1
|
Li C, Ma M, Liu X, Hu Y, Feng Z, Zhang R, Wang Z, Nian H, Zhu J. Natural diterpenoids in dermatology: Multifunctional roles and therapeutic potential for skin diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156842. [PMID: 40412058 DOI: 10.1016/j.phymed.2025.156842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/13/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Skin disorders are a collection of prevalent and frequent illnesses that have significant impacts on daily life. Currently, a limited number of effective therapeutic drugs are available that fall far short of the clinical needs; most medications usually offer chronic alleviation instead of treatment. Diterpenoids are the main components of many plant essential oils, such as lemon oil, turpentine, peppermint oil and camphor oil. Most of these compounds are water insoluble, volatile, aromatic, and oily substances. PURPOSE This paper systematically introduces major skin illnesses in regular life, lists related diterpenoids and their clinical applications, and summarizes the current status of clinical research on related diterpenoids and their structural formulas. This review may increase the research focus on dermatological illnesses by providing helpful knowledge for individuals involved in drug research on this subject. METHODS A thorough review of the literature was conducted using the search parameters "diterpenoid," "skin diseases," "structure" and "pharmacological activity" to retrieve articles from the PubMed, Web of Science, ACS, Elsevier Science and Scopus databases.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Minghua Ma
- Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Xin Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yue Hu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zhiguang Feng
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ruoxi Zhang
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zhenwei Wang
- Department of Pneumology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Jianyong Zhu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan,650500, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
2
|
Biswal S, Sahoo SK, Biswal BK. Shikonin a potent phytotherapeutic: a comprehensive review on metabolic reprogramming to overcome drug resistance in cancer. Mol Biol Rep 2025; 52:347. [PMID: 40156720 DOI: 10.1007/s11033-025-10459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Drug resistance remains a major challenge in cancer therapy, often leading to treatment failure. Metabolic reprogramming, a hallmark of cancer, plays a pivotal role in drug resistance. Phytocompounds, particularly shikonin, a naphthoquinone derived from Lithospermum erythrorhizon, have garnered significant interest as potential alternatives for cancer prevention and treatment. This review focuses on the anticancer properties of shikonin, particularly its ability to modulate metabolic reprogramming and overcome drug resistance. This review, based on extensive searches in databases like PubMed, Web of Science, Google Scholar, and Scopus, highlights shikonin's potential as a therapeutic agent. Shikonin exhibits a wide range of anticancer activities, including induction of apoptosis, autophagy, necroptosis, inhibition of angiogenesis, invasion, and migration, as well as disruption of the cell cycle and promotion of DNA damage. It targets altered cancer cell metabolism to inhibit proliferation and reverse drug resistance, making it a promising candidate for therapeutic development. Preliminary clinical trials suggest that shikonin can enhance the efficacy of established chemotherapeutic agents, immunotherapies, and radiation through additive and synergistic interactions. Despite its promise, further research is needed to elucidate the precise mechanisms underlying shikonin's metabolic reprogramming effects in cancer. A comprehensive understanding could pave the way for its integration into standard oncological treatments. With its capacity to act on multiple cancer pathways and enhance conventional treatments, shikonin stands out as a viable candidate for combating drug-resistant cancers and advancing clinical oncology.
Collapse
Affiliation(s)
- Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | | | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
3
|
Pandey P, Verma M, Sanghvi G, R R, Joshi KK, V K, Ray S, Ramniwas S, Singh A, Lakhanpal S, Khan F. Plant-derived terpenoids modulating cancer cell metabolism and cross-linked signaling pathways: an updated reviews. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03937-y. [PMID: 40019530 DOI: 10.1007/s00210-025-03937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Cancer is a critical health issue that remains a predominant cause of mortality globally. It is a complex disease that may effectively regulate many signaling pathways and modify the metabolism of the body to evade the immune system. Understanding neoplastic metabolic reprogramming as a hallmark of cancer has facilitated the creation of innovative metabolism-targeted treatment strategies. Various signaling cascades, such as the PI3K/Akt/mTOR, ERK, JAK/STAT, MAPK/p38, NF-κB/Nrf2, and apoptotic pathways, are commonly involved in this process. It is now widely recognized that an inadequate response and the subsequent development of resistance are frequently caused by the highly selective blockage of these pathways in tumor cells. Consequently, to enhance the overall efficacy of anticancer agents, it is crucial to employ multi-target compounds that can concurrently inhibit multiple vital processes within tumor cells. The utilization of plant-derived bioactive compounds for this purpose is particularly promising, owing to their varied structures and numerous targets. Among these bioactive compounds, terpenoids have exhibited significant anticancer efficacy by targeting various altered signaling pathways. Thus, this review examines the terpenoid class of plant-derived compounds exhibiting potential anticancer activity, including their impact on metabolism and interconnected deregulated signaling pathways in human tumor cells. Accordingly, current research will help in the rational design and critical evaluation of innovative anticancer therapeutics utilizing plant-derived terpenoids for the modulation of cross-linked signaling pathways of cancer metabolism.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
- Chitkara Centre for Research and Development, Chitkara University, Himachal, Pradesh, 174103, India
| | - Meenakshi Verma
- University Centre of Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Seema Ramniwas
- University Centre of Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Ajay Singh
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India.
