1
|
Fu J, Ni Y, Hu Y, Tang W, Fu J, Wang Y, Yu S, Xu W. Glutamine, Serine and Glycine at Increasing Concentrations Regulate Cisplatin Sensitivity in Gastric Cancer by Posttranslational Modifications of KDM4A. Mol Carcinog 2025; 64:703-715. [PMID: 39835657 DOI: 10.1002/mc.23881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Gastric cancer is a common digestive system tumor with a high resistance rate that reduces the sensitivity to chemotherapy. Nutrition therapy is an important adjuvant approach to favor the prognosis of gastric cancer. Dietary amino acids contribute greatly to gastric cancer progression by mediating tumor gene expressions, epigenetics, signal transduction, and metabolic remodeling. In the present study, 20 types of amino acids were screened and glutamine, glycine and serine were identified as the critical regulators of cisplatin (DDP) sensitivity in gastric cancer cells. Moreover, KDM4A acetylation drove the reduced chemotherapy sensitivity in gastric cancer cells by maintaining protein stability and activating DNA repair ability when the concentrations of glutamine (Gln), serine (Ser), and glycine (Gly) decreased. Conversely, Gln/Ser/Gly at increasing concentrations stimulated ubiquitination degradation of KDM4A, which in turn elevated the sensitivity of gastric cancer cells to chemotherapy. Our findings unveiled the role of amino acid nutrition in regulating chemotherapy sensitivity of gastric cancer and the underlying mechanism, thus providing a scientific basis for expanding the clinical significance of nutrition therapy for gastric cancer patients.
Collapse
Affiliation(s)
- Junhao Fu
- Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
- Department of Gastrointestinal Oncology, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuqi Ni
- Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
- Department of Gastrointestinal Oncology, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuqing Hu
- Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
- Department of Gastrointestinal Oncology, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wanfen Tang
- Department of Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Jianfei Fu
- Department of Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yue Wang
- Department of Experimental Technology, Dian Diagnostics Group Co. Ltd., Hangzhou, Zhejiang Province, China
| | - Shian Yu
- Department of General Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wenxia Xu
- Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
- Department of Gastrointestinal Oncology, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| |
Collapse
|
2
|
Cursaro I, Milioni L, Eslami K, Sirous H, Carullo G, Gemma S, Butini S, Campiani G. Targeting N-Methyl-lysine Histone Demethylase KDM4 in Cancer: Natural Products Inhibitors as a Driving Force for Epigenetic Drug Discovery. ChemMedChem 2025; 20:e202400682. [PMID: 39498961 PMCID: PMC11831885 DOI: 10.1002/cmdc.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
KDM4A-F enzymes are a subfamily of histone demethylases containing the Jumonji C domain (JmjC) using Fe(II) and 2-oxoglutarate for their catalytic function. Overexpression or deregulation of KDM4 enzymes is associated with various cancers, altering chromatin structure and causing transcriptional dysfunction. As KDM4 enzymes have been associated with malignancy, they may represent novel targets for developing innovative therapeutic tools to treat different solid and blood tumors. KDM4A is the isozyme most frequently associated with aggressive phenotypes of these tumors. To this aim, industrial and academic medicinal chemistry efforts have identified different KDM4 inhibitors. Industrial and academic efforts in medicinal chemistry have identified numerous KDM4 inhibitors, primarily pan-KDM4 inhibitors, though they often lack selectivity against other Jumonji family members. The pharmacophoric features of the inhibitors frequently include a chelating group capable of coordinating the catalytic iron within the active site of the KDM4 enzyme. Nonetheless, non-chelating compounds have also demonstrated promising inhibitory activity, suggesting potential flexibility in the drug design. Several natural products, containing monovalent or bivalent chelators, have been identified as KDM4 inhibitors, albeit with a micromolar inhibition potency. This highlights the potential for leveraging them as templates for the design and synthesis of new derivatives, exploiting nature's chemical diversity to pursue more potent and selective KDM4 inhibitors.
Collapse
Affiliation(s)
- Ilaria Cursaro
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Leonardo Milioni
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Kourosh Eslami
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahan81746-7346Iran.
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahan81746-7346Iran.
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Stefania Butini
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| |
Collapse
|
3
|
Lee PWT, Kobayashi M, Dohkai T, Takahashi I, Yoshida T, Harada H. 2-Oxoglutarate-dependent dioxygenases as oxygen sensors: their importance in health and disease. J Biochem 2025; 177:79-104. [PMID: 39679914 DOI: 10.1093/jb/mvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Since low oxygen conditions below physiological levels, hypoxia, are associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxic response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) has attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs. Herein, we present a detailed classification of 2-OGDD superfamily proteins, such as Jumonji C-domain-containing histone demethylases, ten-eleven translocation enzymes, AlkB family of DNA/RNA demethylases and lysyl hydroxylases, and discuss their specific functions and associations with various diseases. By introducing the multifaceted roles of 2-OGDD superfamily proteins in the hypoxic response, this review aims to summarize the accumulated knowledge about the complex mechanisms governing cellular adaptation to hypoxia in various physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takakuni Dohkai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Yoshida
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Uguen M, Liu T, James LI, Frye SV. Tudor-Containing Methyl-Lysine and Methyl-Arginine Reader Proteins: Disease Implications and Chemical Tool Development. ACS Chem Biol 2025; 20:33-47. [PMID: 39718819 DOI: 10.1021/acschembio.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Tudor domains are histone readers that can recognize various methylation marks on lysine and arginine. This recognition event plays a key role in the recruitment of other epigenetic effectors and the control of gene accessibility. The Tudor-containing protein family contains 42 members, many of which are involved in the development and progression of various diseases, especially cancer. The development of chemical tools for this family will not only lead to a deeper understanding of the biological functions of Tudor domains but also lay the foundation for therapeutic discoveries. In this review, we discuss the role of several Tudor domain-containing proteins in a range of relevant diseases and progress toward the development of chemical tools such as peptides, peptidomimetics, or small-molecules that bind Tudor domains. Overall, we highlight how Tudor domains are promising targets for therapeutic development and would benefit from the development of novel chemical tools.
