:316-329. [PMID: 31078592 DOI: 10.1016/j.ijbiomac.2019.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022]
Abstract
Cysteine-rich receptor-like kinases (CRK) constitute one of the largest subfamily of receptor-like kinases, which play crucial roles in plant development and stress response. In total, 43, 37, 36, 38 and 170 CRK genes including duplicated genes were identified in the genome of Brachypodium distachyon, Hordeum vulgare, Oryza sativa, Sorghum bicolor and Triticum aestivum, respectively. These CRK proteins were tightly clustered into four phylogenetic groups and exhibited close syntenic relationship among orthologous genes. Majority of CRK proteins contain a transmembrane domain for plasma membrane localization. The organization of exon/intron, domains and motifs were variably conserved. Tissue-specific expression suggested the involvement of certain CRK genes in plant development. Modulated expression revealed their specific stress-responsive functions. Co-expression and interaction analysis indicated their role in signaling. Ks value and divergence time analysis suggested duplication of TaCRK genes before the hybridization of T. aestivum sub-genomes. Expression comparison of duplicated TaCRK genes revealed functional retention, neofunctionalization or pseudo-functionalization. Recombinant expression of a stress-responsive gene TaCRK68-A in Escherichia coli and Saccharomyces cerevisiae displayed enhanced tolerance against heat, drought, cold and salinity stresses. The study suggested vital functions of CRKs during development and stresses, and provides the basis for functional characterization of each gene in future studies.
Collapse
Affiliation(s)
- Shumayla
- Department of Botany, Panjab University, Chandigarh 160014, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|