1
|
Zamudio-Beltrán LE, Bossu CM, Bueno-Hernández AA, Dunn PO, Sly ND, Rayne C, Anderson EC, Hernández-Baños BE, Ruegg KC. Parallel and convergent evolution in genes underlying seasonal migration. Evol Lett 2025; 9:189-208. [PMID: 40191407 PMCID: PMC11968193 DOI: 10.1093/evlett/qrae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 04/09/2025] Open
Abstract
Seasonal migration has fascinated scientists and natural historians for centuries. While the genetic basis of migration has been widely studied across different taxa, there is little consensus regarding which genomic regions play a role in the ability to migrate and whether they are similar across species. Here, we examine the genetic basis of intraspecific variation within and between distinct migratory phenotypes in a songbird. We focus on the Common Yellowthroat (Geothlypis trichas) as a model system because the polyphyletic origin of eastern and western clades across North America provides a strong framework for understanding the extent to which there has been parallel or convergent evolution in the genes associated with migratory behavior. First, we investigate genome-wide population genetic structure in the Common Yellowthroat in 196 individuals collected from 22 locations across breeding range. Then, to identify candidate genes involved in seasonal migration, we identify signals of putative selection in replicate comparisons between resident and migratory phenotypes within and between eastern and western clades. Overall, we find wide-spread support for parallel evolution at the genic level, particularly in genes that mediate biological timekeeping. However, we find little evidence of parallelism at the individual SNP level, supporting the idea that there are multiple genetic pathways involved in the modulation of migration.
Collapse
Affiliation(s)
- Luz E Zamudio-Beltrán
- Facultad de Estudios Superiores Zaragoza, UNAM, Mexico City, Mexico
- Facultad de Ciencias, UNAM, Mexico City, Mexico
| | - Christen M Bossu
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - Peter O Dunn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Nicholas D Sly
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Christine Rayne
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Eric C Anderson
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - Kristen C Ruegg
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Fang X, Xu H, Fan Z, Yang H, Huang Y, Xu L, Rong Y, Ma W, Pei L, Liang H. Puerarin Promotes the Migration and Differentiation of Myoblasts by Activating the FAK and PI3K/AKT Signaling Pathways. BIOLOGY 2025; 14:102. [PMID: 39857332 PMCID: PMC11763015 DOI: 10.3390/biology14010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Puerarin, a flavonoid compound present in the roots of radix puerariae, contributes to the development of tissues such as bone and nerve, but its role in skeletal muscle regeneration remains unclear. In this study, we employed C2C12 myoblasts and barium chloride (BaCl2)-based muscle injury models to investigate the effects of puerarin on myogenesis. Our study showed that puerarin stimulated the migration and differentiation of myoblasts in vitro. For the mechanism study, we found that puerarin's influence on cell migration was associated with the activation of FAK signaling; additionally, puerarin induced myoblast differentiation by upregulating the PI3K/AKT pathway. We also found that puerarin treatment could improve muscle regeneration following muscle injury. Taken together, our data indicate that puerarin facilitated myogenesis by promoting migration and differentiation, which suggests puerarin as a new candidate drug for the treatment of muscle loss diseases.
Collapse
Affiliation(s)
- Xiaofeng Fang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Hangjia Xu
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Zhaoxin Fan
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Hongge Yang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Yan Huang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Lin Xu
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Yiwei Rong
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Wei Ma
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| | - Liubao Pei
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongsheng Liang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (X.F.); (H.X.)
