1
|
Biersack B, Höpfner M. Emerging role of MYB transcription factors in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:15. [PMID: 38835346 PMCID: PMC11149108 DOI: 10.20517/cdr.2023.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
Decades ago, the viral myeloblastosis oncogene v-myb was identified as a gene responsible for the development of avian leukemia. However, the relevance of MYB proteins for human cancer diseases, in particular for solid tumors, remained basically unrecognized for a very long time. The human family of MYB transcription factors comprises MYB (c-MYB), MYBL2 (b-MYB), and MYBL1 (a-MYB), which are overexpressed in several cancers and are associated with cancer progression and resistance to anticancer drugs. In addition to overexpression, the presence of activated MYB-fusion proteins as tumor drivers was described in certain cancers. The identification of anticancer drug resistance mediated by MYB proteins and their underlying mechanisms are of great importance in understanding failures of current therapies and establishing new and more efficient therapy regimens. In addition, new drug candidates targeting MYB transcription factor activity and signaling have emerged as a promising class of potential anticancer therapeutics that could tackle MYB-dependent drug-resistant cancers in a more selective way. This review describes the correlation of MYB transcription factors with the formation and persistence of cancer resistance to various approved and investigational anticancer drugs.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth 95440, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
2
|
Nekoeian S, Ferdowsian S, Asgari Y, Azizi Z. Identification of Hub Genes Associated with Resistance to Prednisolone in Acute Lymphoblastic Leukemia Based on Weighted Gene Co-expression Network Analysis. Mol Biotechnol 2023; 65:1913-1922. [PMID: 36877306 DOI: 10.1007/s12033-023-00707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/18/2023] [Indexed: 03/07/2023]
Abstract
Resistance against glucocorticoids which are used to reduce inflammation and treatment of a number of diseases, including leukemia, is known as the first stage of treatment failure in acute lymphoblastic leukemia. Since these drugs are the essential components of chemotherapy regimens for ALL and play an important role in stop of cell growth and induction of apoptosis, it is important to identify genes and the molecular mechanism that may affect glucocorticoid resistance. In this study, we used the GSE66705 dataset and weighted gene co-expression network analysis (WGCNA) to identify modules that correlated more strongly with prednisolone resistance in type B lymphoblastic leukemia patients. The PPI network was built using the DEGs key modules and the STRING database. Finally, we used the overlapping data to identify hub genes. out of a total of 12 identified modules by WGCNA, the blue module was find to have the most statistically significant correlation with prednisolone resistance and Nine genes including SOD1, CD82, FLT3, GART, HPRT1, ITSN1, TIAM1, MRPS6, MYC were recognized as hub genes Whose expression changes can be associated with prednisolone resistance. Enrichment analysis based on the MsigDB repository showed that the altered expressed genes of the blue module were mainly enriched in IL2_STAT5, KRAS, MTORC1, and IL6-JAK-STAT3 pathways, and their expression changes can be related to cell proliferation and survival. The analysis performed by the WGCNA method introduced new genes. The role of some of these genes was previously reported in the resistance to chemotherapy in other diseases. This can be used as clues to detect treatment-resistant (drug-resistant) cases in the early stages of diseases.
Collapse
Affiliation(s)
- Shahram Nekoeian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, School of Advanced Technologies in Medicine, Italia st, Keshavarz Blvd, Tehran, 1417755469, Iran
- Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, School of Advanced Technologies in Medicine, Italia st, Keshavarz Blvd, Tehran, 1417755469, Iran.
| | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, School of Advanced Technologies in Medicine, Italia st, Keshavarz Blvd, Tehran, 1417755469, Iran.
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Duarte ABS, Gomes RC, Nunes VRV, Gonçalves JCR, Correia CA, dos Santos AZG, de Sousa DP. The Antitumor Activity of Piplartine: A Review. Pharmaceuticals (Basel) 2023; 16:1246. [PMID: 37765054 PMCID: PMC10535094 DOI: 10.3390/ph16091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a worldwide health problem with high mortality in children and adults, making searching for novel bioactive compounds with potential use in cancer treatment essential. Piplartine, also known as piperlongumine, is an alkamide isolated from Piper longum Linn, with relevant therapeutic potential. Therefore, this review covered research on the antitumor activity of piplartine, and the studies reported herein confirm the antitumor properties of piplartine and highlight its possible application as an anticancer agent against various types of tumors. The evidence found serves as a reference for advancing mechanistic research on this metabolite and preparing synthetic derivatives or analogs with better antitumor activity in order to develop new drug candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Damião P. de Sousa
- Departament of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil; (A.B.S.D.); (R.C.G.); (V.R.V.N.); (J.C.R.G.); (C.A.C.); (A.Z.G.d.S.)