| |
Collapse
|
4
|
Ali MA, Khan N, Ali A, Akram H, Zafar N, Imran K, Khan T, Khan K, Armaghan M, Palma‐Morales M, Rodríguez‐Pérez C, Caunii A, Butnariu M, Habtemariam S, Sharifi‐Rad J. Oridonin from Rabdosia rubescens: An emerging potential in cancer therapy - A comprehensive review. Food Sci Nutr 2024; 12:3046-3067. [PMID: 38726411 PMCID: PMC11077219 DOI: 10.1002/fsn3.3986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer incidences are rising each year. In 2020, approximately 20 million new cancer cases and 10 million cancer-related deaths were recorded. The World Health Organization (WHO) predicts that by 2024 the incidence of cancer will increase to 30.2 million individuals annually. Considering the invasive characteristics of its diagnostic procedures and therapeutic methods side effects, scientists are searching for different solutions, including using plant-derived bioactive compounds, that could reduce the probability of cancer occurrence and make its treatment more comfortable. In this regard, oridonin (ORI), an ent-kaurane diterpenoid, naturally found in the leaves of Rabdosia rubescens species, has been found to have antitumor, antiangiogenesis, antiasthmatic, antiinflammatory, and apoptosis induction properties. Extensive research has been performed on ORI to find various mechanisms involved in its anticancer activities. This review article provides an overview of ORI's effectiveness on murine and human cancer populations from 1976 to 2022 and provides insight into the future application of ORI in different cancer therapies.
Collapse
Affiliation(s)
| | - Noohela Khan
- Department of Nutrition SciencesRashid Latif Medical CollegeLahorePakistan
| | - Ahmad Ali
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Hira Akram
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Noushaba Zafar
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Kinza Imran
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Tooba Khan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | | | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | - Marta Palma‐Morales
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
| | - Celia Rodríguez‐Pérez
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
| | - Angela Caunii
- “Victor Babes” University of Medicine and PharmacyTimisoaraRomania
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from TimisoaraTimisoaraRomania
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKUniversity of GreenwichKentUK
| | | |
Collapse
|
5
|
Hu X, Huang S, Ye S, Jiang J. The Natural Product Oridonin as an Anticancer Agent: Current Achievements and Problems. Curr Pharm Biotechnol 2024; 25:655-664. [PMID: 37605407 DOI: 10.2174/1389201024666230821110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Oridonin, an active diterpenoid isolated from traditional Chinese herbal medicine, has received a rising attention for its remarkable roles in cancer therapy. In recent years, increasing evidences have revealed that oridonin inhibits the occurrence and development of tumor cells through multiple mechanisms, including induction of apoptosis and autophagy, cell cycle arrest, and inhibition of angiogenesis as well as migration and invasion. In addition, several molecular signal targets have been identified, including ROS, EGFR, NF-κB, PI3K/Akt, and MAPK. In this paper, we review considerable knowledge about the molecular mechanisms and signal targets of oridonin, which has been studied in recent years. It is expected that oridonin may be developed as a novel anti-tumor herbal medicine in human cancer treatment.
Collapse
Affiliation(s)
- Xiangyan Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Sisi Huang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai, 200032, P.R. China
| | - Shiying Ye
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Jinhuan Jiang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| |
Collapse
|
6
|
Croley CR, Pumarol J, Delgadillo BE, Cook AC, Day F, Kaceli T, Ward CC, Husain I, Husain A, Banerjee S, Bishayee A. Signaling pathways driving ocular malignancies and their targeting by bioactive phytochemicals. Pharmacol Ther 2023:108479. [PMID: 37330112 DOI: 10.1016/j.pharmthera.2023.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Ocular cancers represent a rare pathology. The American Cancer Society estimates that 3,360 cases of ocular cancer occur annually in the United States. The major types of cancers of the eye include ocular melanoma (also known as uveal melanoma), ocular lymphoma, retinoblastoma, and squamous cell carcinoma. While uveal melanoma is one of the primary intraocular cancers with the highest occurrence in adults, retinoblastoma remains the most common primary intraocular cancer in children, and squamous cell carcinoma presents as the most common conjunctival cancer. The pathophysiology of these diseases involves specific cell signaling pathways. Oncogene mutations, tumor suppressor mutations, chromosome deletions/translocations and altered proteins are all described as causal events in developing ocular cancer. Without proper identification and treatment of these cancers, vision loss, cancer spread, and even death can occur. The current treatments for these cancers involve enucleation, radiation, excision, laser treatment, cryotherapy, immunotherapy, and chemotherapy. These treatments present a significant burden to the patient that includes a possible loss of vision and a myriad of side effects. Therefore, alternatives to traditional therapy are urgently needed. Intercepting the signaling pathways for these cancers with the use of naturally occurring phytochemicals could be a way to relieve both cancer burden and perhaps even prevent cancer occurrence. This research aims to present a comprehensive review of the signaling pathways involved in various ocular cancers, discuss current therapeutic options, and examine the potential of bioactive phytocompounds in the prevention and targeted treatment of ocular neoplasms. The current limitations, challenges, pitfalls, and future research directions are also discussed.
