1
|
Wei W, Li C, Zhang B, Huang D, Li Z, Gao J. Total Glucosides of Paeony Ameliorate Myocardial Injury in Chronic Heart Failure Rats by Suppressing PARP-1. J Cardiovasc Transl Res 2024; 17:388-402. [PMID: 37831380 PMCID: PMC11052853 DOI: 10.1007/s12265-023-10440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Total glucosides of paeony (TGP) have a potential protective effect on chronic heart failure (CHF) rats, but the mechanism remains unclear. PARP inhibition prevents the decrease in myocardial contractility. Therefore, we aim to investigate the effects and mechanisms of TGP on CHF and the role of PARP-1 in CHF. Left anterior descending ligation rats and adriamycin-treated H9C9 cells were used as CHF models, and captopril as a positive control for in vivo experiments. We found that TGP alleviated myocardial remodeling and improved cardiac morphology and function. TGP also reduced myocardial apoptosis and autophagy, decreased inflammatory factor release, and inhibited the PARP-1 and NF-κB proteins. Through cell transfection, we found that PAPR-1 knockdown inhibited NF-κB nuclear translocation. Additionally, TGP inhibited apoptosis, autophagy, and inflammation in CHF cells, while PARP-1 overexpression partially antagonized them. In conclusion, TGP has the potential to improve CHF and PARP-1 may be a potential target.
Collapse
Affiliation(s)
- Wenjuan Wei
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Caiyan Li
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Baoyong Zhang
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Deyun Huang
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Zheming Li
- College of Pharmacy, Hangzhou Medical College, No. 481, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| | - Jiaer Gao
- Department of Cardiology, The First People's Hospital of Xiaoshan District, No. 199, Shixin Nan Road, Xiaoshan District, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
2
|
Zhu H, He L. Reply to: Muscle-specific programmed cell death 5 in heart disease: Friend or foe? Int J Cardiol 2022; 366:70. [PMID: 35817201 DOI: 10.1016/j.ijcard.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Hongxin Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Muscle-specific programmed cell death 5 in heart disease: Friend or foe? Int J Cardiol 2022; 356:87. [DOI: 10.1016/j.ijcard.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
|
4
|
Muscle-specific programmed cell death 5 deletion attenuates cardiac aging. Int J Cardiol 2021; 345:98-104. [PMID: 34710491 DOI: 10.1016/j.ijcard.2021.10.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023]
Abstract
Programmed cell death 5 (PDCD5) is a tumor suppressor gene that regulates the cell cycle, apoptosis and immune responses. However, the physiological function of Pdcd5 in cardiac aging remains unknown. We find that Pdcd5 mRNA and protein levels were significantly increased in the heart of mice with age. Therefore, we hypothesize that Pdcd5 regulates cardiac aging. To test the hypothesis, we generated muscle-specific Pdcd5-deficient mice. Mature adult Pdcd5-deficient mice had normal cardiac morphology and function. In naturally aged mice, Pdcd5 deficiency alleviated age-related cardiac phenotypes including reduced fibrosis and suppressed cardiomyocyte hypertrophy. Moreover, muscle-specific Pdcd5 deficiency attenuated cellular senescence in the heart as demonstrated by decreased number of senescence-associated β-galactosidase-positive cells, diminished p53, p21 and p16 expression, and reduced the senescence-associated secretory phenotype. Apoptotic cell death was reduced by Pdcd5 deficiency in the heart as revealed by terminal deoxynucleotidyl transferase dUTP nick end labeling assay, which was coincident with diminished Bcl-2-associated X protein, and enhanced B-cell lymphoma 2 and X-linked inhibitor of apoptosis protein expression. Mitochondrial quality in cardiomyocytes was improved by Pdcd5 deficiency through increased Parkin-mediated mitophagy. In addition, Pdcd5 deficiency alleviated doxorubicin-induced premature cellular senescence and cardiac aging. Furthermore, Pdcd5 protein abundance was significantly correlated with p53 protein abundance, and Pdcd5 interacted with p53 in the heart. Taken together, our results reveal that Pdcd5 deficiency attenuates cardiac aging by reducing cellular senescence and apoptosis, and increasing Parkin-mediated mitophagy, likely through p53. Pdcd5 is a novel regulator of cardiac aging and a potential therapeutic target.
