1
|
Das A, Suar M, Reddy K. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Biosci Rep 2024; 44:BSR20240482. [PMID: 39492784 PMCID: PMC11581842 DOI: 10.1042/bsr20240482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Human malaria, caused by Plasmodium parasites, is a fatal disease that disrupts the host's physiological balance and affects the neuroendocrine system. This review explores how malaria influences and is influenced by hormones. Malaria activates the Hypothalamus-Pituitary-Adrenal axis, leading to increased cortisol, aldosterone, and epinephrine. Cortisol, while reducing inflammation, aids parasite survival, whereas epinephrine helps manage hypoglycemia. The Hypothalamus-Pituitary-Gonad and Hypothalamus-Pituitary-Thyroid axes are also impacted, resulting in lower sex and thyroid hormone levels. Malaria disrupts the renin-angiotensin-aldosterone system (RAAS), causing higher angiotensin-II and aldosterone levels, contributing to edema, hyponatremia and hypertension. Malaria-induced anemia is exacerbated by increased hepcidin, which impairs iron absorption, reducing both iron availability for the parasite and red blood cell formation, despite elevated erythropoietin. Hypoglycemia is common due to decreased glucose production and hyperinsulinemia, although some cases show hyperglycemia due to stress hormones and inflammation. Hypocalcemia, and hypophosphatemia are associated with low Vitamin D3 and parathyroid hormone but high calcitonin. Hormones such as DHEA, melatonin, PTH, Vitamin D3, hepcidin, progesterone, and erythropoietin protects against malaria. Furthermore, synthetic analogs, receptor agonists and antagonists or mimics of hormones like DHEA, melatonin, serotonin, PTH, vitamin D3, estrogen, progesterone, angiotensin, and somatostatin are being explored as potential antimalarial treatments or adjunct therapies. Additionally, hormones like leptin and PCT are being studied as probable markers of malaria infection.
Collapse
Affiliation(s)
- Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
- Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| |
Collapse
|
2
|
Patel A, Fréville A, Rey JA, Flynn HR, Koussis K, Skehel MJ, Blackman MJ, Baker DA. Plasmodium falciparum protein phosphatase PP7 is required for early ring-stage development. mBio 2024; 15:e0253924. [PMID: 39387582 PMCID: PMC11559042 DOI: 10.1128/mbio.02539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
We previously reported that the Plasmodium falciparum putative serine/threonine protein phosphatase 7 (PP7) is a high-confidence substrate of the cAMP-dependent protein kinase (PKA). Here we explore the function of PP7 in asexual P. falciparum blood stage parasites. We show that conditional disruption of PP7 leads to a severe growth arrest. We show that PP7 is a calcium-dependent phosphatase that interacts with calmodulin and calcium-dependent protein kinase 1 (CDPK1), consistent with a role in calcium signaling. Notably, PP7 was found to be dispensable for erythrocyte invasion, but was crucial for ring-stage development, with PP7-null parasites arresting shortly following invasion and showing no transition to ameboid forms. Phosphoproteomic analysis revealed that PP7 may regulate certain PKAc substrates. Its interaction with calmodulin and CDPK1 further emphasizes a role in calcium signaling, while its impact on early ring development and PKAc substrate phosphorylation underscores its importance in parasite development. IMPORTANCE Plasmodium falciparum causes malaria and is responsible for more than 600,000 deaths each year. Although effective drugs are available to treat disease, the spread of drug-resistant parasites endangers their future efficacy. It is hoped that a better understanding of the biology of malaria parasites will help us to discover new drugs to tackle the resistance problem. Our work is focused on the cell signaling mechanisms that control the development of the parasite throughout its complex life cycle. All signal transduction pathways are ultimately regulated by reversible protein phosphorylation by protein kinase and protein phosphatase enzymes. In this study, we investigate the function of calcium-dependent protein phosphatase PP7 and show that it is essential for the development of ring-stage parasites following the invasion of human erythrocytes. Our results contribute to the understanding of the erythrocytic stages of the parasite life cycle that cause malaria pathology.
Collapse
Affiliation(s)
- Avnish Patel
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Aline Fréville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Joshua A. Rey
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Helen R. Flynn
- Proteomics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Konstantinos Koussis
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mark J. Skehel
- Proteomics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
3
|
Cabral G, Ren B, Bisio H, Otey D, Soldati-Favre D, Brown KM. Orthologs of Plasmodium ICM1 are dispensable for Ca 2+ mobilization in Toxoplasma gondii. Microbiol Spectr 2024; 12:e0122924. [PMID: 39162502 PMCID: PMC11448412 DOI: 10.1128/spectrum.01229-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
Apicomplexan parasites mobilize ionic calcium (Ca2+) from intracellular stores to promote microneme secretion and facilitate motile processes including gliding motility, invasion, and egress. Recently, a multipass transmembrane protein, ICM1, was found to be important for calcium mobilization in Plasmodium falciparum and P. berghei. Comparative genomics and phylogenetics have revealed putative ICM orthologs in Toxoplasma gondii and other apicomplexans. T. gondii possesses two ICM-like proteins, which we have named TgICM1-L (TGGT1_305470) and TgICM2-L (TGGT1_309910). TgICM1-L and TgICM2-L localized to undefined puncta within the parasite cytosol. TgICM1-L and TgICM2-L are individually dispensable in tachyzoites, suggesting a potential compensatory relationship between the two proteins may exist. Surprisingly, mutants lacking both TgICM1-L and TgICM2-L are fully viable, exhibiting no obvious defects in growth, microneme secretion, invasion, or egress. Furthermore, loss of TgICM1-L, TgICM2-L, or both does not impair the parasite's ability to mobilize Ca2+. These findings suggest that additional proteins may participate in Ca2+ mobilization or import in Apicomplexa, reducing the dependence on ICM-like proteins in T. gondii. Collectively, these results highlight similar yet distinct mechanisms of Ca2+ mobilization between T. gondii and Plasmodium.IMPORTANCECa2+ signaling plays a crucial role in governing apicomplexan motility; yet, the mechanisms underlying Ca2+ mobilization from intracellular stores in these parasites remain unclear. In Plasmodium, the necessity of ICM1 for Ca2+ mobilization raises the question of whether this mechanism is conserved in other apicomplexans. Investigation into the orthologs of Plasmodium ICM1 in T. gondii revealed a differing requirement for ICM proteins between the two parasites. This study suggests that T. gondii employs ICM-independent mechanisms to regulate Ca2+ homeostasis and mobilization. Proteins involved in Ca2+ signaling in apicomplexans represent promising targets for therapeutic development.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bingjian Ren
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Hugo Bisio
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Marseille, France
| | - Dawson Otey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin M. Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Dias BKM, Mohanty A, Garcia CRS. Melatonin as a Circadian Marker for Plasmodium Rhythms. Int J Mol Sci 2024; 25:7815. [PMID: 39063057 PMCID: PMC11277106 DOI: 10.3390/ijms25147815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Plasmodium, a digenetic parasite, requires a host and a vector for its life cycle completion. Most Plasmodium species display circadian rhythmicity during their intraerythrocytic cycle within the host, aiding in immune evasion. This rhythmicity, however, diminishes in in vitro cultures, highlighting the importance of host-derived signals for synchronizing the parasite's asexual cycle. Studies indicate a species-specific internal clock in Plasmodium, dependent on these host signals. Melatonin, a hormone the pineal gland produces under circadian regulation, impacts various physiological functions and is extensively reviewed as the primary circadian marker affecting parasite rhythms. Research suggests that melatonin facilitates synchronization through the PLC-IP3 signaling pathway, activating phospholipase C, which triggers intracellular calcium release and gene expression modulation. This evidence strongly supports the role of melatonin as a key circadian marker for parasite synchronization, presenting new possibilities for targeting the melatonin pathway when developing novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Célia R. S. Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (B.K.M.D.); (A.M.)
