1
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Tantengco OAG, Aquino IMC, de Castro Silva M, Rojo RD, Abad CLR. Association of mycoplasma with prostate cancer: A systematic review and meta-analysis. Cancer Epidemiol 2021; 75:102021. [PMID: 34517226 DOI: 10.1016/j.canep.2021.102021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022]
Abstract
Mycoplasmas are emerging sexually transmitted pathogens usually associated with male urinary tract infection, non-gonococcal urethritis (NGU), infertility, and prostate cancer. In this study, we review the evidence linking mycoplasma infection and prostate cancer. We conducted a systematic review and meta-analysis based on PRISMA guidelines. Four electronic databases were reviewed through January 31, 2021. Studies were eligible for inclusion if odds ratio for prevalence or incidence of colonization and/or infection were provided or calculable. All included studies were evaluated independently by three reviewers. The quality of the included studies was assessed using the Newcastle-Ottawa Scale for Case-Control Studies. Statistical analysis was done using Review Manager Version 5.4. A total of 183/744 (24.6 %) patients with prostate cancer compared to 87/495 (17.58 %) patients with benign prostatic hyperplasia (BPH) tested positive for Mycoplasma spp., while 86/666 (12.91 %) and 11/388 (2.84 %) prostate cancer patients and BPH patients, respectively, had Ureaplasma spp. infections. This meta-analysis showed that prostate cancer patients had 2.24 times higher odds (p = 0.0005) of being colonized with any species of Mycoplasma spp. and 3.6 times increased odds (p = 0.008) of being colonized with any species of Ureaplasma spp. In conclusion, patients with prostate cancer were more likely to be colonized with Mycoplasma spp. or Ureaplasma spp. compared to patients with BPH, which highlights the potential association between chronic infection and cancer. However, more studies are needed to determine the specific role that mycoplasma plays in the pathogenesis of prostate cancer.
Collapse
Affiliation(s)
| | - Inah Marie C Aquino
- College of Medicine, University of the Philippines Manila, Ermita, Manila, Philippines
| | - Mariana de Castro Silva
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Raniv D Rojo
- College of Medicine, University of the Philippines Manila, Ermita, Manila, Philippines
| | - Cybele Lara R Abad
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil; Division of Infectious Diseases, Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Taft Avenue, Manila, Philippines.
| |
Collapse
|
3
|
Song N, Ma J, Hu W, Guo Y, Hui L, Aamer M, Ma J. Lappaconitine hydrochloride inhibits proliferation and induces apoptosis in human colon cancer HCT-116 cells via mitochondrial and MAPK pathway. Acta Histochem 2021; 123:151736. [PMID: 34058516 DOI: 10.1016/j.acthis.2021.151736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Lappaconitine hydrochloride (LH), as a new synthetic alkaloid, exhibits antitumor activity, whereas its antitumor effect on colorectal cancer (CRC) has not been investigated. In this study, the effect of LH on HCT-116 cell proliferation and apoptosis in vivo and in vitro and underlying molecular mechanism were explored. The Cell Counting Kit-8 (CCK-8) was used to assess cell viability. Morphological change was observed by Hoechst 33342 staining. Cell cycle and apoptosis were performed using a flow cytometer. The western blot method was used to screen for related protein expression. The mitochondrial membrane potential (MMP) was confirmed using the 5, 5, 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimi-dazolyl carbo cyanine iodide (JC-1) staining assay. Reactive oxygen species (ROS) was evaluated by a 20-70-dichlorofluorescein diacetate (DCFH-DA) staining assay. The antitumor effect was evaluated in vivo by the xenograft HCT-116 model. The results showed that LH significantly inhibited cell viability in a time- and concentration-dependent manner. LH induced apoptosis and S phase cell cycle arrest. LH promoted the reduction of MMP and ROS accumulation. Moreover, LH activated the mitochondrial and MAPK pathway. The experiments in vivo showed that LH had significant antitumor effect in tumor-bearing mice, and had virtually no effect on the weight and internal organs of the mice. In conclusion, LH could induce apoptosis in HCT-116 cells through mitochondrial and MAPK signaling pathways. LH may be a promising treatment for CRC.
