1
|
Tripathy RK, Khandave PY, Bzdrenga J, Nachon F, Brazzolotto X, Pande AH. Role of paraoxonase 1 in organophosphate G-series nerve agent poisoning and future therapeutic strategies. Arch Toxicol 2025; 99:447-465. [PMID: 39356346 DOI: 10.1007/s00204-024-03884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Chemical warfare nerve agents (CWNA) are neurotoxic chemicals unethically used as agents of mass destruction by terrorist outfits and during war. The available antidote against CWNA-mediated toxicity is not sufficiently effective and possesses several limitations. As a countermeasure, paraoxonase 1 (PON1), a catalytic bioscavenger, is being developed as a prophylactic treatment. However, the catalytic activity and substrate specificity of human PON1 are insufficient to be used as a potential antidote. Several laboratories have made different approaches to enhance the CWNA hydrolytic activity against various nerve agents. This review explores the holistic view of PON1 as a potential prophylactic agent against G-series CWNA poisoning, from its initial development to recent advancements and limitations. Apart from this, the review also provides an overview of all available PON1 variants that could be used as a potential prophylactic agent and discusses several possible ways to counteract immunogenicity.
Collapse
Affiliation(s)
- Rajan K Tripathy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, 160062, Punjab, India
| | - Prakash Y Khandave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, 160062, Punjab, India
| | - Janek Bzdrenga
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91220, Brétigny-Sur-Orge, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91220, Brétigny-Sur-Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91220, Brétigny-Sur-Orge, France
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, 160062, Punjab, India.
| |
Collapse
|
2
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Mali H, Shah C, Patel DH, Trivedi U, Subramanian RB. Bio-catalytic system of metallohydrolases for remediation of neurotoxin organophosphates and applications with a future vision. J Inorg Biochem 2022; 231:111771. [DOI: 10.1016/j.jinorgbio.2022.111771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022]
|
4
|
Overview of a bioremediation tool: organophosphorus hydrolase and its significant application in the food, environmental, and therapy fields. Appl Microbiol Biotechnol 2021; 105:8241-8253. [PMID: 34665276 DOI: 10.1007/s00253-021-11633-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
In the past decades, the organophosphorus compounds had been widely used in the environment and food industries as pesticides. Owing to the life-threatening and long-lasting problems of organophosphorus insecticide (OPs), an effective detection and removal of OPs have garnered growing attention both in the scientific and practical fields in recent years. Bacterial organophosphorus hydrolases (OPHs) have been extensively studied due to their high specific activity against OPs. OPH could efficiently hydrolyze a broad range of substrates both including the OP pesticides and some nerve agents, suggesting a great potential for the remediation of OPs. In this review, the microbial identification, molecular modification, and practical application of OPHs were comprehensively discussed.Key points• Microbial OPH is a significant bioremediation tool against OPs.• Identification and molecular modification of OPH was discussed in detail.• The applications of OPH in food, environmental, and therapy fields are presented.
Collapse
|
5
|
Badakhshan R, Mohammadi M, Farnoosh G. Improving the specificity of organophosphorus hydrolase to acephate by mutagenesis at its binding site: a computational study. J Mol Model 2021; 27:164. [PMID: 33970322 DOI: 10.1007/s00894-021-04749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
Organophosphorus hydrolase (OPH) is one of the most important enzymes in order to bioremediation of organophosphorus (OP) pesticides. OPH is capable of degrading a wide variety of OPs, but it has poor specificity to OPs with P-S bond, including acephate. Given that the binding site residues of OPH determine its substrate specificity, this study was carried out to find the best OPH mutants containing a single point mutation in the binding site that possess improved specificity to acephate. Hence, we generated all possible mutant models and performed molecular docking of acephate with wild-type OPH (OPH-WT) and its mutants. After that, molecular dynamic (MD) simulations of OPH-WT and the best mutants, according to the docking results, were performed in both apo- and complex with acephate forms. Docking results signified that 51 out of 228 mutants possessed increased binding affinities to acephate, as compared to OPH-WT. Of them, W131N, W131G, and H254Y were the best mutants considering the high binding affinities and proper orientation of the ligand at their active sites. MD simulations confirmed the stability of the three mutants in both apo- and complex with acephate forms and also showed that these formed more stable complexes with acephate, as compared to OPH-WT. MD results also suggested that W131N and W131G, in addition to enhanced specificity, could keep the necessary configuration for acephate hydrolysis during the simulations.