Collapse
Affiliation(s)
- Mélanie Uguen
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tongkun Liu
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Gao W, Zhou J, Morshedi M. MicroRNA-34 and gastrointestinal cancers: a player with big functions. Cancer Cell Int 2024; 24:163. [PMID: 38725047 PMCID: PMC11084024 DOI: 10.1186/s12935-024-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2024; 11:645-663. [PMID: 37692513 PMCID: PMC10491877 DOI: 10.1016/j.gendis.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 09/12/2023] Open
Abstract
Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanjun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Minghui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiusheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
7
|
Chandhasin C, Dang V, Perabo F, Del Rosario J, Chen YK, Filvaroff E, Stafford JA, Clarke M. TACH101, a first-in-class pan-inhibitor of KDM4 histone demethylase. Anticancer Drugs 2023; 34:1122-1131. [PMID: 37067993 PMCID: PMC10569680 DOI: 10.1097/cad.0000000000001514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 04/18/2023]
Abstract
Histone lysine demethylase 4 (KDM4) is an epigenetic regulator that facilitates the transition between transcriptionally silent and active chromatin states by catalyzing the removal of methyl groups on histones H3K9, H3K36, and H1.4K26. KDM4 overamplification or dysregulation has been reported in various cancers and has been shown to drive key processes linked to tumorigenesis, such as replicative immortality, evasion of apoptosis, metastasis, DNA repair deficiency, and genomic instability. KDM4 also plays a role in epigenetic regulation of cancer stem cell renewal and has been linked to more aggressive disease and poorer clinical outcomes. The KDM4 family is composed of four main isoforms (KDM4A-D) that demonstrate functional redundancy and cross-activity; thus, selective inhibition of one isoform appears to be ineffective and pan-inhibition targeting multiple KDM4 isoforms is required. Here, we describe TACH101, a novel, small-molecule pan-inhibitor of KDM4 that selectively targets KDM4A-D with no effect on other KDM families. TACH101 demonstrated potent antiproliferative activity in cancer cell lines and organoid models derived from various histologies, including colorectal, esophageal, gastric, breast, pancreatic, and hematological malignancies. In vivo , potent inhibition of KDM4 led to efficient tumor growth inhibition and regression in several xenograft models. A reduction in the population of tumor-initiating cells was observed following TACH101 treatment. Overall, these observations demonstrate the broad applicability of TACH101 as a potential anticancer agent and support its advancement into clinical trials.
Collapse
|
8
|
Cai X, Duan X, Tang T, Cui S, Wu T. JMJD2A participates in cytoskeletal remodeling to regulate castration-resistant prostate cancer docetaxel resistance. BMC Cancer 2023; 23:423. [PMID: 37165308 PMCID: PMC10170801 DOI: 10.1186/s12885-023-10915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND To investigate underlying mechanism of JMJD2A in regulating cytoskeleton remodeling in castration-resistant prostate cancer (CRPC) resistant to docetaxel. METHODS Tissue samples from CRPC patients were collected, and the expression of JMJD2A, miR-34a and cytoskeleton remodeling-related proteins were evaluated by qPCR, western blot and immunohistochemistry, and pathological changes were observed by H&E staining. Further, JMJD2A, STMN1 and TUBB3 were knocked down using shRNA in CRPC cell lines, and cell viability, apoptosis and western blot assays were performed. The interaction between miR-34a/STMN1/β3-Tubulin was analyzed with dual-luciferase reporter and co-immunoprecipitation assays. RESULTS In clinical experiment, the CRPC-resistant group showed higher expression of JMJD2A, STMN1, α-Tubulin, β-Tubulin and F-actin, and lower expression of miR-34a and β3-Tubulin compared to the sensitive group. In vitro experiments showed that JMJD2A could regulate cytoskeletal remodeling through the miR-34a/STMN1/β3-Tubulin axis. The expression of miR-34a was elevated after knocking down JMJD2A, and miR-34a targeted STMN1. The overexpression of miR-34a was associated with a decreased expression of STMN1 and elevated expression of β3-Tubulin, which led to the disruption of the microtubule network, decreased cancer cell proliferation, cell cycle arrest in the G0/G1 phase, and increased apoptosis. CONCLUSION JMJD2A promoted docetaxel resistance in prostate cancer cells by regulating cytoskeleton remodeling through the miR-34a/STMN1/β3-Tubulin axis.
Collapse
Affiliation(s)
- Xiang Cai
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Sichuan, 637000, Nanchong, China
| | - Xi Duan
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Sichuan, 637000, Nanchong, China
| | - Tielong Tang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Sichuan, 637000, Nanchong, China
| | - Shu Cui
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Sichuan, 637000, Nanchong, China
| | - Tao Wu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Sichuan, 637000, Nanchong, China.
| |
Collapse
|
9
|
Parkinson J, Hard R, Ainsworth R, Wang W. Engineering human JMJD2A tudor domains for an improved understanding of histone peptide recognition. Proteins 2023; 91:32-46. [PMID: 35927178 PMCID: PMC9771871 DOI: 10.1002/prot.26408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022]
Abstract
JMJD2A is a histone lysine demethylase which recognizes and demethylates H3K9me3 and H3K36me3 residues and is overexpressed in various cancers. It utilizes a tandem tudor domain to facilitate its own recruitment to histone sites, recognizing various di- and tri-methyl lysine residues with moderate affinity. In this study, we successfully engineered the tudor domain of JMJD2A to specifically bind to H4K20me3 with a 20-fold increase of affinity and improved selectivity. To reveal the molecular basis, we performed molecular dynamics and free energy decomposition analysis on the human JMJD2A tandem tudor domains bound to H4K20me2, H4K20me3, and H3K23me3 peptides to uncover the residues and conformational changes important for the enhanced binding affinity and selectivity toward H4K20me2/3. These analyses revealed new insights into understanding chromatin reader domains recognizing histone modifications and improving binding affinity and selectivity of these domains. Furthermore, we showed that the tight binding of JMJD2A to H4K20me2/3 is not sufficient to improve the efficiency of CRISPR-CAS9 mediated homology directed repair (HDR), suggesting a complicated relationship between JMJD2A and the DNA damage response beyond binding affinity toward the H4K20me2/3 mark.
Collapse
Affiliation(s)
- Jonathan Parkinson
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Ryan Hard
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Richard Ainsworth
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
10
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
11
|
Treatment Response Predictors of Neoadjuvant Therapy for Locally Advanced Gastric Cancer: Current Status and Future Perspectives. Biomedicines 2022; 10:biomedicines10071614. [PMID: 35884916 PMCID: PMC9312565 DOI: 10.3390/biomedicines10071614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Neoadjuvant chemotherapy (NAC) for locally advanced gastric cancer (LAGC) has been recognized as an effective therapeutic option because it is expected to improve the curative resection rate by reducing the tumor size and preventing recurrence of micrometastases. However, for patients resistant to NAC, not only will operation timing be delayed, but they will also suffer from side effects. Thus, it is crucial to develop a comprehensive strategy and select patients sensitive to NAC. However, the therapeutic effect of NAC is unpredictable due to tumor heterogeneity and a lack of predictive biomarkers for guiding the choice of optimal preoperative treatment in clinical practice. This article summarizes the related research progress on predictive biomarkers of NAC for gastric cancer. Among the many investigated biomarkers, metabolic enzymes for cytotoxic agents, nucleotide excision repair, and microsatellite instability, have shown promising results and should be assessed in prospective clinical trials. Noninvasive liquid biopsy detection, including miRNA and exosome detection, is also a promising strategy.