| |
Collapse
|
5
|
Xu Y, Zhang Z, Wang R, Xue S, Ying Q, Jin L. Roles of estrogen and its receptors in polycystic ovary syndrome. Front Cell Dev Biol 2024; 12:1395331. [PMID: 38961865 PMCID: PMC11219844 DOI: 10.3389/fcell.2024.1395331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder characterized by abnormal steroid hormone levels in peripheral blood and poor-quality oocytes. In the ovary, androgen is produced by theca cells, and estrogen is produced by granulosa cells. Androgen is converted to estrogen in granulosa cells, with cytochrome P450 aromatase as the limiting enzyme during this process. Estrogen receptors (ER) include ER alpha, ER beta, and membrane receptor GPR30. Studies have demonstrated that the abnormal functions of estrogen and its receptors and estradiol synthesis-related enzymes are closely related to PCOS. In recent years, some estrogen-related drugs have made significant progress in clinical application for subfertility with PCOS, such as letrozole and clomiphene. This article will elaborate on the recent advances in PCOS caused by abnormal expression of estrogen and its receptors and the application of related targeted small molecule drugs in clinical research and treatment.
Collapse
Affiliation(s)
- Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziyi Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Rongxiang Wang
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Songguo Xue
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Ying
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ribeiro Franco PI, do Carmo Neto JR, Guerra RO, Ferreira da Silva PE, Braga YLL, Nunes Celes MR, de Menezes LB, Miguel MP, Machado JR. Melatonin: A look at protozoal and helminths. Biochimie 2024; 219:96-109. [PMID: 37541568 DOI: 10.1016/j.biochi.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Melatonin is a pleiotropic neurohormone found in different animal, plant, and microorganism species. It is a product resulting from tryptophan metabolism in the pineal gland and is widely known for its ability to synchronize the circadian rhythm to antitumor functions in different types of cancers. The molecular mechanisms responsible for its immunomodulatory, antioxidant and cytoprotective effects involve binding to high-affinity G protein-coupled receptors and interactions with intracellular targets that modulate signal transduction pathways. In vitro and in vivo studies have reported the therapeutic potential of melatonin in different infectious and parasitic diseases. In this review, the protective and pathophysiological roles of melatonin in fighting protozoan and helminth infections and the possible mechanisms involved against these stressors will be discussed.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - José Rodrigues do Carmo Neto
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rhanoica Oliveira Guerra
- Departamento de Biologia Celular, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Priscilla Elias Ferreira da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Yarlla Loyane Lira Braga
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Mara Rúbia Nunes Celes
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Liliana Borges de Menezes
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil; Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marina Pacheco Miguel
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil; Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
7
|
Kobayashi Y, Komatsuya K, Imamura S, Nozaki T, Watanabe YI, Sato S, Dodd AN, Kita K, Tanaka K. Coordination of apicoplast transcription in a malaria parasite by internal and host cues. Proc Natl Acad Sci U S A 2023; 120:e2214765120. [PMID: 37406097 PMCID: PMC10334805 DOI: 10.1073/pnas.2214765120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
The malaria parasite Plasmodium falciparum has a nonphotosynthetic plastid called the apicoplast, which contains its own genome. Regulatory mechanisms for apicoplast gene expression remain poorly understood, despite this organelle being crucial for the parasite life cycle. Here, we identify a nuclear-encoded apicoplast RNA polymerase σ subunit (sigma factor) which, along with the α subunit, appears to mediate apicoplast transcript accumulation. This has a periodicity reminiscent of parasite circadian or developmental control. Expression of the apicoplast subunit gene, apSig, together with apicoplast transcripts, increased in the presence of the blood circadian signaling hormone melatonin. Our data suggest that the host circadian rhythm is integrated with intrinsic parasite cues to coordinate apicoplast genome transcription. This evolutionarily conserved regulatory system might be a future target for malaria treatment.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| | - Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo156-8506, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Tokyo180-8585, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Yoh-ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Shigeharu Sato
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah88400, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah88400, Malaysia
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki852-8523, Japan
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7RU, United Kingdom
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki852-8523, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki852-8523, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| |
Collapse
|
8
|