| |
Collapse
|
4
|
Alfaro R, Martínez-Banaclocha H, Llorente S, Jimenez-Coll V, Galián JA, Botella C, Moya-Quiles MR, Parrado A, Muro-Perez M, Minguela A, Legaz I, Muro M. Computational Prediction of Biomarkers, Pathways, and New Target Drugs in the Pathogenesis of Immune-Based Diseases Regarding Kidney Transplantation Rejection. Front Immunol 2022; 12:800968. [PMID: 34975915 PMCID: PMC8714745 DOI: 10.3389/fimmu.2021.800968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background The diagnosis of graft rejection in kidney transplantation (KT) patients is made by evaluating the histological characteristics of biopsy samples. The evolution of omics sciences and bioinformatics techniques has contributed to the advancement in searching and predicting biomarkers, pathways, and new target drugs that allow a more precise and less invasive diagnosis. The aim was to search for differentially expressed genes (DEGs) in patients with/without antibody-mediated rejection (AMR) and find essential cells involved in AMR, new target drugs, protein-protein interactions (PPI), and know their functional and biological analysis. Material and Methods Four GEO databases of kidney biopsies of kidney transplantation with/without AMR were analyzed. The infiltrating leukocyte populations in the graft, new target drugs, protein-protein interactions (PPI), functional and biological analysis were studied by different bioinformatics tools. Results Our results show DEGs and the infiltrating leukocyte populations in the graft. There is an increase in the expression of genes related to different stages of the activation of the immune system, antigenic presentation such as antibody-mediated cytotoxicity, or leukocyte migration during AMR. The importance of the IRF/STAT1 pathways of response to IFN in controlling the expression of genes related to humoral rejection. The genes of this biological pathway were postulated as potential therapeutic targets and biomarkers of AMR. These biological processes correlated showed the infiltration of NK cells and monocytes towards the allograft. Besides the increase in dendritic cell maturation, it plays a central role in mediating the damage suffered by the graft during AMR. Computational approaches to the search for new therapeutic uses of approved target drugs also showed that imatinib might theoretically be helpful in KT for the prevention and/or treatment of AMR. Conclusion Our results suggest the importance of the IRF/STAT1 pathways in humoral kidney rejection. NK cells and monocytes in graft damage have an essential role during rejection, and imatinib improves KT outcomes. Our results will have to be validated for the potential use of overexpressed genes as rejection biomarkers that can be used as diagnostic and prognostic markers and as therapeutic targets to avoid graft rejection in patients undergoing kidney transplantation.
Collapse
Affiliation(s)
- Rafael Alfaro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Helios Martínez-Banaclocha
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Santiago Llorente
- Nephrology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Victor Jimenez-Coll
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - José Antonio Galián
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Carmen Botella
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - María Rosa Moya-Quiles
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Antonio Parrado
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Manuel Muro-Perez
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), University of Murcia, Murcia, Spain
| | - Manuel Muro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
5
|
Nabizadeh F, Momtaz S, Ghanbari-Movahed M, Qalekhani F, Mohsenpour H, Aneva IY, Bishayee A, Farzaei MH, Bishayee A. Pediatric acute lymphoblastic leukemia management using multitargeting bioactive natural compounds: A systematic and critical review. Pharmacol Res 2022; 177:106116. [PMID: 35122954 DOI: 10.1016/j.phrs.2022.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
Pediatric acute lymphoblastic leukemia (pALL), a malignancy of the lymphoid line of blood cells, accounts for a large percentage of all childhood leukemia cases. Although the 5-year survival rate for children with ALL has greatly improved over years, using chemotherapeutics as its first-line treatment still causes short- and long-term side effects. Furthermore, induction of toxicity and resistance, as well as the high cost, limit their application. Phytochemicals, with remarkable cancer preventive and chemotherapeutic characteristics, may serve as old solutions to new challenges. Bioactive plant secondary metabolites have exhibited promising antileukemic and adjunctive effects by targeting various molecular processes, including autophagy, cell cycle, angiogenesis, and extrinsic/intrinsic apoptotic pathways. Although numerous reports have shown that numerous plant secondary metabolites can interfere with the progression of malignancies, including leukemia, there was no comprehensive review article on the effect of phytochemicals on pALL. This systematic review aims to provide critical and cohesive analysis of the potential of various naturally-occurring metabolites in the management of pALL with the understanding of underlying molecular and cellular mechanisms of action.