Collapse
|
12
|
Han L, Luo J, Qu S, Shi X, Zhang J, Han B. kdm4aa is required for reproduction and development of zebrafish. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Yang Q, Chen Y, Guo R, Dai Y, Tang L, Zhao Y, Wu X, Li M, Du F, Shen J, Yi T, Xiao Z, Wen Q. Interaction of ncRNA and Epigenetic Modifications in Gastric Cancer: Focus on Histone Modification. Front Oncol 2022; 11:822745. [PMID: 35155211 PMCID: PMC8826423 DOI: 10.3389/fonc.2021.822745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer has developed as a very common gastrointestinal tumors, with recent effective advancements in the diagnosis and treatment of early gastric cancer. However, the prognosis for gastric cancer remains poor. As a result, there is in sore need of better understanding the mechanisms of gastric cancer development and progression to improve existing diagnostic and treatment options. In recent years, epigenetics has been recognized as an important contributor on tumor progression. Epigenetic changes in cancer include chromatin remodeling, DNA methylation and histone modifications. An increasing number of studies demonstrated that noncoding RNAs (ncRNAs) are associated with epigenetic changes in gastric cancer. Herein, we describe the molecular interactions of histone modifications and ncRNAs in epigenetics. We focus on ncRNA-mediated histone modifications of gene expression associated with tumorigenesis and progression in gastric cancer. This molecular mechanism will contribute to our deeper understanding of gastric carcinogenesis and progression, thus providing innovations in gastric cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Yueshui Zhao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Xu Wu
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Mingxing Li
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Fukuan Du
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Jing Shen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
14
|
Li S, Wei X, He J, Cao Q, Du D, Zhan X, Zeng Y, Yuan S, Sun L. The comprehensive landscape of miR-34a in cancer research. Cancer Metastasis Rev 2021; 40:925-948. [PMID: 33959850 DOI: 10.1007/s10555-021-09973-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
MicroRNA-34 (miR-34) plays central roles in human diseases, especially cancers. Inactivation of miR-34 is detected in cancer cell lines and tumor tissues versus normal controls, implying its potential tumor-suppressive effect. Clinically, miR-34 has been identified as promising prognostic indicators for various cancers. In fact, members of the miR-34 family, especially miR-34a, have been convincingly proved to affect almost the whole cancer progression process. Here, a total of 512 (miR-34a, 10/21), 85 (miR-34b, 10/16), and 114 (miR-34c, 10/14) putative targets of miR-34a/b/c are predicted by at least ten miRNA databases, respectively. These targets are further analyzed in gene ontology (GO), KEGG pathway, and the Reactome pathway dataset. The results suggest their involvement in the regulation of signal transduction, macromolecule metabolism, and protein modification. Also, the targets are implicated in critical signaling pathways, such as MAPK, Notch, Wnt, PI3K/AKT, p53, and Ras, as well as apoptosis, cell cycle, and EMT-related pathways. Moreover, the upstream regulators of miR-34a, mainly including transcription factors (TFs), lncRNAs, and DNA methylation, will be summarized. Meanwhile, the potential TF upstream of miR-34a/b/c will be predicted by PROMO, JASPAR, Animal TFDB 3.0, and GeneCard databases. Notably, miR-34a is an attractive target for certain cancers. In fact, miR-34a-based systemic delivery combined with chemotherapy or radiotherapy can more effectively control tumor progression. Collectively, this review will provide a panorama for miR-34a in cancer research.
Collapse
Affiliation(s)
- Sijing Li
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaohui Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jinyong He
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
- China Cell-Gene Therapy Translational Medicine Research Center, Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Quanquan Cao
- MARBEC, Université Montpellier, UM-CNRS-IRD-IFREMER, cc 092, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Danyu Du
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoman Zhan
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuqi Zeng
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Sun
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Identifying Novel Cell Glycolysis-Related Gene Signature Predictive of Overall Survival in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9656947. [PMID: 33791386 PMCID: PMC7982000 DOI: 10.1155/2021/9656947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/06/2021] [Accepted: 02/28/2021] [Indexed: 01/16/2023]
Abstract
Background Gastric cancer (GC) is believed to be one of the most common digestive tract malignant tumors. The prognosis of GC remains poor due to its high malignancy, high incidence of metastasis and relapse, and lack of effective treatment. The constant progress in bioinformatics and molecular biology techniques has given rise to the discovery of biomarkers with clinical value to predict the GC patients' prognosis. However, the use of a single gene biomarker can hardly achieve the satisfactory specificity and sensitivity. Therefore, it is urgent to identify novel genetic markers to forecast the prognosis of patients with GC. Materials and Methods In our research, data mining was applied to perform expression profile analysis of mRNAs in the 443 GC patients from The Cancer Genome Atlas (TCGA) cohort. Genes associated with the overall survival (OS) of GC were identified using univariate analysis. The prognostic predictive value of the risk factors was determined using the Kaplan-Meier survival analysis and multivariate analysis. The risk scoring system was built in TCGA dataset and validated in an independent Gene Expression Omnibus (GEO) dataset comprising 300 GC patients. Based on the median of the risk score, GC patients were grouped into high-risk and low-risk groups. Results We identified four genes (GMPPA, GPC3, NUP50, and VCAN) that were significantly correlated with GC patients' OS. The high-risk group showed poor prognosis, indicating that the risk score was an effective predictor for the prognosis of GC patients. Conclusion The signature consisting of four glycolysis-related genes could be used to forecast the GC patients' prognosis.
Collapse
|
16
|
Chen M, Jiang Y, Sun Y. KDM4A-mediated histone demethylation of SLC7A11 inhibits cell ferroptosis in osteosarcoma. Biochem Biophys Res Commun 2021; 550:77-83. [PMID: 33689883 DOI: 10.1016/j.bbrc.2021.02.137] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the most common type of bone tumor that seriously affects limb function and induces great pain in patients. Lung metastasis and chemotherapy resistance are two key issues leading to the poor prognosis of OS patients, therefore new treatment targets and strategies are urgently needed. In our study, we uncovered the role of histone demethylase KDM4A in regulating OS cell ferroptosis and tumor progression. KDM4A was significantly upregulated in OS specimens and high KDM4A expression was associated with poorer prognosis in OS patients. Our data indicated that targeting KDM4A significantly increased OS cell death, enhanced cisplatin response, and attenuated migration ability in vitro. KDM4A depletion dramatically inhibited tumor progression and lung metastasis of OS in vivo Further experiments confirmed that KDM4A knockdown promoted OS cell ferroptosis, a special non-apoptotic form of cell death. KDM4A regulates SLC7A11 transcription and OS cell ferroptosis by controlling H3K9me3 demethylation in the promoter region of SLC7A11. Our findings deepened the recognition of epigenetic regulatory mechanism in OS tumorigenesis, chemoresistance, and metastasis, suggesting that KDM4A activity may be a potential therapeutic target for future OS treatment.