Collapse
|
5
|
Peng Q, Ding R, Wang X, Yang P, Jiang F, Chen X. Effect of Irisin on Pressure Overload-Induced Cardiac Remodeling. Arch Med Res 2020; 52:182-190. [PMID: 33067011 DOI: 10.1016/j.arcmed.2020.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/31/2020] [Accepted: 10/02/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Irisin has been considered a prognostic factor in several cardiovascular diseases. Nevertheless, no data are available on the role of irisin in cardiac remodeling. AIM OF THE STUDY This study aimed to determine the potential role of irisin in cardiac remodeling and explore potential mechanisms. METHODS A total of 40 rats that underwent transverse abdominal aortic constriction (TAC) surgery or sham operation were divided into four groups: sham + saline (NS), sham + irisin, TAC + NS, and TAC + irisin. After 6 weeks of treatment, echocardiography was performed to assess in vivo cardiac morphology. The left ventricular myocardium was prepared and observed by pathological examination. The effect of irisin on cardiomyocyte apoptosis and the expression of oxidative stress and cardiac hypertrophy markers were observed. Then, the effect of irisin on the Akt signaling system was also detected. RESULTS The rats in the TAC group displayed obvious signs of cardiac dysfunction and cardiac hypertrophy, and irisin treatment could reverse these changes. Irisin could inhibit the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 and xanthine oxidase in TAC rats and increase the expression of antioxidant enzymes. Furthermore, the expression of phosphorylated protein kinase B (p-Akt), phosphorylated mammalian target of rapamycin (p-mTOR), and phosphorylated glycogen synthase kinase 3β (p-GSK3β) was much higher in the cardiac remodeling groups (p <0.05 vs. sham rats). Irisin could relieve the inhibition effect and reduce the expression level of these three proteins. CONCLUSIONS Irisin treatment could significantly improve cardiac remodeling by inhibiting oxidative stress via attenuating the Akt signaling activation.
Collapse
Affiliation(s)
- Qing Peng
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruilin Ding
- Institute of Drug Clinical Trial/GCP Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaojie Wang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ping Yang
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Jiang
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Lin WT, Nithiyanantham S, Hsieh DJY, Chen RJ, Day CH, Liao JY, Kuo CH, Mahalakshmi B, Kuo WW, Huang CY. Bioactive peptides attenuate cardiac apoptosis in spontaneously hypertensive rat hearts through activation of autophagy and mitochondrial biogenesis pathway. ENVIRONMENTAL TOXICOLOGY 2020; 35:804-810. [PMID: 32141235 DOI: 10.1002/tox.22916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Alcalase potato protein hydrolysate (APPH) might have a very important role in therapeutic effects. This study aims to examine the beneficial effects of bioactive peptides (DIKTNKPVIF [DI] and IF) from APPH supplement in the regulation of cardiac apoptosis, autophagy, and mitochondrial biogenesis pathway in spontaneously hypertensive rats (SHR). We have investigated ejection fraction, fractional shortening, Tunel assay, apoptosis, autophagy, and mitochondrial biogenesis pathway marker expression to show the efficacy of bioactive peptides in an SHR model. Bioactive peptides significantly upregulate ejection fraction and fractional shortening in SHR rats. SHR rats exhibited higher protein expression of apoptotic markers such as BAD, cytochrome c, and caspase 3. Finally, the bioactive peptides upregulate survival proteins (p-AKT/p-PI3K), autophagy (Beclin1/LC3B), and mitochondrial biogenesis (p-AMPKα/SIRT1/PGC1α/p-Foxo3a/Nrf2/CREB) marker expressions compared with the SHR groups. In summary, the bioactive peptides protect the heart tissues through the activation of autophagy and mitochondrial biogenesis pathway and thereby attenuate cardiac apoptosis in a spontaneously hypertensive rat model.