Collapse
Affiliation(s)
- Fatemeh Nabizadeh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Karaj 141554364, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Maryam Ghanbari-Movahed
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Farshad Qalekhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Hadi Mohsenpour
- Department of Pediatrics, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6742775333, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
6
|
Zou D, Bai J, Lu E, Yang C, Liu J, Wen Z, Liu X, Jin Z, Xu M, Jiang L, Zhang Y, Zhang Y. Identification of Novel Drug Candidate for Epithelial Ovarian Cancer via In Silico Investigation and In Vitro Validation. Front Oncol 2021; 11:745590. [PMID: 34745968 PMCID: PMC8568458 DOI: 10.3389/fonc.2021.745590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) has a poor prognosis and high mortality rate; patients are easy to relapse with standard therapies. So, there is an urgent need to develop novel drugs. In this study, differentially expressed genes (DEGs) of EOC were identified in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Enrichment and protein–protein interaction (PPI) analyses were performed. The drug candidate which has the possibility to treat EOC was predicted by Connectivity Map (CMAP) databases. Moreover, molecular docking was selected to calculate the binding affinity between drug candidate and hub genes. The cytotoxicity of drug candidates was assessed by MTT and colony formation analysis, the proteins coded by hub genes were detected by Western blots, and apoptosis analysis was evaluated by flow cytometry. Finally, 296 overlapping DEGs (|log 2 fold change|>1; q-value <0.05), which were principally involved in the cell cycle (p < 0.05), and cyclin-dependent kinase 1 (CDK1) were screened as the significant hub gene from the PPI network. Furthermore, the 21 drugs were extracted from CMAPs; among them, piperlongumine (PL) showed a lower CMAP score (-0.80, -62.92) and was regarded as the drug candidate. Furthermore, molecular docking results between PL and CDK1 with a docking score of –8.121 kcal/mol were close to the known CDK1 inhibitor (–8.24 kcal/mol). Additionally, in vitro experiments showed that PL inhibited proliferation and induced apoptosis via targeting CDK1 in EOC SKOV3 cells. Our results reveal that PL may be a novel drug candidate for EOC by inhibiting cell cycle.
Collapse
Affiliation(s)
- Dan Zou
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China.,Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jin Bai
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China.,Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Enting Lu
- Department of Gynecology, First Hospital of China Medical University, Shenyang, China
| | - Chunjiao Yang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Jiaqing Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Zhenpeng Wen
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Xuqin Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Zi Jin
- The First Department of Oncology, Shenyang Fifth People's Hospital, Shenyang, China
| | - Mengdan Xu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Lei Jiang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Gynecology, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Zhu P, Qian J, Xu Z, Meng C, Zhu W, Ran F, Zhang W, Zhang Y, Ling Y. Overview of piperlongumine analogues and their therapeutic potential. Eur J Med Chem 2021; 220:113471. [PMID: 33930801 DOI: 10.1016/j.ejmech.2021.113471] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 01/18/2023]
Abstract
Natural products have long been an important source for discovery of new drugs to treat human diseases. Piperlongumine (PL) is an amide alkaloid isolated from Piper longum L. (long piper) and other piper plants and has received widespread attention because of its diverse biological activities. A large number of PL derivatives have been designed, synthesized and assessed in many pharmacological functions, including antiplatelet aggregation, neuroprotective activities, anti-diabetic activities, anti-inflammatory activities, anti-senolytic activities, immune activities, and antitumor activities. Among them, the anti-tumor effects and application of PL and its derivatives are most extensively studied. We herein summarize the development of PL derivatives, the structure and activity relationships (SARs), and their therapeutic potential on the treatments of various diseases, especially against cancer. We also discussed the challenges and future directions associated with PL and its derivatives in these indications.
Collapse
Affiliation(s)
- Peng Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Jianqiang Qian
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Zhongyuan Xu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Weizhong Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau.
| | - Yanan Zhang
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| | - Yong Ling
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Redox Control in Acute Lymphoblastic Leukemia: From Physiology to Pathology and Therapeutic Opportunities. Cells 2021; 10:cells10051218. [PMID: 34067520 PMCID: PMC8155968 DOI: 10.3390/cells10051218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy originating from B- or T-lymphoid progenitor cells. Recent studies have shown that redox dysregulation caused by overproduction of reactive oxygen species (ROS) has an important role in the development and progression of leukemia. The application of pro-oxidant therapy, which targets redox dysregulation, has achieved satisfactory results in alleviating the conditions of and improving the survival rate for patients with ALL. However, drug resistance and side effects are two major challenges that must be addressed in pro-oxidant therapy. Oxidative stress can activate a variety of antioxidant mechanisms to help leukemia cells escape the damage caused by pro-oxidant drugs and develop drug resistance. Hematopoietic stem cells (HSCs) are extremely sensitive to oxidative stress due to their low levels of differentiation, and the use of pro-oxidant drugs inevitably causes damage to HSCs and may even cause severe bone marrow suppression. In this article, we reviewed research progress regarding the generation and regulation of ROS in normal HSCs and ALL cells as well as the impact of ROS on the biological behavior and fate of cells. An in-depth understanding of the regulatory mechanisms of redox homeostasis in normal and malignant HSCs is conducive to the formulation of rational targeted treatment plans to effectively reduce oxidative damage to normal HSCs while eradicating ALL cells.