| |
Collapse
|
3
|
Nguyen NUN, Hsu CC, Ali SR, Wang HV. Actin-organizing protein palladin modulates C2C12 cell fate determination. Biochem Biophys Rep 2024; 39:101762. [PMID: 39026565 PMCID: PMC11255515 DOI: 10.1016/j.bbrep.2024.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background Cell confluency and serum deprivation promote the transition of C2C12 myoblasts into myocytes and subsequence fusion into myotubes. However, despite all myoblasts undergoing the same serum deprivation trigger, their responses vary: whether they become founder myocytes, remain proliferative, or evolve into fusion-competent myocytes remains unclear. We have previously shown that depletion of the scaffolding protein palladin in myoblasts inhibits cell migration and promotes premature muscle differentiation, pointing to its potential significance in muscle development and the necessity for a more in-depth examination of its function in cellular heterogeneity. Methods and results Here, we showed that the subcellular localization of palladin might contribute to founder-fate cell decision in the early differentiation process. Depleting palladin in C2C12 myoblasts depleted integrin-β3 plasma membrane localization of and focal adhesion formation at the early stage of myogenesis, decreased kindlin-2 and metavinculin expression during the myotube maturation process, leading to the inability of myocytes to fuse into preexisting mature myotubes. This aligns with previous findings where early differentiation into nascent myotubes occurred but compromised maturation. In contrast, wildtype C2C12 overexpressing the 140-kDa palladin isoform developed a polarized morphology with star-like structures toward other myoblasts. However, this behaviour was not observed in palladin-depleted cells, where the 140-kDa palladin overexpression could not recover cell migration capacity, suggesting other palladin isoforms are also needed to establish cell polarity. Conclusion Our study identifies a counter-intuitive role for palladin in regulating myoblast-to-myocyte cell fate decisions and impacting their ability to form mature multinucleated myotubes by influencing cell signalling pathways and cytoskeletal organization, necessary for skeletal muscle regeneration and repair studies.
Collapse
Affiliation(s)
- Ngoc Uyen Nhi Nguyen
- Department of Life Sciences, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Ching-Cheng Hsu
- Institute of Basic Medical Science, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Shah R. Ali
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, USA
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- University Center for Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Marine Biology and Cetacean Research Center, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
| |
Collapse
|
4
|
Nguyen MT, Ly QK, Kim HJ, Lee W. FLII Modulates the Myogenic Differentiation of Progenitor Cells via Actin Remodeling-Mediated YAP1 Regulation. Int J Mol Sci 2023; 24:14335. [PMID: 37762638 PMCID: PMC10531566 DOI: 10.3390/ijms241814335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The dynamic rearrangement of the actin cytoskeleton plays an essential role in myogenesis, which is regulated by diverse mechanisms, such as mechanotransduction, modulation of the Hippo signaling pathway, control of cell proliferation, and the influence of morphological changes. Despite the recognized importance of actin-binding protein Flightless-1 (FLII) during actin remodeling, the role played by FLII in the differentiation of myogenic progenitor cells has not been explored. Here, we investigated the roles of FLII in the proliferation and differentiation of myoblasts. FLII was found to be enriched in C2C12 myoblasts, and its expression was stable during the early stages of differentiation but down-regulated in fully differentiated myotubes. Knockdown of FLII in C2C12 myoblasts resulted in filamentous actin (F-actin) accumulation and inhibited Yes-associated protein 1 (YAP1) phosphorylation, which triggers its nuclear translocation from the cytoplasm. Consequently, the expressions of YAP1 target genes, including PCNA, CCNB1, and CCND1, were induced, and the cell cycle and proliferation of myoblasts were promoted. Moreover, FLII knockdown significantly inhibited the expression of myogenic regulatory factors, i.e., MyoD and MyoG, thereby impairing myoblast differentiation, fusion, and myotube formation. Thus, our findings demonstrate that FLII is crucial for the differentiation of myoblasts via modulation of the F-actin/YAP1 axis and suggest that FLII is a putative novel therapeutic target for muscle wasting.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Hyun-Jung Kim