Ayoub MA. Hijacking of GPCRs and RTKs by pathogens. Cell Signal 2023:110802. [PMID: 37437829 DOI: 10.1016/j.cellsig.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Pathogens exploit multiple cellular and molecular pathways in the host organisms for their entry, survival and dissemination. The cell surface receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) constitute the targets of many pathogens. This is due to the ubiquitous expression of these two receptor families in the organism and their pivotal role in various cellular and physiological processes. At the molecular level, receptor hijacking implies either direct or indirect interactions between pathogens' effectors or toxins with GPCRs and RTKs at the cell surface thereby interfering with their activation and their downstream signaling pathways inside the host cells. As a result, the pathogens manipulate and redirect GPCR/RTK-mediated signaling pathways and different aspects of cell function for their benefit. The review presents a compilation of the major examples of pathogen infections where GPCRs and RTKs and their related intracellular signaling pathways are targeted. This provides a molecular basis for pathogens hijacking cell signaling and their virulence. Our understanding of such complex host-pathogen interactions at the molecular level will open new opportunities to develop new prophylactic and therapeutic approaches against infections. In this context, the pharmacological targeting of GPCRs and RTKs may be a promising approach.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biology Department, College of Arts and Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Mallaupoma LRC, Dias BKDM, Singh MK, Honorio RI, Nakabashi M, Kisukuri CDM, Paixão MW, Garcia CRS. Decoding the Role of Melatonin Structure on Plasmodium falciparum Human Malaria Parasites Synchronization Using 2-Sulfenylindoles Derivatives. Biomolecules 2022; 12:biom12050638. [PMID: 35625565 PMCID: PMC9138683 DOI: 10.3390/biom12050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Melatonin acts to synchronize the parasite’s intraerythrocytic cycle by triggering the phospholipase C-inositol 1,4,5-trisphosphate (PLC-IP3) signaling cascade. Compounds with an indole scaffold impair in vitro proliferation of blood-stage malaria parasites, indicating that this class of compounds is potentially emerging antiplasmodial drugs. Therefore, we aimed to study the role of the alkyl and aryl thiol moieties of 14 synthetic indole compounds against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of Plasmodium falciparum. Four compounds (3, 26, 18, 21) inhibited the growth of P. falciparum (3D7) by 50% at concentrations below 20 µM. A set of 2-sulfenylindoles also showed activity against Dd2 parasites. Our data suggest that Dd2 parasites are more susceptible to compounds 20 and 28 than 3D7 parasites. These data show that 2-sulfenylindoles are promising antimalarials against chloroquine-resistant parasite strains. We also evaluated the effects of the 14 compounds on the parasitemia of the 3D7 strain and their ability to interfere with the effect of 100 nM melatonin on the parasitemia of the 3D7 strain. Our results showed that compounds 3, 7, 8, 10, 14, 16, 17, and 20 slightly increased the effect of melatonin by increasing parasitemia by 8–20% compared with that of melatonin-only-treated 3D7 parasites. Moreover, we found that melatonin modulates the expression of kinase-related signaling components giving additional evidence to investigate inhibitors that can block melatonin signaling.
Collapse
Affiliation(s)
- Lenna Rosanie Cordero Mallaupoma
- Departamento de Química, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil;
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Bárbara Karina de Menezes Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Maneesh Kumar Singh
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Rute Isabel Honorio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Myna Nakabashi
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
| | - Camila de Menezes Kisukuri
- Centro de Excelência para Pesquisa em Química Sustentável (CERSusChem), Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (C.d.M.K.); (M.W.P.)
| | - Márcio Weber Paixão
- Centro de Excelência para Pesquisa em Química Sustentável (CERSusChem), Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (C.d.M.K.); (M.W.P.)
| | - Celia R. S. Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (B.K.d.M.D.); (M.K.S.); (R.I.H.); (M.N.)
- Correspondence:
| |
Collapse
|
10
|
Abstract
Toxoplasma motility is both activated and suppressed by 3′,5′-cyclic nucleotide signaling. Cyclic GMP (cGMP) signaling through Toxoplasma gondii protein kinase G (TgPKG) activates motility, whereas cyclic AMP (cAMP) signaling through TgPKAc1 inhibits motility. Despite their importance, it remains unclear how cGMP and cAMP levels are maintained in Toxoplasma. Phosphodiesterases (PDEs) are known to inactivate cyclic nucleotides and are highly expanded in the Toxoplasma genome. Here, we analyzed the expression and function of the 18-member TgPDE family in tachyzoites, the virulent life stage of Toxoplasma. We detected the expression of 11 of 18 TgPDEs, confirming prior expression studies. A knockdown screen of the TgPDE family revealed four TgPDEs that contribute to lytic Toxoplasma growth (TgPDE1, TgPDE2, TgPDE5, and TgPDE9). Depletion of TgPDE1 or TgPDE2 caused severe growth defects, prompting further investigation. While TgPDE1 was important for extracellular motility, TgPDE2 was important for host cell invasion, parasite replication, host cell egress, and extracellular motility. TgPDE1 displayed a plasma membrane/cytomembranous distribution, whereas TgPDE2 displayed an endoplasmic reticulum/cytomembranous distribution. Biochemical analysis of TgPDE1 and TgPDE2 purified from Toxoplasma lysates revealed that TgPDE1 hydrolyzes both cGMP and cAMP, whereas TgPDE2 was cAMP specific. Interactome studies of TgPDE1 and TgPDE2 indicated that they do not physically interact with each other or other TgPDEs but may be regulated by kinases and proteases. Our studies have identified TgPDE1 and TgPDE2 as central regulators of tachyzoite cyclic nucleotide levels and enable future studies aimed at determining how these enzymes are regulated and cooperate to control Toxoplasma motility and growth. IMPORTANCE Apicomplexan parasites require motility to actively infect host cells and cause disease. Cyclic nucleotide signaling governs apicomplexan motility, but it is unclear how cyclic nucleotide levels are maintained in these parasites. In search of novel regulators of cyclic nucleotides in the model apicomplexan Toxoplasma, we identified and characterized two catalytically active phosphodiesterases, TgPDE1 and TgPDE2, that are important for Toxoplasma’s virulent tachyzoite life cycle. Enzymes that generate, sense, or degrade cyclic nucleotides make attractive targets for therapies aimed at paralyzing and killing apicomplexan parasites.