Collapse
Affiliation(s)
- Wan Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan
| | | | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Jia Ying Liao
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Diseases Research Center, Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
7
|
Xu CN, Kong LH, Ding P, Liu Y, Fan ZG, Gao EH, Yang J, Yang LF. Melatonin ameliorates pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165848. [PMID: 32473999 DOI: 10.1016/j.bbadis.2020.165848] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022]
Abstract
Cardiac hypertrophy, including hypertension and valvular dysfunction, is a pathological feature of many cardiac diseases that ultimately leads to heart failure. Melatonin confers a protective role against pathological cardiac hypertrophy, but the underlying mechanisms remain elusive. In the present study, we hypothesized that melatonin protects against pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway. Male C57BL/6 mice that received adenovirus carrying cardiac-specific Atg5 (under the cTNT promoter; Ad-cTNT-Atg5) underwent transverse aortic constriction (TAC) or sham operation and received an intraperitoneal injection of melatonin (10 mg/kg/d), vehicle or LY294002 (10 mg/kg/d) for 8 weeks. Melatonin treatment for 8 weeks markedly attenuated cardiac hypertrophy and restored impaired cardiac function, as indicated by a decreased HW/BW ratio, reduced cell cross-sectional area and fibrosis, downregulated the mRNA levels of ANP, BNP, and β-MHC and ameliorated adverse effects on the LVEF and LVFS. Melatonin treatment also inhibited apoptosis and alleviated autophagy dysfunction. Furthermore, melatonin inhibited Akt/mTOR pathway activation, while these effects were blocked by LY294002. In addition, the effect of melatonin regulation on TAC-induced autophagy dysfunction was inhibited by LY294002 or cardiac-specific Atg5 overexpression. As expected, Akt/mTOR pathway inhibition or cardiac-specific Atg5 overexpression restrained melatonin alleviation of pressure overload-induced cardiac hypertrophy. These results demonstrated that melatonin ameliorated pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Chen-Nian Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Ling-Heng Kong
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China; School of Basic Medical Science, Xi'an Medical University, Xi'an 710021, China
| | - Peng Ding
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Zhen-Ge Fan
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Er-He Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Li-Fang Yang
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an 710003, China.
| |
Collapse
|
8
|
CD47 Deficiency Attenuates Isoproterenol-Induced Cardiac Remodeling in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7121763. [PMID: 31827695 PMCID: PMC6885801 DOI: 10.1155/2019/7121763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
In this study, we investigated whether CD47 deficiency attenuates isoproterenol- (ISO-) induced cardiac remodeling in mice. Cardiac remodeling was induced by intraperitoneal (i.p.) injection of ISO (60 mg·kg−1·d−1 in 100 μl of sterile normal saline) daily for 14 days and was confirmed by increased levels of lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB), increased heart weight to body weight (HW/BW) ratios, and visible cardiac fibrosis. Apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were found to be significantly higher in the ISO group than in the control group, while superoxide dismutase (SOD) levels were suppressed in the ISO group. However, CD47 knockout significantly limited ISO-induced increases in LDH, CK-MB, and HW/BW ratios, cardiac fibrosis, oxidative stress, and apoptosis in the heart. In addition, CD47 deficiency also increased p-AMPK and LAMP2 expression and decreased HDAC3, cleaved Caspase-3, cleaved Caspase-9, LC3II, and p62 expression in cardiac tissues. In conclusion, CD47 deficiency reduced i.p. ISO-induced cardiac remodeling probably by inhibiting the HDAC3 pathway, improving AMPK signaling and autophagy flux, and rescuing autophagic clearance.