Collapse
Affiliation(s)
- Reza Badakhshan
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Lee N, Yun H, Lee C, Lee Y, Kim E, Kim S, Jeon H, Yu C, Rho J. Engineered Recombinant PON1-OPH Fusion Hybrids: Potentially Effective Catalytic Bioscavengers against Organophosphorus Nerve Agent Analogs. J Microbiol Biotechnol 2021; 31:144-153. [PMID: 33144547 PMCID: PMC9705692 DOI: 10.4014/jmb.2006.06044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Organophosphorus nerve agents (OPNAs), including both G- and V-type nerve agents such as sarin, soman, tabun and VX, are extremely neurotoxic organophosphorus compounds. Catalytic bioscavengers capable of hydrolyzing OPNAs are under development because of the low protective effects and adverse side effects of chemical antidotes to OPNA poisoning. However, these bioscavengers have certain limitations for practical application, including low catalytic activity and narrow specificity. In this study, we generated a fusion-hybrid form of engineered recombinant human paraoxonase 1 (rePON1) and bacterial organophosphorus hydrolase (OPH), referred to as GV-hybrids, using a flexible linker to develop more promising catalytic bioscavengers against a broad range of OPNAs. These GV-hybrids were able to synergistically hydrolyze both G-type OPNA analogs (paraoxon: 1.7 ~ 193.7-fold, p-nitrophenyl diphenyl phosphate (PNPDPP): 2.3 ~ 33.0-fold and diisopropyl fluorophosphates (DFP): 1.4 ~ 22.8-fold) and V-type OPNA analogs (demeton-Smethyl (DSM): 1.9 ~ 34.6-fold and malathion: 1.1 ~ 4.2-fold above) better than their individual enzyme forms. Among the GV-hybrid clones, the GV7 clone showed remarkable improvements in the catalytic activity toward both G-type OPNA analogs (kcat/Km (106 M-1 min-1): 59.8 ± 0.06 (paraoxon), 5.2 ± 0.02 (PNPDPP) and 47.0 ± 6.0 (DFP)) and V-type OPNA analogs (kcat/Km (M-1 min-1): 504.3 ± 48.5 (DSM) and 1324.0 ± 47.5 (malathion)). In conclusion, we developed GV-hybrid forms of rePON1 and bacterial OPH mutants as effective and suitable catalytic bioscavengers to hydrolyze a broad range of OPNA analogs.
Collapse
Affiliation(s)
- Nari Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 3434, Republic of Korea
| | - Hyeongseok Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 3434, Republic of Korea
| | - Chan Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 3434, Republic of Korea
| | - Yikjae Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 3434, Republic of Korea
| | - Euna Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 3434, Republic of Korea
| | - Sumi Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 3434, Republic of Korea
| | - Hyoeun Jeon
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 3434, Republic of Korea
| | - Chiho Yu
- Agency for Defense Development, P.O. Box 35, Yuseong, Daejeon 34186, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 3434, Republic of Korea,Corresponding authorPhone: +82-42-821-6420 Fax: +82-42-822-7367 E-mail:
| |
Collapse
|
7
|
Organophosphorus Nerve Agents: Types, Toxicity, and Treatments. J Toxicol 2020; 2020:3007984. [PMID: 33029136 PMCID: PMC7527902 DOI: 10.1155/2020/3007984] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Organophosphorus compounds are extensively used worldwide as pesticides which cause great hazards to human health. Nerve agents, a subcategory of the organophosphorus compounds, have been produced and used during wars, and they have also been used in terrorist activities. These compounds possess physiological threats by interacting and inhibiting acetylcholinesterase enzyme which leads to the cholinergic crisis. After a general introduction, this review elucidates the mechanisms underlying cholinergic and noncholinergic effects of organophosphorus compounds. The conceivable treatment strategies for organophosphate poisoning are different types of bioscavengers which include stoichiometric, catalytic, and pseudocatalytic. The current research on the promising treatments specifically the catalytic bioscavengers including several wild-type organophosphate hydrolases such as paraoxonase and phosphotriesterase, phosphotriesterase-like lactonase, methyl parathion hydrolase, organophosphate acid anhydrolase, diisopropyl fluorophosphatase, human triphosphate nucleotidohydrolase, and senescence marker protein has been widely discussed. Organophosphorus compounds are reported to be the nonphysiological substrate for many mammalian organophosphate hydrolysing enzymes; therefore, the efficiency of these enzymes toward these compounds is inadequate. Hence, studies have been conducted to create mutants with an enhanced rate of hydrolysis and high specificity. Several mutants have been created by applying directed molecular evolution and/or targeted mutagenesis, and catalytic efficiency has been characterized. Generally, organophosphorus compounds are chiral in nature. The development of mutant enzymes for providing superior stereoselective degradation of toxic organophosphorus compounds has also been widely accounted for in this review. Existing enzymes have shown limited efficiency; hence, more effective treatment strategies have also been critically analyzed.