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea
| |
Collapse
|
5
|
Nguyen MT, Lee W. Induction of miR-665-3p Impairs the Differentiation of Myogenic Progenitor Cells by Regulating the TWF1-YAP1 Axis. Cells 2023; 12:cells12081114. [PMID: 37190023 DOI: 10.3390/cells12081114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Actin dynamics are known to orchestrate various myogenic processes in progenitor cells. Twinfilin-1 (TWF1) is an actin-depolymerizing factor that plays a crucial role in the differentiation of myogenic progenitor cells. However, little is known about the mechanisms underlying the epigenetic regulation of TWF1 expression and impaired myogenic differentiation in the background of muscle wasting. This study investigated how miR-665-3p affects TWF1 expression, actin filaments' modulation, proliferation, and myogenic differentiation in progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in food, suppressed TWF1 expression and inhibited the myogenic differentiation of C2C12 cells while increasing the level of miR-665-3p expression. Interestingly, miR-665-3p inhibited TWF1 expression by targeting TWF1 3'UTR directly. In addition, miR-665-3p accumulated filamentous actin (F-actin) and enhanced the nuclear translocation of Yes-associated protein 1 (YAP1), consequently promoting cell cycle progression and proliferation. Furthermore, miR-665-3p suppressed the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, and consequently impaired myoblast differentiation. In conclusion, this study suggests that SFA-inducible miR-665-3p suppresses TWF1 expression epigenetically and inhibits myogenic differentiation by facilitating myoblast proliferation via the F-actin/YAP1 axis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
6
|
Nguyen MT, Lee W. Mir-302a/TWF1 Axis Impairs the Myogenic Differentiation of Progenitor Cells through F-Actin-Mediated YAP1 Activation. Int J Mol Sci 2023; 24:ijms24076341. [PMID: 37047312 PMCID: PMC10094299 DOI: 10.3390/ijms24076341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Actin cytoskeleton dynamics have been found to regulate myogenesis in various progenitor cells, and twinfilin-1 (TWF1), an actin-depolymerizing factor, plays a vital role in actin dynamics and myoblast differentiation. Nevertheless, the molecular mechanisms underlying the epigenetic regulation and biological significance of TWF1 in obesity and muscle wasting have not been explored. Here, we investigated the roles of miR-302a in TWF1 expression, actin filament modulation, proliferation, and myogenic differentiation in C2C12 progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in the diet, decreased the expression of TWF1 and impeded myogenic differentiation while increasing the miR-302a levels in C2C12 myoblasts. Interestingly, miR-302a inhibited TWF1 expression directly by targeting its 3′UTR. Furthermore, ectopic expression of miR-302a promoted cell cycle progression and proliferation by increasing the filamentous actin (F-actin) accumulation, which facilitated the nuclear translocation of Yes-associated protein 1 (YAP1). Consequently, by suppressing the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, miR-302a impaired myoblast differentiation. Hence, this study demonstrated that SFA-inducible miR-302a suppresses TWF1 expression epigenetically and impairs myogenic differentiation by facilitating myoblast proliferation via F-actin-mediated YAP1 activation.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
- Correspondence: ; Tel.: +82-54-770-2409
| |
Collapse
|
7
|
Nguyen MT, Lee W. Kank1 Is Essential for Myogenic Differentiation by Regulating Actin Remodeling and Cell Proliferation in C2C12 Progenitor Cells. Cells 2022; 11:cells11132030. [PMID: 35805114 PMCID: PMC9265739 DOI: 10.3390/cells11132030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Actin cytoskeleton dynamics are essential regulatory processes in muscle development, growth, and regeneration due to their modulation of mechanotransduction, cell proliferation, differentiation, and morphological changes. Although the KN motif and ankyrin repeat domain-containing protein 1 (Kank1) plays a significant role in cell adhesion dynamics, actin polymerization, and cell proliferation in various cells, the functional significance of Kank1 during the myogenic differentiation of progenitor cells has not been explored. Here, we report that Kank1 acts as a critical regulator of the proliferation and differentiation of muscle progenitor cells. Kank1 was