Collapse
Affiliation(s)
- Meng Chen
- Department of Orthopedics, Trauma Centre of Fujian, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yuhang Jiang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Mechanistic insights into KDM4A driven genomic instability. Biochem Soc Trans 2021; 49:93-105. [PMID: 33492339 PMCID: PMC7925003 DOI: 10.1042/bst20191219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Alterations in global epigenetic signatures on chromatin are well established to contribute to tumor initiation and progression. Chromatin methylation status modulates several key cellular processes that maintain the integrity of the genome. KDM4A, a demethylase that belongs to the Fe-II dependent dioxygenase family that uses α-ketoglutarate and molecular oxygen as cofactors, is overexpressed in several cancers and is associated with an overall poor prognosis. KDM4A demethylates lysine 9 (H3K9me2/3) and lysine 36 (H3K36me3) methyl marks on histone H3. Given the complexity that exists with these marks on chromatin and their effects on transcription and proliferation, it naturally follows that demethylation serves an equally important role in these cellular processes. In this review, we highlight the role of KDM4A in transcriptional modulation, either dependent or independent of its enzymatic activity, arising from the amplification of this demethylase in cancer. KDM4A modulates re-replication of distinct genomic loci, activates cell cycle inducers, and represses proteins involved in checkpoint control giving rise to proliferative damage, mitotic disturbances and chromosomal breaks, ultimately resulting in genomic instability. In parallel, emerging evidence of non-nuclear substrates of epigenetic modulators emphasize the need to investigate the role of KDM4A in regulating non-nuclear substrates and evaluate their contribution to genomic instability in this context. The existence of promising KDM-specific inhibitors makes these demethylases an attractive target for therapeutic intervention in cancers.
Collapse
|
18
|
Ramanan R, Chaturvedi SS, Lehnert N, Schofield CJ, Karabencheva-Christova TG, Christov CZ. Catalysis by the JmjC histone demethylase KDM4A integrates substrate dynamics, correlated motions and molecular orbital control. Chem Sci 2020; 11:9950-9961. [PMID: 34094257 PMCID: PMC8162366 DOI: 10.1039/d0sc03713c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Nε-methyl lysine status of histones is important in the regulation of eukaryotic transcription. The Fe(ii) and 2-oxoglutarate (2OG) -dependent JmjC domain enzymes are the largest family of histone Nε-methyl lysine demethylases (KDMs). The human KDM4 subfamily of JmjC KDMs is linked with multiple cancers and some of its members are medicinal chemistry targets. We describe the use of combined molecular dynamics (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) methods to study the mechanism of KDM4A, which catalyzes demethylation of both tri- and di-methylated forms of histone H3 at K9 and K36. The results show that the oxygen activation at the active site of KDM4A is optimized towards the generation of the reactive Fe(iv)-oxo intermediate. Factors including the substrate binding mode, correlated motions of the protein and histone substrates, and molecular orbital control synergistically contribute to the reactivity of the Fe(iv)-oxo intermediate. In silico substitutions were performed to investigate the roles of residues (Lys241, Tyr177, and Asn290) in substrate orientation. The Lys241Ala substitution abolishes activity due to altered substrate orientation consistent with reported experimental studies. Calculations with a macrocyclic peptide substrate analogue reveal that induced conformational changes/correlated motions in KDM4A are sequence-specific in a manner that influences substrate binding affinity. Second sphere residues, such as Ser288 and Thr289, may contribute to KDM4A catalysis by correlated motions with active site residues. Residues that stabilize key intermediates, and which are predicted to be involved in correlated motions with other residues in the second sphere and beyond, are shown to be different in KDM4A compared to those in another JmjC KDM (PHF8), which acts on H3K9 di- and mono-methylated forms, suggesting that allosteric type inhibition is of interest from the perspective of developing selective JmjC KDM inhibitors. The second sphere residues and regions of the protein in histone demethylase enzymes that makes correlated motion with the active site contribute to efficient catalysis.![]()
Collapse
Affiliation(s)
- Rajeev Ramanan
- Department of Chemistry, Michigan Technological University Houghton Michigan 49931 USA
| | - Shobhit S Chaturvedi
- Department of Chemistry, Michigan Technological University Houghton Michigan 49931 USA
| | - Nicolai Lehnert
- Department of Chemistry, University of Michigan Ann Arbor MI 48019 USA
| | | | | | - Christo Z Christov
- Department of Chemistry, Michigan Technological University Houghton Michigan 49931 USA
| |
Collapse
|
19
|
Canale M, Casadei-Gardini A, Ulivi P, Arechederra M, Berasain C, Lollini PL, Fernández-Barrena MG, Avila MA. Epigenetic Mechanisms in Gastric Cancer: Potential New Therapeutic Opportunities. Int J Mol Sci 2020; 21:E5500. [PMID: 32752096 PMCID: PMC7432799 DOI: 10.3390/ijms21155500] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies worldwide. Complex disease heterogeneity, late diagnosis, and suboptimal therapies result in the poor prognosis of patients. Besides genetic alterations and environmental factors, it has been demonstrated that alterations of the epigenetic machinery guide cancer onset and progression, representing a hallmark of gastric malignancies. Moreover, epigenetic mechanisms undergo an intricate crosstalk, and distinct epigenomic profiles can be shaped under different microenvironmental contexts. In this scenario, targeting epigenetic mechanisms could be an interesting therapeutic strategy to overcome gastric cancer heterogeneity, and the efforts conducted to date are delivering promising results. In this review, we summarize the key epigenetic events involved in gastric cancer development. We conclude with a discussion of new promising epigenetic strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Andrea Casadei-Gardini
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Maria Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Avila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| |
Collapse
|
20
|
Nakagawa T, Sato Y, Tanahashi T, Mitsui Y, Kida Y, Fujino Y, Hirata M, Kitamura S, Miyamoto H, Okamoto K, Muguruma N, Bando Y, Takayama T. JMJD2A sensitizes gastric cancer to chemotherapy by cooperating with CCDC8. Gastric Cancer 2020; 23:426-436. [PMID: 31677131 DOI: 10.1007/s10120-019-01024-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Jumonji domain-containing protein 2A (JMJD2A) of the JMJD2 family of histone lysine demethylases has been implicated in tumorigenesis. However, its expression and role in gastric cancer (GC) drug resistance remain unknown. Here, we investigated the role of JMJD2A in GC chemotherapeutic susceptibility and its clinical relevance in GC. METHODS We selected 12 relevant genes from previously identified gene signatures that can predict GC susceptibility to docetaxel, cisplatin, and S-1 (DCS) therapy. Each gene was knocked down using siRNA in GC cell lines, and cell viability assays were performed. JMJD2A expression in GC cell lines and tissues was assessed using qRT-PCR and immunohistochemistry, respectively. A JMJD2A downstream target related to drug susceptibility was examined using whole-gene expression array and immunoprecipitation. RESULTS Among the 12 candidate genes, down-regulation of JMJD2A showed the maximum effect on GC susceptibility to anti-cancer drugs and increased the IC50 values for 5-FU, cisplatin, and docetaxel 15.3-, 2.7-, and 4.0-fold, respectively. JMJD2A was universally expressed in 12 GC cell lines, and its overexpression in GC tissue was positively correlated with tumor regression in 34 DCS-treated patients. A whole-gene expression array of JMJD2A-knockdown GC cells demonstrated a significant decrease in the expression of pro-apoptotic coiled-coil domain containing 8 (CCDC8), a downstream target of JMJD2A. Direct interaction between CCDC8 and JMJD2A was verified using immunoprecipitation. CCDC8 inhibition restored drug resistance to docetaxel, cisplatin, and S-1. CONCLUSIONS Our results indicate that JMJD2A is a novel epigenetic factor affecting GC chemotherapeutic susceptibility, and JMJD2A/CCDC8 is a potential GC therapeutic target.