Collapse
|
9
|
Ye J, Zheng Q, Jia S, Qiao X, Cao Y, Xu C, Weng L, Zhao L, Chen Y, Liu J, Wang T, Cheng H, Zheng M. Programmed Cell Death 5 Provides Negative Feedback on Cardiac Hypertrophy Through the Stabilization of Sarco/Endoplasmic Reticulum Ca 2+-ATPase 2a Protein. Hypertension 2019; 72:889-901. [PMID: 30354711 DOI: 10.1161/hypertensionaha.118.11357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PDCD5 (programmed cell death 5) is ubiquitously expressed in tissues, including the heart; however, the mechanism underlying the cardiac function of PDCD5 has not been understood. We investigated the mechanisms of PDCD5 in the pathogenesis of cardiac hypertrophy. Cardiac-specific PDCD5 knockout mice developed severe cardiac hypertrophy and impaired cardiac function, whereas PDCD5 protein was significantly increased in transverse aortic constriction mouse hearts and phenylephrine-stimulated cardiomyocytes. Overexpression of PDCD5 inhibited phenylephrine-induced cardiomyocyte hypertrophy, and knockdown of PDCD5 induced cardiomyocyte hypertrophy and aggravated phenylephrine-induced hypertrophy. The expression of PDCD5 protein was regulated by NFATc2 (nuclear factor of activated T cells c2) during hypertrophy. SERCA2a (sarco/endoplasmic reticulum Ca2+-ATPase 2a) expression was decreased in PDCD5-deficient mouse hearts because of increased ubiquitination. PDCD5-deficient cardiomyocytes displayed decreased calcium uptake rate, slowed decay of Ca2+ transients, decreased calcium stores, and diastolic dysfunction. Moreover, reintroduction of PDCD5 in PDCD5-deficient mouse hearts reserved SERCA2a protein, suppressed NFATc2 protein, and rescued the hypertrophy and cardiac dysfunction. Our results revealed that PDCD5 is a novel target of NFATc2 in the hypertrophic heart and provides negative feedback to protect the heart against excessive hypertrophy via the stabilization of SERCA2a protein.
Collapse
Affiliation(s)
- Jingjing Ye
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Qiaoxia Zheng
- Institute of Molecular Medicine, Peking University, Beijing, P.R. China (Q.Z., H.C.)
| | - Shi Jia
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Xue Qiao
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Yangpo Cao
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Chunling Xu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Lin Weng
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Lifang Zhao
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| | - Yingyu Chen
- Key Laboratory of Medical Immunology, Ministry of Health (Y.C.), Peking University Health Science Center, Beijing, China
| | - Jian Liu
- Departments of Cardiology (J.L.), Peking University People's Hospital, Beijing, China
| | - Tianbing Wang
- Trauma and Orthopedics (T.W.), Peking University People's Hospital, Beijing, China
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, P.R. China (Q.Z., H.C.)
| | - Ming Zheng
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences (J.Y., S.J., X.Q., Y.C., C.X., L.W., L.Z., M.Z.), Peking University Health Science Center, Beijing, China
| |
Collapse
|
10
|
Chiang JT, Badrealam KF, Shibu MA, Cheng SF, Shen CY, Chang CF, Lin YM, Viswanadha VP, Liao SC, Huang CY. Anti-Apoptosis and Anti-Fibrosis Effects of Eriobotrya Japonica in Spontaneously Hypertensive Rat Hearts. Int J Mol Sci 2018; 19:ijms19061638. [PMID: 29857545 PMCID: PMC6032044 DOI: 10.3390/ijms19061638] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/02/2023] Open
Abstract
Myocardial apoptosis and fibrosis represent important contributing factors for development of hypertension-induced heart failure. The present study aims to investigate the potential effects of Eriobotrya japonica leaf extract (EJLE) against hypertension-induced cardiac apoptosis and fibrosis in spontaneously hypertensive rats (SHRs). Twelve-week-old male rats were randomly divided into four different groups; control Wistar Kyoto (WKY) rats, hypertensive SHR rats, SHR rats treated with a low dose (100 mg/kg body weight) of EJLE and SHR rats treated with a high dose (300 mg/kg body weight) of EJLE. Animals were acclimatized for 4 weeks and thereafter were gastric fed for 8 weeks with two doses of EJLE per week. The rats were then euthanized following cardiac functional analysis by echocardiography. The cardiac tissue sections were examined by Terminal Deoxynucleotidyl Transferase-Mediated Deoxyuridine Triphosphate (dUTP) Nick End-Labeling (TUNEL) assay, histological staining and Western blotting to assess the cardio-protective effects of EJ in SHR animals. Echocardiographic measurements provided convincing evidence to support the ability of EJ to ameliorate crucial cardiac functional characteristics. Furthermore, our results reveal that supplementation of EJLE effectively attenuated cardiac apoptosis and fibrosis and also enhanced cell survival in hypertensive SHR hearts. Thus, the present study concludes that EJLE potentially provides cardio-protective effects against hypertension-induced cardiac apoptosis and fibrosis in SHR animals.
