1
|
Colin-Pierre C, El Baraka O, Danoux L, Bardey V, André V, Ramont L, Brézillon S. Regulation of stem cell fate by HSPGs: implication in hair follicle cycling. NPJ Regen Med 2022; 7:77. [PMID: 36577752 PMCID: PMC9797564 DOI: 10.1038/s41536-022-00267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are part of proteoglycan family. They are composed of heparan sulfate (HS)-type glycosaminoglycan (GAG) chains covalently linked to a core protein. By interacting with growth factors and/or receptors, they regulate numerous pathways including Wnt, hedgehog (Hh), bone morphogenic protein (BMP) and fibroblast growth factor (FGF) pathways. They act as inhibitor or activator of these pathways to modulate embryonic and adult stem cell fate during organ morphogenesis, regeneration and homeostasis. This review summarizes the knowledge on HSPG structure and classification and explores several signaling pathways regulated by HSPGs in stem cell fate. A specific focus on hair follicle stem cell fate and the possibility to target HSPGs in order to tackle hair loss are discussed in more dermatological and cosmeceutical perspectives.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.
- BASF Beauty Care Solutions France SAS, Pulnoy, France.
| | | | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Valérie André
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
- CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
2
|
Managing Skin Ageing as a Modifiable Disorder—The Clinical Application of Nourella® Dual Approach Comprising a Nano-Encapsulated Retinoid, Retilex-A® and a Skin Proteoglycan Replacement Therapy, Vercilex®. COSMETICS 2022. [DOI: 10.3390/cosmetics9020031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skin ageing is a progressive, but modifiable, multi-factorial disorder that involves all the skin’s tissues. Due to its wide range of physiological and psychosocial complications, skin ageing requires rigorous clinical attention. In this review, we aim to encourage clinicians to consider skin ageing as a disorder and suggest a novel, dual approach to its clinical treatment. Topical retinoids and per-oral proteoglycans are promising, non-invasive, therapeutic modalities. To overcome the low bioavailability of conventional free retinoids, Nourella® cream with Retilex-A® (Pharma Medico, Aarhus, Denmark) was developed using a proprietary nano-encapsulation technology. The nano-encapsulation is a sophisticated ‘permeation/penetration enhancer’ that optimises topical drug delivery by increasing the surface availability and net absorption ratio. Treatment adherence is also improved by minimising skin irritation. Interventional evidence suggests the greater efficacy of Retilex-A® in improving skin thickness and elasticity compared with conventional free forms. It is also reported that the rejuvenating efficacy of Retilex-A® and tretinoin are comparable. Another skin anti-ageing approach is proteoglycan replacement therapy (PRT) with Vercilex®. Vercilex® in Nourella® tablet form has the potential to ameliorate proteoglycan dysmetabolism in aged skin by activating skin cells and improving collagen/elastin turnover. Replicated clinical trials evidenced that PRT can significantly enhance the density, elasticity and thickness of both intrinsically aged and photoaged skin. Evidently, Vercilex® and Retilex-A® share a range of bioactivities that underlie their synergistic activity, as observed in a clinical trial. Dual therapy with Nourella® tablets and cream produced greater effects on skin characteristics than monotherapy with each of the two treatments. In conclusion, Nourella® cream and tablets are safe and effective treatments for skin ageing; however, combining the two in a ‘dual skin rejuvenation system’ significantly improves treatment outcomes.
Collapse
|
3
|
Jiang K, Chen J, Tai L, Liu C, Chen X, Wei G, Lu W, Pan W. Inhibition of post-trabeculectomy fibrosis via topically instilled antisense oligonucleotide complexes co-loaded with fluorouracil. Acta Pharm Sin B 2020; 10:1754-1768. [PMID: 33088694 PMCID: PMC7563997 DOI: 10.1016/j.apsb.2020.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/17/2020] [Accepted: 02/27/2020] [Indexed: 12/25/2022] Open
Abstract
Trabeculectomy is the mainstay of surgical glaucoma treatment, while the success rate was unsatisfying due to postoperative scarring of the filtering blebs. Clinical countermeasures for scar prevention are intraoperative intervention or repeated subconjunctival injections. Herein, we designed a co-delivery system capable of transporting fluorouracil and anti-TGF-β2 oligonucleotide to synergistically inhibit fibroblast proliferation via topical instillation. This co-delivery system was built based on a cationic dendrimer core (PAMAM), which encapsulated fluorouracil within hydrophobic cavity and condensed oligonucleotide with surface amino groups, and was further modified with hyaluronic acid and cell-penetrating peptide penetratin. The co-delivery system was self-assembled into nanoscale complexes with increased cellular uptake and enabled efficient inhibition on proliferation of fibroblast cells. In vivo studies on rabbit trabeculectomy models further confirmed the anti-fibrosis efficiency of the complexes, which prolonged survival time of filtering blebs and maintained their height and extent during wound healing process, exhibiting an equivalent effect on scar prevention compared to intraoperative infiltration with fluorouracil. Qualitative observation by immunohistochemistry staining and quantitative analysis by Western blotting both suggested that TGF-β2 expression was inhibited by the co-delivery complexes. Our study provided a potential approach promising to guarantee success rate of trabeculectomy and prolong survival time of filtering blebs.