found to be expressed at a relatively high level in C2C12 myoblasts, and its expression was modulated during the differentiation. Depletion of Kank1 by siRNA (siKank1) increased the accumulation of filamentous actin (F-actin). Furthermore, it facilitated the nuclear localization of Yes-associated protein 1 (YAP1) by diminishing YAP1 phosphorylation in the cytoplasm, which activated the transcriptions of YAP1 target genes and promoted proliferation and cell cycle progression in myoblasts. Notably, depletion of Kank1 suppressed the protein expression of myogenic regulatory factors (i.e., MyoD and MyoG) and dramatically inhibited myoblast differentiation and myotube formation. Our results show that Kank1 is an essential regulator of actin dynamics, YAP1 activation, and cell proliferation and that its depletion impairs the myogenic differentiation of progenitor cells by promoting myoblast proliferation triggered by the F-actin-induced nuclear translocation of YAP1.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea;
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea;
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Korea
- Correspondence: ; Tel.: +82-54-770-2409
| |
Collapse
|
8
|
Nguyen MT, Won YH, Kwon TW, Lee W. Twinfilin-1 is an essential regulator of myogenic differentiation through the modulation of YAP in C2C12 myoblasts. Biochem Biophys Res Commun 2022; 599:17-23. [DOI: 10.1016/j.bbrc.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
|
9
|
Najar MA, Modi PK, Ramesh P, Sidransky D, Gowda H, Prasad TSK, Chatterjee A. Molecular Profiling Associated with Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CAMKK2)-Mediated Carcinogenesis in Gastric Cancer. J Proteome Res 2021; 20:2687-2703. [PMID: 33844560 DOI: 10.1021/acs.jproteome.1c00008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related death worldwide. We showed previously that calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2), a serine-threonine kinase, is highly expressed in gastric cancer and leads to progression. In the present study, we identified the molecular networks involved in CAMKK2-mediated progression of gastric adenocarcinoma. Treatment of gastric cancer cell lines with a CAMKK2 inhibitor, STO-609, resulted in decreased cell migration, invasion, and colony-forming ability and a G1/S-phase arrest. In addition, tandem mass tag (TMT)-based quantitative proteomic analysis resulted in the identification of 7609 proteins, of which 219 proteins were found to be overexpressed and 718 downregulated (1.5-fold). Our data identified several key downregulated proteins involved in cell division and cell proliferation, which included DNA replication licensing factors, replication factor C, origin recognition complex, replication protein A and GINS, and mesenchymal markers, upon CAMKK2 inhibition. Immunoblotting and immunofluorescence results showed concordance with our mass spectroscopy data. Taken together, our study supports CAMKK2 as a novel therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| |
Collapse
|
10
|
CFL2 is an essential mediator for myogenic differentiation in C2C12 myoblasts. Biochem Biophys Res Commun 2020; 533:710-716. [PMID: 33187645 DOI: 10.1016/j.bbrc.2020.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/29/2022]
Abstract
CFL2, a skeletal muscle-specific member of the actin depolymerizing factor/cofilin protein family, is known to be involved in the regulation of actin filament dynamics. Although the impact of CFL2 has been studied in human myopathy, its functional contribution to myogenic differentiation, in terms of its effects on cell proliferation, cell cycle, and myogenic factor modulation, remains largely unknown. Here, we report that CFL2 is required for the myogenic differentiation of C2C12 myoblasts by regulating proliferation and myogenic transcription factors expressions. CFL2 expression was induced during myogenic progression, and its knockdown by siRNA in myoblasts enhanced phalloidin staining, indicating increased filamentous actin formation. Interestingly, CFL2 depletion stimulated cell proliferation and induced a cell cycle shift from G0/G1 to G2/M phases, which are known to inhibit progenitor cell differentiation. CFL2 knockdown markedly downregulated the protein expressions of myogenic transcription factors (MyoD, MyoG, and MEF2C) and thereby impaired the differentiation and myotube formation of C2C12 myoblasts. Collectively, this study highlights the roles played by CFL2 on cell cycle progression and proliferation and suggests a novel regulatory mechanism of myogenic differentiation mediated by CFL2.