Collapse
|
8
|
Structure-guided rational design of the substrate specificity and catalytic activity of an enzyme. Methods Enzymol 2020. [PMID: 32896281 DOI: 10.1016/bs.mie.2020.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The quest for an enzyme with desired property is high for biocatalyic production of valuable products in industrial biotechnology. Synthetic biology and metabolic engineering also increasingly require an enzyme with unusual property in terms of substrate spectrum and catalytic activity for the construction of novel circuits and pathways. Structure-guided enzyme engineering has demonstrated a prominent utility and potential in generating such an enzyme, even though some limitations still remain. In this chapter, we present some issues regarding the implementation of the structural information to enzyme engineering, and exemplify the structure-guided rational approach to the design of an enzyme with desired functionality such as substrate specificity and catalytic efficiency.
Collapse
|
9
|
Katyal P, Chu S, Montclare JK. Enhancing organophosphate hydrolase efficacy via protein engineering and immobilization strategies. Ann N Y Acad Sci 2020; 1480:54-72. [PMID: 32814367 DOI: 10.1111/nyas.14451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 01/30/2023]
Abstract
Organophosphorus compounds (OPs), developed as pesticides and chemical warfare agents, are extremely toxic chemicals that pose a public health risk. Of the different detoxification strategies, organophosphate-hydrolyzing enzymes have attracted much attention, providing a potential route for detoxifying those exposed to OPs. Phosphotriesterase (PTE), also known as organophosphate hydrolase (OPH), is one such enzyme that has been extensively studied as a catalytic bioscavenger. In this review, we will discuss the protein engineering of PTE aimed toward improving the activity and stability of the enzyme. In order to make enzyme utilization in OP detoxification more favorable, enzyme immobilization provides an effective means to increase enzyme activity and stability. Here, we present several such strategies that enhance the storage and operational stability of PTE/OPH.
