1
|
Katsuyama M, Arakawa N, Yaoi T, Kimura E, Matsumoto M, Iwata K, Umemura A, Yabe-Nishimura C. Clioquinol induces mitochondrial toxicity in SH-SY5Y neuroblastoma cells by affecting the respiratory chain complex IV and OPA1 dynamin-like GTPase. FEBS Lett 2025; 599:1135-1145. [PMID: 40125820 DOI: 10.1002/1873-3468.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
Clioquinol has been thought of as the causative drug of subacute myelo-optic neuropathy (SMON). The underlying mechanisms of clioquinol toxicity, however, have not been elucidated in detail. Here, we revealed that clioquinol (20 μm) suppressed the expression of SCO1 and SCO2 copper chaperones for mitochondrial respiratory chain Complex IV (cytochrome c oxidase) in SH-SY5Y neuroblastoma cells. The assembly of Complex IV components and Complex IV activity were suppressed in clioquinol-treated cells. Clioquinol (10-50 μm) decreased cellular ATP levels in glucose-free media. Clioquinol (10-50 μm) induced OMA1 mitochondrial protease-dependent degradation of the dynamin-related GTPase OPA1 and suppressed the expression of CHCHD10 and CHCHD2 involved in the maintenance of cristae structure. These results suggest that mitochondrial toxicity is one of the mechanisms of clioquinol-induced neuronal cell death.
Collapse
Affiliation(s)
- Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Japan
| | - Noriaki Arakawa
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Japan
| | - En Kimura
- National Hospital Organization Suzuka National Hospital, Japan
- En's Lab, Kumamoto, Japan
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Japan
| | | |
Collapse
|
2
|
Kirss S, Reinapu A, Kabin E, Smirnova J, Tõugu V, Palumaa P. α-Lipoic acid: a potential regulator of copper metabolism in Alzheimer's disease. Front Mol Biosci 2024; 11:1451536. [PMID: 39290994 PMCID: PMC11405343 DOI: 10.3389/fmolb.2024.1451536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by classic hallmarks such as amyloid plaques and neurofibrillary tangles, however, intensive research has broadened its scope to explore additional underlying mechanisms. Notably, disruptions in metal homeostasis, particularly involving copper, have gained significant attention. In AD pathology, an imbalance is evident: there is an excess of extracellular copper alongside a deficiency in intracellular copper in brain tissue. Our previous work demonstrated that α-lipoic acid (LA) can effectively shift copper from the extracellular space to the intracellular environment in a neuronal cell model. However, the precise mechanism of action and role of LA in copper metabolism remained elusive. In this study, we compared the cellular effects of LA with those of different synthetic copper-binding ligands: diethyldithiocarbamate (DETC), clioquinol (CQ), D-penicillamine (D-PA) and elesclomol (ES). Using differentiated SH-SY5Y cell culture as a neuronal model, we found that, unlike other synthetic compounds, natural ligand LA is not toxic in the presence of extracellular copper, even at high doses. LA gradually increased intracellular copper levels over 24 h. In contrast, DETC, CQ, and ES acted as fast copper ionophores, potentially explaining their higher toxicity compared to LA. D-PA did not facilitate copper uptake into cells. We demonstrated that a slow increase of LA inside the cells is enhanced in the presence of copper. Furthermore, the ability of LA to modulate the equilibrium of extra- and intracellular copper was evident when we added copper isotope 65Cu. The ratio of copper isotopes changed rapidly, reflecting the impact of LA on the equilibrium of copper distribution without affecting the copper transport network. Our results provide compelling evidence that α-lipoic acid holds promise as a non-toxic agent capable of normalizing copper metabolism in Alzheimer's disease.
Collapse
Affiliation(s)
- Sigrid Kirss
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Anette Reinapu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Ekaterina Kabin
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Julia Smirnova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Vello Tõugu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
3
|
Zheng Q, Zhu H, Lv C, Zhu Z, Cui H, Fan Z, Sun J, Huang Z, Shi P. Clioquinol rescues yeast cells from Aβ42 toxicity via the inhibition of oxidative damage. Biotechnol J 2024; 19:e2300662. [PMID: 38863126 DOI: 10.1002/biot.202300662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 06/13/2024]
Abstract
Alzheimer's disease (AD), the most common form of dementia, has gotten considerable attention. Previous studies have demonstrated that clioquinol (CQ) as a metal chelator is a potential drug for the treatment of AD. However, the mode of action of CQ in AD is still unclear. In our study, the antioxidant effects of CQ on yeast cells expressing Aβ42 were investigated. We found that CQ could reduce Aβ42 toxicity by alleviating reactive oxygen species (ROS) generation and lipid peroxidation level in yeast cells. These alterations were mainly attributable to the increased reduced glutathione (GSH) content and independent of activities of superoxide dismutase (SOD) and/or catalase (CAT). CQ could affect antioxidant enzyme activity by altering the transcription level of related genes. Interestingly, it was noted for the first time that CQ could combine with antioxidant enzymes to reduce their enzymatic activities by molecular docking and circular dichroism spectroscopy. In addition, CQ restored Aβ42-mediated disruption of GSH homeostasis via regulating YAP1 expression to protect cells against oxidative stress. Our findings not only improve the current understanding of the mechanism of CQ as a potential drug for AD treatment but also provide ideas for subsequent drug research and development.