Collapse
Affiliation(s)
- Courtney R Croley
- Healthcare Corporation of America, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Hudson, FL 34667, USA
| | - Joshua Pumarol
- Ross University School of Medicine, Miramar, FL 33027, USA
| | - Blake E Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Andrew C Cook
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Faith Day
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tea Kaceli
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Caroline C Ward
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Imran Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Ali Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
7
|
Sobral PJM, Vicente ATS, Salvador JAR. Recent advances in oridonin derivatives with anticancer activity. Front Chem 2023; 11:1066280. [PMID: 36846854 PMCID: PMC9947293 DOI: 10.3389/fchem.2023.1066280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Cancer is a leading cause of mortality responsible for an estimated 10 million deaths worldwide in 2020, and its incidence has been rapidly growing over the last decades. Population growth and aging, as well as high systemic toxicity and chemoresistance associated with conventional anticancer therapies reflect these high levels of incidence and mortality. Thus, efforts have been made to search for novel anticancer drugs with fewer side effects and greater therapeutic effectiveness. Nature continues to be the main source of biologically active lead compounds, and diterpenoids are considered one of the most important families since many have been reported to possess anticancer properties. Oridonin is an ent-kaurane tetracyclic diterpenoid isolated from Rabdosia rubescens and has been a target of extensive research over the last few years. It displays a broad range of biological effects including neuroprotective, anti-inflammatory, and anticancer activity against a variety of tumor cells. Several structural modifications on the oridonin and biological evaluation of its derivatives have been performed, creating a library of compounds with improved pharmacological activities. This mini-review aims to highlight the recent advances in oridonin derivatives as potential anticancer drugs, while succinctly exploring their proposed mechanisms of action. To wind up, future research perspectives in this field are also disclosed.
Collapse
Affiliation(s)
- Pedro J. M. Sobral
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - André T. S. Vicente
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal,*Correspondence: Jorge A. R. Salvador,
| |
Collapse
|
8
|
Feng H, Liu Y, Zhang M, Liu R, Wang J, Wang W, He P, Zhang P, Niu F. De Novo design of a humanized antiCD33 antibody-oridonin conjugate for acute myeloid leukemia therapy. Biochem Biophys Res Commun 2022; 629:152-158. [PMID: 36122452 DOI: 10.1016/j.bbrc.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Acute myeloid leukemia (AML) is the most common blood cancer in adults. Patients' 5-year overall survival is less than 30% thus having a poor prognosis. To date, the development of novel target therapies is still necessary to ameliorate patients' survival. Antibody-drug conjugates (ADCs) represent a promising class of drugs for the treatment of AML. CD33 is highly expressed on AML cells, and the FDA-approved CD33-targeted ADC drug-gemtuzumab ozogamicin (GO) has proved the feasibility of CD33-targeted ADC drug design. In this study, we constructed a novel CD33-targeted ADC drug composed of a humanized anti-CD33 antibody and oridonin as a payload with a cleaved chemical linker. Oridonin is a natural product that has great cancer therapy potential while its poor bioavailability and targeting ability limited its clinical use. Herein, we demonstrated that antiCD33-oridonin specifically delivered oridonin in AML cells improved AML cells killing ability of oridonin. Meanwhile, it did not show any non-specific toxicity on CD33 negative cells. In summary, we developed a novel AML targeting ADC with clinical application potential, and therefore provided a new solution for the druggability improvement of oridonin.
Collapse
Affiliation(s)
- Hui Feng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengyao Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruimin Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jincheng Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenjuan Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Penghui Zhang
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China.
| | - Fan Niu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Identification of Prognostic Fatty Acid Metabolism lncRNAs and Potential Molecular Targeting Drugs in Uveal Melanoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3726351. [PMID: 36267302 PMCID: PMC9578887 DOI: 10.1155/2022/3726351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/17/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022]
Abstract
Background The aim of this study was to identify prognostic fatty acid metabolism lncRNAs and potential molecular targeting drugs in uveal melanoma through integrated bioinformatics analysis. Methods In the present study, we obtained the expression matrix of 309 FAM-mRNAs and identified 225 FAM-lncRNAs by coexpression network analysis. We then performed univariate Cox analysis, LASSO regression analysis, and cross-validation and finally obtained an optimized UVM prognosis prediction model composed of four PFAM-lncRNAs (AC104129.1, SOS1-IT1, IDI2-AS1, and DLGAP1-AS2). Results The survival curves showed that the survival time of UVM patients in the high-risk group was significantly lower than that in the low-risk group in the train cohort, test cohort, and all patients in the prognostic prediction model (P < 0.05). We further performed risk prognostic assessment, and the results showed that the risk scores of the high-risk group in the train cohort, test cohort, and all patients were significantly higher than those of the low-risk group (P < 0.05), patient survival decreased and the number of deaths increased with increasing risk scores, and AC104129.1, SOS1-IT1, and DLGAP1-AS2 were high-risk PFAM-lncRNAs, while IDI2-AS1 were low-risk PFAM-lncRNAs. Afterwards, we further verified the accuracy and the prognostic value of our model in predicting prognosis by PCA analysis and ROC curves. Conclusion We identified 24 potential molecularly targeted drugs with significant sensitivity differences between high- and low-risk UVM patients, of which 13 may be potential targeted drugs for high-risk patients. Our findings have important implications for early prediction and early clinical intervention in high-risk UVM patients.