Collapse
|
11
|
Surur AS, Huluka SA, Mitku ML, Asres K. Indole: The After Next Scaffold of Antiplasmodial Agents? Drug Des Devel Ther 2020; 14:4855-4867. [PMID: 33204071 PMCID: PMC7666986 DOI: 10.2147/dddt.s278588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Malaria remains a global public health problem due to the uphill fight against the causative Plasmodium parasites that are relentless in developing resistance. Indole-based antiplasmodial compounds are endowed with multiple modes of action, of which inhibition of hemozoin formation is the major mechanism of action reported for compounds such as cryptolepine, flinderoles, and isosungucine. Indole-based compounds exert their potent activity against chloroquine-resistant Plasmodium strains by inhibiting hemozoin formation in a mode of action different from that of chloroquine or through a novel mechanism of action. For example, dysregulating the sodium and osmotic homeostasis of Plasmodium through inhibition of PfATP4 is the novel mechanism of cipargamin. The potential of developing multi-targeted compounds through molecular hybridization ensures the existence of indole-based compounds in the antimalarial pipeline.
Collapse
Affiliation(s)
| | - Solomon Assefa Huluka
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Kaleab Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Borges-Pereira L, Thomas SJ, Dos Anjos E Silva AL, Bartlett PJ, Thomas AP, Garcia CRS. The genetic Ca 2+ sensor GCaMP3 reveals multiple Ca 2+ stores differentially coupled to Ca 2+ entry in the human malaria parasite Plasmodium falciparum. J Biol Chem 2020; 295:14998-15012. [PMID: 32848018 DOI: 10.1074/jbc.ra120.014906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Cytosolic Ca2+ regulates multiple steps in the host-cell invasion, growth, proliferation, and egress of blood-stage Plasmodium falciparum, yet our understanding of Ca2+ signaling in this endemic malaria parasite is incomplete. By using a newly generated transgenic line of P. falciparum (PfGCaMP3) that expresses constitutively the genetically encoded Ca2+ indicator GCaMP3, we have investigated the dynamics of Ca2+ release and influx elicited by inhibitors of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase pumps, cyclopiazonic acid (CPA), and thapsigargin (Thg). Here we show that in isolated trophozoite phase parasites: (i) both CPA and Thg release Ca2+ from intracellular stores in P. falciparum parasites; (ii) Thg is able to induce Ca2+ release from an intracellular compartment insensitive to CPA; (iii) only Thg is able to activate Ca2+ influx from extracellular media, through a mechanism resembling store-operated Ca2+ entry, typical of mammalian cells; and (iv) the Thg-sensitive Ca2+ pool is unaffected by collapsing the mitochondria membrane potential with the uncoupler carbonyl cyanide m-chlorophenyl hydrazone or the release of acidic Ca2+ stores with nigericin. These data suggest the presence of two Ca2+ pools in P. falciparum with differential sensitivity to the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase pump inhibitors, and only the release of the Thg-sensitive Ca2+ store induces Ca2+ influx. Activation of the store-operated Ca2+ entry-like Ca2+ influx may be relevant for controlling processes such as parasite invasion, egress, and development mediated by kinases, phosphatases, and proteases that rely on Ca2+ levels for their activation.
Collapse
Affiliation(s)
- Lucas Borges-Pereira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil; Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA
| | - Samantha J Thomas
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA
| | | | - Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA.
| | - Célia R S Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil.
| |
Collapse
|
13
|
Scarpelli PH, Tessarin‐Almeida G, Viçoso KL, Lima WR, Borges‐Pereira L, Meissner KA, Wrenger C, Rafaello A, Rizzuto R, Pozzan T, Garcia CRS. Melatonin activates FIS1, DYN1, and DYN2 Plasmodium falciparum related-genes for mitochondria fission: Mitoemerald-GFP as a tool to visualize mitochondria structure. J Pineal Res 2019; 66:e12484. [PMID: 29480948 PMCID: PMC6585791 DOI: 10.1111/jpi.12484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Malaria causes millions of deaths worldwide and is considered a huge burden to underdeveloped countries. The number of cases with resistance to all antimalarials is continuously increasing, making the identification of novel drugs a very urgent necessity. A potentially very interesting target for novel therapeutic intervention is the parasite mitochondrion. In this work, we studied in Plasmodium falciparum 3 genes coding for proteins homologues of the mammalian FIS1 (Mitochondrial Fission Protein 1) and DRP1 (Dynamin Related Protein 1) involved in mitochondrial fission. We studied the expression of P. falciparum genes that show ample sequence and structural homologies with the mammalian counterparts, namely FIS1, DYN1, and DYN2. The encoded proteins are characterized by a distinct pattern of expression throughout the erythrocytic cycle of P. falciparum, and their mRNAs are modulated by treating the parasite with the host hormone melatonin. We have previously reported that the knockout of the Plasmodium gene that codes for protein kinase 7 is essential for melatonin sensing. We here show that PfPk7 knockout results in major alterations of mitochondrial fission genes expression when compared to wild-type parasites, and no change in fission proteins expression upon treatment with the host hormone. Finally, we have compared the morphological characteristics (using MitoTracker Red CMX Ros) and oxygen consumption properties of P. falciparum mitochondria in wild-type parasites and PfPk7 Knockout strains. A novel GFP construct targeted to the mitochondrial matrix to wild-type parasites was also developed to visualize P. falciparum mitochondria. We here show that, the functional characteristics of P. falciparum are profoundly altered in cells lacking protein kinase 7, suggesting that this enzyme plays a major role in the control of mitochondrial morphogenesis and maturation during the intra-erythrocyte cell cycle progression.