Collapse
Affiliation(s)
- Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hongzheng Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chunyi Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ziting Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hanyue Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zheyu Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, China
| | - Zhiwei Huang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Matsumoto H, Sasai H, Kawamoto N, Katsuyama M, Minamiyama M, Kuru S, Fukao T, Ohnishi H, the SMON Research Group Members. Loss-of-function polymorphisms in NQO1 are not associated with the development of subacute myelo-optico-neuropathy. Mol Genet Genomic Med 2024; 12:e2470. [PMID: 38860482 PMCID: PMC11165339 DOI: 10.1002/mgg3.2470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Subacute myelo-optico-neuropathy (SMON) is a neurological disorder associated with the administration of clioquinol, particularly at very high doses. Although clioquinol has been used worldwide, there was an outbreak of SMON in the 1950s-1970s in which the majority of cases were in Japan, prompting speculation that the unique genetic background of the Japanese population may have contributed to the development of SMON. Recently, a possible association between loss-of-function polymorphisms in NQO1 and the development of SMON has been reported. In this study, we analyzed the relationship between NQO1 polymorphisms and SMON in Japan. METHODS We analyzed 125 Japanese patients with SMON. NQO1 loss-of-function polymorphisms (rs1800566, rs10517, rs689452, and rs689456) were evaluated. The allele frequency distribution of each polymorphism was compared between the patients and the healthy Japanese individuals (Human Genomic Variation Database and Integrative Japanese Genome Variation Database), as well as our in-house healthy controls. RESULTS The frequencies of the loss-of-function NQO1 alleles in patients with SMON and the normal control group did not differ significantly. CONCLUSION We conclude that known NQO1 polymorphisms are not associated with the development of SMON.
Collapse
Grants
- H28-Intractable etc.(Intractable)-Designated-110 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- H29-Intractable etc.(Intractable)-Designated-001 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- H30-Intractable etc.(Intractable)-Designated-003 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- 2019-Intractable etc.(Intractable)-Designated-001 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- 2020-Intractable etc.(Intractable)-20FC2004 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- 2021-Intractable etc.(Intractable)-20FC2004 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
- 2022-Intractable etc.(Intractable)-20FC2004 Health and Labour Sciences Research Grant for Research on Intractable Diseases from The Ministry of Health, Labour and Welfare, Japan
Collapse
Affiliation(s)
- Hideki Matsumoto
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
| | - Hideo Sasai
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
- Clinical Genetics CenterGifu University HospitalGifuJapan
| | - Norio Kawamoto
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
| | - Masato Katsuyama
- Radioisotope CenterKyoto Prefectural University of MedicineKyotoJapan
| | | | - Satoshi Kuru
- Department of NeurologyNHO Suzuka National HospitalSuzukaJapan
| | - Toshiyuki Fukao
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
- Clinical Genetics CenterGifu University HospitalGifuJapan
| | - Hidenori Ohnishi
- Department of PediatricsGifu University Graduate School of Medicine, Gifu UniversityGifuJapan
- Clinical Genetics CenterGifu University HospitalGifuJapan
- Center for one Medicine Innovative Translational ResearchGifu UniversityGifuJapan
| | | |
Collapse
|
5
|
Pandiyarajan S, Velayutham G, Liao AH, Manickaraj SSM, Ramachandran B, Lee KY, Chuang HC. A biogenesis construction of CuO@MWCNT via Chenopodium album extract: an effective electrocatalyst for synaptic plasticity neurodegenerative drug pollutant detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79744-79757. [PMID: 36740620 DOI: 10.1007/s11356-023-25629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Clioquinol (CLQ) is one of the most toxic halogenated neurodegenerative drugs, and its synaptic plasticity effect directly affects human health and the environment. Cupric oxide (CuO) is an ideal electrocatalyst owing to its earth-abundance, non-toxic nature, and cost-effectiveness. Since phenolate oxygen and pyridine nitrogen in CLQ act as an electron donor and pave the way for detection with Cu2+ ions in the CuO. Designing the architecture of CuO with a multi-walled carbon nanotube (MWCNT) is a sensible strategy to improve the electrochemical activity of the developed sensor. Inspired by the bio-synthesis and green processing, we have demonstrated the in-situ synthesis of CuO nanosphere-decorated MWCNT by Chenopodium album leaf extract through a sonochemical approach and explored its electrochemical sensing performance toward CLQ. The physical comprehensive characterization of prepared nanocomposite was investigated by various microscopic and spectroscopic techniques. For comparison studies, the CuO nanosphere was prepared by the same preparation process without MWCNT. Based on the physical characterization outcomes, the morphological nature of CuO was observed to be a sphere-like structure, which was decorated on the MWCNT with an average crystallite size of 16 nm (± 1 nm). Based on the electrochemical studies, the fabricated nanocomposite exhibits a wider linear range of 0.025-1375 μM, with a minimum detection limit of 4.59 nM L-1 toward CLQ. The viability examination on the biological matrix obtained considerable spike recoveries.