Collapse
Affiliation(s)
- Na Song
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Junyi Ma
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China.
| | - Wei Hu
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yongyue Guo
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Ling Hui
- Gansu Province Center of Medical Genetics, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, 730070, China.
| | - Mohamed Aamer
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Jun Ma
- Key Laboratory of Stem Cells and Gene Drug of Gansu Provincial, The 940(th) Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu, 730070, China
| |
Collapse
|
4
|
Wang J, Li Y, Pan L, Li J, Yu Y, Liu B, Zubair M, Wei Y, Pillay B, Olaniran AO, Chiliza TE, Shao G, Feng Z, Xiong Q. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) moonlights as an adhesin in Mycoplasma hyorhinis adhesion to epithelial cells as well as a plasminogen receptor mediating extracellular matrix degradation. Vet Res 2021; 52:80. [PMID: 34082810 PMCID: PMC8173509 DOI: 10.1186/s13567-021-00952-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Mycoplasma hyorhinis infects pigs causing polyserositis and polyarthritis, and has also been reported in a variety of human tumor tissues. The occurrence of disease is often linked with the systemic invasion of the pathogen. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH), one of the key enzymes of glycolysis, was reported as a surface multifunctional molecule in several bacteria. Here, we investigated whether GAPDH could manifest binary functions; as an adhesin to promote colonization as well as a plasminogen receptor functioning in extracellular matrix (ECM) degradation to promote systemic invasion. The surface localization of GAPDH was observed in M. hyorhinis with flow cytometry and colony blot analysis. Recombinant GAPDH (rGAPDH) was found to be able to bind porcine-derived PK-15 and human-derived NCI-H292 cells. The incubation with anti-GAPDH antibody significantly decreased the adherence of M. hyorhinis to both cell lines. To investigate its function in recruiting plasminogen, firstly, the interaction between rGAPDH and plasminogen was demonstrated by ELISA and Far-Western blot assay. The activation of the rGAPDH-bound plasminogen into plasmin was proved by using a chromogenic substrate, and furtherly confirmed to degrade extracellular matrix by using a reconstituted ECM. Finally, the ability of rGAPDH to bind different ECM components was demonstrated, including fibronectin, laminin, collagen type IV and vitronectin. Collectively, our data imply GAPDH as an important adhesion factor of M. hyrohinis and a receptor for hijacking host plasminogen to degrade ECM. The multifunction of GAPDH to bind both plasminogen and ECM components is believed to increase the targeting of proteolysis and facilitate the dissemination of M. hyorhinis.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Yao Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Longji Pan
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Muhammad Zubair
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bala Pillay
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | | | - Thamsanqa E Chiliza
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Guoqing Shao
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China. .,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa. .,School of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
5
|
Benedetti F, Curreli S, Gallo RC, Zella D. Exogenous bacterial DnaK increases protein kinases activity in human cancer cell lines. J Transl Med 2021; 19:60. [PMID: 33563293 PMCID: PMC7871384 DOI: 10.1186/s12967-021-02734-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Studies of molecular mechanisms underlying tumor cell signaling highlighted a critical role for kinases in carcinogenesis and cancer progression. To this regard, protein kinases regulates a number of critical cellular pathways by adding phosphate groups to specific substrates. For this reason, their involvement in the complex interactions between the human microbiota and cancer cells to determine therapy and tumor progression outcome is becoming increasingly relevant. Mycoplasmas are components of the normal human microbiota, and several species have also been associated to human diseases, including certain cancers. It is also important to note that Mycoplasmas and their proteins are a component of the common tumor microenvironment. In addition, several epidemiological, in vivo and in vitro studies indicate a close involvement of Mycoplasmas in cellular transformation and cancer progression. METHODS In this study, we investigate the effect of exogenous Mycoplasma DnaK on kinases activity by treating in vitro four different eukaryotic cancer cell lines, namely lung and prostate cancer, colon adenocarcinoma, and neuroblastoma. Phosphorylation of kinases and specific substrates was measured at 20 and 60 min. RESULTS Kinome analysis of our data indicates that Mycoplasma DnaK promotes the dysregulation of the activity of specific kinases and their substrates, with a known involvement in carcinogenesis and cancer progression. CONCLUSIONS Given the similarity in structure and amino acid composition of this protein with other bacterial DnaKs we provide a novel mechanism whereby components of the human microbiota and present in the tumor microenvironment are able to deregulate phosphorylation events occurring during carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sabrina Curreli