Collapse
|
10
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:660-680. [DOI: 10.1093/jpp/rgac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/02/2022] [Indexed: 11/12/2022]
|
11
|
Zhang S, Wang K, Zhu X, Cherepanoff S, Conway RM, Madigan MC, Zhu L, Murray M, Zhou F. The unfolded protein response and the biology of uveal melanoma. Biochimie 2022; 197:9-18. [DOI: 10.1016/j.biochi.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
|
12
|
Li X, Zhang CT, Ma W, Xie X, Huang Q. Oridonin: A Review of Its Pharmacology, Pharmacokinetics and Toxicity. Front Pharmacol 2021; 12:645824. [PMID: 34295243 PMCID: PMC8289702 DOI: 10.3389/fphar.2021.645824] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Oridonin, as a natural terpenoids found in traditional Chinese herbal medicine Isodon rubescens (Hemsl.) H.Hara, is widely present in numerous Chinese medicine preparations. The purpose of this review focuses on providing the latest and comprehensive information on the pharmacology, pharmacokinetics and toxicity of oridonin, to excavate the therapeutic potential and explore promising ways to balance toxicity and efficacy of this natural compound. Information concerning oridonin was systematically collected from the authoritative internet database of PubMed, Elsevier, Web of Science, Wiley Online Library and Europe PMC applying a combination of keywords involving "pharmacology," "pharmacokinetics," and "toxicology". New evidence shows that oridonin possesses a wide range of pharmacological properties, including anticancer, anti-inflammatory, hepatorenal activities as well as cardioprotective protective activities and so on. Although significant advancement has been witnessed in this field, some basic and intricate issues still exist such as the specific mechanism of oridonin against related diseases not being clear. Moreover, several lines of evidence indicated that oridonin may exhibit adverse effects, even toxicity under specific circumstances, which sparked intense debate and concern about security of oridonin. Based on the current progress, future research directions should emphasize on 1) investigating the interrelationship between concentration and pharmacological effects as well as toxicity, 2) reducing pharmacological toxicity, and 3) modifying the structure of oridonin-one of the pivotal approaches to strengthen pharmacological activity and bioavailability. We hope that this review can provide some inspiration for the research of oridonin in the future.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan-Tao Zhang
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ma
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Khan A, Siddiqui S, Husain SA, Mazurek S, Iqbal MA. Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6897-6928. [PMID: 34133161 DOI: 10.1021/acs.jafc.1c01173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolism of cancer is remarkably different from that of normal cells and confers a variety of benefits, including the promotion of other cancer hallmarks. As the rewired metabolism is a near-universal property of cancer cells, efforts are underway to exploit metabolic vulnerabilities for therapeutic benefits. In the continued search for safer and effective ways of cancer treatment, structurally diverse plant-based compounds have gained substantial attention. Here, we present an extensive assessment of the role of phytocompounds in modulating cancer metabolism and attempt to make a case for the use of plant-based compounds in targeting metabolic vulnerabilities of cancer. We discuss the pharmacological interactions of phytocompounds with major metabolic pathways and evaluate the role of phytocompounds in the regulation of growth signaling and transcriptional programs involved in the metabolic transformation of cancer. Lastly, we examine the potential of these compounds in the clinical management of cancer along with limitations and challenges.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Sybille Mazurek
- Institute of Veterinary-Physiology and Biochemistry, University of Giessen, Giessen 35392, Germany
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
14
|
Wang S, Fu JL, Hao HF, Jiao YN, Li PP, Han SY. Metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy. Pharmacol Res 2021; 170:105728. [PMID: 34119622 DOI: 10.1016/j.phrs.2021.105728] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming, characterized by alterations of cellular metabolic patterns, is fundamentally important in supporting the malignant behaviors of cancer cells. It is considered as a promising therapeutic target against cancer. Traditional Chinese medicine (TCM) and its bioactive components have been used in cancer therapy for an extended period, and they are well-known for their multi-target pharmacological functions and fewer side effects. However, the detailed and advanced mechanisms underlying the anticancer activities of TCM remain obscure. In this review, we summarized the critical processes of cancer cell metabolic reprogramming, including glycolysis, mitochondrial oxidative phosphorylation, glutaminolysis, and fatty acid biosynthesis. Moreover, we systemically reviewed the regulatory effects of TCM and its bioactive ingredients on metabolic enzymes and/or signal pathways that may impede cancer progress. A total of 46 kinds of TCMs was reported to exert antitumor effects and/or act as chemosensitizers via regulating metabolic processes of cancer cells, and multiple targets and signaling pathways were revealed to contribute to the metabolic-modulating functions of TCM. In conclusion, TCM has its advantages in ameliorating cancer cell metabolic reprogramming by its poly-pharmacological actions. This review may shed some new light on the explicit recognition of the mechanisms of anticancer actions of TCM, leading to the development of natural antitumor drugs based on reshaping cancer cell metabolism.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Jia-Lei Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Ping-Ping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| |