Collapse
Affiliation(s)
- Sabarison Pandiyarajan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Gurunathan Velayutham
- PG & Research Department of Chemistry, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Shobana Sebastin Mary Manickaraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Balaji Ramachandran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Kuo-Yu Lee
- SV Probe Technology Taiwan Co., Ltd, Taipei, 10453, Taiwan, ROC
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan.
| |
Collapse
|
6
|
Chhetri J, Dilek J, Davies N, Jacobson G, Dallmann R, Gueven N. NQO1 protects against clioquinol toxicity. Front Pharmacol 2022; 13:1000278. [PMID: 36267290 PMCID: PMC9576850 DOI: 10.3389/fphar.2022.1000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Clioquinol (CQ) was widely used as oral antibiotic before being taken off the market in many countries in 1970, after it was linked to subacute myelo-optic neuropathy (SMON) in Japan, leading to vision loss with many patients left wheelchair-bound. The common pathology of CQ-associated SMON was reproduced in animals but none of the proposed modes of toxicity explained the restriction of CQ-induced SMON to Japan. Given a re-emergence of CQ and related analogues as neuroprotectants, it is crucial to understand the underlying mechanism of CQ-induced toxicity to prevent any potential CQ-associated risks to future patients. A small molecule screen to find drugs that induce mitochondrial dysfunction in vitro identified CQ and the structurally related 8-hydroxyquinoline (8-OHQ). Their mitochondrial liability, pro-oxidative and cytotoxic activity was subsequently confirmed in some cell lines but surprisingly not in others. Subsequent studies in isogenic cell lines demonstrated that the antioxidant protein NQO1 is differentially expressed in the cell lines tested and potently protects against CQ toxicity. CQ-induced reduction of cellular ATP levels, increased lipid peroxidation and elevated cell death was also attenuated by antioxidants, implicating oxidative stress as the core mechanism of CQ-induced toxicity. These in-vitro findings were replicated in zebrafish. Visual acuity in zebrafish larvae that do not express NQO1, was reduced by CQ in a dose-dependent manner, while CQ did not affect visual function in the adult zebrafish that express NQO1. Similarly, pharmacological inhibition of NQO1 activity resulted in CQ-induced oxidative stress in the retina and severe acute systemic toxicity in the adult fish. Given the much higher prevalence of the inactivating C609T NQO1 polymorphism in the Japanese population compared to the European population, the results of this study could for the first time indicate how the geographic restriction of SMON cases to Japan could be explained. Importantly, if CQ or its derivatives are to be used safely for the treatment of neurodegenerative diseases, it seems imperative that NQO1 levels and activity of prospective patients should be ascertained.
Collapse
Affiliation(s)
- Jamuna Chhetri
- School of Pharmacy, University of Tasmania, Hobart, TAS, Australia
| | - Jem Dilek
- School of Pharmacy, University of Tasmania, Hobart, TAS, Australia
| | - Noel Davies
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Glenn Jacobson
- School of Pharmacy, University of Tasmania, Hobart, TAS, Australia
| | - Robert Dallmann
- Division of Biomedical Science, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Nuri Gueven
- School of Pharmacy, University of Tasmania, Hobart, TAS, Australia
- *Correspondence: Nuri Gueven,
| |
Collapse
|
7
|
Wykowski R, Fuentefria AM, de Andrade SF. Antimicrobial activity of clioquinol and nitroxoline: a scoping review. Arch Microbiol 2022; 204:535. [PMID: 35907036 PMCID: PMC9362210 DOI: 10.1007/s00203-022-03122-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Clioquinol and nitroxoline, two drugs with numerous pharmacological properties fallen into disuse for many decades. The first was considered dangerous due to contraindications and the second mainly because was taken as ineffective, despite its known antibacterial activity. In the last decades, the advances in pharmaceutical chemistry, molecular biology, toxicology and genetics allowed to better understand the cellular action of these compounds, some toxicological issues and/or activity scopes. Thus, a new opportunity for these drugs to be considered as potential antimicrobial agents has arisen. This review contemplates the trajectory of clioquinol and nitroxoline from their emergence to the present day, emphasizing the new studies that indicate the possibility of reintroduction for specific cases.
Collapse
Affiliation(s)
- Rachel Wykowski
- Programa de Pós-Graduação Em Microbiologia Agrícola E Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-Graduação Em Microbiologia Agrícola E Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Análises, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Saulo Fernandes de Andrade
- Programa de Pós-Graduação Em Microbiologia Agrícola E Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Yoshida S. Therapeutic Strategies and Metal-Induced Oxidative Stress: Application of Synchrotron Radiation Microbeam to Amyotrophic Lateral Sclerosis in the Kii Peninsula of Japan. Front Neurol 2022; 13:884439. [PMID: 35837234 PMCID: PMC9273737 DOI: 10.3389/fneur.2022.884439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
A series of extensive gene-environment studies on amyotrophic lateral sclerosis (ALS) and Parkinsonism–dementia complex (PDC) in Guam Island, USA, and the Kii Peninsula of Japan, including Auyu Jakai, West New Guinea, have led us to hypothesize that a prolonged low calcium (Ca) and magnesium (Mg) intake, especially over generation, may cause oxidative stress to motor and nigral neurons by an increased uptake of environment metallic elements, i.e., aluminum (Al), manganese (Mn), and iron (Fe). Otherwise, 5–10% of total ALS cases are familial ALS (fALS), of which 20% of the fALS cases linked to a point mutation of Cu/Zn superoxide dismutase (SOD1). In the vicinity of the Kii Peninsula, about 7% of the ALS cases are also linked to the SOD1 mutation. Using synchrotron radiation (SR) microbeam, conglomerate inclusion (SOD1 aggregates) within a spinal motor neuron of the fALS case in the vicinity revealed a loss of copper (Cu) in contrast to extremely high contents of Zinc (Zn) and Ca. That means an exceptionally low Cu/Zn ratio with an increased Ca content, indicating the abnormalities of the active site of SOD1 protein of the fALS. Furthermore, sALS in the southernmost high incidence areas of the Kii Peninsula showed a low Cu/Zn ratio within a motor neuron, suggesting a fragility of SOD1 proteins. From the perspective of gene–environment interactions, the above two research trends may show a common oxidative stress underlying the neuronal degenerative process of ALS/PDC in the Kii Peninsula of Japan. Therefore, it is a crucial point for the prospect of therapeutic strategy to clarify a role of transition metals in the oxidative process in both ALS/PDC, including ALS elsewhere in the world. This paper reviews a history of the genetic epidemiological studies, especially from the aspect of gene–environment interaction, on ALS/PDC in the Kii and Guam high incidence foci and the results of a series of analytical research on trace metallic elements within neurons of both sALS and fALS cases, especially using a synchrotron radiation (SR) microbeam of Spring-8 and Photon Factory of Japan. The SR microbeam is an ideal X-ray source, which supplies an extremely high brilliance (high-intensity photon) and tunability (energy variability) to investigate trace metallic elements contained in biological specimens at the cellular level, even more without any damages. This research will provide a valuable information about the mechanism of oxidative stress involved in neuronal cell death in ALS and related neurodegenerative disorders. To elucidate the physicochemical mechanism of the oxidative process in neuronal degeneration, it will shed a new light on the therapeutic strategies for ALS/PDC in near future.