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert C Gallo
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Cui K, Ou Y, Shen Y, Li S, Sun Z. Clinical value of circulating tumor cells for the diagnosis and prognosis of hepatocellular carcinoma (HCC): A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e22242. [PMID: 33019399 PMCID: PMC7535562 DOI: 10.1097/md.0000000000022242] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To evaluate the clinical value of circulating tumor cell (CTC) detection in peripheral blood for the diagnosis and prognosis of hepatocellular carcinoma (HCC). METHODS Public databases were searched, and a meta-analysis was performed to determine the specificity, sensitivity, negative- likelihood ratio (NLR) and positive-likelihood ratio (PLR), and diagnostic odds ratio (dOR) of CTC detection for the diagnosis of HCC. Hazard ratios (HRs) and 95% confidence intervals (CIs) were analyzed for the association of CTC detection with overall survival (OS) and HCC recurrence. The Meta-DiSc 1.4 and Review Manager 5.2 software programs were used for statistical analysis. RESULTS Meta-analysis of 20 studies including 1191 patients showed that the specificity, sensitivity, NLR, PLR, and dOR of CTC testing for HCC diagnosis were 0.60 (95% CI = 0.57-0.63), 0.95 (95%CI = 0.93-0.96), 0.36 (95%CI = 0.28-0.48), 11.64 (95%CI = 5.85-23.14), and 38.94 (95%CI = 18.33-82.75), respectively. Meta-analysis of 18 studies including 1466 patients indicated that the OS of CTC-positive HCC patients was less than that of CTC-negative patients (HR = 2.31; 95% CI = 1.55-3.42; P < .01). Meta-analysis of 5 studies including 339 patients revealed that the presence of CTCs in peripheral blood significantly increased the risk of HCC recurrence (HR = 3.03, 95% CI = 1.89-4.86; P < .01). CONCLUSION CTCs in peripheral blood may be a useful marker for HCC diagnosis. In addition, the prognosis of CTC-positive HCC patients was significantly worse than that of CTC-negative HCC patients. Therefore, further studies are warranted to confirm the clinical potential of CTC detection in peripheral blood in patients with primary HCC.
Collapse
Affiliation(s)
- Kai Cui
- Shandong Cancer Hospital affiliated to Shandong University
- Shandong Academy of Medical Sciences
| | - Yang Ou
- Shandong Cancer Hospital affiliated to Shandong University
- Shandong Academy of Medical Sciences
| | - Yangyang Shen
- Shandong Cancer Hospital affiliated to Shandong University
- Shandong Academy of Medical Sciences
| | - Sheng Li
- Shandong Cancer Hospital affiliated to Shandong University
- Shandong Academy of Medical Sciences
| | - Ziqiang Sun
- Department of Vascular Surgery, Affiliated Hospital of Jining Medical College, Ji’ning, Shandong, People's Republic of China
| |
Collapse
|
7
|
Mycoplasmas-Host Interaction: Mechanisms of Inflammation and Association with Cellular Transformation. Microorganisms 2020; 8:microorganisms8091351. [PMID: 32899663 PMCID: PMC7565387 DOI: 10.3390/microorganisms8091351] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Mycoplasmas are the smallest and simplest self-replicating prokaryotes. Located everywhere in nature, they are widespread as parasites of humans, mammals, reptiles, fish, arthropods, and plants. They usually exhibiting organ and tissue specificity. Mycoplasmas belong to the class named Mollicutes (mollis = soft and cutis = skin, in Latin), and their small size and absence of a cell wall contribute to distinguish them from other bacteria. Mycoplasma species are found both outside the cells as membrane surface parasites and inside the cells, where they become intracellular residents as "silent parasites". In humans, some Mycoplasma species are found as commensal inhabitants, while others have a significant impact on the cellular metabolism and physiology. Mollicutes lack typical bacterial PAMPs (e.g., lipoteichoic acid, flagellin, and some lipopolysaccharides) and consequently the exact molecular mechanisms of Mycoplasmas' recognition by the cells of the immune system is the subjects of several researches for its pathogenic implications. It is well known that several strains of Mycoplasma suppress the transcriptional activity of p53, resulting in reduced apoptosis of damaged cells. In addition, some Mycoplasmas were reported to have oncogenic potential since they demonstrated not just accumulation of abnormalities but also phenotypic changes of the cells. Aim of this review is to provide an update of the current literature that implicates Mycoplasmas in triggering inflammation and altering critical cellular pathways, thus providing a better insight into potential mechanisms of cellular transformation.