Collapse
Affiliation(s)
- Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University, Tandon School of Engineering, Brooklyn, New York
| | - Stanley Chu
- Department of Chemical and Biomolecular Engineering, New York University, Tandon School of Engineering, Brooklyn, New York
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University, Tandon School of Engineering, Brooklyn, New York.,Department of Radiology, New York University Langone Health, New York, New York.,Department of Biomaterials, New York University College of Dentistry, New York, New York.,Department of Chemistry, New York University, New York, New York
| |
Collapse
|
10
|
Ali M, Ishqi HM, Husain Q. Enzyme engineering: Reshaping the biocatalytic functions. Biotechnol Bioeng 2020; 117:1877-1894. [DOI: 10.1002/bit.27329] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Misha Ali
- Department of Biochemistry, Faculty of Life SciencesAligarh Muslim University Aligarh Uttar Pradesh India
| | | | - Qayyum Husain
- Department of Biochemistry, Faculty of Life SciencesAligarh Muslim University Aligarh Uttar Pradesh India
| |
Collapse
|
11
|
de A. Cavalcante SF, Simas ABC, Kuča K. Nerve Agents’ Surrogates: Invaluable Tools for Development of Acetylcholinesterase Reactivators. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190806114017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of nerve agents as warfare and in terrorist acts has drawn much attention from the governments and societies. Such toxic organophosphorus compounds are listed in Chemical Weapons Convention as Schedule 1 chemicals. The discussion about the chemical identity of the elusive Novichok agents, more potent compounds than best known G- and V-Agents, which have been implicated in recent rumorous assassination plots, clearly demonstrating the importance of the matter. Furthermore, accidents with pesticides or misuse thereof have been a pressing issue in many countries. In this context, the continued development of novel cholinesterase reactivators, antidotes for organophosphorus poisoning, a rather restricted class of pharmaceutical substances, is warranted. Testing of novel candidates may require use of actual nerve agents. Nonetheless, only a few laboratories comply with the requirements for storing, possession and manipulation of such toxic chemicals. To overcome such limitations, nerve agents’ surrogates may be a useful alternative, as they undergo the same reaction with cholinesterases, yielding similar adducts, allowing assays with novel antidote candidates, among other applications.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Abstract
The role of phosphotriesterase as an enzyme which is able to hydrolyze organophosphate compounds cannot be disputed. Contamination by organophosphate (OP) compounds in the environment is alarming, and even more worrying is the toxicity of this compound, which affects the nervous system. Thus, it is important to find a safer way to detoxify, detect and recuperate from the toxicity effects of this compound. Phosphotriesterases (PTEs) are mostly isolated from soil bacteria and are classified as metalloenzymes or metal-dependent enzymes that contain bimetals at the active site. There are three separate pockets to accommodate the substrate into the active site of each PTE. This enzyme generally shows a high catalytic activity towards phosphotriesters. These microbial enzymes are robust and easy to manipulate. Currently, PTEs are widely studied for the detection, detoxification, and enzyme therapies for OP compound poisoning incidents. The discovery and understanding of PTEs would pave ways for greener approaches in biotechnological applications and to solve environmental issues relating to OP contamination.
Collapse
|
13
|
de Castro AA, Soares FV, Pereira AF, Silva TC, Silva DR, Mancini DT, Caetano MS, da Cunha EFF, Ramalho TC. Asymmetric biodegradation of the nerve agents Sarin and VX by human dUTPase: chemometrics, molecular docking and hybrid QM/MM calculations. J Biomol Struct Dyn 2019; 37:2154-2164. [PMID: 30044197 DOI: 10.1080/07391102.2018.1478751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Organophosphorus compounds (OP) nerve agents are among the most toxic chemical substances known. Their toxicity is due to their ability to bind to acetylcholinesterase. Currently, some enzymes, such as phosphotriesterase, human serum paraoxonase 1 and diisopropyl fluorophosphatase, capable of degrading OP, have been characterized. Regarding the importance of bioremediation methods for detoxication of OP, this work aims to study the interaction modes between the human human deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and Sarin and VX, considering their Rp and Sp enantiomers, to evaluate the asymmetric catalysis of those compounds. In previous work, this enzyme has shown good potential to degrade phosphotriesters, and based on this characteristic, we have applied the human dUTPase to the OP degradation. Molecular docking, chemometrics and mixed quantum and molecular mechanics calculations have been employed, showing a good interaction between dUTPase and OP. Two possible reaction mechanisms were tested, and according to our theoretical results, the catalytic degradation of OP by dUTPase can take place via both mechanisms, beyond being stereoselective, that is, dUTPase cleaves one enantiomer preferentially in relation to other. Chemometric techniques provided excellent assistance for performing this theoretical investigation. The dUTPase study shows importance by the fact of it being a human enzyme. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alexandre A de Castro
- a Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , Brazil
| | - Flávia Villela Soares
- a Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , Brazil
| | - Ander Francisco Pereira
- a Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , Brazil
| | - Telles Cardoso Silva
- a Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , Brazil
| | - Daniela Rodrigues Silva
- a Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , Brazil
| | - Daiana Teixeira Mancini
- a Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , Brazil
| | - Melissa Soares Caetano
- b Institute of Exact and Biological Sciences, Federal University of Ouro Preto, University Campus , Ouro Preto , Brazil
| | - Elaine F F da Cunha
- a Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , Brazil
| | - Teodorico C Ramalho
- a Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , Brazil.,c Center for Basic and Applied research, University Hradec Kralove , Hradec Kralove , Czech Republic
| |
Collapse
|
14
|
Wang DC, Li H, Xia SN, Xue YP, Zheng YG. Engineering of a keto acid reductase through reconstructing the substrate binding pocket to improve its activity. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02586j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme–substrate docking-guided point mutation of the substrate-binding pocket to generate mutant L244G/A250G/L245R with superior activity in the synthesis of (R)-2-hydroxy-4-phenylbutyric acid.