Collapse
|
9
|
Matsumoto H, Sasai H, Kawamoto N, Katsuyama M, Minamiyama M, Kuru S, Fukao T, Ohnishi H. Founder genetic variants of ABCC4 and ABCC11 in the Japanese population are not associated with the development of subacute myelo-optico-neuropathy (SMON). Mol Genet Genomic Med 2021; 10:e1845. [PMID: 34951141 PMCID: PMC8801137 DOI: 10.1002/mgg3.1845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/06/2021] [Accepted: 11/18/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Subacute myelo-optico-neuropathy (SMON) is a severe neurological disorder associated with clioquinol administration, which frequently occurred in Japan during the 1950s and 1960s. The unique genetic background of the Japanese population is considered to be strongly involved in the development of this neurological disease. Recently, genetic variants of ABCC4 (OMIM: 605250) and ABCC11 (OMIM: 607040), which are particularly common in the Japanese population, were suggested as possible genetic susceptibility factors for the development of SMON. METHODS We analyzed 125 Japanese SMON patients who provided consent for this study. Patient DNA was collected from peripheral blood, and genetic analysis was performed for ABCC4 rs3765534 (c.2268G>A, p.Glu857Lys) and ABCC11 rs17822931 (c.538G>A, p.Gly180Arg) polymorphisms using the Sanger sequencing method and/or TaqMan PCR method. The frequency distribution of each polymorphism was compared with that in healthy Japanese people recorded in two genomic databases (Human Genomic Variation Database and Integrative Japanese Genome Variation Database), and each genotype was compared with the clinical features of patients. RESULTS The frequencies of ABCC4 rs3765334 and ABCC11 rs17822931 polymorphisms in SMON patients and healthy Japanese people were not significantly different in the multifaceted analysis. CONCLUSION We conclude that the ABCC4 rs3765334 and ABCC11 rs17822931 polymorphisms are not associated with the development of SMON.
Collapse
Affiliation(s)
- Hideki Matsumoto
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hideo Sasai
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu University, Gifu, Japan.,Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
| | - Norio Kawamoto
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Minamiyama
- Department of Neurology, National Hospital Organization Suzuka National Hospital, Mie, Japan
| | - Satoshi Kuru
- Department of Neurology, National Hospital Organization Suzuka National Hospital, Mie, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu University, Gifu, Japan.,Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu University, Gifu, Japan.,Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
| | | |
Collapse
|
10
|
Metsla K, Kirss S, Laks K, Sildnik G, Palgi M, Palumaa T, Tõugu V, Palumaa P. α-Lipoic Acid Has the Potential to Normalize Copper Metabolism, Which Is Dysregulated in Alzheimer's Disease. J Alzheimers Dis 2021; 85:715-728. [PMID: 34864665 DOI: 10.3233/jad-215026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-dependent progressive neurodegenerative disorder and the most common cause of dementia. The treatment and prevention of AD present immense yet unmet needs. One of the hallmarks of AD is the formation of extracellular amyloid plaques in the brain, composed of amyloid-β (Aβ) peptides. Besides major amyloid-targeting approach there is the necessity to focus also on alternative therapeutic strategies. One factor contributing to the development of AD is dysregulated copper metabolism, reflected in the intracellular copper deficit and excess of extracellular copper. OBJECTIVE In the current study, we follow the widely accepted hypothesis that the normalization of copper metabolism leads to the prevention or slowing of the disease and search for new copper-regulating ligands. METHODS We used cell culture, ICP MS, and Drosophila melanogaster models of AD. RESULTS We demonstrate that the natural intracellular copper chelator, α-lipoic acid (LA) translocates copper from extracellular to intracellular space in an SH-SY5Y-based neuronal cell model and is thus suitable to alleviate the intracellular copper deficit characteristic of AD neurons. Furthermore, we show that supplementation with LA protects the Drosophila melanogaster models of AD from developing AD phenotype by improving locomotor activity of fruit fly with overexpression of human Aβ with Iowa mutation in the fly brain. In addition, LA slightly weakens copper-induced smooth eye phenotype when amyloid-β protein precursor (AβPP) and beta-site AβPP cleaving enzyme 1 (BACE1) are overexpressed in eye photoreceptor cells. CONCLUSION Collectively, these results provide evidence that LA has the potential to normalize copper metabolism in AD.