Collapse
|
15
|
Nanotechnology-based drug delivery systems for the improved sensitization of tamoxifen. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Fakhri S, Moradi SZ, Farzaei MH, Bishayee A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Semin Cancer Biol 2020; 80:276-305. [PMID: 32081639 DOI: 10.1016/j.semcancer.2020.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Several signaling pathways and basic metabolites are responsible for the control of metabolism in both normal and cancer cells. As emerging hallmarks of cancer metabolism, the abnormal activities of these pathways are of the most noticeable events in cancer. This altered metabolism expedites the survival and proliferation of cancer cells, which have attracted a substantial amount of interest in cancer metabolism. Nowadays, targeting metabolism and cross-linked signaling pathways in cancer has been a hot topic to investigate novel drugs against cancer. Despite the efficiency of conventional drugs in cancer therapy, their associated toxicity, resistance, and high-cost cause limitations in their application. Besides, considering the numerous signaling pathways cross-linked with cancer metabolism, discovery, and development of multi-targeted and safe natural compounds has been a high priority. Natural secondary metabolites have exhibited promising anticancer effects by targeting dysregulated signaling pathways linked to cancer metabolism. The present review reveals the metabolism and cross-linked dysregulated signaling pathways in cancer. The promising therapeutic targets in cancer, as well as the critical role of natural secondary metabolites for significant anticancer enhancements, have also been highlighted to find novel/potential therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
17
|
Ciążyńska M, Bednarski IA, Wódz K, Narbutt J, Lesiak A. NLRP1 and NLRP3 inflammasomes as a new approach to skin carcinogenesis. Oncol Lett 2020; 19:1649-1656. [PMID: 32194656 PMCID: PMC7039172 DOI: 10.3892/ol.2020.11284] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammasomes are key innate immune system receptors that detect pathogenic endo- and exogenous stressors like microorganisms or ultraviolet radiation (UVR) which activate the highly proinflammatory cytokines interleukin-1β and interleukin-18. Inflammasomes are not only involved in inflammation, but also in carcinogenesis and tumor progression. Due to the dynamic increase in non-melanoma skin cancers (NMSC), it has become necessary to determine how UVR, which plays a key role in NMSC development, can regulate the structure and function of inflammasomes. In the present study, the regulatory mechanisms of NOD-Like Receptor Family Pyrin Domain Containing 1 and 3 inflammasome activation as well as an effective inflammasome-mediated immune response after UVR exposition are discussed. The differences and similarities between these molecular complexes that monitor cellular health, inflammation, and skin carcinogenesis are also highlighted. Despite numerous scientific data, more studies are still required to better understand the biology of inflammasomes in skin cancer development and to explore their therapeutic potential.
Collapse
Affiliation(s)
- Magdalena Ciążyńska
- Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, Lodz 93-513, Poland
| | - Igor A Bednarski
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz 91-347, Poland
| | - Karolina Wódz
- Laboratory of Molecular Biology, VET-LAB, Brudzew 62-720, Poland
| | - Joanna Narbutt
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz 91-347, Poland
| | - Aleksandra Lesiak
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz 91-347, Poland
| |
Collapse
|
18
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
19
|
Kocik J, Machula M, Wisniewska A, Surmiak E, Holak TA, Skalniak L. Helping the Released Guardian: Drug Combinations for Supporting the Anticancer Activity of HDM2 (MDM2) Antagonists. Cancers (Basel) 2019; 11:E1014. [PMID: 31331108 PMCID: PMC6678622 DOI: 10.3390/cancers11071014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 01/22/2023] Open
Abstract
The protein p53, known as the "Guardian of the Genome", plays an important role in maintaining DNA integrity, providing protection against cancer-promoting mutations. Dysfunction of p53 is observed in almost every cancer, with 50% of cases bearing loss-of-function mutations/deletions in the TP53 gene. In the remaining 50% of cases the overexpression of HDM2 (mouse double minute 2, human homolog) protein, which is a natural inhibitor of p53, is the most common way of keeping p53 inactive. Disruption of HDM2-p53 interaction with the use of HDM2 antagonists leads to the release of p53 and expression of its target genes, engaged in the induction of cell cycle arrest, DNA repair, senescence, and apoptosis. The induction of apoptosis, however, is restricted to only a handful of p53wt cells, and, generally, cancer cells treated with HDM2 antagonists are not efficiently eliminated. For this reason, HDM2 antagonists were tested in combinations with multiple other therapeutics in a search for synergy that would enhance the cancer eradication. This manuscript aims at reviewing the recent progress in developing strategies of combined cancer treatment with the use of HDM2 antagonists.