Collapse
|
9
|
Bezerra DP. Piplartine (piperlongumine), oxidative stress, and use in cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Kuang X, Xiong J, Lu T, Wang W, Zhang Z, Wang J. Inhibition of USP1 induces apoptosis via ID1/AKT pathway in B-cell acute lymphoblastic leukemia cells. Int J Med Sci 2021; 18:245-255. [PMID: 33390793 PMCID: PMC7738972 DOI: 10.7150/ijms.47597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Deubiquitylating enzyme ubiquitin-specific protease 1 (USP1) has been reported to be aberrantly overexpressed in cancers, and it plays a critical role in regulating various cellular processes, such as cell proliferation, apoptosis, and cell differentiation. However, the role of USP1 in B-cell acute lymphoblastic leukemia (B-ALL) remains largely undefined. USP1 expression in 30 newly diagnosed B-ALL patients was detected by real-time PCR and western blot. We found that USP1 was generally upregulated in the bone marrow cells derived from B-ALL patients. Knockdown of USP1 by siRNA decreased B-ALL cell growth and induced apoptosis. Similarly, pharmacological inhibition of USP1 by SJB3-019A significantly repressed cell proliferation and triggered B-ALL cell apoptosis. Finally, we found that inhibition of USP1 downregulated the expression of ID1 and p-AKT, and upregulated ID1 expression could reverse the suppressive effects of USP1 inhibitor in B-ALL cells. Taken together, these results demonstrate that USP1 promote B-ALL progression at least partially via the ID1/AKT signaling pathway, and USP1 inhibitors might be promising therapeutic application for B-ALL.
Collapse
Affiliation(s)
- Xingyi Kuang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P.R. China.,Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P.R. China.,Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Guiyang 550004, P.R. China.,School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Jie Xiong
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P.R. China.,Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P.R. China.,Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Guiyang 550004, P.R. China
| | - Tingting Lu
- Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Guiyang 550004, P.R. China
| | - Weili Wang
- Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Guiyang 550004, P.R. China
| | - Zhaoyuan Zhang
- Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Guiyang 550004, P.R. China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P.R. China.,Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P.R. China.,Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, Guiyang 550004, P.R. China
| |
Collapse
|
11
|
Lv F, Deng M, Bai J, Zou D, Wang J, Li H, Zhang Y, Ji X. Piperlongumine inhibits head and neck squamous cell carcinoma proliferation by docking to Akt. Phytother Res 2020; 34:3345-3358. [PMID: 32798277 DOI: 10.1002/ptr.6788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Piperlongumine (PL) is a biologically active alkaloid isolated from the long pepper roots and widely used as a traditional medicine in Ayurvedic medicine. However, the mechanism of PL's effect on head and neck squamous cell carcinoma (HNSCC) is not well understood. We performed cell experiments to confirm PL's inhibitory effect on HNSCC and employing cisplatin as positive control. Next, we conducted bioinformatics to predict PL's potential targets and verified by western blotting. Molecular docking, Biacore experiment and kinase activity assays were applied to elucidate the mechanism by which PL inhibited target activity. In vivo efficacy was verified by xenotransplantation and immunohistochemistry. PL inhibited proliferation, promoted late apoptosis, arrested cell cycle and inhibited DNA replication of the HEp-2 and FaDu cell lines. Employing bioinformatics, we found that PL's target was Akt and PL attenuated Akt phosphorylation. We found from molecular docking, Biacore experiment and kinase activity assay that PL inhibited Akt activation by docking to Akt to restrain its activity. In addition, PL significantly inhibited the growth of xenograft tumors by down regulating the expression of p-Akt in vivo. This study provides new insights into the molecular functions of PL and indicate its potential as a therapeutic agent for HNSCC.
Collapse
Affiliation(s)
- Fei Lv
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingming Deng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Jin Bai
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Zou
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hong Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Four Hospital of China Medical University, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Ji
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Liang J, Ziegler JD, Jahraus B, Orlik C, Blatnik R, Blank N, Niesler B, Wabnitz G, Ruppert T, Hübner K, Balta E, Samstag Y. Piperlongumine Acts as an Immunosuppressant by Exerting Prooxidative Effects in Human T Cells Resulting in Diminished T H17 but Enhanced T reg Differentiation. Front Immunol 2020; 11:1172. [PMID: 32595640 PMCID: PMC7303365 DOI: 10.3389/fimmu.2020.01172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Piperlongumine (PL), a natural small molecule derived from the Piper longum Linn plant, has received growing interest as a prooxidative drug with promising anticancer properties. Yet, the influence of PL on primary human T cells remained elusive. Knowledge of this is of crucial importance, however, since T cells in particular play a critical role in tumor control. Therefore, we investigated the effects of PL on the survival and function of primary human peripheral blood T cells (PBTs). While PL was not cytotoxic to PBTs, it interfered with several stages of T cell activation as it inhibited T cell/APC immune synapse formation, co-stimulation-induced upregulation of CD69 and CD25, T cell proliferation and the secretion of proinflammatory cytokines. PL-induced immune suppression was prevented in the presence of thiol-containing antioxidants. In line with this finding, PL increased the levels of intracellular reactive oxygen species and decreased glutathione in PBTs. Diminished intracellular glutathione was accompanied by a decrease in S-glutathionylation on actin suggesting a global alteration of the antioxidant response. Gene expression analysis demonstrated that TH17-related genes were predominantly inhibited by PL. Consistently, the polarization of primary human naïve CD4+ T cells into TH17 subsets was significantly diminished while differentiation into Treg cells was substantially increased upon PL treatment. This opposed consequence for TH17 and Treg cells was again abolished by thiol-containing antioxidants. Taken together, PL may act as a promising agent for therapeutic immunosuppression by exerting prooxidative effects in human T cells resulting in a diminished TH17 but enhanced Treg cell differentiation.