Collapse
Affiliation(s)
- Kristel Metsla
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Sigrid Kirss
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Katrina Laks
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Gertrud Sildnik
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Mari Palgi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Teele Palumaa
- East Tallinn Central Hospital Eye Clinic, Tallinn, Estonia
| | - Vello Tõugu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
11
|
|
12
|
Abstract
SMON (subacute myelo-optico-neuropathy) is toxic neurological disease which had a profound impact on the population in Japan in 1960's. The clinical characteristics of SMON includes an ascending sensory disturbance, spasticity, and visual impairment typically following abdominal symptoms. Infection was first suspected as an underlying cause of this epidemic. The disorder was ultimately attributed to the overuse of clioquinol, based on the analysis of green urine from affected patients and confirmed by the epidemiological surveys and experimental animal studies. The factors that contributed to the prevalence of SMON which remains the worst example of drug-associated toxicity in Japan to date include the conversion of clioquinol from a purely topical agent to an orally-administered drug, dogma associated with drug safety, relatively limited regulation of drug use, an increase in the number of prescriptions due to the availability of universal insurance, as well as the complexity of the associated abdominal symptoms. Periodical examination of the patients diagnosed with SMON continues to this day. As such, it is important to have a better understanding of clioquinol-induced neurotoxicity together with the mechanisms underlying drug susceptibility; we should not permit the memory of this severe and prominent drug-associated toxicity fade from view.
Collapse
Affiliation(s)
- Satoshi Kuru
- Department of Neurology, National Hospital Organization Suzuka Hospital
| |
Collapse
|
13
|
Khan R, Khan H, Abdullah Y, Dou QP. Feasibility of Repurposing Clioquinol for Cancer Therapy. Recent Pat Anticancer Drug Discov 2021; 15:14-31. [PMID: 32106803 DOI: 10.2174/1574892815666200227090259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cancer is a prevalent disease in the world and is becoming more widespread as time goes on. Advanced and more effective chemotherapeutics need to be developed for the treatment of cancer to keep up with this prevalence. Repurposing drugs is an alternative to discover new chemotherapeutics. Clioquinol is currently being studied for reposition as an anti-cancer drug. OBJECTIVE This study aimed to summarize the anti-cancer effects of clioquinol and its derivatives through a detailed literature and patent review and to review their potential re-uses in cancer treatment. METHODS Research articles were collected through a PubMed database search using the keywords "Clioquinol" and "Cancer." The keywords "Clioquinol Derivatives" and "Clioquinol Analogues" were also used on a PubMed database search to gather research articles on clioquinol derivatives. Patents were gathered through a Google Patents database search using the keywords "Clioquinol" and "Cancer." RESULTS Clioquinol acts as a copper and zinc ionophore, a proteasome inhibitor, an anti-angiogenesis agent, and is an inhibitor of key signal transduction pathways responsible for its growth-inhibitory activity and cytotoxicity in cancer cells preclinically. A clinical trial conducted by Schimmer et al., resulted in poor outcomes that prompted studies on alternative clioquinol-based applications, such as new combinations, new delivery methods, or new clioquinol-derived analogues. In addition, numerous patents claim alternative uses of clioquinol for cancer therapy. CONCLUSION Clioquinol exhibits anti-cancer activities in many cancer types, preclinically. Low therapeutic efficacy in a clinical trial has prompted new studies that aim to discover more effective clioquinol- based cancer therapies.
Collapse
Affiliation(s)
- Raheel Khan
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Harras Khan
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Yassen Abdullah
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Q Ping Dou
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
14
|
Lv X, Zhang W, Xia S, Huang Z, Shi P. Clioquinol inhibits cell growth in a SERCA2-dependent manner. J Biochem Mol Toxicol 2021; 35:e22727. [PMID: 33511738 DOI: 10.1002/jbt.22727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/06/2022]
Abstract
Clioquinol has been reported to act as a potential therapy for neurodegenerative diseases and cancer. However, the underlying mechanism is unclear. We have previously reported that clioquinol induces S-phase cell cycle arrest through the elevation of calcium levels in human neurotypic SH-SY5Y cells. In this study, different types of cells were observed to detect if the effect of clioquinol on intracellular calcium levels is cell type-specific. The Cell Counting Kit-8 assay showed that clioquinol exhibited varying degrees of concentration-dependent cytotoxicity in different cell lines, and that the growth inhibition caused by it was not related to cell source or carcinogenesis. In addition, the inhibition of cell growth by clioquinol was positively associated with its effect on intracellular calcium content ([Ca2+ ]i ). Furthermore, the elevation of [Ca2+ ]i induced by clioquinol led to S-phase cell cycle arrest. Similar to our previous studies, the increase in [Ca2+ ]i was attributed to changes in the expression levels of the calcium pump SERCA2. Comparison of expression levels of SERCA2 between cell lines showed that cells with high levels of SERCA2 were more sensitive to clioquinol. In addition, analysis using UALCAN and the Human Protein Atlas also showed that the expression of SERCA2 in the corresponding human tissues was similar to that of the cells tested in this study, suggesting potential in the application of clioquinol in the future. In summary, our results expand the understanding of the molecular mechanism of clioquinol and provide an important strategy for the rational use of clioquinol.