Collapse
Affiliation(s)
- Tadahiko Nakagawa
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, Shimane, 693-8550, Japan
| | - Yasushi Sato
- Department of Community Medicine for Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan.
| | - Toshihito Tanahashi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Yasuhiro Mitsui
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Yoshifumi Kida
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Yasuteru Fujino
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Misato Hirata
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Shinji Kitamura
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, Tokushima, 770-8503, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| |
Collapse
|
21
|
Zhang H, Wang Z, Wang F, Wang C, Zhang H. IL-6 and IL-8 are involved in JMJD2A-regulated malignancy of ovarian cancer cells. Arch Biochem Biophys 2020; 684:108334. [PMID: 32173334 DOI: 10.1016/j.abb.2020.108334] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 12/24/2022]
Abstract
Emerging evidence shows that histone modification and its related regulators are involved in the progression and chemoresistance of ovarian cancer (OC) cells. Our present study found that the expression of Jumonji C domain-containing 2A (JMJD2A), while not JMJD2B or JMJD2C, is increased in OC cells and tissues as compared with that in their corresponding controls. Knockdown of JMJD2A can decrease proliferation while increase cisplatin (CDDP) sensitivity of OC cells. By screening the expression of cytokines involved in the progression of ovarian cancer, we found that knockdown of JMJD2A can inhibit the expression of interleukin-6 (IL-6) and IL-8 in ovarian cancer cells. Recombinant IL-6 (rIL-6) and rIL-8 can attenuate si-JMJD2A-suppressed malignancy of OC cells. Mechanistically, JMJD2A can directly bind with the promoter of IL-6 to trigger its transcription. For IL-8, JMJD2A can increase it mRNA stability in OC cells. Collectively, we revealed that JMJD2A can trigger the malignancy of OC cells via upregulation of IL-6 and IL-8. It suggested that JMJD2A might be a potential target for OC treatment and therapy.
Collapse
Affiliation(s)
- Haiyu Zhang
- Department of Antenatal Diagnosis, Weifang People's Hospital, Weifang, 261041, China
| | - Zichao Wang
- Department of Gynecology, Weifang People's Hospital, Weifang, 261041, China
| | - Fengxia Wang
- Department of Medical Oncology, Weifang People's Hospital, Weifang, 261041, China
| | - Chengdong Wang
- Department of Antenatal Diagnosis, Weifang People's Hospital, Weifang, 261041, China
| | - Hui Zhang
- Department of Gynecology, Pingyi People's Hospital, Pingyi, 273300, China.
| |
Collapse
|
22
|
Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J 2020; 34:3461-3484. [PMID: 31961018 DOI: 10.1096/fj.201902584r] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
The KDM4 subfamily H3K9 histone demethylases are epigenetic regulators that control chromatin structure and gene expression by demethylating histone H3K9, H3K36, and H1.4K26. The KDM4 subfamily mainly consists of four proteins (KDM4A-D), all harboring the Jumonji C domain (JmjC) but with differential substrate specificities. KDM4A-C proteins also possess the double PHD and Tudor domains, whereas KDM4D lacks these domains. KDM4 proteins are overexpressed or deregulated in multiple cancers, cardiovascular diseases, and mental retardation and are thus potential therapeutic targets. Despite extensive efforts, however, there are very few KDM4-selective inhibitors. Defining the exact physiological and oncogenic functions of KDM4 demethylase will provide the foundation for the discovery of novel potent inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM4s and the interplay between KDM4-mediated epigenetic and metabolic pathways in cancer. We also review currently available KDM4 inhibitors and discuss their potential as therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Chen LH, Wang LP, Ma XQ. Circ_SPECC1 enhances the inhibition of miR-526b on downstream KDM4A/YAP1 pathway to regulate the growth and invasion of gastric cancer cells. Biochem Biophys Res Commun 2019; 517:253-259. [PMID: 31349968 DOI: 10.1016/j.bbrc.2019.07.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/18/2019] [Indexed: 01/24/2023]
Abstract
Gastric cancer (GC) is a common malignant tumor, and many studies have shown that circular RNAs (circRNAs) play important roles in the progress of GC. This study showed that circ_SPECC1 was down-regulated in various GC cell lines, significantly inhibited GC cell proliferation and invasion, and promote apoptosis, which might play an anti-oncogene role. Circ_SPECC1 was mainly located in the cytoplasm, and its sequence contained multiple potential binding sites of miR-526b. Pull-down experiments with biotinylated miR-526b mimics and circ_SPECC1 probe showed that they could enrich each other. RIP experiments found hat anti-AGO2 antibody could significantly enrich circ_SPECC1. Further dual luciferase reporter gene assay also confirmed that miR-526b could bind directly to circ_SPECC1. miR-526b was also down-regulated in GC cells, and one of its important target genes was KDM4A. Both circ_SPECC1 and miR-526b inhibited the expression of KDM4A and its downstream effector YAP1, but miR-526b inhibitors terminated the above-mentioned inhibition of circ_SPECC1, and KDM4A overexpression reversed the inhibition of circ_SPECC1 and miR-526b on YAP1 expression. Both miR-526b and KDM4A siRNA inhibited GC cell proliferation and invasion, and promote apoptosis; KDM4A overexpression had the opposite effects, and significantly blocked the regulation of miR-526b on cell growth and invasion. Therefore, circ_SPECC1 can enhance miR-526b inhibitory effect on downstream KDM4A/YAP1 pathway by adsorbing it, thus inhibiting GC cell growth and invasion. These findings enrich the mechanism of circRNAs in GC and will provide more new targets for the prevention and treatment of GC.