Collapse
|
8
|
Lee HM, Seo SR, Kim J, Kim MK, Seo H, Kim KS, Jang YJ, Ryu CJ. Expression dynamics of integrin α2, α3, and αV upon osteogenic differentiation of human mesenchymal stem cells. Stem Cell Res Ther 2020; 11:210. [PMID: 32493499 PMCID: PMC7268774 DOI: 10.1186/s13287-020-01714-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/06/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background The differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts (OBs) is a prerequisite for bone formation. However, little is known about the definitive surface markers for OBs during osteogenesis. Methods To study the surface markers on OBs, we generated and used monoclonal antibodies (MAbs) against surface molecules on transforming growth factor-β1 (TGF-β1)-treated cancer cells. The generated MAbs were further selected toward expression changes on hMSCs cultured with TGF-β1/bone morphogenetic protein-2 (BMP-2) or osteogenic differentiation medium (ODM) by flow cytometry. Immunoprecipitation and mass spectrometry were performed to identify target antigens of selected MAbs. Expression changes of the target antigens were evaluated in hMSCs, human periodontal ligament cells (hPDLCs), and human dental pulp cells (hDPCs) during osteogenic and adipogenic differentiation by quantitative polymerase chain reaction (qPCR) and flow cytometry. hMSCs were also sorted by the MAbs using magnetic-activated cell sorting system, and osteogenic potential of sorted cells was evaluated via Alizarin Red S (ARS) staining and qPCR. Results The binding reactivity of MR14-E5, one of the MAbs, was downregulated in hMSCs with ODM while the binding reactivity of ER7-A7, ER7-A8, and MR1-B1 MAbs was upregulated. Mass spectrometry and overexpression identified that MR14-E5, ER7-A7/ER7-A8, and MR1-B1 recognized integrin α2, α3, and αV, respectively. Upon osteogenic differentiation of hMSCs, the expression of integrin α2 was drastically downregulated, but the expression of integrin α3 and αV was upregulated in accordance with upregulation of osteogenic markers. Expression of integrin α3 and αV was also upregulated in hPDLCs and hDPCs during osteogenic differentiation. Cell sorting showed that integrin αV-high hMSCs have a greater osteogenic potential than integrin αV-low hMSCs upon the osteogenic differentiation of hMSCs. Cell sorting further revealed that the surface expression of integrin αV is more dramatically induced even in integrin αV-low hMSCs. Conclusion These findings suggest that integrin α3 and αV induction is a good indicator of OB differentiation. These findings also shed insight into the expression dynamics of integrins upon osteogenic differentiation of hMSCs and provide the reason why different integrin ligands are required for OB differentiation of hMSCs.
Collapse
Affiliation(s)
- Hyun Min Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Se-Ri Seo
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Jeeseung Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Min Kyu Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Hyosun Seo
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul, 02447, Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, College of Dentistry, Dankook University, Cheonan, 330-714, Korea.
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea.
| |
Collapse
|
9
|
Zhao W, Bendickson L, Nilsen-Hamilton M. The Lipocalin2 Gene is Regulated in Mammary Epithelial Cells by NFκB and C/EBP In Response to Mycoplasma. Sci Rep 2020; 10:7641. [PMID: 32376831 PMCID: PMC7203223 DOI: 10.1038/s41598-020-63393-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/25/2020] [Indexed: 02/02/2023] Open
Abstract
Lcn2 gene expression increases in response to cell stress signals, particularly in cells involved in the innate immune response. Human Lcn2 (NGAL) is increased in the blood and tissues in response to many stressors including microbial infection and in response to LPS in myeloid and epithelial cells. Here we extend the microbial activators of Lcn2 to mycoplasma and describe studies in which the mechanism of Lcn2 gene regulation by MALP-2 and mycoplasma infection was investigated in mouse mammary epithelial cells. As for the LPS response of myeloid cells, Lcn2 expression in epithelial cells is preceded by increased TNFα, IL-6 and IκBζ expression and selective reduction of IκBζ reduces Lcn2 promoter activity. Lcn2 promoter activation remains elevated well beyond the period of exposure to MALP-2 and is persistently elevated in mycoplasma infected cells. Activation of either the human or the mouse Lcn2 promoter requires both NFκB and C/EBP for activation. Thus, Lcn2 is strongly and enduringly activated by mycoplasma components that stimulate the innate immune response with the same basic regulatory mechanism for the human and mouse genes.
Collapse
Affiliation(s)
- Wei Zhao
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology and the Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA
- Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA
- Bayview Physicians Group, Battlefield Medical association, 675 North Battlefield Boulevard, Chesapeake, VA, 23320, USA
| | - Lee Bendickson
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology and the Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA
| | - Marit Nilsen-Hamilton
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology and the Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA.