Collapse
Affiliation(s)
- Jie Liang
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Jacqueline D. Ziegler
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Beate Jahraus
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Christian Orlik
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Renata Blatnik
- Mass Spectrometry Core Facility, Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Norbert Blank
- Division of Rheumatology, Department of Internal Medicine V, Heidelberg University, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Guido Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Thomas Ruppert
- Mass Spectrometry Core Facility, Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Katrin Hübner
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Tripathi SK, Biswal BK. Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent. Pharmacol Res 2020; 156:104772. [PMID: 32283222 DOI: 10.1016/j.phrs.2020.104772] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Piperlongumine, a white to beige biologically active alkaloid/amide phytochemical, has high pharmacological relevance as an anticancer agent. Piperlongumine has several biological activities, including selective cytotoxicity against multiple cancer cells of different origins at a preclinical level. Several preclinical studies have documented the anticancer potential of piperlongumine through its targeting of multiple molecular mechanisms, such as cell cycle arrest, anti-angiogenesis, anti- invasive and anti-metastasis pathways, autophagy pathways, and intrinsic apoptotic pathways in vitro and in vivo. Mechanistically, piperlongumine inhibits cancer growth by resulting in the accumulation of intracellular reactive oxygen species, decreasing glutathione and chromosomal damage, or modulating key regulatory proteins, including PI3K, AKT, mTOR, NF-kβ, STATs, and cyclin D1. Furthermore, combined treatment with piperlongumine potentiates the anticancer activity of conventional chemotherapeutics and overcomes resistance to chemo- and radio- therapy. Nanoformulation of piperlongumine has been associated with increased aqueous solubility and bioavailability and lower toxicity, thus enhancing therapeutic efficacy in both preclinical and clinical settings. The current review highlights anticancer studies on the occurrence, chemical properties, chemopreventive mechanisms, toxicity, bioavailability, and pharmaceutical relevance of piperlongumine in vitro and in vivo.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
14
|
Chen Y, Jiang P, Wen J, Wu Z, Li J, Chen Y, Wang L, Gan D, Chen Y, Yang T, Lin M, Hu J. Integrated bioinformatics analysis of the crucial candidate genes and pathways associated with glucocorticoid resistance in acute lymphoblastic leukemia. Cancer Med 2020; 9:2918-2929. [PMID: 32096603 PMCID: PMC7163086 DOI: 10.1002/cam4.2934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 12/26/2022] Open
Abstract
Glucocorticoids (GC) are the foundation of the chemotherapy regimen in acute lymphoblastic leukemia (ALL). However, resistance to GC is observed more frequently than resistance to other chemotherapy agents in patients with ALL relapse. Moreover, the mechanism underlying the development of GC resistance in ALL has not yet been fully uncovered. In this study, we used bioinformatic analysis methods to integrate the candidate genes and pathways participating in GC resistance in ALL and subsequently verified the bioinformatics findings with in vitro cell experiments. Ninety‐nine significant common differentially expressed genes (DEGs) associated with GC resistance were determined by integrating two gene profile datasets, including GC‐sensitive and ‐resistant samples. Using Kyoto Encyclopedia of Genes and Genomes (KEGG) and REACTOME pathways analysis, the signaling pathways in which DEGs were significantly enriched were clustered. The GC resistance‐related biologically functional interactions were visualized as DEG‐associated Protein–Protein Interaction (PPI) network complexes, with 98 nodes and 127 edges. MYC, a node which displayed the highest connectivity in all edges, was highlighted as the core gene in the PPI network. Increased C‐MYC expression was observed in adriamycin‐resistant BALL‐1/ADR cells, which we demonstrated was also resistant to dexamethasone. These results outlined a panorama in which the solitary and scattered experimental results were integrated and expanded. The potential promising target of the candidate pathways and genes involved in GC resistance of ALL was concomitantly revealed.