Collapse
Affiliation(s)
- Li-Hua Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Lin-Pei Wang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xiao-Qiu Ma
- Department of Internal Medical Oncology, The 910th Hospital of the People's Liberation Army, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
24
|
Li Y, Wang Y, Xie Z, Hu H. JMJD2A facilitates growth and inhibits apoptosis of cervical cancer cells by downregulating tumor suppressor miR‑491‑5p. Mol Med Rep 2019; 19:2489-2496. [PMID: 30720092 PMCID: PMC6423651 DOI: 10.3892/mmr.2019.9916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/10/2018] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer remains the second most common malignancy for women worldwide. Jumonji domain containing 2A (JMJD2A), a member of the JmjC domain-containing family of JMJD2 proteins, is capable of regulating cancer-associated genes, including genes involved in the cell cycle, proliferation, apoptosis, invasion and metastasis. However, its role in human cervical cancer has yet to be elucidated. microRNA (miR)-491-5p, a mature form of miR-491, has been shown to function as a tumor suppressor gene in vitro by inducing apoptosis and inhibiting proliferation and invasion in various types of cancer. However, the underlying mechanism remains to be elucidated. In the present study it was observed that JMJD2A expression was significantly upregulated in human cervical cancer cell lines and cervical epithelial carcinoma tissues. A high JMJD2A level predicted poor overall and disease-free survival rate and may serve as an independent prognostic factor for adverse outcome. JMJD2A increased cervical cancer cell and colony numbers in vitro, increased the tumor weight in a mouse xenograft model, and decreased the apoptotic rate by downregulating the pro-apoptotic proteins Bax, p21 and active caspase-3, and upregulating the anti-apoptotic protein Bcl-2. Transfection experiments indicated that the role of JMJD2A in cervical cancer was mediated, at least in part, by the repression of miR-491-5p. In summary, JMJD2A was identified as an oncogenic protein in human cervical cancer that significantly affected cell and colony numbers, tumor weight and apoptosis via the downregulation of miR-491-5p, which acts as a tumor suppressor in cervical cancer. Therefore, JMJD2A may serve as a prognostic factor and potential target for intervention in cervical cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ya'ning Wang
- Department of Gynecology and Obstetrics, Banan People's Hospital of Chongqing, Chongqing 401320, P.R. China
| | - Zhen Xie
- Department of Gynecology and Obstetrics, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, P.R. China
| | - Hongyi Hu
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
25
|
Lin H, Li Q, Li Q, Zhu J, Gu K, Jiang X, Hu Q, Feng F, Qu W, Chen Y, Sun H. Small molecule KDM4s inhibitors as anti-cancer agents. J Enzyme Inhib Med Chem 2018; 33:777-793. [PMID: 29651880 PMCID: PMC6010108 DOI: 10.1080/14756366.2018.1455676] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Histone demethylation is a vital process in epigenetic regulation of gene expression. A number of histone demethylases are present to control the methylated states of histone. Among these enzymes, KDM4s are one subfamily of JmjC KDMs and play important roles in both normal and cancer cells. The discovery of KDM4s inhibitors is a potential therapeutic strategy against different diseases including cancer. Here, we summarize the development of KDM4s inhibitors and some related pharmaceutical information to provide an update of recent progress in KDM4s inhibitors.
Collapse
Affiliation(s)
- Hongzhi Lin
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qihang Li
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qi Li
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Jie Zhu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Kai Gu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Xueyang Jiang
- b Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qianqian Hu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Feng Feng
- b Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Wei Qu
- b Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Yao Chen
- c School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Haopeng Sun
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
26
|
An J, Xu J, Li J, Jia S, Li X, Lu Y, Yang Y, Lin Z, Xin X, Wu M, Zheng Q, Pu H, Gui X, Li T, Lu D. HistoneH3 demethylase JMJD2A promotes growth of liver cancer cells through up-regulating miR372. Oncotarget 2018; 8:49093-49109. [PMID: 28467776 PMCID: PMC5564752 DOI: 10.18632/oncotarget.17095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/01/2017] [Indexed: 11/25/2022] Open
Abstract
Changes in histone lysine methylation status have been observed during cancer formation. JMJD2A protein is a demethylase that is overexpressed in several tumors. Herein, our results demonstrate that JMJD2A accelerates malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, JMJD2A promoted the expression and mature of pre-miR372 epigenetically. Notably, miR372 blocks the editing of 13th exon-introns-14th exon and forms a novel transcript(JMJD2AΔ) of JMJD2A. In particular, JMJD2A inhibited P21(WAF1/Cip1) expression by decreasing H3K9me3 dependent on JMJD2AΔ. Thereby, JMJD2A could enhance Pim1 transcription by suppressing P21(WAF1/Cip1). Furthermore, through increasing the expression of Pim1, JMJD2A could facilitate the interaction among pRB, CDK2 and CyclinE which prompts the transcription and translation of oncogenic C-myc. Strikingly, JMJD2A may trigger the demethylation of Pim1. On the other hand, Pim1 knockdown and P21(WAF1/Cip1) overexpression fully abrogated the oncogenic function of JMJD2A. Our observations suggest that JMJD2A promotes liver cancer cell cycle progress through JMJD2A-miR372-JMJD2AΔ-P21WAF1/Cip1-Pim1-pRB-CDK2-CyclinE-C-myc axis. This study elucidates a novel mechanism for JMJD2A in liver cancer cells and suggests that JMJD2A can be used as a novel therapeutic targets of liver cancer.
Collapse
Affiliation(s)
- Jiahui An
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Jie Xu
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaonan Li
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Yanan Lu
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Yuxin Yang
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Zhuojia Lin
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Xiaoru Xin
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Mengying Wu
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Qidi Zheng
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Hu Pu
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Xin Gui
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Tianming Li
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Dongdong Lu
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| |
Collapse
|
27
|
Guerra-Calderas L, González-Barrios R, Patiño CC, Alcaraz N, Salgado-Albarrán M, de León DC, Hernández CC, Sánchez-Pérez Y, Maldonado-Martínez HA, De la Rosa-Velazquez IA, Vargas-Romero F, Herrera LA, García-Carrancá A, Soto-Reyes E. CTCF-KDM4A complex correlates with histone modifications that negatively regulate CHD5 gene expression in cancer cell lines. Oncotarget 2018; 9:17028-17042. [PMID: 29682202 PMCID: PMC5908303 DOI: 10.18632/oncotarget.24798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/26/2018] [Indexed: 11/25/2022] Open
Abstract
Histone demethylase KDM4A is involved in H3K9me3 and H3K36me3 demethylation, which are epigenetic modifications associated with gene silencing and RNA Polymerase II elongation, respectively. KDM4A is abnormally expressed in cancer, affecting the expression of multiple targets, such as the CHD5 gene. This enzyme localizes at the first intron of CHD5, and the dissociation of KDM4A increases gene expression. In vitro assays showed that KDM4A-mediated demethylation is enhanced in the presence of CTCF, suggesting that CTCF could increase its enzymatic activity in vivo, however the specific mechanism by which CTCF and KDM4A might be involved in the CHD5 gene repression is poorly understood. Here, we show that CTCF and KDM4A form a protein complex, which is recruited into the first intron of CHD5. This is related to a decrease in H3K36me3/2 histone marks and is associated with its transcriptional downregulation. Depletion of CTCF or KDM4A by siRNA, triggered the reactivation of CHD5 expression, suggesting that both proteins are involved in the negative regulation of this gene. Furthermore, the knockout of KDM4A restored the CHD5 expression and H3K36me3 and H3K36me2 histone marks. Such mechanism acts independently of CHD5 promoter DNA methylation. Our findings support a novel mechanism of epigenetic repression at the gene body that does not involve promoter silencing.