Collapse
Key Words
- ASO, antisense oligonucleotide
- DAPI, 4′,6-diamidino-2-phenylindole
- DLS, dynamic light scattering
- EE, encapsulation efficiency
- EGF, epidermal growth factor
- FAM, 6-carboxyfluorescein
- FBS, fetal bovine serum
- FITC, fluorescein 5-isothiocyanate
- Fibrosis prevention
- Fluorouracil
- Fu, fluorouracil
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- Gene delivery
- HA, hyaluronic acid
- HRP, horseradish peroxidase
- IBAGS, the Indiana Bleb Appearance Grading Scale
- IOP, intraocular pressure
- L929, murine fibroblast cells
- MWCO, molecular weight cut-off
- PAGE, polyacrylamide gel electrophoresis
- PAMAM, poly(amidoamine)
- PEI, polyethylenimine
- PG5, PAMAM G5–NH2
- PLGA, poly(lactic-co-glycolic acid)
- PVDF, polyvinylidene difluoride
- Pene, penetratin
- Penetratin
- SDHCEC, human corneal epithelial cells
- SDS, sodium dodecyl sulfate
- TEM, transmission electron microscope
- TGF-β, transforming growth factor-β
- Trabeculectomy
Collapse
Affiliation(s)
- Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Junyi Chen
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Lingyu Tai
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chang Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xishan Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
- Corresponding authors. Tel.: +86 21 51980091, fax: +86 21 51980090 (Gang Wei); Tel.: +86 24 23986313, fax: +86 24 23953241 (Weisan Pan).
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel.: +86 21 51980091, fax: +86 21 51980090 (Gang Wei); Tel.: +86 24 23986313, fax: +86 24 23953241 (Weisan Pan).
| |
Collapse
|
4
|
Integral Roles of Specific Proteoglycans in Hair Growth and Hair Loss: Mechanisms behind the Bioactivity of Proteoglycan Replacement Therapy with Nourkrin® with Marilex® in Pattern Hair Loss and Telogen Effluvium. Dermatol Res Pract 2020; 2020:8125081. [PMID: 32425997 PMCID: PMC7222612 DOI: 10.1155/2020/8125081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/01/2020] [Indexed: 11/30/2022] Open
Abstract
Follicular proteoglycans are key players with structural, functional, and regulatory roles in the growth and cycling behaviour of the hair follicles. The expression pattern of specific proteoglycans is strongly correlated with follicular phase transitions, which further affirms their functional involvement. Research shows that bioactive proteoglycans, e.g., versican and decorin, can actively trigger follicular phase shift by their anagen-inducing, anagen-maintaining, and immunoregulatory properties. This emerging insight has led to the recognition of “dysregulated proteoglycan metabolism” as a plausible causal or mediating pathology in hair growth disorders in both men and women. In support of this, declined expression of proteoglycans has been reported in cases of anagen shortening and follicular miniaturisation. To facilitate scientific communication, we propose designating this pathology “follicular hypoglycania (FHG),” which results from an impaired ability of follicular cells to replenish and maintain a minimum relative concentration of key proteoglycans during anagen. Lasting FHG may advance to structural decay, called proteoglycan follicular atrophy (PFA). This process is suggested to be an integral pathogenetic factor in pattern hair loss (PHL) and telogen effluvium (TE). To address FHG and PFA, a proteoglycan replacement therapy (PRT) program using oral administration of a marine-derived extract (Nourkrin® with Marilex®, produced by Pharma Medico Aps, Aarhus, Denmark) containing specific proteoglycans has been developed. In clinical studies, this treatment significantly reduced hair fall, promoted hair growth, and improved quality of life in patients with male- and female-pattern hair loss. Accordingly, PRT (using Nourkrin® with Marilex®) can be recommended as an add-on treatment or monotherapy in patients with PHL and TE.
Collapse
|
5
|
Ben-Othman S, Jõudu I, Bhat R. Bioactives From Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020; 25:E510. [PMID: 31991658 PMCID: PMC7037811 DOI: 10.3390/molecules25030510] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Sustainable utilization of agri-food wastes and by-products for producing value-added products (for cosmetic, pharmaceutical or food industrial applications) provides an opportunity for earning additional income for the dependent industrial sector. Besides, effective valorisation of wastes/by-products can efficiently help in reducing environmental stress by decreasing unwarranted pollution. The major focus of this review is to provide comprehensive information on valorisation of agri-food wastes and by-products with focus laid on bioactive compounds and bioactivity. The review covers the bioactives identified from wastes and by-products of plants (fruits, exotic fruits, vegetables and seeds), animals (dairy and meat) and marine (fish, shellfish seaweeds) resources. Further, insights on the present status and future challenges of sustainably utilizing agri-food wastes/by-products for value addition will be highlighted.