Collapse
Affiliation(s)
- Xiaoguang Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shengli Xia
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Clioquinol kills astrocyte-derived KT-5 cells by the impairment of the autophagy-lysosome pathway. Arch Toxicol 2020; 95:631-640. [PMID: 33156368 DOI: 10.1007/s00204-020-02943-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Clioquinol has been implicated as a causative agent for subacute myelo-optico-neuropathy (SMON) in humans, although the mechanism remains to be elucidated. In this study, we utilized astrocyte-derived cell line, KT-5 cells to explore its potential cytotoxicity on glial cells. KT-5 cells were exposed in vitro to a maximum of 50 μM clioquinol for up to 24 h. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenylte trazolium bromide (MTT) assay of the cells revealed that clioquinol induced significant cell damage and death. We also found that clioquinol caused accumulation of microtubule-associated protein light chain-3 (LC3)-II and sequestosome-1 (p62) in a dose- and time-dependent manner, suggesting the abnormality of autophagy-lysosome pathway. Consistent with these findings, an exposure of 20 μM clioquinol induced the accumulation of cellular autophagic vacuoles. Moreover, an exposure of 20 μM clioquinol provoked a statistically significant reduction of intracellular lysosomal acid hydrolases activities but no change in lysosomal pH. It also resulted in a significant decline of intracellular ATP levels, enhanced cellular levels of reactive oxygen species, and eventually cell death. This cell death at least did not appear to occur via apoptosis. 10 μM Chloroquine, lysosomal inhibitor, blocked the autophagic degradation and augmented clioquinol-cytotoxicity, whereas rapamycin, an inducer of autophagy, rescued clioquinol-induced cytotoxicity. Thus, our present results strongly suggest clioquinol acts as a potentially cytotoxic agent to glial cells. For future clinical application of clioquinol on the treatment of neurological and cancer disorders, we should take account of this type of cell death mechanism.
Collapse
|
16
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
17
|
Clioquinol inhibits dopamine-β-hydroxylase secretion and noradrenaline synthesis by affecting the redox status of ATOX1 and copper transport in human neuroblastoma SH-SY5Y cells. Arch Toxicol 2020; 95:135-148. [PMID: 33034664 DOI: 10.1007/s00204-020-02894-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Clioquinol (5-chloro-7-indo-8-quinolinol), a chelator and ionophore of copper/zinc, was extensively used as an amebicide to treat indigestion and diarrhea in the mid-1900s. However, it was withdrawn from the market in Japan because its use was epidemiologically linked to an increase in the incidence of subacute myelo-optic neuropathy (SMON). SMON is characterized by the subacute onset of sensory and motor disturbances in the lower extremities with occasional visual impairments, which are preceded by abdominal symptoms. Although pathological studies demonstrated axonopathy of the spinal cord and optic nerves, the underlying mechanisms of clioquinol toxicity have not been elucidated in detail. In the present study, a reporter assay revealed that clioquinol (20-50 µM) activated metal response element-dependent transcription in human neuroblastoma SH-SY5Y cells. Clioquinol significantly increased the cellular level of zinc within 1 h, suggesting zinc influx due to its ionophore effects. On the other hand, clioquinol (20-50 µM) significantly increased the cellular level of copper within 24 h. Clioquinol (50 µM) induced the oxidation of the copper chaperone antioxidant 1 (ATOX1), suggesting its inactivation and inhibition of copper transport. The secretion of dopamine-β-hydroxylase (DBH) and lysyl oxidase, both of which are copper-dependent enzymes, was altered by clioquinol (20-50 µM). Noradrenaline levels were reduced by clioquinol (20-50 µM). Disruption of the ATOX1 gene suppressed the secretion of DBH. This study suggested that the disturbance of cellular copper transport by the inactivation of ATOX1 is one of the mechanisms involved in clioquinol-induced neurotoxicity in SMON.
Collapse
|
18
|
Tsuganezawa K, Sekimata K, Nakagawa Y, Utata R, Nakamura K, Ogawa N, Koyama H, Shirouzu M, Fukami T, Kita K, Tanaka A. Identification of small molecule inhibitors of human COQ7. Bioorg Med Chem 2019; 28:115182. [PMID: 31753803 DOI: 10.1016/j.bmc.2019.115182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/29/2022]
Abstract
Given that the associated clinical manifestations of ubiquinone (UQ, or coenzyme Q) deficiency diseases are highly heterogeneous and complicated, effective new research tools for UQ homeostasis studies are awaited. We set out to develop human COQ7 inhibitors that interfere with UQ synthesis. Systematic structure-activity relationship development starting from a screening hit compound led to the identification of highly potent COQ7 inhibitors that did not disturb physiological cell growth of human normal culture cells. These new COQ7 inhibitors may serve as useful tools for studying the balance between UQ supplementation pathways: de novo UQ synthesis and extracellular UQ uptake.