Collapse
Affiliation(s)
- Lissania Guerra-Calderas
- Cancer Biomedical Research Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Cancer Biomedical Research Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Carlos César Patiño
- Cancer Biomedical Research Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Nicolás Alcaraz
- The Bioinformatics Centre, Section for RNA and Computational Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marisol Salgado-Albarrán
- Cancer Biomedical Research Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - David Cantú de León
- Clinical Research, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Clementina Castro Hernández
- Cancer Biomedical Research Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Yesennia Sánchez-Pérez
- Cancer Biomedical Research Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | - Inti A De la Rosa-Velazquez
- Genomics Lab, Universidad Nacional Autónoma de México, Red de Apoyo a la Investigación-CIC and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Fernanda Vargas-Romero
- Instituto de Fisiologia Celular-Neurociencias, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Luis A Herrera
- Cancer Biomedical Research Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Alejandro García-Carrancá
- Cancer Biomedical Research Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Cancer Biomedical Research Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| |
Collapse
|
28
|
Su Y, Yu QH, Wang XY, Yu LP, Wang ZF, Cao YC, Li JD. JMJD2A promotes the Warburg effect and nasopharyngeal carcinoma progression by transactivating LDHA expression. BMC Cancer 2017; 17:477. [PMID: 28693517 PMCID: PMC5504777 DOI: 10.1186/s12885-017-3473-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 07/02/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Jumonji C domain 2A (JMJD2A), as a histone demethylases, plays a vital role in tumorigenesis and progression. But, its functions and underlying mechanisms of JMJD2A in nasopharyngeal carcinoma (NPC) metabolism are remained to be clarified. In this study, we investigated glycolysis regulation by JMJD2A in NPC and the possible mechanism. METHODS JMJD2A expression was detected by Western blotting and Reverse transcription quantitative real-time PCR analysis. Then, we knocked down and ectopically expressed JMJD2A to detect changes in glycolytic enzymes. We also evaluated the impacts of JMJD2A-lactate dehydrogenase A (LDHA) signaling on NPC cell proliferation, migration and invasion. ChIP assays were used to test whether JMJD2A bound to the LDHA promoter. Finally, IHC was used to verify JMJD2A and LDHA expression in NPC tissue samples and analyze their correlation between expression and clinical features. RESULTS JMJD2A was expressed at high levels in NPC tumor tissues and cell lines. Both JMJD2A and LDHA expression were positively correlated with the tumor stage, metastasis and clinical stage. Additionally, the level of JMJD2A was positively correlated with LDHA expression in NPC patients, and higher JMJD2A and LDHA expression predicted a worse prognosis. JMJD2A alteration did not influence most of glycolytic enzymes expression, with the exception of PFK-L, PGAM-1, LDHB and LDHA, and LDHA exhibited the greatest decrease in expression. JMJD2A silencing decreased LDHA expression and the intracellular ATP level and increased LDH activity, lactate production and glucose utilization, while JMJD2A overexpression produced the opposite results. Furthermore, JMJD2A could combine to LDHA promoter region and regulate LDHA expression at the level of transcription. Activated JMJD2A-LDHA signaling pathway promoted NPC cell proliferation, migration and invasion. CONCLUSIONS JMJD2A regulated aerobic glycolysis by regulating LDHA expression. Therefore, the novel JMJD2A-LDHA signaling pathway could contribute to the Warburg effects in NPC progression.
Collapse
Affiliation(s)
- Yi Su
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China.
| | - Qiu-Hong Yu
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| | - Xiang-Yun Wang
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| | - Li-Ping Yu
- Department of E.N.T., Kenli People's Hospital, Shandong, China
| | - Zong-Feng Wang
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| | - Ying-Chun Cao
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| | - Jian-Dong Li
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| |
Collapse
|
29
|
Zeng XQ, Wang J, Chen SY. Methylation modification in gastric cancer and approaches to targeted epigenetic therapy (Review). Int J Oncol 2017; 50:1921-1933. [DOI: 10.3892/ijo.2017.3981] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/22/2017] [Indexed: 11/06/2022] Open
|
30
|
Lysine-Specific Histone Demethylases Contribute to Cellular Differentiation and Carcinogenesis. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
31
|
Farooqi AA, Fayyaz S, Shatynska-Mytsyk I, Javed Z, Jabeen S, Yaylim I, Gasparri ML, Panici PB. Is miR-34a a Well-equipped Swordsman to Conquer Temple of Molecular Oncology? Chem Biol Drug Des 2016; 87:321-34. [PMID: 26259537 DOI: 10.1111/cbdd.12634] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Overwhelmingly increasing advancements in miRNA biology have opened new avenues for pharmaceutical companies to initiate studies on designing effective, safe, and therapeutically active candidates using miRNA mimetics and miRNA inhibitors. In accordance with this approach, development of miravirsen and SPC3649, an LNA-based (locked nucleic acid) antisense molecule against miR-122, to treat hepatitis C has sparked interest in identifying most efficient microRNAs for journey from bench-top toward pharmaceutical industry and breakthroughs in delivery technology will pave the way to 'final frontier'. MRX34, a liposome-formulated mimic of miR-34 for treatment of metastatic cancer with liver involvement and unresectable primary liver cancer, has also entered in clinical trial. There is a successive increase in the research work related to miR-34 biology and miRNA regulation of modulators of intracellular signaling cascades. We partition this review into how miR-34a is regulated by different proteins and how Wnt- and TGF-induced intracellular signaling cascades are modulated by miR-34a. In this review, we bring to limelight how miR-34a regulates its target genes to induce apoptosis and inhibit cell proliferation as evidenced by in vitro and in vivo analysis. We also discuss miR-34 regulation of PDGFR and c-MET and recent advancements in nanotechnologically delivered miR-34a. Spotlight is also set on modulation of chemotherapeutic sensitivity by miR-34a in cancer cells using reconstruction studies. Clinical trial of miR-34 is indicative of its tremendous potential, and continuous cutting research will prove to be effective in efficiently translating laboratory findings into clinically effective therapeutics.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Sundas Fayyaz
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Iryna Shatynska-Mytsyk
- Diagnostic Imaging and Radiation Therapy Department, Lviv National Medical University, Lviv, Ukraine
| | | | - Saima Jabeen
- Department of Zoology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Ilhan Yaylim
- Department of Molecular Medicine, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Maria Luisa Gasparri
- Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
32
|
Xu W, Jiang K, Shen M, Chen Y, Huang HY. Jumonji domain containing 2A predicts prognosis and regulates cell growth in lung cancer depending on miR-150. Oncol Rep 2015; 35:352-8. [PMID: 26498874 DOI: 10.3892/or.2015.4349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/20/2015] [Indexed: 11/06/2022] Open
Abstract
Lung cancer has become the most common cancer worldwide, of which non-small cell lung cancer (NSCLC) accounts for over 80%. Previous studies have shown that the Jumonji domain containing 2A (JMJD2A) was aberrantly expressed in various tumors and involved in the regulation of tumor progression, but the role of JMJD2A on the tumorigenesis in NSCLC and the underlying mechanisms are still unclear. In the present study, we first identified the expression of JMJD2A in NSCLC tissues and cell lines through quantitative RT-PCR (qRT-PCR) and western blotting. Next, the effects of JMJD2A on the progression of NSCLC were analyzed. MTT assay was performed to measure the cell numbers and fluorescence-activated cell sorting (FACS) was adopted to evaluate cell apoptosis. Finally, the relationship between JMJD2A and miR-150 involved in NSCLC was studied. Our results suggested that JMJD2A was significantly overexpressed in NSCLC samples and cell lines. Kaplan-Meier analysis showed that high level of JMJD2A predicted a poor prognosis. Knockdown of JMJD2A inhibited tumor growth and promoted cell apoptosis in NSCLC cells. Additionally, miR-150 was upregulated in NSCLC tissues and positively related with JMJD2A expression. Significant downregulation of miR-150 was observed with JMJD2A knockdown. Furthermore, JMJD2A knockdown inhibited NSCLC cell proliferation while the silencing of miR-150 attenuated the inhibition effect on cell proliferation, suggesting that the effect of JMJD2A on NSCLC cell growth was dependent on miR-150. Thus, our findings identified that JMJD2A played an oncogenic role in NSCLC via regulating miR-150. JMJD2A could possibly serve as a prognostic factor and potential target for NSCLC therapy.