Collapse
Affiliation(s)
- Yanxin Chen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Peifang Jiang
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Jingjing Wen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Zhengjun Wu
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Jiazheng Li
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Yuwen Chen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Lingyan Wang
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Donghui Gan
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Yingyu Chen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Ting Yang
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Minhui Lin
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Jianda Hu
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
15
|
Chen D, Ma Y, Guo Z, Liu L, Yang Y, Wang Y, Pan B, Wu L, Hui Y, Yang W. Two Natural Alkaloids Synergistically Induce Apoptosis in Breast Cancer Cells by Inhibiting STAT3 Activation. Molecules 2020; 25:E216. [PMID: 31948057 PMCID: PMC6982934 DOI: 10.3390/molecules25010216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer has become a worldwide threat, and chemotherapy remains a routine treatment. Patients are forced to receive continuous chemotherapy and suffer from severe side effects and poor prognosis. Natural alkaloids, such as piperine (PP) and piperlongumine (PL), are expected to become a new strategy against breast cancer due to their reliable anticancer potential. In the present study, cell viability, flow cytometry, and Western blot assays were performed to evaluate the suppression effect of PP and PL, alone or in combination. Data showed that PP and PL synergistically inhibited breast cancer cells proliferation at lower doses, while only weak killing effect was observed in normal breast cells, indicating a good selectivity. Furthermore, apoptosis and STAT3 signaling pathway-associated protein levels were analyzed. We demonstrated that PP and PL in combination inhibit STAT3 phosphorylation and regulate downstream molecules to induce apoptosis in breast cancer cells. Taken together, these results revealed that inactivation of STAT3 was a novel mechanism with treatment of PP and PL, suggesting that combination application of natural alkaloids may be a potential strategy for prevention and therapy of breast cancer.
Collapse
Affiliation(s)
- Di Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
| | - Zhiyu Guo
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Li Liu
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Yaru Yang
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Yuru Wang
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Bonan Pan
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Luyang Wu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
| | - Yuyu Hui
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
| | - Wenjuan Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
16
|
Kuang X, Xiong J, Wang W, Li X, Lu T, Fang Q, Wang J. PIM inhibitor SMI-4a induces cell apoptosis in B-cell acute lymphocytic leukemia cells via the HO-1-mediated JAK2/STAT3 pathway. Life Sci 2019; 219:248-256. [PMID: 30658101 DOI: 10.1016/j.lfs.2019.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The serine/threonine PIM protein kinases are critical regulators of tumorigenesis in multiple cancers. However, whether PIMs are potential therapeutic targets for treating B-cell acute lymphocytic leukemia (B-ALL) remains unclear. Therefore, here, PIM expression was detected in B-ALL patients and the effects of SMI-4a, a pan-PIM small molecule inhibitor, were investigated in B-ALL cells. METHODS PIM1 and PIM2 expression in 26 newly diagnosed B-ALL cases was detected by real-time PCR and Western blot. B-ALL cells were treated with varied SMI-4a doses and the viability of treated cells was investigated using a cell-counting kit-8 (CCK-8) assay. Apoptosis and cell cycles were analyzed by flow cytometry. Western blot analysis was then used to explore the expression of apoptosis-related proteins and the JAK2/STAT3 pathway. RESULTS PIM1 and 2 were overexpressed in B-ALL patients with high HO-1 level. SMI-4a induced decreases in PIMs and HO-1 expressions and inhibited B-ALL cell viability. Treatment with SMI-4a induced apoptosis by downregulating Bcl-2, upregulating Bax and other antiapoptotic proteins, and decreasing protein levels of p-JAK2 and p-STAT3. In addition, upregulation of HO-1 alleviated decrease in p-JAK2 and p-STAT3 expression, reduced SMI-4a-induced apoptosis of B-ALL cells, and influenced B-ALL cell survival. CONCLUSIONS PIMs were highly expressed in B-ALL patients. SMI-4a inhibited B-ALL proliferation and induced apoptosis via the HO-1-mediated JAK2/STAT3 pathway. SMI-4a might be applicable for treatment of B-ALL cells.
Collapse
Affiliation(s)
- Xingyi Kuang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, PR China
| | - Jie Xiong
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, PR China
| | - Weili Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, PR China
| | - Xinyao Li
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, PR China
| | - Tingting Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, PR China
| | - Qin Fang
- Department of Pharmacy, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, PR China.