Collapse
Affiliation(s)
- Sana Ben-Othman
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| | - Ivi Jõudu
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia
| | - Rajeev Bhat
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| |
Collapse
|
6
|
Chen J, Jayachandran M, Xu B, Yu Z. Sea bass (Lateolabrax maculatus) accelerates wound healing: A transition from inflammation to proliferation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:263-276. [PMID: 30862523 DOI: 10.1016/j.jep.2019.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/17/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea bass (Lateolabrax maculatus) has been used for dietary therapy practice for wound healing of puerperal or surgery patients in China. Traditional Chinese medicinal books also documented that sea bass can be used to manage inflammation-associated conditions such as wound, miscarriage and cough. Some studies also proved that dietary supplement with fish benefited for treating many inflammatory - associated conditions, such as cardiovascular disease, ulcerative colitis and hyperlipidemia. However, the studies on the pharmacological mechanisms of wound healing efficacy of sea bass remain lack of investigation. AIM OF THE STUDY The aim of this study is to investigate the molecular mechanisms of sea bass on wound healing efficacy. Establishing a further justification for clinical application of aqueous extract of sea bass (ASB) in treating wound healing. MATERIALS AND METHODS Transition from inflammation to proliferation phase treated as the critical step in wound repair which were investigated via in vitro and in vivo study. A series of inflammatory mediators associated with wound healing and proliferation effects of fibroblasts upon treatments were studied via Western blotting, enzyme-linked immunosorbent assay (ELISA), real time reverse transcription-polymerase chain reaction (RT-PCR) and scratch assay. The cutaneous wound model was applied on skin wound healing study to observe the healing process in C57BL/6 mice upon ASB treatments. Hematological parameters and tumor necrosis factor-α (TNF-α) secretions in serum were determined. Histopathological examinations were conducted by hematoxylin and eosin (H&E) staining and Masson staining. Immunofluorescence were performed to identify infiltrating neutrophils (MPO) and α-smooth muscle actin (α-SMA). RESULTS Results showed that ASB significantly reduced the production of inflammatory mediators cyclooxygenase-2 (COX-2), nitrite oxide (NO) production and TNF-α. The phosphorylation and nuclear protein levels of transcription factor nuclear factor-κB (NF-ĸB) in toll-like receptor 4 (TLR4) signaling were decreased by ASB treatment as well. Wound closure rate and cyclin D1 expression level of fibroblasts were significantly increased by ASB treatments. Moreover, cutaneous wound model in C57BL/6 mice presented many similarities in appearance to the process of wound healing. CONCLUSIONS The in vitro study demonstrated an inhibitory effect of ASB on the inflammatory mediators regulated by TLR4 signaling pathways, providing evidence that ASB treatment potentially accelerate the wound healing through migration and proliferation enhancement. Additionally, the in vivo study suggested that ASB treatment has a potential in accelerating the proliferation phase of wound healing via well-organized abundant collagen deposition, angiogenesis and re-epithelialization in wounds. The present findings can be treated as a pharmacological basis for the folk use of sea bass and further studies in biological and medical fields.
Collapse
Affiliation(s)
- Jiali Chen
- Programme of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Muthukumaran Jayachandran
- Programme of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Baojun Xu
- Programme of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China.
| | - Zhiling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
7
|
Hirose S, Narita K, Asano K, Nakane A. Salmon cartilage proteoglycan promotes the healing process of Staphylococcus aureus-infected wound. Heliyon 2018; 4:e00587. [PMID: 29862350 PMCID: PMC5968139 DOI: 10.1016/j.heliyon.2018.e00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 11/28/2022] Open
Abstract
Wound healing is the critical event for maintaining skin function and barrier. Inflammatory state in which a variety of cells are activated and accumulated is important for wound healing. Bacterial infection in cutaneous wound is a common problem and causes delay of wound healing. Our previous study demonstrated that the salmon nasal cartilage proteoglycan (PG) has an immunomodulatory effect in various mouse models of inflammatory disease. In this study, we investigated the effect of PG on healing process of Staphylococcus aureus-infected wound. PG accelerated wound closure in the initial phase of both infected and non-infected wound healing. In addition, the bacterial number in wounds of the PG-treated mice was significantly lower than that in the vehicle group. Neutrophil and macrophage infiltration was intensively observed in the PG-treated mice on day 2 after S. aureus inoculation, whereas neutrophil and macrophage influx was highly detected on day 6 in the vehicle control. Moreover, the production of TGF-β and IL-6 in the wound tissue was significantly promoted compared to the vehicle control on day 1. In contrast, the production of IL-1β and TNF-α in PG-treated mice was significantly decreased compared to the vehicle control on day 5. These data suggested that PG modulates the inflammatory state in infected wounds leading to promote wound healing.