Collapse
Affiliation(s)
- Pedro H. Scarpelli
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | | | - Kênia Lopes Viçoso
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Wania Rezende Lima
- Instituto de Ciências Exatas e Naturais‐MedicinaUniversidade Federal de Mato Grosso‐Campus RondonópolisMato GrossoBrazil
| | - Lucas Borges‐Pereira
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Kamila Anna Meissner
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Carsten Wrenger
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Anna Rafaello
- CNR Neurosciences InstituteUniversity of PadovaPadovaItaly
| | | | - Tullio Pozzan
- CNR Neurosciences InstituteUniversity of PadovaPadovaItaly
| | - Celia R. S. Garcia
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
- Departamento de Fisiologia, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
14
|
Pecenin MF, Borges-Pereira L, Levano-Garcia J, Budu A, Alves E, Mikoshiba K, Thomas A, Garcia CRS. Blocking IP 3 signal transduction pathways inhibits melatonin-induced Ca 2+ signals and impairs P. falciparum development and proliferation in erythrocytes. Cell Calcium 2018; 72:81-90. [PMID: 29748136 DOI: 10.1016/j.ceca.2018.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Abstract
Inositol 1,4,5 trisphosphate (IP3) signaling plays a crucial role in a wide range of eukaryotic processes. In Plasmodium falciparum, IP3 elicits Ca2+ release from intracellular Ca2+ stores, even though no IP3 receptor homolog has been identified to date. The human host hormone melatonin plays a key role in entraining the P. falciparum life cycle in the intraerythrocytic stages, apparently through an IP3-dependent Ca2+ signal. The melatonin-induced cytosolic Ca2+ ([Ca2+]cyt) increase and malaria cell cycle can be blocked by the IP3 receptor blocker 2-aminoethyl diphenylborinate (2-APB). However, 2-APB also inhibits store-operated Ca2+ entry (SOCE). Therefore, we have used two novel 2-APB derivatives, DPB162-AE and DPB163-AE, which are 100-fold more potent than 2-APB in blocking SOCE in mammalian cells, and appear to act by interfering with clustering of STIM proteins. In the present work we report that DPB162-AE and DPB163-AE block the [Ca2+]cyt rise in response to melatonin in P. falciparum, but only at high concentrations. These compounds also block SOCE in the parasite at similarly high concentrations suggesting that P. falciparum SOCE is not activated in the same way as in mammalian cells. We further find that DPB162-AE and DPB163-AE affect the development of the intraerythrocytic parasites and invasion of new red blood cells. Our efforts to episomally express proteins that compete with native IP3 receptor like IP3-sponge and an IP3 sensor such as IRIS proved to be lethal to P. falciparum during intraerythrocytic cycle. The present findings point to an important role of IP3-induced Ca2+ release in intraerythrocytic stage of P. falciparum.
Collapse
Affiliation(s)
- Mateus Fila Pecenin
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Núcleo de Pesquisa em Sinalização Celular Patógeno-Hospedeiro (NUSCEP) Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Borges-Pereira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; New Jersey Medical School Rutgers, The State University of New Jersey, NJ, USA; Núcleo de Pesquisa em Sinalização Celular Patógeno-Hospedeiro (NUSCEP) Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Julio Levano-Garcia
- Núcleo de Pesquisa em Sinalização Celular Patógeno-Hospedeiro (NUSCEP) Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre Budu
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Alves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Katsuhiko Mikoshiba
- Lab. for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, Japan
| | - Andrew Thomas
- New Jersey Medical School Rutgers, The State University of New Jersey, NJ, USA
| | - Celia R S Garcia
- New Jersey Medical School Rutgers, The State University of New Jersey, NJ, USA; Núcleo de Pesquisa em Sinalização Celular Patógeno-Hospedeiro (NUSCEP) Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
15
|
Melatonin promotes neuroprotection of induced pluripotent stem cells-derived neural stem cells subjected to H 2O 2-induced injury in vitro. Eur J Pharmacol 2018; 825:143-150. [PMID: 29462594 DOI: 10.1016/j.ejphar.2018.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/31/2018] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
Abstract
Melatonin is a neurohormone mainly extracted from the pineal gland with neuroprotective effects. It has antioxidant, anti-inflammatory, and antiapoptotic functions. However, the mechanism of melatonin against reactive oxygen species is unclear. Here, we explore the potential proliferative and neuroprotective mechanism of melatonin on induced pluripotent stem cells (iPSC)-derived neural stem cells (NSCs) exposed to hydrogen peroxide (H2O2). NSCs were induced from iPSCs, then pretreated with 500 μM H2O2, 1 μM melatonin, 1 μM melatonin receptor antagonist (Luzindole), or 10 μM Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). The results showed that melatonin stimulated proliferation of iPSC-derived NSCs on H2O2 exposure. Melatonin also markedly improved stabilization of the mitochondrial membrane potential and reduced the rate of apoptosis. Treatment with Luzindole or LY294002 inhibited the increasing proliferative and neuroprotective effects of melatonin on iPSC-derived NSCs with H2O2 treatment. Our results further demonstrated that these promotional effects of melatonin were related with the activity of phosphorylation of AKT. Therefore, these outcomes propose that melatonin protects iPSC-derived NSCs from H2O2-induced injury through the mediation of melatonin receptor and PI3K/AKT signaling pathway.
Collapse
|
16
|
The potential use of melatonin to treat protozoan parasitic infections: A review. Biomed Pharmacother 2017; 97:948-957. [PMID: 29136773 DOI: 10.1016/j.biopha.2017.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a circadian hormone produced in vertebrates by the pineal gland and other organs. Melatonin is believed to influence immune cells leading to modulation of the proliferative response of stimulated lymphocytes as well as cytokine production. Due to the antioxidant and immunomodulatory effects of melatonin, it is suggested that this molecule could be a therapeutic alternative agent to fight bacterial, viral, and parasitic infections by a variety of mechanisms. Herein, we review the effects of melatonin on the cell biology of protozoan parasites and host's immune response. In toxoplasmosis, African trypanosomiasis and Chagas' disease, melatonin enhances host's immune response against the parasite via regulating the secretion of inflammatory mediators. In amoebiasis, melatonin reduces the amoebic lesions as well as increasing the leukophagocytosis and the number of dead amoebae. In giardiasis, serum melatonin levels are elevated in these patients; this suggests a positive correlation between the level of melatonin and phagocytic activity in the G. duodenalis infected patients, possibly related to melatonin's immunomodulatory effect. In leishmaniasis, melatonin arrests parasite replication accompanied by releasing mitochondrial Ca2+ into the cytosol, increasing the level of mitochondrial nitrites as well as reducing superoxide dismutase (SOD) activity. In malaria, melatonin synchronizes the Plasmodium cell cycle via modulating cAMP-PKA and IP3-Ca2+ pathways. Thus, simultaneous administration of melatonin agonists or giving pharmacological doses of melatonin may be considered a novel approach for treatment of malarial infection.