- Interdepartmental Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
10
|
Role of Mycoplasma Chaperone DnaK in Cellular Transformation. Int J Mol Sci 2020; 21:ijms21041311. [PMID: 32075244 PMCID: PMC7072988 DOI: 10.3390/ijms21041311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Studies of the human microbiome have elucidated an array of complex interactions between prokaryotes and their hosts. However, precise bacterial pathogen-cancer relationships remain largely elusive, although several bacteria, particularly those establishing persistent intra-cellular infections, like mycoplasmas, can alter host cell cycles, affect apoptotic pathways, and stimulate the production of inflammatory substances linked to DNA damage, thus potentially promoting abnormal cell growth and transformation. Consistent with this idea, in vivo experiments in several chemically induced or genetically deficient mouse models showed that germ-free conditions reduce colonic tumor formation. We demonstrate that mycoplasma DnaK, a chaperone protein belonging to the Heath shock protein (Hsp)-70 family, binds Poly-(ADP-ribose) Polymerase (PARP)-1, a protein that plays a critical role in the pathways involved in recognition of DNA damage and repair, and reduces its catalytic activity. It also binds USP10, a key p53 regulator, reducing p53 stability and anti-cancer functions. Finally, we showed that bystander, uninfected cells take up exogenous DnaK-suggesting a possible paracrine function in promoting cellular transformation, over and above direct mycoplasma infection. We propose that mycoplasmas, and perhaps certain other bacteria with closely related DnaK, may have oncogenic activity, mediated through the inhibition of DNA repair and p53 functions, and may be involved in the initiation of some cancers but not necessarily involved nor necessarily even be present in later stages.
Collapse
|
11
|
Kim MK, Shin SJ, Lee HM, Choi HS, Jeong J, Kim H, Paik SS, Kim M, Choi D, Ryu CJ. Mycoplasma infection promotes tumor progression via interaction of the mycoplasmal protein p37 and epithelial cell adhesion molecule in hepatocellular carcinoma. Cancer Lett 2019; 454:44-52. [PMID: 30980864 DOI: 10.1016/j.canlet.2019.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is currently the third leading cause of cancer death worldwide. To study how mycoplasma infection affects HCC progression, we investigated the characteristics of mycoplasma-infected tumor tissues and circulating tumor cells (CTCs) in HCC patients. The mycoplasmal membrane protein p37 showed significant correlations with higher histologic stages and vascular invasion and predicted poor disease-free survival of HCC patients. p37-positive CTCs were detected in 42 out of 47 HCC patients (89%). p37-positive circulating cells were also detected in 4 out of 10 healthy donors (40%), and all were epithelial cell adhesion molecule (EpCAM)-positive. In HCC patients, most of p37-negative CTCs (95%) showed intermediate phenotype with neither EpCAM nor vimentin expression, but p37-positive CTCs were EpCAM-positive (44%), vimentin-positive (32%), and both negative (24%), suggesting that EpCAM-positive CTCs are enriched with mycoplasma infection. Mycoplasma infection promoted migratory capacity of HCC cells with increased expression of EpCAM. Immunoprecipitation analysis revealed that p37 associates with EpCAM. The results suggest that mycoplasma infection promotes tumor progression in HCC patients via interaction of the mycoplasmal p37 and EpCAM.
Collapse
Affiliation(s)
- Min Kyu Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Su-Jin Shin
- Department of Pathology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Hyun Min Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Hong Seo Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Jaemin Jeong
- Department of Surgery, College of Medicine, Hanyang University, Seoul, South Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, South Korea
| | - Hyunsung Kim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Seung Sam Paik
- Department of Pathology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Mimi Kim
- Department of Radiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Dongho Choi
- Department of Surgery, College of Medicine, Hanyang University, Seoul, South Korea.
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea.