Collapse
Affiliation(s)
- Keiko Tsuganezawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Katsuhiko Sekimata
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukari Nakagawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Rei Utata
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kana Nakamura
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Naoko Ogawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hiroo Koyama
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takehiro Fukami
- RIKEN Program for Drug Discovery and Medical Technology Platforms, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Akiko Tanaka
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
19
|
Biolog Phenotype Microarray Is a Tool for the Identification of Multidrug Resistance Efflux Pump Inducers. Antimicrob Agents Chemother 2018; 62:AAC.01263-18. [PMID: 30126958 DOI: 10.1128/aac.01263-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/10/2018] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance efflux pumps frequently present low levels of basal expression. However, antibiotic-resistant mutants that overexpress these resistance determinants are selected during infection. In addition, increased expression of efflux pumps can be induced by environmental signals/cues, which can lead to situations of transient antibiotic resistance. In this study, we have applied a novel high-throughput methodology in order to identify inducers able to trigger the expression of the Stenotrophomonas maltophilia SmeVWX and SmeYZ efflux pumps. To that end, bioreporters in which the expression of the yellow fluorescent protein (YFP) is linked to the activity of either smeVWX or smeYZ promoters were developed and used for the screening of potential inducers of the expression of these efflux pumps using Biolog phenotype microarrays. YFP production was also measured by flow cytometry, and the levels of expression of smeV and smeY in the presence of a set of selected compounds were also determined by real-time reverse transcription-PCR (RT-PCR). The expression of smeVWX was induced by iodoacetate, clioquinol, and selenite, while boric acid, erythromycin, chloramphenicol, and lincomycin triggered smeYZ expression. The susceptibility to antibiotics that are known substrates of the efflux pumps decreased in the presence of the inducers. However, the analyzed multidrug efflux systems did not contribute to S. maltophilia resistance to the studied inducers. To sum up, the use of fluorescent bioreporters in combination with Biolog plates is a valuable tool for identifying inducers of the expression of bacterial multidrug resistance efflux pumps, and likely of other bacterial systems whose expression is regulated in response to signals/cues.
Collapse
|
20
|
Clioquinol increases the expression of interleukin-8 by down-regulating GATA-2 and GATA-3. Neurotoxicology 2018; 67:296-304. [DOI: 10.1016/j.neuro.2018.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/21/2023]
|
21
|
Jiao Y, Hannafon BN, Zhang RR, Fung KM, Ding WQ. Docosahexaenoic acid and disulfiram act in concert to kill cancer cells: a mutual enhancement of their anticancer actions. Oncotarget 2017; 8:17908-17920. [PMID: 28107189 PMCID: PMC5392296 DOI: 10.18632/oncotarget.14702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
We previously reported a synergistic anticancer action of clioquinol and docosahexaenoic acid (DHA) in human cancer cells. However, clioquinol has been banned from the clinic due to its neurotoxicity. This study identified disulfiram (DSF) as a substitute compound to clioquinol, acting in concert with DHA to more effectively kill cancer cells and suppress tumor growth. Treatment with DSF and DHA induced greater apoptotic cell death and suppression of tumor growth in vitro and in vivo, as compared to DSF and DHA used alone. Mechanistic studies demonstrated that DSF enhances DHA-induced cellular oxidative stress as evidenced by up-regulation of Nrf2-mediated heme oxygenase 1 (HO-1) gene transcription. On the other hand, DHA was found to enhance DSF-induced suppression of mammosphere formation and stem cell frequency in a selected cancer model system, indicating that alterations to cancer cell stemness are involved in the combinatory anticancer action of DSF and DHA. Thus, DHA and DSF, both clinically approved drugs, act in concert to more effectively kill cancer cells. This combinatory action involves an enhancement of cellular oxidative stress and suppression of cancer cell stemness.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Bethany N Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Roy R Zhang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
22
|
Drew SC. The Case for Abandoning Therapeutic Chelation of Copper Ions in Alzheimer's Disease. Front Neurosci 2017; 11:317. [PMID: 28626387 PMCID: PMC5455140 DOI: 10.3389/fnins.2017.00317] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/18/2017] [Indexed: 12/26/2022] Open
Abstract
The "therapeutic chelation" approach to treating Alzheimer's disease (AD) evolved from the metals hypothesis, with the premise that small molecules can be designed to prevent transition metal-induced amyloid deposition and oxidative stress within the AD brain. Over more than 20 years, countless in vitro studies have been devoted to characterizing metal binding, its effect on Aβ aggregation, ROS production, and in vitro toxicity. Despite a lack of evidence for any clinical benefit, the conjecture that therapeutic chelation is an effective approach for treating AD remains widespread. Here, the author plays the devil's advocate, questioning the experimental evidence, the dogma, and the value of therapeutic chelation, with a major focus on copper ions.