Collapse
Affiliation(s)
- Di-Chen Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Heng Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Shu-Ning Xia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
15
|
Catalytic bioscavengers as countermeasures against organophosphate nerve agents. Chem Biol Interact 2018; 292:50-64. [DOI: 10.1016/j.cbi.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
|
16
|
Li Y, Yang H, Xu F. Identifying and engineering a critical amino acid residue to enhance the catalytic efficiency of Pseudomonas sp. methyl parathion hydrolase. Appl Microbiol Biotechnol 2018; 102:6537-6545. [PMID: 29948121 DOI: 10.1007/s00253-018-9108-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/31/2022]
Abstract
Methyl parathion hydrolase (MPH) that hydrolyzes a wide range of organophosphorus pesticides can be used to remediate land polluted by the pesticides. Here, the catalytic efficiency of methyl parathion hydrolase from Pseudomonas sp. (WBC-3) was enhanced by searching and engineering a critical site far away from the binding pocket. In the first round, a four-site mutant with a modest increased catalytic efficiency (3.2-fold kcat/Km value of the wild type) was obtained with random mutagenesis. By splitting and re-combining the four substitutions in the mutant, the critical site S277, was identified to show the most significant effects of improving binding affinity and catalytic efficiency. With further site-saturation mutagenesis focused on the residue S277, another two substitutions were discovered to have even more significant decrease in Km (40.2 and 47.6 μM) and increased in kcat/Km values (9.5- and 10.3-fold of the wild type) compared to the original four-site mutant (3.0- and 3.2-fold). In the three-dimensional structure, residue S277 is located at a hinge region of a loop, which could act as a "lid" at the substrate entering to the binding pocket. This suggests that substitutions of residue S277 could affect substrate binding via conformational change in substrate entrance region. This work provides a valuable protocol combining random mutagenesis, site-saturation mutagenesis, structural and bioinformatics analyses to obtain mutants with high catalytic efficiency from a screening library of a modest size (3200 strains).
Collapse
Affiliation(s)
- Yingnan Li
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Haiquan Yang
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Fei Xu
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
17
|
Olsen AJ, Halvorsen LA, Yang CY, Barak Ventura R, Yin L, Renfrew PD, Bonneau R, Montclare JK. Impact of phenylalanines outside the dimer interface on phosphotriesterase stability and function. MOLECULAR BIOSYSTEMS 2018; 13:2092-2106. [PMID: 28817149 DOI: 10.1039/c7mb00196g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We explore the significance of phenylalanine outside of the phosphotriesterase (PTE) dimer interface through mutagenesis studies and computational modeling. Previous studies have demonstrated that the residue-specific incorporation of para-fluorophenylalanine (pFF) into PTE improves stability, suggesting the importance of phenylalanines in stabilization of the dimer. However, this comes at a cost of decreased solubility due to pFF incorporation into other parts of the protein. Motivated by this, eight single solvent-exposed phenylalanine mutants are evaluated viarosetta and good correspondence between experiments and these predictions is observed. Three residues, F304, F327, and F335, appear to be important for PTE activity and stability, even though they do not reside in the dimer interface region or active site. While the remaining mutants do not significantly affect structure or activity, one variant, F306L, reveals improved activity at ambient and elevated temperatures. These studies provide further insight into role of these residues on PTE function and stability.