Collapse
Affiliation(s)
- Justyna Kocik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika Machula
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Aneta Wisniewska
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
20
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
21
|
Guerra AR, Duarte MF, Duarte IF. Targeting Tumor Metabolism with Plant-Derived Natural Products: Emerging Trends in Cancer Therapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10663-10685. [PMID: 30227704 DOI: 10.1021/acs.jafc.8b04104] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recognition of neoplastic metabolic reprogramming as one of cancer's hallmarks has paved the way for developing novel metabolism-targeted therapeutic approaches. The use of plant-derived natural bioactive compounds for this endeavor is especially promising, due to their diverse structures and multiple targets. Hence, over the past decade, a growing number of studies have assessed the impact of phytochemicals on tumor cell metabolism, aiming at improving current knowledge on their mechanisms of action and, at the same time, evaluating their potential as anti-cancer metabolic modulators. In this Review, we focus on three classes of plant-derived compounds with promising anti-cancer activity-phenolic compounds, isoprenoids, and alkaloids-to describe their effects on major energetic and biosynthetic pathways of human tumor cells. Such a comprehensive and integrated account of the ability of these compounds to hit different metabolic targets is expected to contribute to the rational design and critical assessment of novel anti-cancer therapies based on natural-product-mediated metabolic reprogramming.
Collapse
Affiliation(s)
- Angela R Guerra
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja , Apartado 6158 , 7801-908 Beja , Portugal
- CICECO - Instituto de Materiais de Aveiro, Departamento de Quı́mica , Universidade de Aveiro , Campus de Santiago , 3810-193 Aveiro , Portugal
| | - Maria F Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja , Apartado 6158 , 7801-908 Beja , Portugal
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas , Universidade de Évora , Pólo da Mitra, 7006-554 Évora , Portugal
| | - Iola F Duarte
- CICECO - Instituto de Materiais de Aveiro, Departamento de Quı́mica , Universidade de Aveiro , Campus de Santiago , 3810-193 Aveiro , Portugal
| |
Collapse
|
22
|
Jogi H, Maheshwari R, Raval N, Kuche K, Tambe V, Mak KK, Pichika MR, Tekade RK. Carbon nanotubes in the delivery of anticancer herbal drugs. Nanomedicine (Lond) 2018; 13:1187-1220. [DOI: 10.2217/nnm-2017-0397] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is estimated to be a significant health problem of the 21st century. The situation gets even tougher when it comes to its treatment using chemotherapy employing synthetic anticancer molecules with numerous side effects. Recently, there has been a paradigm shift toward the adoption of herbal drugs for the treatment of cancer. In this context, a suitable delivery system is principally warranted to deliver these herbal biomolecules specifically at the tumorous site. To achieve this goal, carbon nanotubes (CNTs) have been widely explored to deliver anticancer herbal molecules with improved therapeutic efficacy and safety. This review uniquely expounds the biopharmaceutical, clinical and safety aspects of different anticancer herbal drugs delivered through CNTs with a cross-talk on their outcomes. This review will serve as a one-stop-shop for the readers on various anticancer herbal drugs delivered through CNTs as a futuristic delivery device.
Collapse
Affiliation(s)
- Hardi Jogi
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Rahul Maheshwari
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Kaushik Kuche
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Kit-Kay Mak
- School of Postgraduate Studies & Research, International Medical University, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| |
Collapse
|
23
|
Li CY, Wang Q, Shen S, Wei XL, Li GX. Oridonin inhibits migration, invasion, adhesion and TGF-β1-induced epithelial-mesenchymal transition of melanoma cells by inhibiting the activity of PI3K/Akt/GSK-3β signaling pathway. Oncol Lett 2017; 15:1362-1372. [PMID: 29399187 DOI: 10.3892/ol.2017.7421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been reported to play pivotal roles in tumor invasion and metastasis. Inhibition of EMT may exert beneficial effects in regulating metastasis. Oridonin (ORI), an active diterpenoid compound isolated from Rabdosia rubescens, was found to be a potent anti-metastatic agent. However, the possible involvement of ORI in the EMT in malignant melanoma is unclear. The present study found that ORI inhibited cell migration, invasion, and adhesion in A375 and B16-F10 melanoma cells. The transforming growth factor-β1 (TGF-β1)-induced EMT was also inhibited in ORI-treated cells, as reflected in the upregulation of E-cadherin, and downregulation of vimentin and Snail. Similar results were observed in A375 and B16-F10 melanoma cells treated with ORI. Furthermore, pre-treatment with ORI blocked the TGF-β1-induced phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (Akt)/glycogen synthase kinase (GSK)-3β signaling pathway activation. These effects mimicked PI3 kinase inhibitor LY294002 treatment. ORI interfered with the PI3K/Akt/GSK-3β pathway, and reversed TGF-β1-induced EMT, which suppressed the invasion and metastasis of melanoma cells. Taken together, the present study demonstrated that ORI inhibits melanoma cells migration, invasion, and adhesion and TGF-β1-induced EMT through the PI3K/Akt/GSK-3β signaling pathway. These findings suggest that ORI is a promising anti-metastasis agent for melanoma.