| |
Collapse
|
17
|
Oliveira MDS, Barbosa MIF, de Souza TB, Moreira DRM, Martins FT, Villarreal W, Machado RP, Doriguetto AC, Soares MBP, Bezerra DP. A novel platinum complex containing a piplartine derivative exhibits enhanced cytotoxicity, causes oxidative stress and triggers apoptotic cell death by ERK/p38 pathway in human acute promyelocytic leukemia HL-60 cells. Redox Biol 2018; 20:182-194. [PMID: 30359932 PMCID: PMC6198128 DOI: 10.1016/j.redox.2018.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
Piplartine (piperlongumine) is a plant-derived compound found in some Piper species that became a novel potential antineoplastic agent. In the present study, we synthesized a novel platinum complex containing a piplartine derivative cis-[PtCl(PIP-OH)(PPh3)2]PF6 (where, PIP-OH = piplartine demethylated derivative; and PPh3 = triphenylphosphine) with enhanced cytotoxicity in different cancer cells, and investigated its apoptotic action in human promyelocytic leukemia HL-60 cells. The structure of PIP-OH ligand was characterized by X-ray crystallographic analysis and the resulting platinum complex was characterized by infrared, molar conductance measurements, elemental analysis and NMR experiments. We found that the complex is more potent than piplartine in a panel of cancer cell lines. Apoptotic cell morphology, increased internucleosomal DNA fragmentation, without cell membrane permeability, loss of the mitochondrial transmembrane potential, increased phosphatidylserine externalization and caspase-3 activation were observed in complex-treated HL-60 cells. Treatment with the complex also caused a marked increase in the production of reactive oxygen species (ROS), and the pretreatment with N-acetyl-L-cysteine, an antioxidant, reduced the complex-induced apoptosis, indicating activation of ROS-mediated apoptosis pathway. Important, pretreatment with a p38 MAPK inhibitor (PD 169316) and MEK inhibitor (U-0126), known to inhibit ERK1/2 activation, also prevented the complex-induced apoptosis. The complex did not induce DNA intercalation in cell-free DNA assays. In conclusion, the complex exhibits more potent cytotoxicity than piplartine in a panel of different cancer cells and triggers ROS/ERK/p38-mediated apoptosis in HL-60 cells.
Collapse
Affiliation(s)
- Maiara de S Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Rua Waldemar Falcão, 121, Candeal, 40296-710 Salvador, Bahia, Brazil
| | - Marília I F Barbosa
- Institute of Chemistry, Federal University of Alfenas, Alfenas 37133-840, Minas Gerais, Brazil
| | - Thiago Belarmino de Souza
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Diogo R M Moreira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Rua Waldemar Falcão, 121, Candeal, 40296-710 Salvador, Bahia, Brazil
| | - Felipe Terra Martins
- Institute of Chemistry, Federal University of Goiás, Goiânia 740011970, Goiás, Brazil
| | - Wilmer Villarreal
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, São Paulo, Brazil
| | - Rafael P Machado
- Institute of Chemistry, Federal University of Alfenas, Alfenas 37133-840, Minas Gerais, Brazil
| | | | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Rua Waldemar Falcão, 121, Candeal, 40296-710 Salvador, Bahia, Brazil; Center of Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Bahia 41253-190, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Rua Waldemar Falcão, 121, Candeal, 40296-710 Salvador, Bahia, Brazil.
| |
Collapse
|
18
|
Gu SM, Lee HP, Ham YW, Son DJ, Kim HY, Oh KW, Han SB, Yun J, Hong JT. Piperlongumine Improves Lipopolysaccharide-Induced Amyloidogenesis by Suppressing NF-KappaB Pathway. Neuromolecular Med 2018; 20:312-327. [PMID: 29802525 PMCID: PMC6097046 DOI: 10.1007/s12017-018-8495-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/19/2018] [Indexed: 01/02/2023]
Abstract
Amyloidogenesis is known to cause Alzheimer's disease. Our previous studies have found that lipopolysaccharide (LPS) causes neuroinflammation and amyloidogenesis through activation of nuclear factor kappaB (NF-κB). Piperlongumine (PL) is an alkaloid amide found naturally in long pepper (Piper longum) isolates; it was reported to have inhibitory effects on NF-κB activity. We therefore investigated whether PL exhibits anti-inflammatory and anti-amyloidogenic effects by inhibiting NF-κB. A murine model of LPS-induced memory impairment was made via the intraperitoneal (i.p.) injection of LPS (0.25 mg/kg/day, i.p.). We then injected PL (1.5 or 3.0 mg/kg/day, i.p.) for 7 days in three groups of mice to observe effects on memory. We also conducted an in vitro study with astrocytes and microglial BV-2 cells, which were treated with LPS (1 µg/mL) or PL (0.5 or 1.0 or 2.5 µM). Results from our behavioral tests showed that PL inhibited LPS-induced memory. PL also prevented LPS-induced beta-amyloid (Aβ) accumulation and inhibited the activities of β- and γ-secretases. The expression of inflammatory proteins also was decreased in PL-treated mice, cultured BV-2, and primary astrocyte cells. These effects were associated with the inhibition of NF-κB activity. A docking model analysis and pull-down assay showed that PL binds to p50. Taken together, our findings suggest that PL diminishes LPS-induced amyloidogenesis and neuroinflammation by inhibiting NF-κB signaling; PL therefore demonstrates potential for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Young Wan Ham
- Department of Chemistry, Utah Valley University, 800W University Pkwy, Orem, UT, 84058, USA
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Hoi Yeong Kim
- Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-eup, Jeungpyeong-gun, Chungbuk, 27909, Republic of Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- Department of Neuroimmunology, College of Pharmacy, Wonkwang University, 460 Iksan-daero, Iksan-si, Jeonbuk, 54538, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