Collapse
Affiliation(s)
- Simon C. Drew
- Department of Medicine, Royal Melbourne Hospital, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
23
|
Dong X, Zhang Z, Zhao J, Lei J, Chen Y, Li X, Chen H, Tian J, Zhang D, Liu C, Liu C. The rational design of specific SOD1 inhibitors via copper coordination and their application in ROS signaling research. Chem Sci 2016; 7:6251-6262. [PMID: 30034766 PMCID: PMC6024207 DOI: 10.1039/c6sc01272h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/15/2016] [Indexed: 12/12/2022] Open
Abstract
Efficient methods for the regulation of intracellular O2˙- and H2O2 levels, without altering intracellular processes, are urgently required for the rapidly growing interest in ROS signaling, as ROS signaling has been confirmed to be involved in a series of basic cellular processes including proliferation, differentiation, growth and migration. Intracellular H2O2 is formed mainly via the catalytic dismutation of O2˙- by SODs including SOD1, SOD2 and SOD3. Thus, the intracellular levels of O2˙- and H2O2 can directly be controlled through regulating SOD1 activity. Here, based on the active site structure and catalytic mechanism of SOD1, we developed a new type of efficient and specific SOD1 inhibitors which can directly change the intracellular levels of H2O2 and O2˙-. These inhibitors inactivate intracellular SOD1 via localization into the SOD1 active site, thereby coordinating to the Cu2+ in the active site of SOD1, blocking the access of O2˙- to Cu2+, and breaking the Cu2+/Cu+ catalytic cycle essential for O2˙- dismutation. The reduced ERK1/2 phosphorylation induced by the specific SOD1 inactivation-mediated decrease of intracellular H2O2 levels reveals the potential of these specific SOD1 inhibitors in understanding and regulating ROS signaling. Furthermore, these specific SOD1 inhibitors also lead to selectively elevated cancer cell apoptosis, indicating that these kinds of SOD1 inhibitors might be candidates for lead compounds for cancer treatment.
Collapse
Affiliation(s)
- Xiongwei Dong
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Zhe Zhang
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Jidong Zhao
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Juan Lei
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Yuanyuan Chen
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Xiang Li
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Huanhuan Chen
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Junli Tian
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Dan Zhang
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Chunrong Liu
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| | - Changlin Liu
- Key Laboratory of Pesticide & Chemical Biology , Ministry of Education , School of Chemistry , Central China Normal University , Wuhan 430079 , Hubei , China . ;
| |
Collapse
|
24
|
Parkinson's Disease: The Mitochondria-Iron Link. PARKINSONS DISEASE 2016; 2016:7049108. [PMID: 27293957 PMCID: PMC4886095 DOI: 10.1155/2016/7049108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson's disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences-mitochondrial dysfunction, iron accumulation, and oxidative damage-generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson's disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation-by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways-is a viable therapy for retarding this cycle.
Collapse
|
25
|
Zhang J, Nadtochiy SM, Urciuoli WR, Brookes PS. The cardioprotective compound cloxyquin uncouples mitochondria and induces autophagy. Am J Physiol Heart Circ Physiol 2016; 310:H29-38. [PMID: 26519034 PMCID: PMC4796459 DOI: 10.1152/ajpheart.00926.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 10/21/2015] [Indexed: 11/22/2022]
Abstract
Mitochondrial quality control mechanisms have been implicated in protection against cardiac ischemia-reperfusion (IR) injury. Previously, cloxyquin (5-chloroquinolin-8-ol) was identified via phenotypic screening as a cardioprotective compound. Herein, cloxyquin was identified as a mitochondrial uncoupler in both isolated heart mitochondria and adult cardiomyocytes. Additionally, cardiomyocytes isolated from transgenic mice expressing green fluorescent protein-tagged microtubule-associated protein light chain 3 showed increased autophagosome formation with cloxyquin treatment. The autophagy inhibitor chloroquine abolished cloxyquin-induced cardioprotection in both cellular and perfused heart (Langendorff) models of IR injury. Finally, in an in vivo murine left anterior descending coronary artery occlusion model of IR injury, cloxyquin significantly reduced infarct size from 31.4 ± 3.4% to 16.1 ± 2.2%. In conclusion, the cardioprotective compound cloxyquin simultaneously uncoupled mitochondria and induced autophagy. Importantly, autophagy appears to be required for cloxyquin-induced cardioprotection.
Collapse
Affiliation(s)
- Jimmy Zhang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Sergiy M Nadtochiy
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| | - William R Urciuoli
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
26
|
Fukui T, Asakura K, Hikichi C, Ishikawa T, Murai R, Hirota S, Murate KI, Kizawa M, Ueda A, Ito S, Mutoh T. Histone deacetylase inhibitor attenuates neurotoxicity of clioquinol in PC12 cells. Toxicology 2015; 331:112-8. [PMID: 25758465 DOI: 10.1016/j.tox.2015.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/25/2022]
Abstract
Clioquinol is considered to be a causative agent of subacute myelo-optico neuropathy (SMON), although the pathogenesis of SMON is yet to be elucidated. We have previously shown that clioquinol inhibits nerve growth factor (NGF)-induced Trk autophosphorylation in PC12 cells transformed with human Trk cDNA. To explore the further mechanism of neuronal damage by clioquinol, we evaluated the acetylation status of histones in PC12 cells. Clioquinol reduced the level of histone acetylation, and the histone deacetylase (HDAC) inhibitor Trichostatin A upregulated acetylated histones and prevented the neuronal cell damage caused by clioquinol. In addition, treatment with HDAC inhibitor decreased neurite retraction and restored the inhibition of NGF-induced Trk autophosphorylation by clioquinol. Thus, clioquinol induced neuronal cell death via deacetylation of histones, and HDAC inhibitor alleviates the neurotoxicity of clioquinol. Clioquinol is now used as a potential medicine for malignancies and neurodegenerative diseases. Therefore, HDAC inhibitors can be used as a candidate medicine for the prevention of its side effects on neuronal cells.
Collapse
Affiliation(s)
- Takao Fukui
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Kunihiko Asakura
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Chika Hikichi
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Tomomasa Ishikawa
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Rie Murai
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Seiko Hirota
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Ken-Ichiro Murate
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Madoko Kizawa
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Shinji Ito
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Tatsuro Mutoh
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|