Collapse
Affiliation(s)
- Andrew J Olsen
- Department of Chemical and Biomolecular Engineering, New York University, Tandon School of Engineering, New York 11201, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Poirier L, Jacquet P, Elias M, Daudé D, Chabrière E. [Decontamination of organophosphorus compounds: Towards new alternatives]. ANNALES PHARMACEUTIQUES FRANÇAISES 2017; 75:209-226. [PMID: 28267954 DOI: 10.1016/j.pharma.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 01/20/2023]
Abstract
Organophosphorus coumpounds (OP) are toxic chemicals mainly used for agricultural purpose such as insecticides and were also developed and used as warfare nerve agents. OP are inhibitors of acetylcholinesterase, a key enzyme involved in the regulation of the central nervous system. Chemical, physical and biological approaches have been considered to decontaminate OP. This review summarizes the current and emerging strategies that are investigated to tackle this issue with a special emphasis on enzymatic remediation methods. During the last decade, many studies have been dedicated to the development of biocatalysts for OP removal. Among these, recent reports have pointed out the promising enzyme SsoPox isolated from the archaea Sulfolobus solfataricus. Considering both its intrinsic stability and activity, this hyperthermostable enzyme is highly appealing for the decontamination of OP.
Collapse
Affiliation(s)
- L Poirier
- Inserm, CNRS, IRD, URMITE, Aix Marseille université, Marseille, France
| | - P Jacquet
- Inserm, CNRS, IRD, URMITE, Aix Marseille université, Marseille, France
| | - M Elias
- Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, St. Paul, MN 55108, États-Unis
| | - D Daudé
- Gene&GreenTK, faculté de médecine, 27, boulevard Jean-Moulin, 13385 Marseille cedex 5, France.
| | - E Chabrière
- Inserm, CNRS, IRD, URMITE, Aix Marseille université, Marseille, France; Gene&GreenTK, faculté de médecine, 27, boulevard Jean-Moulin, 13385 Marseille cedex 5, France.
| |
Collapse
|
19
|
Iyengar ARS, Pande AH. Organophosphate-Hydrolyzing Enzymes as First-Line of Defence Against Nerve Agent-Poisoning: Perspectives and the Road Ahead. Protein J 2016; 35:424-439. [DOI: 10.1007/s10930-016-9686-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Li A, Ye L, Yang X, Wang B, Yang C, Gu J, Yu H. Reconstruction of the Catalytic Pocket and Enzyme-Substrate Interactions To Enhance the Catalytic Efficiency of a Short-Chain Dehydrogenase/Reductase. ChemCatChem 2016. [DOI: 10.1002/cctc.201600921] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Aipeng Li
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; Zhejiang University; 310027 Hangzhou P.R. China
| | - Xiaohong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
| | - Bei Wang
- College of Pharmaceutical Science; Zhejiang University of Technology; 310014 Hangzhou P.R. China
| | - Chengcheng Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
| | - Jiali Gu
- College of Life Science, Department of Materials Chemistry; Huzhou University; 313000 Huzhou P.R. China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
| |
Collapse
|
21
|
Luo XJ, Zhao J, Li CX, Bai YP, Reetz MT, Yu HL, Xu JH. Combinatorial evolution of phosphotriesterase toward a robust malathion degrader by hierarchical iteration mutagenesis. Biotechnol Bioeng 2016; 113:2350-7. [DOI: 10.1002/bit.26012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Xiao-Jing Luo
- State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; Shanghai 200237 China
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; Shanghai 200237 China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; Shanghai 200237 China
| | - Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; Shanghai 200237 China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung; Mülheim an der Ruhr Germany
- Fachbereich Chemie; Philipps-Universität Marburg; Marburg Germany
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; Shanghai 200237 China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
22
|
Jacquet P, Daudé D, Bzdrenga J, Masson P, Elias M, Chabrière E. Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8200-18. [PMID: 26832878 DOI: 10.1007/s11356-016-6143-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Organophosphorus chemicals are highly toxic molecules mainly used as pesticides. Some of them are banned warfare nerve agents. These compounds are covalent inhibitors of acetylcholinesterase, a key enzyme in central and peripheral nervous systems. Numerous approaches, including chemical, physical, and biological decontamination, have been considered for developing decontamination methods against organophosphates (OPs). This work is an overview of both validated and emerging strategies for the protection against OP pollution with special attention to the use of decontaminating enzymes. Considerable efforts have been dedicated during the past decades to the development of efficient OP degrading biocatalysts. Among these, the promising biocatalyst SsoPox isolated from the archaeon Sulfolobus solfataricus is emphasized in the light of recently published results. This hyperthermostable enzyme appears to be particularly attractive for external decontamination purposes with regard to both its catalytic and stability properties.