Collapse
|
17
|
Suárez-Cortés P, Gambara G, Favia A, Palombi F, Alano P, Filippini A. Ned-19 inhibition of parasite growth and multiplication suggests a role for NAADP mediated signalling in the asexual development of Plasmodium falciparum. Malar J 2017; 16:366. [PMID: 28899381 PMCID: PMC5596470 DOI: 10.1186/s12936-017-2013-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/04/2017] [Indexed: 11/26/2022] Open
Abstract
Background Although malaria is a preventable and curable human disease, millions of people risk to be infected by the Plasmodium parasites and to develop this illness. Therefore, there is an urgent need to identify new anti-malarial drugs. Ca2+ signalling regulates different processes in the life cycle of Plasmodium falciparum, representing a suitable target for the development of new drugs. Results This study investigated for the first time the effect of a highly specific inhibitor of nicotinic acid adenine dinucleotide phosphate (NAADP)-induced Ca2+ release (Ned-19) on P. falciparum, revealing the inhibitory effect of this compound on the blood stage development of this parasite. Ned-19 inhibits both the transition of the parasite from the early to the late trophozoite stage and the ability of the late trophozoite to develop to the multinucleated schizont stage. In addition, Ned-19 affects spontaneous intracellular Ca2+ oscillations in ring and trophozoite stage parasites, suggesting that the observed inhibitory effects may be associated to regulation of intracellular Ca2+ levels. Conclusions This study highlights the inhibitory effect of Ned-19 on progression of the asexual life cycle of P. falciparum. The observation that Ned-19 inhibits spontaneous Ca2+ oscillations suggests a potential role of NAADP in regulating Ca2+ signalling of P. falciparum. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2013-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pablo Suárez-Cortés
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena n. 299, 00161, Rome, Italy.,Department of Vector Biology, Max-Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Guido Gambara
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Annarita Favia
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.,Nucleic Acids Laboratory, Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), Department of Biology and Biotechnologies, Sapienza University, Rome, Italy
| | - Fioretta Palombi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena n. 299, 00161, Rome, Italy.
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
18
|
Guo Q, Wang Z, Dong Y, Cao J, Chen Y. Physiological crosstalk between the AC/PKA and PLC/PKC pathways modulates melatonin-mediated, monochromatic-light-induced proliferation of T-lymphocytes in chickens. Cell Tissue Res 2017; 369:555-565. [PMID: 28660299 DOI: 10.1007/s00441-017-2644-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/15/2017] [Indexed: 01/14/2023]
Abstract
Previous study has demonstrated that melatonin plays a critical role in monochromatic-light-induced lymphocyte proliferation in response to T cell mitogen concanavalin A (ConA). However, its intracellular mechanism is still unclear. In this study, we investigate the intracellular signal pathways of melatonin receptor-mediated T-lymphocyte proliferation in the spleens of chicks exposed to different light wavelengths. Results showed that green light enhanced T-lymphocyte proliferation by 2.46-6.83% and increased splenic mRNA and protein expressions of melatonin receptor subtypes (Mel1a, Mel1b and Mel1c) by 16.05-40.43% compared with the white, red and blue light groups. However, pinealectomy resulted in a decrease in T-lymphocyte proliferation and melatonin receptor expression with no statistically significant differences between the different light groups. In vitro experiments showed that the Mel1b selective antagonist 4P-PDOT, the Mel1c selective antagonist prazosin and the mitogen-activated protein kinase kinase-1 (MEK-1) inhibitor PD98059 suppressed both melatonin-induced lymphocyte proliferation in response to ConA and melatonin- and ConA-stimulated extracellular signal-regulated kinase 1/2 (ERK1/2) activity but that the Mel1a/Mel1b non-selective antagonist luzindole did not. In addition, pretreatment with forskolin (FSK, the adenylyl cyclase activator), H89 (the PKA inhibitor), U73122 (the PLC inhibitor) or Go6983 (the broad spectrum PKC inhibitor) markedly attenuated melatonin- and ConA-stimulated T-lymphocyte proliferation and ERK1/2 activity. These results demonstrate that melatonin mediates green-light-induced T-lymphocyte proliferation via the Mel1b and Mel1c receptors by triggering crosstalk between the cAMP/PKA and PLC/PKC signal pathways followed by ERK1/2 activation.
Collapse
Affiliation(s)
- Qingyun Guo
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,Beijing Milu Ecological Research Center, Beijing, 100076, China
| | - Zixu Wang
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jing Cao
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Rai P, Sharma D, Soni R, Khatoon N, Sharma B, Bhatt TK. Plasmodium falciparum apicoplast and its transcriptional regulation through calcium signaling. J Microbiol 2017; 55:231-236. [DOI: 10.1007/s12275-017-6525-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
|
20
|
Lima WR, Tessarin-Almeida G, Rozanski A, Parreira KS, Moraes MS, Martins DC, Hashimoto RF, Galante PAF, Garcia CRS. Signaling transcript profile of the asexual intraerythrocytic development cycle of Plasmodium falciparum induced by melatonin and cAMP. Genes Cancer 2016; 7:323-339. [PMID: 28050233 PMCID: PMC5115173 DOI: 10.18632/genesandcancer.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
According to the World Health Organization (WHO), Plasmodium falciparum is the deadliest parasite among all species. This parasite possesses the ability to sense molecules, including melatonin (MEL) and cAMP, and modulate its cell cycle accordingly. MEL synchronizes the development of this malaria parasite by activating several cascades, including the generation of the second messenger cAMP. Therefore, we performed RNA sequencing (RNA-Seq) analysis in P. falciparum erythrocytic stages (ring, trophozoite and schizont) treated with MEL and cAMP. To investigate the expression profile of P. falciparum genes regulated by MEL and cAMP, we performed RNA-Seq analysis in three P. falciparum strains (control, 3D7; protein kinase 7 knockout, PfPK7-; and PfPK7 complement, PfPK7C). In the 3D7 strain, 38 genes were differentially expressed upon MEL treatment; however, none of the genes in the trophozoite (T) stage PfPK7- knockout parasites were differentially expressed upon MEL treatment for 5 hours compared to untreated controls, suggesting that PfPK7 may be involved in the signaling leading to differential gene expression. Moreover, we found that MEL modified the mRNA expression of genes encoding membrane proteins, zinc ion-binding proteins and nucleic acid-binding proteins, which might influence numerous functions in the parasite. The RNA-Seq data following treatment with cAMP show that this molecule modulates different genes throughout the intraerythrocytic cycle, namely, 75, 101 and 141 genes, respectively, in the ring (R), T and schizont (S) stages. Our results highlight P. falciparum's perception of the external milieu through the signaling molecules MEL and cAMP, which are able to drive to changes in gene expression in the parasite.