Collapse
Affiliation(s)
- Jui-Ting Chiang
- Graduate Institute of Aging Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Khan Farheen Badrealam
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Marthandam Asokan Shibu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Sue-Fei Cheng
- Department of Pharmacy, Taiwan Adventist Hospital, Taipei 10556, Taiwan.
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City 11260, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, 23 Pingguang Road, Pingtung 91202, Taiwan.
| | - Chih-Feng Chang
- Department of Internal Medicine, Division of Cardiology, Taichung Armed Forces Taichung General Hospital, Taichung 40402, Taiwan.
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan.
| | | | - Shih-Chieh Liao
- School of Medicine, College of Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Chinese Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
- Department of Biological Science, Asia University, Taichung 40402, Taiwan.
| |
Collapse
|
11
|
Li P, Fei H, Wang L, Xu H, Zhang H, Zheng L. PDCD5 regulates cell proliferation, cell cycle progression and apoptosis. Oncol Lett 2017; 15:1177-1183. [PMID: 29403562 DOI: 10.3892/ol.2017.7401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death (PDCD)5 is cloned from human leukemia cell line TF-1. PDCD5 is one of the members of the programmed cell death protein family that is frequently involved in tumor growth and apoptosis. To investigate the molecular and cellular functions of PDCD5, the present study established a PDCD5 stably overexpressing A431 cell line and examined the role of PDCD5 in cell proliferation, cell cycle progression and apoptosis. The data demonstrated that overexpression of PDCD5 significantly inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis in A431 cells. The expression profiles of certain key regulators of these cellular events were further investigated, including P53, B cell lymphoma (BCL)-2, BCL-2 associated X protein (BAX) and caspase (CASP)3. The data demonstrated that at the transcript and protein levels, P53, BAX and CASP3 were all upregulated in the PDCD5 stably overexpressing A431 cells whereas BCL-2 was downregulated, indicating that PDCD5 acts as an important upstream regulator of P53, BCL-2, BAX and CASP3. The data suggest that PDCD5 regulates cell proliferation, cell cycle progression and apoptosis in A431 cells. PDCD5 may be a novel tumor suppressor gene, and may be potentially used for cancer treatment in the future.