Collapse
|
11
|
Cloning and promoter analysis of palladin 90-kDa, 140-kDa, and 200-kDa isoforms involved in skeletal muscle cell maturation. BMC Res Notes 2020; 13:321. [PMID: 32620172 PMCID: PMC7333403 DOI: 10.1186/s13104-020-05152-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/24/2020] [Indexed: 11/10/2022] Open
Abstract
Objective Palladin is a ubiquitous phosphoprotein expressed in vertebrate cells that works as a scaffolding protein. Several isoforms deriving from alternative splicing are originated from the palladin gene and involved in mesenchymal and muscle cells formation, maturation, migration, and contraction. Recent studies have linked palladin to the invasive spread of cancer and myogenesis. However, since its discovery, the promoter region of the palladin gene has never been studied. The objective of this study was to predict, identify, and measure the activity of the promoter regions of palladin gene. Results By using promoter prediction programs, we successfully identified the transcription start sites for the Palld isoforms and revealed the presence of a variety of transcriptional regulatory elements including TATA box, GATA, MyoD, myogenin, MEF, Nkx2-5, and Tcf3 upstream promoter regions. The transcriptome profiling approach confirmed the active role of predicted transcription factors in the mouse genome. This study complements the missing piece in the characterization of palladin gene and certainly contributes to understanding the complexity and enrollment of palladin regulatory factors in gene transcription.
Collapse
|
12
|
Liu X, Gao Y, Long X, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ogura T, Wang DO, Ikejima T. Type I collagen promotes the migration and myogenic differentiation of C2C12 myoblastsviathe release of interleukin-6 mediated by FAK/NF-κB p65 activation. Food Funct 2020; 11:328-338. [DOI: 10.1039/c9fo01346f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type I collagen has the potential to promote the migration and differentiation of C2C12myoblastviaIL-6 release that was mediated by FAK/NF-κB pathway.
Collapse
Affiliation(s)
- Xiaoling Liu
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang, 110016
- China
| | - Yanfang Gao
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang, 110016
- China
| | - Xinyu Long
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang, 110016
- China
| | - Toshihiko Hayashi
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang, 110016
- China
- Department of Chemistry and Life Science
| | | | | | | | | | - Dan Ohtan Wang
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang, 110016
- China
| | - Takashi Ikejima
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang, 110016
- China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
| |
Collapse
|
13
|
Li L, Cheng X, Chen L, Li J, Luo W, Li C. Long Noncoding Ribonucleic Acid MSTRG.59589 Promotes Porcine Skeletal Muscle Satellite Cells Differentiation by Enhancing the Function of PALLD. Front Genet 2019; 10:1220. [PMID: 31850071 PMCID: PMC6887656 DOI: 10.3389/fgene.2019.01220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle satellite cells are a class of undifferentiated mononuclear myogenic stem cells distributed between the myofibroblast and membrane basement. Since their development determines the development of skeletal muscles, knowledge of their proliferation, differentiation, and fate is vital for understanding skeletal muscle development. Increasing evidence have shown that long noncoding RNA (lncRNA) plays an important role in regulating the development process of satellite cells. Based on the results of our previous studies, we screened lncRNA MSTRG.59589, which is highly expressed in skeletal muscle tissue. In the present study, knockdown of MSTRG.59589 significantly inhibited satellite cell differentiation at various time points, whereas overexpression of MSTRG.59589 demonstrated opposite effects. An MSTRG.59589 knockdown cell model was constructed for transcriptome sequencing, and RNA sequencing analysis screened out a large number of differentially expressed genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of these differentially expressed genes revealed that they are mainly enriched in actin cytoskeleton, muscle contraction, and other pathways related to muscle development. Mechanistic analyses showed that MSTRG.59589 could promote the differentiation process of skeletal muscle satellite cells by positively regulating the expression level of the target gene PALLD. This experiment lays a theoretical foundation for deeper studies on the mechanism of MSTRG.59589 in the differentiation of porcine skeletal muscle satellite cells.