Collapse
Affiliation(s)
- Wânia Rezende Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil.,Instituto de Ciências Exatas e Naturais (ICEN)- Medicina, Universidade Federal do Mato Grosso - Campus Rondonópolis, Brazil
| | | | - Andrei Rozanski
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Kleber S Parreira
- Departamento de Imunologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Brazil
| | - Miriam S Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - David C Martins
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Ronaldo F Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Célia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
21
|
Abstract
Some hours after invading the erythrocytes of its human host, the malaria parasite Plasmodium falciparum induces an increase in the permeability of the erythrocyte membrane to monovalent ions. The resulting net influx of Na(+) and net efflux of K(+), down their respective concentration gradients, converts the erythrocyte cytosol from an initially high-K(+), low-Na(+) solution to a high-Na(+), low-K(+) solution. The intraerythrocytic parasite itself exerts tight control over its internal Na(+), K(+), Cl(-), and Ca(2+) concentrations and its intracellular pH through the combined actions of a range of membrane transport proteins. The molecular mechanisms underpinning ion regulation in the parasite are receiving increasing attention, not least because PfATP4, a P-type ATPase postulated to be involved in Na(+) regulation, has emerged as a potential antimalarial drug target, susceptible to inhibition by a wide range of chemically unrelated compounds.
Collapse
Affiliation(s)
- Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|
22
|
Budu A, Gomes MM, Melo PM, El Chamy Maluf S, Bagnaresi P, Azevedo MF, Carmona AK, Gazarini ML. Calmidazolium evokes high calcium fluctuations in Plasmodium falciparum. Cell Signal 2015; 28:125-135. [PMID: 26689736 DOI: 10.1016/j.cellsig.2015.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
Calcium and calmodulin (CaM) are important players in eukaryote cell signaling. In the present study, by using a knockin approach, we demonstrated the expression and localization of CaM in all erythrocytic stages of Plasmodium falciparum. Under extracellular Ca(2+)-free conditions, calmidazolium (CZ), a potent CaM inhibitor, promoted a transient cytosolic calcium ([Ca(2+)]cyt) increase in isolated trophozoites, indicating that CZ mobilizes intracellular sources of calcium. In the same extracellular Ca(2+)-free conditions, the [Ca(2+)]cyt rise elicited by CZ treatment was ~3.5 fold higher when the endoplasmic reticulum (ER) calcium store was previously depleted ruling out the mobilization of calcium from the ER by CZ. The effects of the Ca(2+)/H(+) ionophore ionomycin (ION) and the Na(+)/H(+) ionophore monensin (MON) suggest that the [Ca(2+)]cyt-increasing effect of CZ is driven by the removal of Ca(2+) from at least one Ca(2+)-CaM-related (CaMR) protein as well as by the mobilization of Ca(2+) from intracellular acidic calcium stores. Moreover, we showed that the mitochondrion participates in the sequestration of the cytosolic Ca(2+) elicited by CZ. Finally, the modulation of membrane Ca(2+) channels by CZ and thapsigargin (THG) was demonstrated. The opened channels were blocked by the unspecific calcium channel blocker Co(2+) but not by 2-APB (capacitative calcium entry inhibitor) or nifedipine (L-type Ca(2+) channel inhibitor). Taken together, the results suggested that one CaMR protein is an important modulator of calcium signaling and homeostasis during the Plasmodium intraerythrocytic cell cycle, working as a relevant intracellular Ca(2+) reservoir in the parasite.
Collapse
Affiliation(s)
- Alexandre Budu
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mayrim M Gomes
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Pollyana M Melo
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sarah El Chamy Maluf
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Piero Bagnaresi
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mauro F Azevedo
- Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|
23
|
Guimarães DSM, Fonseca ALD, Batista R, Comar Junior M, Oliveira ABD, Taranto AG, Varotti FDP. Structure-based drug design studies of the interactions of ent-kaurane diterpenes derived from Wedelia paludosa with the Plasmodium falciparum sarco/endoplasmic reticulum Ca²⁺-ATPase PfATP6. Mem Inst Oswaldo Cruz 2015; 110:255-8. [PMID: 25946251 PMCID: PMC4489458 DOI: 10.1590/0074-02760140415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/29/2015] [Indexed: 11/22/2022] Open
Abstract
Malaria is responsible for more deaths around the world than any other parasitic
disease. Due to the emergence of strains that are resistant to the current
chemotherapeutic antimalarial arsenal, the search for new antimalarial drugs remains
urgent though hampered by a lack of knowledge regarding the molecular mechanisms of
artemisinin resistance. Semisynthetic compounds derived from diterpenes from the
medicinal plant Wedelia paludosa were tested in silico against
the Plasmodium falciparum Ca2+-ATPase, PfATP6. This
protein was constructed by comparative modelling using the three-dimensional
structure of a homologous protein, 1IWO, as a scaffold. Compound 21 showed the best
docking scores, indicating a better interaction with PfATP6 than that of
thapsigargin, the natural inhibitor. Inhibition of PfATP6 by diterpene compounds
could promote a change in calcium homeostasis, leading to parasite death. These data
suggest PfATP6 as a potential target for the antimalarial
ent-kaurane diterpenes.