| |
Collapse
|
12
|
Liu D, Hu Y, Guo Y, Zhu Z, Lu B, Wang X, Huang Y. Mycoplasma-associated multidrug resistance of hepatocarcinoma cells requires the interaction of P37 and Annexin A2. PLoS One 2017; 12:e0184578. [PMID: 28976984 PMCID: PMC5627893 DOI: 10.1371/journal.pone.0184578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022] Open
Abstract
Mycoplasma infection has been reported to be associated with cancer migration, invasion, epithelial-mesenchymal transition as well as the resistance to nucleoside analogues chemotherapeutic drugs. In this study, we found that the sensitivity of hepatocarcinoma cells to Cisplatin, Gemcitabine and Mitoxantrone was increased by mycoplasma elimination. Similar to the effect of anti-mycoplasma agent, interrupting the interaction between Mycoplasma hyorhinis membrane protein P37 and Annexin A2 of host cells using the N-terminal of ANXA2 polypeptide enhanced the sensitivity of HCC97L cells to Gemcitabine and Mitoxantrone. Meanwhile, we did not observe any changes in expression or distribution of multidrug resistance associated transporters, ATP-Binding Cassette protein B1, C1 and G2, on the removal of mycoplasma. These results suggest that mycoplasma induces a resistance to multiple drugs in hepatocarcinoma cells which required the interaction of P37 and Annexin A2. The pathway downstream this interaction needs to be explored.
Collapse
Affiliation(s)
- Danyang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yang Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Zhu Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuelan Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (YH); (XW)
| | - Yijun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (YH); (XW)
| |
Collapse
|
13
|
Sun C, Liao W, Deng Z, Li E, Feng Q, Lei J, Yuan R, Zou S, Mao Y, Shao J, Wu L, Zhang C. The diagnostic value of assays for circulating tumor cells in hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore) 2017; 96:e7513. [PMID: 28723763 PMCID: PMC5521903 DOI: 10.1097/md.0000000000007513] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Circulating tumor cells (CTCs) are considered potential biomarkers for the detection of hepatocellular carcinoma (HCC). Many studies have attempted to explore this role, but the results are variable. We conducted the first comprehensive meta-analysis to evaluate the diagnostic value of CTC assay for HCC patients. Additional prognostic value was also assessed. EXPERIMENTAL DESIGN All articles included in our study were assessed using QUADAS guidelines after a literature search. Using bivariate generalized linear mixed model and random-effects model, effect measures such as pooled sensitivity/specificity, positive likelihood ratios/negative likelihood ratios (NLRs), diagnostic odds ratios, hazard ratios (HRs), risk ratios, and corresponding 95% confidence intervals (95% CIs) were calculated. We used receiver operating characteristic curves and area under the curve (AUC) to summarize overall test performance. Heterogeneity, publication bias, subgroup, and sensitivity analyses were also performed. RESULTS A total of 2256 subjects including 998 HCC patients in 20 studies were recruited in this meta-analysis. Although the overall diagnostic accuracy of the CTC assay was high (AUC 0.93, 95% CI: [0.90-0.95]), there was a high probability of error rate (NLR 0.33, 95% CI: [0.23, 0.48]). The results were more robust when nonmagnetic-activated isolation was used, compared with magnetic-activated isolation subgroup (NLR: 0.18 vs. 0.41; z = 2.118, P = .034). CTCs positivity was significantly associated with relapse-free survival (HR 2.417, 95% CI: [1.421-3.250]; P < .001), overall survival (HR 3.59, 95% CI: [1.984-6.495]; P < .001), and some clinical characteristics. CONCLUSION CTC assay is not recommended as an independent HCC diagnostic tool, but is associated with poor clinicopathologic characteristics of HCC patients and could indicate poor prognosis.
Collapse
Affiliation(s)
- Chi Sun
- Department of Nursing, Second Affiliated Hospital of Nanchang University
| | - Wenjun Liao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang
| | - Zefu Deng
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang
| | - Enliang Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang
| | - Qian Feng
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang
| | - Jun Lei
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang
| | - Rongfa Yuan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang
| | - Shubing Zou
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianghua Shao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang
| | - Linquan Wu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang
| | - Chao Zhang
- Department of Nursing, Second Affiliated Hospital of Nanchang University
| |
Collapse
|
14
|
Benedetti F, Curreli S, Krishnan S, Davinelli S, Cocchi F, Scapagnini G, Gallo RC, Zella D. Anti-inflammatory effects of H 2S during acute bacterial infection: a review. J Transl Med 2017; 15:100. [PMID: 28490346 PMCID: PMC5424385 DOI: 10.1186/s12967-017-1206-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S), previously only considered a toxic environmental air pollutant, is now increasingly recognized as an important signaling molecule able to modulate several cellular pathways in many human tissues. As demonstrated in recent studies, H2S is produced endogenously in response to different cellular stimuli and plays different roles in controlling a number of physiological responses. The precise role of H2S in inflammation is still largely unknown. In particular, the role of H2S in the regulation of the inflammatory response in acute and chronic infections is being actively investigated because of its potential therapeutic use. To study the effect of H2S as an anti-inflammatory mediator during bacterial infections, we developed an ex vivo model of primary cells and cell lines infected with Mycoplasma. Our data demonstrate a dichotomic effect of H2S on the NF-kB and Nrf-2 molecular pathways, which were inhibited and stimulated, respectively.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Sabrina Curreli