Collapse
Affiliation(s)
- Long Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiaofang Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Ling Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jingxuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wenzhe Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Muthuramalingam K, Kim SY, Kim Y, Kim HS, Jeon YJ, Cho M. Bigbelly seahorse (Hippocampus abdominalis)-derived peptides enhance skeletal muscle differentiation and endurance performance via activated P38MAPK/AKT signalling pathway: An in vitro and in vivo analysis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
15
|
Wang W, Chen M, Gao Y, Song X, Zheng H, Zhang K, Zhang B, Chen D. P2Y6 regulates cytoskeleton reorganization and cell migration of C2C12 myoblasts via ROCK pathway. J Cell Biochem 2017; 119:1889-1898. [PMID: 28815725 DOI: 10.1002/jcb.26350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022]
Abstract
Migration of skeletal muscle precursor cells is required for limb muscle development and skeletal muscle repair. This study aimed to examine the role of P2Y6 receptor in C2C12 myoblasts migration. C2C12 myoblasts were treated with P2Y6 agonist UDP, P2Y6 antagonist MRS2578, Ca2+ channel blocker BTP2, or ROCK inhibitor GSK269962 or Y27632, and the migration ability of C2C12 cells was assessed by wound healing assay. The cellular Ca2+ content was analyzed with fluo-4 probe and the activation of ROCK (phosphorlyation of LIMK and cofilin) was assayed by western blot. The cytoskeleton was labeled with Actin-Tracker Green and Tubulin-Tracker-Red. Silencing P2Y6 expression in C2C12 myoblasts reduced intracellular Ca2+ content and cell motility. Whereas UDP increased cellular Ca2+ content, actin filaments, and cell migration, MRS2578 had the opposite effects. The effects of UDP were abrogated by BTP2 and GSK269962 (and Y27632). Disruption of P2Y6 signaling pathway caused C2C12 myoblasts to have an elongated morphology. These results demonstrated that P2Y6 signaled through Ca2+ influx and RhoA/ROCK to reorganize cytoskeleton and promote migration in myoblasts.
Collapse
Affiliation(s)
- Wei Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Mengjie Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yingna Gao
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xianmin Song
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hongliang Zheng
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Donghui Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Tan J, Chen XJ, Shen CL, Zhang HX, Tang LY, Lu SY, Wu WT, Kuang Y, Fei J, Wang ZG. Lacking of palladin leads to multiple cellular events changes which contribute to NTD. Neural Dev 2017; 12:4. [PMID: 28340616 PMCID: PMC5366166 DOI: 10.1186/s13064-017-0081-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/03/2017] [Indexed: 11/23/2022] Open
Abstract
Background The actin cytoskeleton-associated protein palladin plays an important role in cell motility, morphogenesis and adhesion. In mice, Palladin deficient embryos are lethal before embryonic day (E) 15.5, and exhibit severe cranial neural tube and body wall closure defects. However, the mechanism how palladin regulates the process of cranial neural tube closure (NTC) remains unknown. Methods In this paper, we use gene knockout mouse to elucidate the function of palladin in the regulation of NTC process. Results We initially focuse on the expression pattern of palladin and found that in embryonic brain, palladin is predominantly expressed in the neural folds at E9.5. We further check the major cellular events in the neural epithelium that may contribute to NTC during the early embryogenesis. Palladin deficiency leads to a disturbance of cytoskeleton in the neural tube and the cultured neural progenitors. Furthermore, increased cell proliferation, decreased cell differentiation and diminished apical cell apoptosis of neural epithelium are found in palladin deficient embryos. Cell cycle of neural progenitors in Palladin-/- embryos is much shorter than that in wt ones. Cell adhesion shows a reduction in Palladin-/- neural tubes. Conclusions Palladin is expressed with proper spatio-temporal pattern in the neural folds. It plays a crucial role in regulating mouse cranial NTC by modulating cytoskeleton, proliferation, differentiation, apoptosis, and adhesion of neural epithelium. Our findings facilitate further study of the function of palladin and the underlying molecular mechanism involved in NTC. Electronic supplementary material The online version of this article (doi:10.1186/s13064-017-0081-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Tan
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China.,Model Organism Division, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, 200025, China
| | - Xue-Jiao Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China.,Model Organism Division, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, 200025, China
| | - Chun-Ling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China
| | - Hong-Xin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China
| | - Ling-Yun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China.,Model Organism Division, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, 200025, China
| | - Shun-Yuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China
| | - Wen-Ting Wu
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Zhu-Gang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China. .,Model Organism Division, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, 200025, China. .,Shanghai Research Center for Model Organisms, Shanghai, 201203, China.