Collapse
Affiliation(s)
- Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
8
|
Kakizaki I, Miura A, Mineta T, Hong J, Kato Y. Characterization of Proteoglycan and Hyaluronan in Hot Water Extract from Salmon Cartilage. J Appl Glycosci (1999) 2017; 64:83-90. [PMID: 34354500 PMCID: PMC8056930 DOI: 10.5458/jag.jag.jag-2017_005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/19/2017] [Indexed: 10/31/2022] Open
Abstract
Salmon cartilage proteoglycan fractions have recently gained favor as ingredients of functional food and cosmetics. An optimal hot water method to extract proteoglycan from salmon cartilage has recently been developed. The extracted cartilage includes hyaluronan and collagen in addition to proteoglycan as counterparts that interact with each other. In this study, biochemical analyses and atomic force microscopical analysis revealed global molecular images of proteoglycan in the hot water extract. More than seventy percent of proteoglycans in this extract maintained their whole native structures. Hyaluronan purified from the hot water extract showed a distribution with high molecular weight similar to hyaluronan considered to be native hyaluronan in cartilage. The current data is evidence of the quality of this hot water cartilage extract.
Collapse
Affiliation(s)
- Ikuko Kakizaki
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine
| | - Ayako Miura
- Laboratory of Food Science, Faculty of Education, Hirosaki University
| | - Takashi Mineta
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Jinseo Hong
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yoji Kato
- Laboratory of Food Science, Faculty of Education, Hirosaki University
| |
Collapse
|
9
|
Sano M, Shang Y, Nakane A, Saito T. Salmon nasal cartilage proteoglycan enhances growth of normal human dermal fibroblast through Erk1/2 phosphorylation. Biosci Biotechnol Biochem 2017; 81:1379-1385. [PMID: 28463592 DOI: 10.1080/09168451.2017.1318695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Proteoglycan (PG) is a heavily glycosylated protein, localized to cell surface and extracellular matrix, and has various functions. Recently, it has been gradually revealed that PG interacts with various growth factors and morphogens and regulates cellular functions. Although salmon nasal cartilage PG (Salmon-PG) increases proliferation of immortalized cells, its mechanism remains unclear. In this study, we confirmed the effect of Salmon-PG on normal human dermal fibroblast (NHDF) and investigated the mechanism of PG action on NHDF. Salmon-PG dose- and time-dependently increased NHDF proliferation. Receptor tyrosine kinase array revealed that Salmon-PG increased only Erk1/2 signaling. Erk1/2 phosphorylation was significantly increased by Salmon-PG in a time-(10 min) and dose-(400 or 800 μg/mL) dependent manner. MEK inhibitor suppressed the enhancement of NHDF proliferation by Salmon-PG. The overall findings indicate that Salmon-PG plays a role as a growth factor in NHDF via Erk1/2 activation, suggesting that Salmon-PG contributes to the maintenance of skin homeostasis.
Collapse
Affiliation(s)
- Masahiro Sano
- a Aomori Prefectural Industrial Technology Research Center , Hirosaki Industrial Research Institute , Hirosaki , Japan
| | - Yi Shang
- a Aomori Prefectural Industrial Technology Research Center , Hirosaki Industrial Research Institute , Hirosaki , Japan
| | - Akio Nakane
- b Department of Microbiology and Immunology , Hirosaki University Graduate School of Medicine , Hirosaki , Japan
| | - Tomoaki Saito
- a Aomori Prefectural Industrial Technology Research Center , Hirosaki Industrial Research Institute , Hirosaki , Japan
| |
Collapse
|
10
|
Napavichayanun S, Aramwit P. Effect of animal products and extracts on wound healing promotion in topical applications: a review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:703-729. [DOI: 10.1080/09205063.2017.1301772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Supamas Napavichayanun
- Bioactive Resources for Innovative Clinical Applications Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Chulalongkorn University, Bangkok, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Kakizaki I, Miura A, Ito S, Mineta T, Jin Seo H, Kato Y. Characterization of Proteoglycan and Hyaluronan in Water-based Delipidated Powder of Salmon Cartilage. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Ikuko Kakizaki
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine
| | - Ayako Miura
- Laboratory of Food Science, Faculty of Education, Hirosaki University
| | - Seiko Ito
- School of Food Nutritional Sciences, University of Shizuoka
| | - Takashi Mineta
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Hong Jin Seo
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yoji Kato
- Laboratory of Food Science, Faculty of Education, Hirosaki University
| |
Collapse
|