Collapse
Affiliation(s)
- Chun-Yu Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Qi Wang
- Department of Oncology, Shanghai Pulmonary Hospital Affiliated Tongji University, Shanghai 200433, P.R. China
| | - Shen Shen
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiao-Lu Wei
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Guo-Xia Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
24
|
Yin H, Zhu Q, Liu M, Tu G, Li Q, Yuan J, Wen S, Yang G. GPER promotes tamoxifen-resistance in ER+ breast cancer cells by reduced Bim proteins through MAPK/Erk-TRIM2 signaling axis. Int J Oncol 2017; 51:1191-1198. [PMID: 28902352 DOI: 10.3892/ijo.2017.4117] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/10/2017] [Indexed: 11/06/2022] Open
Abstract
Tamoxifen resistance is a major clinical challenge in breast cancer treatment. Our previous studies find that GPER and its down-stream signaling play a pivotal role in the development of tamoxifen (TAM) resistance. cDNA array analysis indicated a set of genes associated with cell apoptosis are aberrant in GPER activated and TAM-resistant MCF-7R cells compared with TAM-sensitive MCF-7 cells. Among these genes, Bim (also named BCL2-L11), a member of the BH3-only pro-apoptotic protein family is significantly decreased, and TRIM RING finger protein TRIM2 (a ubiquitin ligase) is highly expressed in MCF-7R. To understand the mechanism of TAM-resistance in GPER activated ER+ breast cancer, the function of TRIM2 and Bim inducing cell apoptosis was studied. By using immunohistochemical and western blot analysis, there is an adverse correlation between TRIM2 and Bim in TAM-resistant breast tumor tissues and MCF-7R cells. Knockdown Bim in TAM-sensitive MCF-7 cells or overexpression of Bim in TAM-resistant MCF-7 cells significantly changed its sensibility to TAM through altering the levels of cleaved PARP and caspase-3. Activation of GPER and its downstream signaling MAPK/ERK, not PI3K/AKT, led to enhanced TRIM2 protein levels and affected the binding between TRIM2 and Bim which resulted in a reduced Bim in TAM-resistant breast cancer cells. Thus, the present study provides a novel insight to TAM-resistance in ER-positive breast cancer cells.
Collapse
Affiliation(s)
- Heng Yin
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing Zhu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jie Yuan
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Siyang Wen
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guanglun Yang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
25
|
Wang XH, Zhang SF, Bao JT, Liu FY. Oridonin synergizes with Nutlin-3 in osteosarcoma cells by modulating the levels of multiple Bcl-2 family proteins. Tumour Biol 2017; 39:1010428317701638. [PMID: 28618955 DOI: 10.1177/1010428317701638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The small-molecule inhibitors of p53-murine double minute 2 interaction, such as Nutlin-3, are effective against cancers bearing wild-type p53. However, murine double minute 2 inhibitors often are unable to completely eliminate solid tumor cells. To address this issue, we investigated the anticancer effects of Nutlin-3 in combination with Oridonin in osteosarcoma cells. We found that Oridonin at sub-toxic concentrations synergistically enhanced Nutlin-3-mediated cell viability inhibition in wild-type p53 U2OS and SJSA-1, but not in p53-mutant MNNG/HOS and in null-p53 Saos-2 osteosarcoma cell lines. Importantly, in the presence of Oridonin, Nutlin-3 could completely abolish cell viability in the wild-type p53 osteosarcoma cell lines. Western blotting analysis showed that Oridonin treatment rapidly and distinctly increased the levels of all three forms of Bim and also markedly reduced the levels of Bcl-2 and Bcl-xl in osteosarcoma cells. Western blotting analysis further showed that Oridonin considerably enhanced Nutlin-3-triggered activation of caspases-9 and -3 and poly(ADP-ribose) polymerase cleavage. Flow cytometry assay showed that Oridonin significantly enhanced Nutlin-3-mediated apoptosis in wild-type p53 osteosarcoma cells. Overall, our results suggest that the combined treatment of Nutlin-3 plus Oridonin may offer a novel therapeutic strategy for osteosarcoma.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- 1 Department of Pediatric Orthopedics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shu-Feng Zhang
- 2 Department of Pediatric Surgery, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Tao Bao
- 2 Department of Pediatric Surgery, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Fu-Yun Liu
- 1 Department of Pediatric Orthopedics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Islam MT. Diterpenes and Their Derivatives as Potential Anticancer Agents. Phytother Res 2017; 31:691-712. [PMID: 28370843 DOI: 10.1002/ptr.5800] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
As therapeutic tools, diterpenes and their derivatives have gained much attention of the medicinal scientists nowadays. It is due to their pledging and important biological activities. This review congregates the anticancer diterpenes. For this, a search was made with selected keywords in PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society and miscellaneous databases from January 2012 to January 2017 for the published articles. A total 28, 789 published articles were seen. Among them, 240 were included in this study. More than 250 important anticancer diterpenes and their derivatives were seen in the databases, acting in the different pathways. Some of them are already under clinical trials, while others are in the nonclinical and/or pre-clinical trials. In conclusion, diterpenes may be one of the lead molecules in the treatment of cancer. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Southern University Bangladesh, Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil
| |
Collapse
|
27
|
Li D, Han T, Liao J, Hu X, Xu S, Tian K, Gu X, Cheng K, Li Z, Hua H, Xu J. Oridonin, a Promising ent-Kaurane Diterpenoid Lead Compound. Int J Mol Sci 2016; 17:E1395. [PMID: 27563888 PMCID: PMC5037675 DOI: 10.3390/ijms17091395] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022] Open
Abstract
Oridonin belongs to ent-kaurane tetracyclic diterpenoid and was first isolated from Isodon species. It exhibits inhibitory activities against a variety of tumor cells, and pharmacological study shows that oridonin could inhibit cell proliferation, DNA, RNA and protein synthesis of cancer cells, induce apoptosis and exhibit an antimutagenic effect. In addition, the large amount of the commercially-available supply is also very important for the natural lead oridonin. Moreover, the good stability, suitable molecular weight and drug-like property guarantee its further generation of a natural-like compound library. Oridonin has become the hot molecule in recent years, and from the year 2010, more than 200 publications can be found. In this review, we summarize the synthetic medicinal chemistry work of oridonin from the first publication 40 years ago and share our research experience of oridonin for about 10 years, which may provide useful information to those who are interested in this research field.
Collapse
Affiliation(s)
- Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Tong Han
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jie Liao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Kangtao Tian
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, China.
| | - Keguang Cheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, and School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China.
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
28
|
Abstract
Oridonin has attracted considerable attention in the last decade because of its anti-cancer pharmacological properties. This ent-kaurane diterpenoid, isolated from the Chinese herb Rabdosia rubescens and some related species, has
demonstrated great potential in the treatment profile of many diseases by exerting anti-tumor, anti-inflammatory, pro-apoptotic, and neurological effects. Unfortunately, the mechanisms via which oridonin exerts these effects remain poorly understood. This review provides an overview of the multifunctional effects of oridonin as well as the reasons for its potential for investigations in the treatment of many diseases other than cancer.
Collapse
Affiliation(s)
- Brice Ayissi Owona
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tübingen, Calwer Street 3, Tübingen, Germany,
| | | |
Collapse
|
29
|
Chinese Herbs Interfering with Cancer Reprogramming Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9282813. [PMID: 27242914 PMCID: PMC4875995 DOI: 10.1155/2016/9282813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
Emerging evidence promotes a reassessment of metabolic reprogramming regulation in cancer research. Although there exists a long history of Chinese herbs applied in cancer treatment, few reports have addressed the effects of Chinese herbal components on metabolic reprogramming, which is a central cancer hallmark involved in the slowing or prevention of chemoresistance in cancer cells. In this review, we have focused on four core elements altered by metabolic reprogramming in cancer cells. These include glucose transport, glycolysis, mitochondrial oxidative phosphorylation, and fatty acid synthesis. With this focus, we have summarized recent advances in metabolic reprogramming of cancer cells in response to specific Chinese herbal components. We propose that exploring Chinese herbal interference in cancer metabolic reprogramming might identify new therapeutic targets for cancer and more ways in which to approach metabolism-related diseases.
Collapse
|
30
|
Zhao SM, Chou GX, Yang QS, Wang W, Zhou JL. Abietane diterpenoids from Caryopteris incana (Thunb.) Miq. Org Biomol Chem 2016; 14:3510-20. [PMID: 26952788 DOI: 10.1039/c6ob00139d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Twelve new diterpenes, caryopincaolide A-L (1-4, 11-12, 16-19, 27-28), together with twenty-eight known diterpenes, have been isolated from the whole plant of Caryopteris incana (Thunb.) Miq. Their structures were elucidated on the basis of 1D and 2D NMR, IR, X-ray crystal diffraction and mass spectroscopic data, as well as ECD calculations. All compounds were tested for in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory activity, with compounds 3, 4, 28, 29, and 40 exhibiting DPP-IV inhibitory effects with IC50 values ranging from 54.2 to 228.9 μM. Compounds 1, 3 and 4 also showed potent activity toward the inhibition of the growth of human cancer cells and 1 can induce apoptosis in Hey and A-549 cells.
Collapse
Affiliation(s)
- Sen-Miao Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | | | | | | | | |
Collapse
|