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Selvi Krishnan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sergio Davinelli
- Department of Medicine and Health Sciences, University of Molise, 86100, Campobasso, Italy
| | - Fiorenza Cocchi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences, University of Molise, 86100, Campobasso, Italy
| | - Robert C Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Davide Zella
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
15
|
Movilla R, Altet L, Serrano L, Tabar MD, Roura X. Molecular detection of vector-borne pathogens in blood and splenic samples from dogs with splenic disease. Parasit Vectors 2017; 10:131. [PMID: 28285583 PMCID: PMC5346854 DOI: 10.1186/s13071-017-2074-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 01/14/2023] Open
Abstract
Background The spleen is a highly perfused organ involved in the immunological control and elimination of vector-borne pathogens (VBP), which could have a fundamental role in the pathogenesis of splenic disease. This study aimed to evaluate certain VBP in samples from dogs with splenic lesions. Methods Seventy-seven EDTA-blood and 64 splenic tissue samples were collected from 78 dogs with splenic disease in a Mediterranean area. Babesia spp., Bartonella spp., Ehrlichia/Anaplasma spp., Hepatozoon canis, Leishmania infantum, hemotropic Mycoplasma spp. and Rickettsia spp. were targeted using PCR assays. Sixty EDTA-blood samples from dogs without evidence of splenic lesions were included as a control group. Results More than half (51.56%) of the biopsies (33/64) were consistent with benign lesions and 48.43% (31/64) with malignancy, mostly hemangiosarcoma (25/31). PCR yielded positive results in 13 dogs with spleen alterations (16.67%), for Babesia canis (n = 3), Babesia gibsoni (n = 2), hemotropic Mycoplasma spp. (n = 2), Rickettsia massiliae (n = 1) and “Babesia vulpes” (n = 1), in blood; and for B. canis, B. gibsoni, Ehrlichia canis and L. infantum (n = 1 each), in spleen. Two control dogs (3.3%) were positive for B. gibsoni and H. canis (n = 1 each). Benign lesions were detected in the 61.54% of infected dogs (8/13); the remaining 38.46% were diagnosed with malignancies (5/13). Infection was significantly associated to the presence of splenic disease (P = 0.013). There was no difference in the prevalence of infection between dogs with benign and malignant splenic lesions (P = 0.69); however B. canis was more prevalent in dogs with hemangiosarcoma (P = 0.006). Conclusions VBP infection could be involved in the pathogenesis of splenic disease. The immunological role of the spleen could predispose to alterations of this organ in infected dogs. Interestingly, all dogs with B. canis infection were diagnosed with hemangiosarcoma in the present survey. As previously reported, results support that VBP diagnosis could be improved by analysis of samples from different tissues. The sample size included here warrants further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2074-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebeca Movilla
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Carrer de L'Hospital s/n, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Laura Altet
- Vetgenomics, Edifici Eureka, Parc de Recerca de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Lorena Serrano
- Vetgenomics, Edifici Eureka, Parc de Recerca de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - María-Dolores Tabar
- Hospital Veterinario San Vicente, Calle del Veterinario Manuel Isidro Rodríguez García N°17, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Xavier Roura
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Carrer de L'Hospital s/n, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
16
|
Mapping of a Mycoplasma-Neutralizing Epitope on the Mycoplasmal p37 Protein. PLoS One 2016; 11:e0169091. [PMID: 28036384 PMCID: PMC5201277 DOI: 10.1371/journal.pone.0169091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/12/2016] [Indexed: 01/27/2023] Open
Abstract
Many studies have shown that the mycoplasmal membrane protein p37 enhances cancer cell migration, invasion, and metastasis. Previously, we generated 6 monoclonal antibodies (MAbs) against the mycoplasmal protein p37 and showed the presence of mycoplasma-infected circulating tumor cells in the blood of hepatocellular carcinoma patients by using CA27, one of the six MAbs. When mycoplasmas were incubated with cancer cells in the presence of CA27, mycoplasma infection was completely inhibited, suggesting that CA27 is a neutralizing antibody inhibiting mycoplasma infection. To examine the neutralizing epitope of CA27, we generated a series of glutathione S-transferase (GST)-fused p37 deletion mutant proteins in which p37 was partly deleted. To express p37-coding sequences in E.coli, mycoplasmal TGA codons were substituted with TGG in the p37 deletion mutant genes. GST-fused p37 deletion mutant proteins were then screened to identify the epitope targeted by CA27. Western blots showed that CA27 bound to the residues 216–246 on the middle part of the p37 protein while it did not bind to the residues 183–219 and 216–240. Fine mapping showed that CA27 was able to bind to the residues 226–246, but its binding activity was relatively weakened as compared to that to the residues 216–246, suggesting that the residues 226–246 is essential for optimal binding activity of CA27. Interestingly, the treatment of the purified GST-tagged epitopes with urea showed that CA27 binding to the epitope was sodium dodecyl sulfate-resistant but urea-sensitive. The same 226–246 residues were also recognized by two other anti-p37 MAbs, suggesting that the epitope is immunodominant. The identification of the novel neutralizing epitope may provide new insight into the interaction between the p37 protein and host receptors.