| |
Collapse
|
17
|
Nguyen NUN, Wang HV. Dual roles of palladin protein in in vitro myogenesis: inhibition of early induction but promotion of myotube maturation. PLoS One 2015; 10:e0124762. [PMID: 25875253 PMCID: PMC4396843 DOI: 10.1371/journal.pone.0124762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/06/2015] [Indexed: 12/28/2022] Open
Abstract
Palladin is a microfilament-associated phosphoprotein whose function in skeletal muscle has rarely been studied. Therefore, we investigate whether myogenesis is influenced by the depletion of palladin expression known to interfere with the actin cytoskeleton dynamic required for skeletal muscle differentiation. The inhibition of palladin in C2C12 myoblasts leads to precocious myogenic differentiation with a concomitant reduction in cell apoptosis. This premature myogenesis is caused, in part, by an accelerated induction of p21, myogenin, and myosin heavy chain, suggesting that palladin acts as a negative regulator in early differentiation phases. Paradoxically, palladin-knockdown myoblasts are unable to differentiate terminally, despite their ability to perform some initial steps of differentiation. Cells with attenuated palladin expression form thinner myotubes with fewer myonuclei compared to those of the control. It is noteworthy that a negative regulator of myogenesis, myostatin, is activated in palladin-deficient myotubes, suggesting the palladin-mediated impairment of late-stage myogenesis. Additionally, overexpression of 140-kDa palladin inhibits myoblast differentiation while 200-kDa and 90-kDa palladin-overexpressed cells display an enhanced differentiation rate. Together, our data suggest that palladin might have both positive and negative roles in maintaining the proper skeletal myogenic differentiation in vitro.
Collapse
Affiliation(s)
- Ngoc-Uyen-Nhi Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Center for Cell Dynamics, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Center for Cell Dynamics, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Estrella NL, Desjardins CA, Nocco SE, Clark AL, Maksimenko Y, Naya FJ. MEF2 transcription factors regulate distinct gene programs in mammalian skeletal muscle differentiation. J Biol Chem 2014; 290:1256-68. [PMID: 25416778 DOI: 10.1074/jbc.m114.589838] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle differentiation requires precisely coordinated transcriptional regulation of diverse gene programs that ultimately give rise to the specialized properties of this cell type. In Drosophila, this process is controlled, in part, by MEF2, the sole member of an evolutionarily conserved transcription factor family. By contrast, vertebrate MEF2 is encoded by four distinct genes, Mef2a, -b, -c, and -d, making it far more challenging to link this transcription factor to the regulation of specific muscle gene programs. Here, we have taken the first step in molecularly dissecting vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual MEF2 proteins in myoblasts. Whereas MEF2A is absolutely required for proper myoblast differentiation, MEF2B, -C, and -D were found to be dispensable for this process. Furthermore, despite the extensive redundancy, we show that mammalian MEF2 proteins regulate a significant subset of nonoverlapping gene programs. These results suggest that individual MEF2 family members are able to recognize specific targets among the entire cohort of MEF2-regulated genes in the muscle genome. These findings provide opportunities to modulate the activity of MEF2 isoforms and their respective gene programs in skeletal muscle homeostasis and disease.
Collapse
Affiliation(s)
- Nelsa L Estrella
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Cody A Desjardins
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Sarah E Nocco
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Amanda L Clark
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Yevgeniy Maksimenko
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Francisco J Naya
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|