Collapse
Affiliation(s)
- Penghui Li
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hongxin Fei
- Department of Histology and Embryology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lihong Wang
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Huiyu Xu
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Haiyan Zhang
- Department of Histology and Embryology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lihong Zheng
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
12
|
Tan H, Chen L, Ma J. Penehyclidine hydrochloride post-conditioning reduces ischemia/reperfusion-induced cardiomyocyte apoptosis in rats. Exp Ther Med 2017; 14:4272-4278. [PMID: 29104640 PMCID: PMC5658749 DOI: 10.3892/etm.2017.5089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/29/2017] [Indexed: 12/25/2022] Open
Abstract
Ischemic heart disease is a major cause of mortality and disability worldwide. Timely reperfusion is currently the most effective method of treating ischemic heart disease; however, abrupt reperfusion may cause ischemia/reperfusion (I/R) injury. Apoptosis serves an important role in the progression of myocardial I/R injury and it has been demonstrated that the mitochondria are the center of regulation for apoptosis. Penehyclidine hydrochloride (PHC) is used during surgery and has recently been identified as a new type of anticholinergic drug. It has been demonstrated in vivo that pretreatment with PHC reduces myocardial apoptosis in rat hearts. The present study aimed to investigate the effects of PHC post-conditioning on myocardial cell apoptosis in a rat model of myocardial I/R and to determine whether the mitochondria-induced pathway was activated. Male Wistar rats were evenly and randomly categorized into 4 experimental groups as follows: i) Sham group; ii) I/R group; iii) PHC+sham group; and iv) PHC+I/R group. A PHC (1 mg/kg) post-conditioning approach (5 min before reperfusion) was used in addition to I/R in the PHC-treated groups. Following 3 h reperfusion, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling staining were performed to measure myocardial cell apoptosis. A JC-1 staining method was performed to measure the mitochondrial membrane potential of myocardial cells. The expression of Bax, Bcl-2, voltage dependent anion-selective channel protein 1 (VDAC1), cytosol cytochrome c (cyt-c) and cleaved caspase-3 was analyzed using western blotting. PHC post-conditioning significantly reduced apoptosis in cardiomyocytes, significantly downregulated the expression of Bax, VDAC1, cytosol cytochrome c and cleaved caspase-3 but significantly upregulated the expression of Bcl-2. PHC post-conditioning also restored the mitochondrial membrane potential. Thus, the present study demonstrated that PHC post-conditioning protects cardiomyocytes against apoptosis in the rat model of myocardial I/R by inhibiting the mitochondria-induced intrinsic pathway.
Collapse
Affiliation(s)
- Hongbao Tan
- Department of Anesthesiology, Beijing Anzhen Hospital of Capital Medical University, Beijing 100029, P.R. China
| | - Li Chen
- Department of Nephrology, The Second People's Hospital of Hunan, Changsha, Hunan 410007, P.R. China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital of Capital Medical University, Beijing 100029, P.R. China
| |
Collapse
|
13
|
Li G, Xu C, Lin X, Qu L, Xia D, Hongdu B, Xia Y, Wang X, Lou Y, He Q, Ma D, Chen Y. Deletion of Pdcd5 in mice led to the deficiency of placenta development and embryonic lethality. Cell Death Dis 2017; 8:e2811. [PMID: 28542142 PMCID: PMC5520688 DOI: 10.1038/cddis.2017.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 12/31/2022]
Abstract
Programmed cell death 5 (PDCD5) is an apoptosis promoter molecule that displays multiple biological activities. However, the function of PDCD5 in vivo has not yet been investigated. Here, we generated a Pdcd5 knockout mouse model to study the physiological role of PDCD5 in vivo. Knockout of the Pdcd5 gene resulted in embryonic lethality at mid-gestation. Histopathological analysis revealed dysplasia in both the LZs and JZs in Pdcd5–/– placentas with defects in spongiotrophoblasts and trophoblast giant cells. Furthermore, Pdcd5–/– embryos had impaired transplacental passage capacity. We also found that Pdcd5–/– embryos exhibited cardiac abnormalities and defective liver development. The growth defect is linked to impaired placental development and may be caused by insufficient oxygen and nutrient transfer across the placenta. These findings were verified in vitro in Pdcd5 knockout mouse embryonic fibroblasts, which showed increased apoptosis and G0/G1 phase cell cycle arrest. Pdcd5 knockout decreased the Vegf and hepatocyte growth factor (Hgf) levels, downregulated the downstream Pik3ca–Akt–Mtor signal pathway and decreased cell survival. Collectively, our studies demonstrated that Pdcd5 knockout in mouse embryos results in placental defects and embryonic lethality.