Collapse
Affiliation(s)
- Pauline Jacquet
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - David Daudé
- Gene&GreenTK, Faculté de Médecine, 27 boulevard Jean Moulin, Cedex 5, Marseille, 13385, France
| | - Janek Bzdrenga
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, 420008, Russia
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Eric Chabrière
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France.
| |
Collapse
|
23
|
Activity improvement of a Kluyveromyces lactis aldo-keto reductase KlAKR via rational design. J Biotechnol 2016; 224:20-6. [DOI: 10.1016/j.jbiotec.2016.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 01/02/2023]
|
24
|
Nakayama K, Ishikawa S, Ohmori T, Seto Y, Kawahara K. Immobilization of organophosphorus hydrolase for the degradation of organophosphorus nerve agents. J GEN APPL MICROBIOL 2016; 62:38-41. [PMID: 26923130 DOI: 10.2323/jgam.62.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kosuke Nakayama
- Department of Biosciences, College of Science and Engineering, Kanto Gakuin University
| | | | | | | | | |
Collapse
|
25
|
Nakayama K, Ohmori T, Ishikawa S, Iwata N, Seto Y, Kawahara K. Expression of recombinant organophosphorus hydrolase in the original producer of the enzyme, Sphingobium fuliginis ATCC 27551. Biosci Biotechnol Biochem 2016; 80:1024-6. [PMID: 26784883 DOI: 10.1080/09168451.2015.1123606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The plasmid encoding His-tagged organophosphorus hydrolase (OPH) cloned from Sphingobium fuliginis was modified to be transferred back to this bacterium. The replication function of S. amiense plasmid was inserted at downstream of OPH gene, and S. fuliginis was transformed with this plasmid. The transformant produced larger amount of active OPH with His-tag than E. coli.
Collapse
Affiliation(s)
- Kosuke Nakayama
- a Department of Biosciences, College of Science and Engineering , Kanto Gakuin University , Yokohama , Japan
| | - Takeshi Ohmori
- b Third Department of Forensic Science , National Research Institute of Police Science , Kashiwa , Japan
| | - Satoshi Ishikawa
- a Department of Biosciences, College of Science and Engineering , Kanto Gakuin University , Yokohama , Japan
| | - Natsumi Iwata
- a Department of Biosciences, College of Science and Engineering , Kanto Gakuin University , Yokohama , Japan
| | - Yasuo Seto
- b Third Department of Forensic Science , National Research Institute of Police Science , Kashiwa , Japan
| | - Kazuyoshi Kawahara
- b Third Department of Forensic Science , National Research Institute of Police Science , Kashiwa , Japan
| |
Collapse
|
26
|
Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem Rev 2015; 115:PR1-76. [DOI: 10.1021/acs.chemrev.5b00402] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoon Jeong Jang
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Olga G. Tsay
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - David A. Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305−701, Republic of Korea
| |
Collapse
|
27
|
Daffu GK, Lopez P, Katz F, Vinogradov M, Zhan CG, Landry DW, Macdonald J. Sulfhydryl-specific PEGylation of phosphotriesterase cysteine mutants for organophosphate detoxification. Protein Eng Des Sel 2015; 28:501-6. [DOI: 10.1093/protein/gzv036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/14/2015] [Indexed: 11/13/2022] Open
|
28
|
Iyer R, Iken B. Protein engineering of representative hydrolytic enzymes for remediation of organophosphates. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Post-exposure treatment of VX poisoned guinea pigs with the engineered phosphotriesterase mutant C23: A proof-of-concept study. Toxicol Lett 2014; 231:45-54. [DOI: 10.1016/j.toxlet.2014.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 11/21/2022]
|