Collapse
Affiliation(s)
- Weihua Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Kanqiu Jiang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Mingjing Shen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hao-Yue Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
33
|
Kanda M, Kodera Y. Recent advances in the molecular diagnostics of gastric cancer. World J Gastroenterol 2015; 21:9838-9852. [PMID: 26379391 PMCID: PMC4566379 DOI: 10.3748/wjg.v21.i34.9838] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/15/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the third most common cause of cancer-related death in the world, representing a major global health issue. Although the incidence of GC is declining, the outcomes for GC patients remain dismal because of the lack of effective biomarkers to detect early GC and predict both recurrence and chemosensitivity. Current tumor markers for GC, including serum carcinoembryonic antigen and carbohydrate antigen 19-9, are not ideal due to their relatively low sensitivity and specificity. Recent improvements in molecular techniques are better able to identify aberrant expression of GC-related molecules, including oncogenes, tumor suppressor genes, microRNAs and long non-coding RNAs, and DNA methylation, as novel molecular markers, although the molecular pathogenesis of GC is complicated by tumor heterogeneity. Detection of genetic and epigenetic alterations from gastric tissue or blood samples has diagnostic value in the management of GC. There are high expectations for molecular markers that can be used as new screening tools for early detection of GC as well as for patient stratification towards personalized treatment of GC through prediction of prognosis and drug-sensitivity. In this review, the studies of potential molecular biomarkers for GC that have been reported in the publicly available literature between 2012 and 2015 are reviewed and summarized, and certain highlighted papers are examined.
Collapse
|
34
|
Hamamoto R, Saloura V, Nakamura Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer 2015; 15:110-24. [PMID: 25614009 DOI: 10.1038/nrc3884] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several protein lysine methyltransferases and demethylases have been identified to have critical roles in histone modification. A large body of evidence has indicated that their dysregulation is involved in the development and progression of various diseases, including cancer, and these enzymes are now considered to be potential therapeutic targets. Although most studies have focused on histone methylation, many reports have revealed that these enzymes also regulate the methylation dynamics of non-histone proteins such as p53, RB1 and STAT3 (signal transducer and activator of transcription 3), which have important roles in human tumorigenesis. In this Review, we summarize the molecular functions of protein lysine methylation and its involvement in human cancer, with a particular focus on lysine methylation of non-histone proteins.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 2115 Chicago, Illinois 60637, USA
| | - Vassiliki Saloura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 2115 Chicago, Illinois 60637, USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 2115 Chicago, Illinois 60637, USA
| |
Collapse
|
35
|
Li X, Dong S. Histone demethylase JMJD2B and JMJD2C induce fibroblast growth factor 2: mediated tumorigenesis of osteosarcoma. Med Oncol 2015; 32:53. [PMID: 25636512 DOI: 10.1007/s12032-015-0503-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
Abstract
JMJD2B and JMJD2C, histone demethylases, play crucial roles in cancer development and are up-regulated in many cancers. However, the actions of JMJD2B and JMJD2C in osteosarcoma remain unknown. The levels of JMJD2B or JMJD2C were evaluated in osteosarcoma cells and tissues via quantitative real-time PCR and Western Blot. JMJD2B and JMJD2C were up-regulated in osteosarcoma tissues when compared to paired adjacent non-tumor tissues. A higher level of JMJD2B or JMJD2C was related with metastasis of osteosarcoma cells. Fibroblast growth factor 2 (FGF2) is an important factor to maintain immaturity of cells and contributes to osteosarcoma aggressiveness. Elevated levels of FGF2 promoted the proliferation, migration, and invasion of osteosarcoma cell, while FGF2 was up-regulated by JMJD2B or JMJD2C. GST pull-down assay showed that JMJD2B or JMJD2C interacted with FGF2. Thus, JMJD2B and JMJD2C play an important role in the pathology of osteosarcoma via the up-regulation of FGF2. JMJD2B and JMJD2C should be developed potential targets for the therapy of osteosarcoma patients.
Collapse
Affiliation(s)
- Xiaojiang Li
- Orthopedics Department, The Affiliated Hospital to Changchun University of Chinese Medicine, No.1478 of Gongnong Street, Chaoyang District, Changchun, 130021, China,
| | | |
Collapse
|
36
|
Chin YW, Han SY. KDM4 histone demethylase inhibitors for anti-cancer agents: a patent review. Expert Opin Ther Pat 2014; 25:135-44. [PMID: 25468267 DOI: 10.1517/13543776.2014.991310] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION As epigenetic modulators, histone demethylases can be a therapeutic target in the area of oncology. KDM4 subfamily proteins are histone demethylases with a Jumonji domain. The subfamily consists of five functional members: KDM4A, KDM4B, KDM4C, KDM4D, and KDM4E. The role of the KDM4 subfamily proteins is reported in oncogenesis, and their overexpression in various tumor types is observed. Small molecule inhibitors for KDM4 proteins have great potential in anti-cancer therapy. AREAS COVERED A comprehensive review of the patents for KDM4 inhibitors is provided in this paper. Small molecule structural information and pharmacological effects are presented in the content. EXPERT OPINION The status of KDM4 inhibitor development is still in the early stages with small numbers of patents and journal articles. Future KDM4 inhibitor development should focus on obtaining selectivity between KDM4 subtypes, development of small molecules with in vivo activity, and extension of the therapeutic area of KDM4 inhibitors other than use in cancer therapy.
Collapse
Affiliation(s)
- Young-Won Chin
- Dongguk University-Seoul, College of Pharmacy and BK21PLUS R-FIND Team , Goyang, Gyeonggi-do 410-820 , Republic of Korea
| | | |
Collapse
|