Collapse
Affiliation(s)
- Ge Li
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,The Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Chentong Xu
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Xin Lin
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Liujing Qu
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Dan Xia
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Beiqi Hongdu
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Yan Xia
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Xiaokun Wang
- Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Yaxin Lou
- Medical and Healthy Analytical Center, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Qihua He
- Medical and Healthy Analytical Center, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Dalong Ma
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
14
|
Zhang S, Lin X, Li G, Shen X, Niu D, Lu G, Fu X, Chen Y, Cui M, Bai Y. Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy. Cell Death Dis 2017; 8:e2586. [PMID: 28151473 PMCID: PMC5386466 DOI: 10.1038/cddis.2017.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
EVA1A (Eva-1 homologue A) is a novel lysosome and endoplasmic reticulum-associated protein that can regulate cell autophagy and apoptosis. Eva1a is expressed in the myocardium, but its function in myocytes has not yet been investigated. Therefore, we generated inducible, cardiomyocyte-specific Eva1a knockout mice with an aim to determine the role of Eva1a in cardiac remodelling in the adult heart. Data from experiments showed that loss of Eva1a in the adult heart increased cardiac fibrosis, promoted cardiac hypertrophy, and led to cardiomyopathy and death. Further investigation suggested that this effect was associated with impaired autophagy and increased apoptosis in Eva1a knockout hearts. Moreover, knockout of Eva1a activated Mtor signalling and the subsequent inhibition of autophagy. In addition, Eva1a knockout hearts showed disorganized sarcomere structure and mitochondrial misalignment and aggregation, leading to the lack of ATP generation. Collectively, these data demonstrated that Eva1a improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing autophagy. In conclusion, our results demonstrated that Eva1a may have an important role in maintaining cardiac homeostasis.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China
| | - Xin Lin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Ge Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Xue Shen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Di Niu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guang Lu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Xin Fu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China
| | - Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
15
|
Wang F, Jia J, Rodrigues B. Autophagy, Metabolic Disease, and Pathogenesis of Heart Dysfunction. Can J Cardiol 2017; 33:850-859. [PMID: 28389131 DOI: 10.1016/j.cjca.2017.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
In normal physiology, autophagy is recognized as a protective housekeeping mechanism that enables elimination of unhealthy organelles, protein aggregates, and invading pathogens, as well as recycling cell components and producing new building blocks and energy for cellular renovation and homeostasis. However, overactive or depressed autophagy is often associated with the pathogenesis of multiple disorders, including cardiac disease. During metabolic disorders, such as diabetes and obesity, dysregulation of autophagy frequently leads to cell death, cardiomyopathy, and cardiac dysfunction. In this article, we summarize the current understanding of autophagy-its classification, progression, and regulation; its roles in both physiological and pathophysiological conditions; and the balance between autophagy and apoptosis. We also explore how dysregulation of autophagy leads to cell death in models of metabolic disease and its contributing factors-including nutrient state, hyperglycemia, dyslipidemia, insulin inefficiency, and oxidative stress-and outline some recent efforts to restore normal autophagy in pathophysiological states. This information could provide potential targets for the prevention of, or intervention in, cardiac failure in metabolic disorders such as diabetes and obesity.
Collapse
Affiliation(s)
- Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn Jia
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
16
|
Li G, Ma D, Chen Y. Cellular functions of programmed cell death 5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:572-80. [PMID: 26775586 DOI: 10.1016/j.bbamcr.2015.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023]
Abstract
Programmed cell death 5 (PDCD5) was originally identified as an apoptosis-accelerating protein that is widely expressed and has been well conserved during the process of evolution. PDCD5 has complex biological functions, including programmed cell death and immune regulation. It can accelerate apoptosis in different type of cells in response to different stimuli. During this process, PDCD5 rapidly translocates from the cytoplasm to the nucleus. PDCD5 regulates the activities of TIP60, HDAC3, MDM2 and TP53 transcription factors. These proteins form part of a signaling network that is disrupted in most, if not all, cancer cells. Recent evidence suggests that PDCD5 participates in immune regulation by promoting regulatory T cell function via the PDCD5-TIP60-FOXP3 pathway. The stability and expression of PDCD5 are finely regulated by other molecules, such as NF-κB p65, OTUD5, YAF2 and DNAJB1. PDCD5 is phosphorylated by CK2 at Ser119, which is required for nuclear translocation in response to genotoxic stress. In this review, we describe what is known about PDCD5 and its cellular functions.
Collapse
Affiliation(s)
- Ge Li
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Dalong Ma
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|