Collapse
|
17
|
Kim WT, Lee HM, Kim MK, Choi HS, Ryu CJ. In vivo Evaluation of Human Embryonic Stem Cells Isolated by 57-C11 Monoclonal Antibody. Int J Stem Cells 2016; 9:264-270. [PMID: 27871153 PMCID: PMC5155722 DOI: 10.15283/ijsc16052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 12/28/2022] Open
Abstract
Background The normal cells derived from human embryonic stem cells (hESCs) are regarded as substitutes for damaged or dysfunctional adult cells. However, tumorigenicity of hESCs remains a major challenge in clinical application of hESC-derived cell transplantation. Previously, we generated monoclonal antibody (MAb) 57-C11 specific to the surface molecule on undifferentiated hESCs. The aim of this study is to prove whether 57-C11-positive hESCs are pluripotent and tumorigenic in immunodeficient mice. Methods Undifferentiated hESCs were mixed with retinoic acid (RA)-differentiated hESCs at different ratios prior to 57-C11-mediated separation. To isolate 57-C11-positive hESCs from the mixture, biotinylated 57-C11 and streptavidin-coated magnetic beads were added to the mixture. Unbound 57-C11-negative hESCs were first isolated after applying magnet to the cell mixture, and 57-C11-bound hESCs were then released from the magnetic beads. In order to measure the efficiency of separation, 57-C11-positive or -negative hESCs were counted after isolation. To evaluate the efficiency of teratoma formation in vivo, 57-C11-positive or negative cells were further injected into left and right, respectively, testes of nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Results Approximately 77~100% of undifferentiated hESCs were isolated after applying 57-C11-coated magnetic beads to the mixed cell populations. Importantly, teratomas were not observed in NOD/SCID mice after the injection of isolated 57-C11-negative hESCs, whereas teratomas were observed with 57-C11-positive hESCs. Conclusion 57-C11-positive hESCs are pluripotent and tumorigenic. The combination of 57-C11 and magnetic beads will be useful to eliminate remaining undifferentiated hESCs for the safe cell transplantation.
Collapse
Affiliation(s)
- Won-Tae Kim
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Hyun Min Lee
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Min Kyu Kim
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Hong Seo Choi
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Chun Jeih Ryu
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| |
Collapse
|
18
|
The Mycoplasma hyorhinis p37 Protein Rapidly Induces Genes in Fibroblasts Associated with Inflammation and Cancer. PLoS One 2015; 10:e0140753. [PMID: 26512722 PMCID: PMC4626034 DOI: 10.1371/journal.pone.0140753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/30/2015] [Indexed: 01/25/2023] Open
Abstract
The p37 protein at the surface of Mycoplasma hyorhinis cells forms part of a high-affinity transport system and has been found associated with animal and human cancers. Here we show in NIH3T3 fibroblasts, p37 rapidly induces the expression of genes implicated in inflammation and cancer progression. This gene activation was principally via the Tlr4 receptor. Activity was lost from p37 when the C-terminal 20 amino acids were removed or the four amino acids specific for the hydrogen bonding of thiamine pyrophosphate had been replaced by valine. Blocking the IL6 receptor or inhibiting STAT3 signalling resulted in increased p37-induced gene expression. Since cancer associated fibroblasts support growth, invasion and metastasis via their ability to regulate tumour-related inflammation, the rapid induction in fibroblasts of pro-inflammatory genes by p37 might be expected to influence cancer development.
Collapse
|