19
|
Lin XC, Liu XG, Zhang YM, Li N, Yang ZG, Fu WY, Lan LB, Zhang HT, Dai Y. Integrated analysis of microRNA and transcription factor reveals important regulators and regulatory motifs in adult B-cell acute lymphoblastic leukemia. Int J Oncol 2016; 50:671-683. [PMID: 28101583 DOI: 10.3892/ijo.2016.3832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/16/2016] [Indexed: 11/06/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (B‑ALL) is an aggressive hematological malignancy and a leading cause of cancer-related mortality in children and young adults. The molecular mechanisms involved in the regulation of its gene expression has yet to be fully elucidated. In the present study, we performed large scale expression profiling of microRNA (miRNA) and transcription factor (TF) by Illumina deep‑sequencing and TF array technology, respectively, and identified 291 differentially expressed miRNAs and 201 differentially expressed TFs in adult B‑ALL samples relative to their controls. After integrating expression profile data with computational prediction of miRNA and TF targets from different databases, we construct a comprehensive miRNA‑TF regulatory network specifically for adult B‑ALL. Network function analysis revealed 25 significantly enriched pathways, four pathways are well‑known to be involved in B‑ALL, such as PI3K‑Akt signaling pathway, Jak‑STAT signaling pathway, Ras signaling pathway and cell cycle pathway. By analyzing the network topology, we identified 28 hub miRNAs and 19 hub TFs in the network, and found nine potential B‑ALL regulators among these hub nodes. We also constructed a Jak‑STAT signaling sub‑network for B‑ALL. Based on the sub‑network analysis and literature survey, we proposed a cellular model to discuss MYC/miR‑15a‑5p/FLT3 feed-forward loop (FFL) with Jak‑STAT signaling pathway in B‑ALL. These findings enhance our understanding of this disease at the molecular level, as well as provide putative therapeutic targets for B-ALL.
Collapse
Affiliation(s)
- Xiao-Cong Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xin-Guang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yu-Ming Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ning Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zhi-Gang Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Wei-Yu Fu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Liu-Bo Lan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hai-Tao Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
20
|
Yao Y, Sun Y, Shi M, Xia D, Zhao K, Zeng L, Yao R, Zhang Y, Li Z, Niu M, Xu K. Piperlongumine induces apoptosis and reduces bortezomib resistance by inhibiting STAT3 in multiple myeloma cells. Oncotarget 2016; 7:73497-73508. [PMID: 27634873 PMCID: PMC5341994 DOI: 10.18632/oncotarget.11988] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Effective new therapies are urgently needed for the treatment of multiple myeloma (MM), an incurable hematological malignancy. In this study, we evaluated the effects of piperlongumine on MM cell proliferation both in vivo and in vitro. Piperlongumine inhibited the proliferation of MM cells by inducing cell apoptosis and blocking osteoclastogenesis. Notably, piperlongumine also reduced bortezomib resistance in MM cells. In a disseminated MM mouse model, piperlongumine prolonged the survival of tumor-bearing mice without causing any obvious toxicity. Mechanistically, piperlongumine inhibited the STAT3 signal pathway in MM cells by binding directly to the STAT3 Cys712 residue. These findings suggest that the clinical use of piperlongumine to overcome bortezomib resistance in MM should be evaluated.
Collapse
Affiliation(s)
- Yao Yao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Min Shi
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Dandan Xia
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kai Zhao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Ruosi Yao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Ying Zhang
- Laboratory of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| |
Collapse
|
21
|
Kang Q, Yan S. Piperlongumine reverses doxorubicin resistance through the PI3K/Akt signaling pathway in K562/A02 human leukemia cells. Exp Ther Med 2015; 9:1345-1350. [PMID: 25780433 PMCID: PMC4353808 DOI: 10.3892/etm.2015.2254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/19/2014] [Indexed: 12/14/2022] Open
Abstract
Drug resistance is an important obstacle to human leukemia therapeutics. Piperlongumine has previously demonstrated the ability to suppress certain human tumor processes; however, the ability of piperlongumine to reverse the drug resistance of human leukemia and its mechanism of action have not yet been clearly elucidated. In this study, the doxorubicin resistance reversal effect of piperlongumine on K562/A02 human leukemia cells and the underlying mechanism were investigated. The results indicated that piperlongumine promoted doxorubicin sensitivity, apoptosis, the intracellular accumulation of rhodamine-123, the activities of caspase-3 and -8, and the expression of reactive oxygen species, p53, p27 and p-PTEN. Furthermore, it suppressed the expression of P-glycoprotein, MDR1, MRP1, survivin and p-Akt, and the transcriptional activities of NF-κB and twist, and arrested the cell cycle in the G2/M phase. The results indicate that piperlongumine has the potential to be used as a therapeutic agent for human leukemia.
Collapse
Affiliation(s)
- Qingwei Kang
- Pharmacy Department, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Shu Yan
- Pharmacy Department, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|