Collapse
Affiliation(s)
| | - Amanda Luisa da Fonseca
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - Ronan Batista
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Moacyr Comar Junior
- Laboratório de Modelagem Molecular, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - Alaíde Braga de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Alex Gutterres Taranto
- Laboratório de Química Farmacêutica Medicinal, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - Fernando de Pilla Varotti
- Núcleo de Pesquisa em Química Biológica, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| |
Collapse
|
24
|
Yang J, Barrila J, Roland KL, Kilbourne J, Ott CM, Forsyth RJ, Nickerson CA. Characterization of the Invasive, Multidrug Resistant Non-typhoidal Salmonella Strain D23580 in a Murine Model of Infection. PLoS Negl Trop Dis 2015; 9:e0003839. [PMID: 26091096 PMCID: PMC4474555 DOI: 10.1371/journal.pntd.0003839] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023] Open
Abstract
A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of the more human-restricted pathogen, Salmonella enterica serovar Typhi. It has since been shown through tissue distribution studies that D23580 is able to establish an invasive infection in chickens. However, it remains unclear whether ST313 can cause lethal disease in a non-human host following a natural course of infection. Herein we report that D23580 causes lethal and invasive disease in a murine model of infection following peroral challenge. The LD50 of D23580 in female BALB/c mice was 4.7 x 105 CFU. Tissue distribution studies performed 3 and 5 days post-infection confirmed that D23580 was able to more rapidly colonize the spleen, mesenteric lymph nodes and gall bladder in mice when compared to the well-characterized S. Typhimurium strain SL1344. D23580 exhibited enhanced resistance to acid stress relative to SL1344, which may lend towards increased capability to survive passage through the gastrointestinal tract as well as during its intracellular lifecycle. Interestingly, D23580 also displayed higher swimming motility relative to SL1344, S. Typhi strain Ty2, and the ST313 strain A130. Biochemical tests revealed that D23580 shares many similar metabolic features with SL1344, with several notable differences in the Voges-Proskauer and catalase tests, as well alterations in melibiose, and inositol utilization. These results represent the first full duration infection study using an ST313 strain following the entire natural course of disease progression, and serve as a benchmark for ongoing and future studies into the pathogenesis of D23580. A deadly form of non-typhoidal Salmonella has emerged as a major cause of invasive disease in sub-Saharan Africa. Initial genomic profiling of this novel Salmonella sequence type, ST313, indicated that although it is technically classified as S. Typhimurium (a serovar characterized by a broad host range), it may be evolving towards becoming a more human-specific, ‘typhoid-like’ pathogen. However, it was recently demonstrated that ST313 strains were indeed able to establish an invasive and damaging infection in chickens. Despite these important findings, it remains unclear whether ST313 is able to cause lethal disease in a non-human host, since no study has yet followed the entire natural course of disease progression. As such, there are no data available concerning the median lethal dose (LD50) of any ST313 strain. This is an important metric, as the LD50 value will serve as a benchmark for mechanistic studies focused on understanding the relationship between virulence and the phenotypic and molecular genetic attributes associated with ST313 infections. Here we report that D23580 causes lethal disease in BALB/c mice and determined the LD50 following peroral challenge. Phenotypic characterization revealed distinct differences in tissue distribution, acid stress resistance, and biochemical utilization between D23580 and the ‘classic’ Typhimurium strain SL1344.
Collapse
Affiliation(s)
- Jiseon Yang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jennifer Barrila
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Kenneth L. Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jacquelyn Kilbourne
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, United States of America
| | - Rebecca J. Forsyth
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Cheryl A. Nickerson
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
25
|
Santofimia-Castaño P, Garcia-Sanchez L, Ruy DC, Sanchez-Correa B, Fernandez-Bermejo M, Tarazona R, Salido GM, Gonzalez A. Melatonin induces calcium mobilization and influences cell proliferation independently of MT1/MT2 receptor activation in rat pancreatic stellate cells. Cell Biol Toxicol 2015; 31:95-110. [PMID: 25764371 DOI: 10.1007/s10565-015-9297-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
Abstract
Melatonin, the product of the pineal gland, possesses antioxidant, anti-inflammatory, and antitumor properties in different tissues, in addition to its role as regulator of biological rhythms. In this study, the effects of pharmacological concentrations of melatonin (1 μM-1 mM) on pancreatic stellate cells (PSCs) have been examined. Cell viability was studied using AlamarBlue® test. Cell-type specific markers and total amylase content were analyzed by immunocytochemistry and colorimetric methods, respectively. Changes in intracellular free Ca(2+) concentration were followed by fluorimetric analysis of fura-2-loaded cells. The cellular red-ox state was monitored following CM-H2DCFDA-derived fluorescence. Determination of the activation of p44/42 mitogen-activated protein kinase (MAPK), SAPK/JNK and p38 was measured by Western blot analysis. Our results show that PSCs viability decreased in the presence of 100 μM or 1 mM melatonin. However, in the presence of 1 or 10 μM melatonin, no changes in cell viability were observed. Melatonin MT1 and MT2 receptors could not be detected. Melatonin induced Ca(2+) mobilization from intracellular pools. In the presence of melatonin, activation of crucial components of MAPKs pathway was noticed. Finally, the indole did not change the oxidative state of PSCs, but exerted a protective effect against H2O2-induced oxidation. We conclude that melatonin, at pharmacological concentrations, might regulate cellular proliferation of PSCs independently of specific plasma membrane receptors.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, E-10003, Caceres, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gomes MM, Budu A, Ventura PDS, Bagnaresi P, Cotrin SS, Cunha RLOR, Carmona AK, Juliano L, Gazarini ML. Specific calpain activity evaluation in Plasmodium parasites. Anal Biochem 2014; 468:22-7. [PMID: 25281458 DOI: 10.1016/j.ab.2014.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/13/2014] [Accepted: 09/06/2014] [Indexed: 01/26/2023]
Abstract
In the intraerythrocytic trophozoite stages of Plasmodium falciparum, the calcium-dependent cysteine protease calpain (Pf-calpain) has an important role in the parasite calcium modulation and cell development. We established specific conditions to follow by confocal microscopy and spectrofluorimetry measurements the intracellular activity of Pf-calpain in live cells. The catalytic activity was measured using the fluorogenic Z-Phe-Arg-MCA (where Z is carbobenzoxy and MCA is 4-methylcoumaryl-7-amide). The calmodulin inhibitor calmidazolium and the sarcoplasmic reticulum calcium ATPase inhibitor thapsigargin were used for modifications in the cytosolic calcium concentrations that persisted in the absence of extracellular calcium. The observed calcium-dependent peptidase activity was greatly inhibited by specific cysteine protease inhibitor E-64 and by the selective calpain inhibitor ALLN (N-acetyl-l-leucyl-l-leucyl-l-norleucinal). Taken together, we observed that intracellular Pf-calpain can be selectively detected and is the main calcium-dependent protease in the intraerythrocytic stages of the parasite. The method described here can be helpful in cell metabolism studies and antimalarial drug screening.
Collapse
Affiliation(s)
- Mayrim M Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil; Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Alexandre Budu
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Piero Bagnaresi
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Simone S Cotrin
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo L O R Cunha
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|